serial_core: Prepare for BKL push down
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 static struct kmem_cache *scsi_bidi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 host->host_blocked = host->max_host_blocked;
138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 device->device_blocked = device->max_device_blocked;
140
141 /*
142 * Decrement the counters, since these commands are no longer
143 * active on the host/device.
144 */
145 scsi_device_unbusy(device);
146
147 /*
148 * Requeue this command. It will go before all other commands
149 * that are already in the queue.
150 *
151 * NOTE: there is magic here about the way the queue is plugged if
152 * we have no outstanding commands.
153 *
154 * Although we *don't* plug the queue, we call the request
155 * function. The SCSI request function detects the blocked condition
156 * and plugs the queue appropriately.
157 */
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
161
162 scsi_run_queue(q);
163
164 return 0;
165 }
166
167 /**
168 * scsi_execute - insert request and wait for the result
169 * @sdev: scsi device
170 * @cmd: scsi command
171 * @data_direction: data direction
172 * @buffer: data buffer
173 * @bufflen: len of buffer
174 * @sense: optional sense buffer
175 * @timeout: request timeout in seconds
176 * @retries: number of times to retry request
177 * @flags: or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 struct request *req;
187 int write = (data_direction == DMA_TO_DEVICE);
188 int ret = DRIVER_ERROR << 24;
189
190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
193 buffer, bufflen, __GFP_WAIT))
194 goto out;
195
196 req->cmd_len = COMMAND_SIZE(cmd[0]);
197 memcpy(req->cmd, cmd, req->cmd_len);
198 req->sense = sense;
199 req->sense_len = 0;
200 req->retries = retries;
201 req->timeout = timeout;
202 req->cmd_type = REQ_TYPE_BLOCK_PC;
203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205 /*
206 * head injection *required* here otherwise quiesce won't work
207 */
208 blk_execute_rq(req->q, NULL, req, 1);
209
210 ret = req->errors;
211 out:
212 blk_put_request(req);
213
214 return ret;
215 }
216 EXPORT_SYMBOL(scsi_execute);
217
218
219 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220 int data_direction, void *buffer, unsigned bufflen,
221 struct scsi_sense_hdr *sshdr, int timeout, int retries)
222 {
223 char *sense = NULL;
224 int result;
225
226 if (sshdr) {
227 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228 if (!sense)
229 return DRIVER_ERROR << 24;
230 }
231 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232 sense, timeout, retries, 0);
233 if (sshdr)
234 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236 kfree(sense);
237 return result;
238 }
239 EXPORT_SYMBOL(scsi_execute_req);
240
241 struct scsi_io_context {
242 void *data;
243 void (*done)(void *data, char *sense, int result, int resid);
244 char sense[SCSI_SENSE_BUFFERSIZE];
245 };
246
247 static struct kmem_cache *scsi_io_context_cache;
248
249 static void scsi_end_async(struct request *req, int uptodate)
250 {
251 struct scsi_io_context *sioc = req->end_io_data;
252
253 if (sioc->done)
254 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256 kmem_cache_free(scsi_io_context_cache, sioc);
257 __blk_put_request(req->q, req);
258 }
259
260 static int scsi_merge_bio(struct request *rq, struct bio *bio)
261 {
262 struct request_queue *q = rq->q;
263
264 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265 if (rq_data_dir(rq) == WRITE)
266 bio->bi_rw |= (1 << BIO_RW);
267 blk_queue_bounce(q, &bio);
268
269 return blk_rq_append_bio(q, rq, bio);
270 }
271
272 static void scsi_bi_endio(struct bio *bio, int error)
273 {
274 bio_put(bio);
275 }
276
277 /**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq: request to fill
280 * @sgl: scatterlist
281 * @nsegs: number of elements
282 * @bufflen: len of buffer
283 * @gfp: memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290 int nsegs, unsigned bufflen, gfp_t gfp)
291 {
292 struct request_queue *q = rq->q;
293 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294 unsigned int data_len = bufflen, len, bytes, off;
295 struct scatterlist *sg;
296 struct page *page;
297 struct bio *bio = NULL;
298 int i, err, nr_vecs = 0;
299
300 for_each_sg(sgl, sg, nsegs, i) {
301 page = sg_page(sg);
302 off = sg->offset;
303 len = sg->length;
304
305 while (len > 0 && data_len > 0) {
306 /*
307 * sg sends a scatterlist that is larger than
308 * the data_len it wants transferred for certain
309 * IO sizes
310 */
311 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312 bytes = min(bytes, data_len);
313
314 if (!bio) {
315 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316 nr_pages -= nr_vecs;
317
318 bio = bio_alloc(gfp, nr_vecs);
319 if (!bio) {
320 err = -ENOMEM;
321 goto free_bios;
322 }
323 bio->bi_end_io = scsi_bi_endio;
324 }
325
326 if (bio_add_pc_page(q, bio, page, bytes, off) !=
327 bytes) {
328 bio_put(bio);
329 err = -EINVAL;
330 goto free_bios;
331 }
332
333 if (bio->bi_vcnt >= nr_vecs) {
334 err = scsi_merge_bio(rq, bio);
335 if (err) {
336 bio_endio(bio, 0);
337 goto free_bios;
338 }
339 bio = NULL;
340 }
341
342 page++;
343 len -= bytes;
344 data_len -=bytes;
345 off = 0;
346 }
347 }
348
349 rq->buffer = rq->data = NULL;
350 rq->data_len = bufflen;
351 return 0;
352
353 free_bios:
354 while ((bio = rq->bio) != NULL) {
355 rq->bio = bio->bi_next;
356 /*
357 * call endio instead of bio_put incase it was bounced
358 */
359 bio_endio(bio, 0);
360 }
361
362 return err;
363 }
364
365 /**
366 * scsi_execute_async - insert request
367 * @sdev: scsi device
368 * @cmd: scsi command
369 * @cmd_len: length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen: len of buffer
373 * @use_sg: if buffer is a scatterlist this is the number of elements
374 * @timeout: request timeout in seconds
375 * @retries: number of times to retry request
376 * @privdata: data passed to done()
377 * @done: callback function when done
378 * @gfp: memory allocation flags
379 */
380 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382 int use_sg, int timeout, int retries, void *privdata,
383 void (*done)(void *, char *, int, int), gfp_t gfp)
384 {
385 struct request *req;
386 struct scsi_io_context *sioc;
387 int err = 0;
388 int write = (data_direction == DMA_TO_DEVICE);
389
390 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391 if (!sioc)
392 return DRIVER_ERROR << 24;
393
394 req = blk_get_request(sdev->request_queue, write, gfp);
395 if (!req)
396 goto free_sense;
397 req->cmd_type = REQ_TYPE_BLOCK_PC;
398 req->cmd_flags |= REQ_QUIET;
399
400 if (use_sg)
401 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402 else if (bufflen)
403 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405 if (err)
406 goto free_req;
407
408 req->cmd_len = cmd_len;
409 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410 memcpy(req->cmd, cmd, req->cmd_len);
411 req->sense = sioc->sense;
412 req->sense_len = 0;
413 req->timeout = timeout;
414 req->retries = retries;
415 req->end_io_data = sioc;
416
417 sioc->data = privdata;
418 sioc->done = done;
419
420 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421 return 0;
422
423 free_req:
424 blk_put_request(req);
425 free_sense:
426 kmem_cache_free(scsi_io_context_cache, sioc);
427 return DRIVER_ERROR << 24;
428 }
429 EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431 /*
432 * Function: scsi_init_cmd_errh()
433 *
434 * Purpose: Initialize cmd fields related to error handling.
435 *
436 * Arguments: cmd - command that is ready to be queued.
437 *
438 * Notes: This function has the job of initializing a number of
439 * fields related to error handling. Typically this will
440 * be called once for each command, as required.
441 */
442 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443 {
444 cmd->serial_number = 0;
445 scsi_set_resid(cmd, 0);
446 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447 if (cmd->cmd_len == 0)
448 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 struct Scsi_Host *shost = sdev->host;
454 unsigned long flags;
455
456 spin_lock_irqsave(shost->host_lock, flags);
457 shost->host_busy--;
458 if (unlikely(scsi_host_in_recovery(shost) &&
459 (shost->host_failed || shost->host_eh_scheduled)))
460 scsi_eh_wakeup(shost);
461 spin_unlock(shost->host_lock);
462 spin_lock(sdev->request_queue->queue_lock);
463 sdev->device_busy--;
464 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 struct Scsi_Host *shost = current_sdev->host;
477 struct scsi_device *sdev, *tmp;
478 struct scsi_target *starget = scsi_target(current_sdev);
479 unsigned long flags;
480
481 spin_lock_irqsave(shost->host_lock, flags);
482 starget->starget_sdev_user = NULL;
483 spin_unlock_irqrestore(shost->host_lock, flags);
484
485 /*
486 * Call blk_run_queue for all LUNs on the target, starting with
487 * current_sdev. We race with others (to set starget_sdev_user),
488 * but in most cases, we will be first. Ideally, each LU on the
489 * target would get some limited time or requests on the target.
490 */
491 blk_run_queue(current_sdev->request_queue);
492
493 spin_lock_irqsave(shost->host_lock, flags);
494 if (starget->starget_sdev_user)
495 goto out;
496 list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 same_target_siblings) {
498 if (sdev == current_sdev)
499 continue;
500 if (scsi_device_get(sdev))
501 continue;
502
503 spin_unlock_irqrestore(shost->host_lock, flags);
504 blk_run_queue(sdev->request_queue);
505 spin_lock_irqsave(shost->host_lock, flags);
506
507 scsi_device_put(sdev);
508 }
509 out:
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514 * Function: scsi_run_queue()
515 *
516 * Purpose: Select a proper request queue to serve next
517 *
518 * Arguments: q - last request's queue
519 *
520 * Returns: Nothing
521 *
522 * Notes: The previous command was completely finished, start
523 * a new one if possible.
524 */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 struct scsi_device *sdev = q->queuedata;
528 struct Scsi_Host *shost = sdev->host;
529 unsigned long flags;
530
531 if (scsi_target(sdev)->single_lun)
532 scsi_single_lun_run(sdev);
533
534 spin_lock_irqsave(shost->host_lock, flags);
535 while (!list_empty(&shost->starved_list) &&
536 !shost->host_blocked && !shost->host_self_blocked &&
537 !((shost->can_queue > 0) &&
538 (shost->host_busy >= shost->can_queue))) {
539
540 int flagset;
541
542 /*
543 * As long as shost is accepting commands and we have
544 * starved queues, call blk_run_queue. scsi_request_fn
545 * drops the queue_lock and can add us back to the
546 * starved_list.
547 *
548 * host_lock protects the starved_list and starved_entry.
549 * scsi_request_fn must get the host_lock before checking
550 * or modifying starved_list or starved_entry.
551 */
552 sdev = list_entry(shost->starved_list.next,
553 struct scsi_device, starved_entry);
554 list_del_init(&sdev->starved_entry);
555 spin_unlock(shost->host_lock);
556
557 spin_lock(sdev->request_queue->queue_lock);
558 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559 !test_bit(QUEUE_FLAG_REENTER,
560 &sdev->request_queue->queue_flags);
561 if (flagset)
562 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
563 __blk_run_queue(sdev->request_queue);
564 if (flagset)
565 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
566 spin_unlock(sdev->request_queue->queue_lock);
567
568 spin_lock(shost->host_lock);
569 if (unlikely(!list_empty(&sdev->starved_entry)))
570 /*
571 * sdev lost a race, and was put back on the
572 * starved list. This is unlikely but without this
573 * in theory we could loop forever.
574 */
575 break;
576 }
577 spin_unlock_irqrestore(shost->host_lock, flags);
578
579 blk_run_queue(q);
580 }
581
582 /*
583 * Function: scsi_requeue_command()
584 *
585 * Purpose: Handle post-processing of completed commands.
586 *
587 * Arguments: q - queue to operate on
588 * cmd - command that may need to be requeued.
589 *
590 * Returns: Nothing
591 *
592 * Notes: After command completion, there may be blocks left
593 * over which weren't finished by the previous command
594 * this can be for a number of reasons - the main one is
595 * I/O errors in the middle of the request, in which case
596 * we need to request the blocks that come after the bad
597 * sector.
598 * Notes: Upon return, cmd is a stale pointer.
599 */
600 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601 {
602 struct request *req = cmd->request;
603 unsigned long flags;
604
605 scsi_unprep_request(req);
606 spin_lock_irqsave(q->queue_lock, flags);
607 blk_requeue_request(q, req);
608 spin_unlock_irqrestore(q->queue_lock, flags);
609
610 scsi_run_queue(q);
611 }
612
613 void scsi_next_command(struct scsi_cmnd *cmd)
614 {
615 struct scsi_device *sdev = cmd->device;
616 struct request_queue *q = sdev->request_queue;
617
618 /* need to hold a reference on the device before we let go of the cmd */
619 get_device(&sdev->sdev_gendev);
620
621 scsi_put_command(cmd);
622 scsi_run_queue(q);
623
624 /* ok to remove device now */
625 put_device(&sdev->sdev_gendev);
626 }
627
628 void scsi_run_host_queues(struct Scsi_Host *shost)
629 {
630 struct scsi_device *sdev;
631
632 shost_for_each_device(sdev, shost)
633 scsi_run_queue(sdev->request_queue);
634 }
635
636 /*
637 * Function: scsi_end_request()
638 *
639 * Purpose: Post-processing of completed commands (usually invoked at end
640 * of upper level post-processing and scsi_io_completion).
641 *
642 * Arguments: cmd - command that is complete.
643 * error - 0 if I/O indicates success, < 0 for I/O error.
644 * bytes - number of bytes of completed I/O
645 * requeue - indicates whether we should requeue leftovers.
646 *
647 * Lock status: Assumed that lock is not held upon entry.
648 *
649 * Returns: cmd if requeue required, NULL otherwise.
650 *
651 * Notes: This is called for block device requests in order to
652 * mark some number of sectors as complete.
653 *
654 * We are guaranteeing that the request queue will be goosed
655 * at some point during this call.
656 * Notes: If cmd was requeued, upon return it will be a stale pointer.
657 */
658 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
659 int bytes, int requeue)
660 {
661 struct request_queue *q = cmd->device->request_queue;
662 struct request *req = cmd->request;
663
664 /*
665 * If there are blocks left over at the end, set up the command
666 * to queue the remainder of them.
667 */
668 if (blk_end_request(req, error, bytes)) {
669 int leftover = (req->hard_nr_sectors << 9);
670
671 if (blk_pc_request(req))
672 leftover = req->data_len;
673
674 /* kill remainder if no retrys */
675 if (error && blk_noretry_request(req))
676 blk_end_request(req, error, leftover);
677 else {
678 if (requeue) {
679 /*
680 * Bleah. Leftovers again. Stick the
681 * leftovers in the front of the
682 * queue, and goose the queue again.
683 */
684 scsi_requeue_command(q, cmd);
685 cmd = NULL;
686 }
687 return cmd;
688 }
689 }
690
691 /*
692 * This will goose the queue request function at the end, so we don't
693 * need to worry about launching another command.
694 */
695 scsi_next_command(cmd);
696 return NULL;
697 }
698
699 static inline unsigned int scsi_sgtable_index(unsigned short nents)
700 {
701 unsigned int index;
702
703 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
704
705 if (nents <= 8)
706 index = 0;
707 else
708 index = get_count_order(nents) - 3;
709
710 return index;
711 }
712
713 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
714 {
715 struct scsi_host_sg_pool *sgp;
716
717 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
718 mempool_free(sgl, sgp->pool);
719 }
720
721 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
722 {
723 struct scsi_host_sg_pool *sgp;
724
725 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
726 return mempool_alloc(sgp->pool, gfp_mask);
727 }
728
729 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
730 gfp_t gfp_mask)
731 {
732 int ret;
733
734 BUG_ON(!nents);
735
736 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
737 gfp_mask, scsi_sg_alloc);
738 if (unlikely(ret))
739 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
740 scsi_sg_free);
741
742 return ret;
743 }
744
745 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
746 {
747 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
748 }
749
750 /*
751 * Function: scsi_release_buffers()
752 *
753 * Purpose: Completion processing for block device I/O requests.
754 *
755 * Arguments: cmd - command that we are bailing.
756 *
757 * Lock status: Assumed that no lock is held upon entry.
758 *
759 * Returns: Nothing
760 *
761 * Notes: In the event that an upper level driver rejects a
762 * command, we must release resources allocated during
763 * the __init_io() function. Primarily this would involve
764 * the scatter-gather table, and potentially any bounce
765 * buffers.
766 */
767 void scsi_release_buffers(struct scsi_cmnd *cmd)
768 {
769 if (cmd->sdb.table.nents)
770 scsi_free_sgtable(&cmd->sdb);
771
772 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
773
774 if (scsi_bidi_cmnd(cmd)) {
775 struct scsi_data_buffer *bidi_sdb =
776 cmd->request->next_rq->special;
777 scsi_free_sgtable(bidi_sdb);
778 kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
779 cmd->request->next_rq->special = NULL;
780 }
781 }
782 EXPORT_SYMBOL(scsi_release_buffers);
783
784 /*
785 * Bidi commands Must be complete as a whole, both sides at once.
786 * If part of the bytes were written and lld returned
787 * scsi_in()->resid and/or scsi_out()->resid this information will be left
788 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
789 * decide what to do with this information.
790 */
791 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
792 {
793 struct request *req = cmd->request;
794 unsigned int dlen = req->data_len;
795 unsigned int next_dlen = req->next_rq->data_len;
796
797 req->data_len = scsi_out(cmd)->resid;
798 req->next_rq->data_len = scsi_in(cmd)->resid;
799
800 /* The req and req->next_rq have not been completed */
801 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
802
803 scsi_release_buffers(cmd);
804
805 /*
806 * This will goose the queue request function at the end, so we don't
807 * need to worry about launching another command.
808 */
809 scsi_next_command(cmd);
810 }
811
812 /*
813 * Function: scsi_io_completion()
814 *
815 * Purpose: Completion processing for block device I/O requests.
816 *
817 * Arguments: cmd - command that is finished.
818 *
819 * Lock status: Assumed that no lock is held upon entry.
820 *
821 * Returns: Nothing
822 *
823 * Notes: This function is matched in terms of capabilities to
824 * the function that created the scatter-gather list.
825 * In other words, if there are no bounce buffers
826 * (the normal case for most drivers), we don't need
827 * the logic to deal with cleaning up afterwards.
828 *
829 * We must do one of several things here:
830 *
831 * a) Call scsi_end_request. This will finish off the
832 * specified number of sectors. If we are done, the
833 * command block will be released, and the queue
834 * function will be goosed. If we are not done, then
835 * scsi_end_request will directly goose the queue.
836 *
837 * b) We can just use scsi_requeue_command() here. This would
838 * be used if we just wanted to retry, for example.
839 */
840 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
841 {
842 int result = cmd->result;
843 int this_count = scsi_bufflen(cmd);
844 struct request_queue *q = cmd->device->request_queue;
845 struct request *req = cmd->request;
846 int error = 0;
847 struct scsi_sense_hdr sshdr;
848 int sense_valid = 0;
849 int sense_deferred = 0;
850
851 if (result) {
852 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
853 if (sense_valid)
854 sense_deferred = scsi_sense_is_deferred(&sshdr);
855 }
856
857 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
858 req->errors = result;
859 if (result) {
860 if (sense_valid && req->sense) {
861 /*
862 * SG_IO wants current and deferred errors
863 */
864 int len = 8 + cmd->sense_buffer[7];
865
866 if (len > SCSI_SENSE_BUFFERSIZE)
867 len = SCSI_SENSE_BUFFERSIZE;
868 memcpy(req->sense, cmd->sense_buffer, len);
869 req->sense_len = len;
870 }
871 if (!sense_deferred)
872 error = -EIO;
873 }
874 if (scsi_bidi_cmnd(cmd)) {
875 /* will also release_buffers */
876 scsi_end_bidi_request(cmd);
877 return;
878 }
879 req->data_len = scsi_get_resid(cmd);
880 }
881
882 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
883 scsi_release_buffers(cmd);
884
885 /*
886 * Next deal with any sectors which we were able to correctly
887 * handle.
888 */
889 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
890 "%d bytes done.\n",
891 req->nr_sectors, good_bytes));
892
893 /* A number of bytes were successfully read. If there
894 * are leftovers and there is some kind of error
895 * (result != 0), retry the rest.
896 */
897 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
898 return;
899
900 /* good_bytes = 0, or (inclusive) there were leftovers and
901 * result = 0, so scsi_end_request couldn't retry.
902 */
903 if (sense_valid && !sense_deferred) {
904 switch (sshdr.sense_key) {
905 case UNIT_ATTENTION:
906 if (cmd->device->removable) {
907 /* Detected disc change. Set a bit
908 * and quietly refuse further access.
909 */
910 cmd->device->changed = 1;
911 scsi_end_request(cmd, -EIO, this_count, 1);
912 return;
913 } else {
914 /* Must have been a power glitch, or a
915 * bus reset. Could not have been a
916 * media change, so we just retry the
917 * request and see what happens.
918 */
919 scsi_requeue_command(q, cmd);
920 return;
921 }
922 break;
923 case ILLEGAL_REQUEST:
924 /* If we had an ILLEGAL REQUEST returned, then
925 * we may have performed an unsupported
926 * command. The only thing this should be
927 * would be a ten byte read where only a six
928 * byte read was supported. Also, on a system
929 * where READ CAPACITY failed, we may have
930 * read past the end of the disk.
931 */
932 if ((cmd->device->use_10_for_rw &&
933 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
934 (cmd->cmnd[0] == READ_10 ||
935 cmd->cmnd[0] == WRITE_10)) {
936 cmd->device->use_10_for_rw = 0;
937 /* This will cause a retry with a
938 * 6-byte command.
939 */
940 scsi_requeue_command(q, cmd);
941 return;
942 } else {
943 scsi_end_request(cmd, -EIO, this_count, 1);
944 return;
945 }
946 break;
947 case NOT_READY:
948 /* If the device is in the process of becoming
949 * ready, or has a temporary blockage, retry.
950 */
951 if (sshdr.asc == 0x04) {
952 switch (sshdr.ascq) {
953 case 0x01: /* becoming ready */
954 case 0x04: /* format in progress */
955 case 0x05: /* rebuild in progress */
956 case 0x06: /* recalculation in progress */
957 case 0x07: /* operation in progress */
958 case 0x08: /* Long write in progress */
959 case 0x09: /* self test in progress */
960 scsi_requeue_command(q, cmd);
961 return;
962 default:
963 break;
964 }
965 }
966 if (!(req->cmd_flags & REQ_QUIET))
967 scsi_cmd_print_sense_hdr(cmd,
968 "Device not ready",
969 &sshdr);
970
971 scsi_end_request(cmd, -EIO, this_count, 1);
972 return;
973 case VOLUME_OVERFLOW:
974 if (!(req->cmd_flags & REQ_QUIET)) {
975 scmd_printk(KERN_INFO, cmd,
976 "Volume overflow, CDB: ");
977 __scsi_print_command(cmd->cmnd);
978 scsi_print_sense("", cmd);
979 }
980 /* See SSC3rXX or current. */
981 scsi_end_request(cmd, -EIO, this_count, 1);
982 return;
983 default:
984 break;
985 }
986 }
987 if (host_byte(result) == DID_RESET) {
988 /* Third party bus reset or reset for error recovery
989 * reasons. Just retry the request and see what
990 * happens.
991 */
992 scsi_requeue_command(q, cmd);
993 return;
994 }
995 if (result) {
996 if (!(req->cmd_flags & REQ_QUIET)) {
997 scsi_print_result(cmd);
998 if (driver_byte(result) & DRIVER_SENSE)
999 scsi_print_sense("", cmd);
1000 }
1001 }
1002 scsi_end_request(cmd, -EIO, this_count, !result);
1003 }
1004
1005 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1006 gfp_t gfp_mask)
1007 {
1008 int count;
1009
1010 /*
1011 * If sg table allocation fails, requeue request later.
1012 */
1013 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1014 gfp_mask))) {
1015 return BLKPREP_DEFER;
1016 }
1017
1018 req->buffer = NULL;
1019
1020 /*
1021 * Next, walk the list, and fill in the addresses and sizes of
1022 * each segment.
1023 */
1024 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025 BUG_ON(count > sdb->table.nents);
1026 sdb->table.nents = count;
1027 if (blk_pc_request(req))
1028 sdb->length = req->data_len;
1029 else
1030 sdb->length = req->nr_sectors << 9;
1031 return BLKPREP_OK;
1032 }
1033
1034 /*
1035 * Function: scsi_init_io()
1036 *
1037 * Purpose: SCSI I/O initialize function.
1038 *
1039 * Arguments: cmd - Command descriptor we wish to initialize
1040 *
1041 * Returns: 0 on success
1042 * BLKPREP_DEFER if the failure is retryable
1043 * BLKPREP_KILL if the failure is fatal
1044 */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1048 if (error)
1049 goto err_exit;
1050
1051 if (blk_bidi_rq(cmd->request)) {
1052 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053 scsi_bidi_sdb_cache, GFP_ATOMIC);
1054 if (!bidi_sdb) {
1055 error = BLKPREP_DEFER;
1056 goto err_exit;
1057 }
1058
1059 cmd->request->next_rq->special = bidi_sdb;
1060 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1061 GFP_ATOMIC);
1062 if (error)
1063 goto err_exit;
1064 }
1065
1066 return BLKPREP_OK ;
1067
1068 err_exit:
1069 scsi_release_buffers(cmd);
1070 if (error == BLKPREP_KILL)
1071 scsi_put_command(cmd);
1072 else /* BLKPREP_DEFER */
1073 scsi_unprep_request(cmd->request);
1074
1075 return error;
1076 }
1077 EXPORT_SYMBOL(scsi_init_io);
1078
1079 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1080 struct request *req)
1081 {
1082 struct scsi_cmnd *cmd;
1083
1084 if (!req->special) {
1085 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1086 if (unlikely(!cmd))
1087 return NULL;
1088 req->special = cmd;
1089 } else {
1090 cmd = req->special;
1091 }
1092
1093 /* pull a tag out of the request if we have one */
1094 cmd->tag = req->tag;
1095 cmd->request = req;
1096
1097 return cmd;
1098 }
1099
1100 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1101 {
1102 struct scsi_cmnd *cmd;
1103 int ret = scsi_prep_state_check(sdev, req);
1104
1105 if (ret != BLKPREP_OK)
1106 return ret;
1107
1108 cmd = scsi_get_cmd_from_req(sdev, req);
1109 if (unlikely(!cmd))
1110 return BLKPREP_DEFER;
1111
1112 /*
1113 * BLOCK_PC requests may transfer data, in which case they must
1114 * a bio attached to them. Or they might contain a SCSI command
1115 * that does not transfer data, in which case they may optionally
1116 * submit a request without an attached bio.
1117 */
1118 if (req->bio) {
1119 int ret;
1120
1121 BUG_ON(!req->nr_phys_segments);
1122
1123 ret = scsi_init_io(cmd, GFP_ATOMIC);
1124 if (unlikely(ret))
1125 return ret;
1126 } else {
1127 BUG_ON(req->data_len);
1128 BUG_ON(req->data);
1129
1130 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1131 req->buffer = NULL;
1132 }
1133
1134 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1135 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1136 cmd->cmd_len = req->cmd_len;
1137 if (!req->data_len)
1138 cmd->sc_data_direction = DMA_NONE;
1139 else if (rq_data_dir(req) == WRITE)
1140 cmd->sc_data_direction = DMA_TO_DEVICE;
1141 else
1142 cmd->sc_data_direction = DMA_FROM_DEVICE;
1143
1144 cmd->transfersize = req->data_len;
1145 cmd->allowed = req->retries;
1146 cmd->timeout_per_command = req->timeout;
1147 return BLKPREP_OK;
1148 }
1149 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150
1151 /*
1152 * Setup a REQ_TYPE_FS command. These are simple read/write request
1153 * from filesystems that still need to be translated to SCSI CDBs from
1154 * the ULD.
1155 */
1156 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1157 {
1158 struct scsi_cmnd *cmd;
1159 int ret = scsi_prep_state_check(sdev, req);
1160
1161 if (ret != BLKPREP_OK)
1162 return ret;
1163 /*
1164 * Filesystem requests must transfer data.
1165 */
1166 BUG_ON(!req->nr_phys_segments);
1167
1168 cmd = scsi_get_cmd_from_req(sdev, req);
1169 if (unlikely(!cmd))
1170 return BLKPREP_DEFER;
1171
1172 return scsi_init_io(cmd, GFP_ATOMIC);
1173 }
1174 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1175
1176 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1177 {
1178 int ret = BLKPREP_OK;
1179
1180 /*
1181 * If the device is not in running state we will reject some
1182 * or all commands.
1183 */
1184 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1185 switch (sdev->sdev_state) {
1186 case SDEV_OFFLINE:
1187 /*
1188 * If the device is offline we refuse to process any
1189 * commands. The device must be brought online
1190 * before trying any recovery commands.
1191 */
1192 sdev_printk(KERN_ERR, sdev,
1193 "rejecting I/O to offline device\n");
1194 ret = BLKPREP_KILL;
1195 break;
1196 case SDEV_DEL:
1197 /*
1198 * If the device is fully deleted, we refuse to
1199 * process any commands as well.
1200 */
1201 sdev_printk(KERN_ERR, sdev,
1202 "rejecting I/O to dead device\n");
1203 ret = BLKPREP_KILL;
1204 break;
1205 case SDEV_QUIESCE:
1206 case SDEV_BLOCK:
1207 /*
1208 * If the devices is blocked we defer normal commands.
1209 */
1210 if (!(req->cmd_flags & REQ_PREEMPT))
1211 ret = BLKPREP_DEFER;
1212 break;
1213 default:
1214 /*
1215 * For any other not fully online state we only allow
1216 * special commands. In particular any user initiated
1217 * command is not allowed.
1218 */
1219 if (!(req->cmd_flags & REQ_PREEMPT))
1220 ret = BLKPREP_KILL;
1221 break;
1222 }
1223 }
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(scsi_prep_state_check);
1227
1228 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1229 {
1230 struct scsi_device *sdev = q->queuedata;
1231
1232 switch (ret) {
1233 case BLKPREP_KILL:
1234 req->errors = DID_NO_CONNECT << 16;
1235 /* release the command and kill it */
1236 if (req->special) {
1237 struct scsi_cmnd *cmd = req->special;
1238 scsi_release_buffers(cmd);
1239 scsi_put_command(cmd);
1240 req->special = NULL;
1241 }
1242 break;
1243 case BLKPREP_DEFER:
1244 /*
1245 * If we defer, the elv_next_request() returns NULL, but the
1246 * queue must be restarted, so we plug here if no returning
1247 * command will automatically do that.
1248 */
1249 if (sdev->device_busy == 0)
1250 blk_plug_device(q);
1251 break;
1252 default:
1253 req->cmd_flags |= REQ_DONTPREP;
1254 }
1255
1256 return ret;
1257 }
1258 EXPORT_SYMBOL(scsi_prep_return);
1259
1260 int scsi_prep_fn(struct request_queue *q, struct request *req)
1261 {
1262 struct scsi_device *sdev = q->queuedata;
1263 int ret = BLKPREP_KILL;
1264
1265 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1266 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1267 return scsi_prep_return(q, req, ret);
1268 }
1269
1270 /*
1271 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1272 * return 0.
1273 *
1274 * Called with the queue_lock held.
1275 */
1276 static inline int scsi_dev_queue_ready(struct request_queue *q,
1277 struct scsi_device *sdev)
1278 {
1279 if (sdev->device_busy >= sdev->queue_depth)
1280 return 0;
1281 if (sdev->device_busy == 0 && sdev->device_blocked) {
1282 /*
1283 * unblock after device_blocked iterates to zero
1284 */
1285 if (--sdev->device_blocked == 0) {
1286 SCSI_LOG_MLQUEUE(3,
1287 sdev_printk(KERN_INFO, sdev,
1288 "unblocking device at zero depth\n"));
1289 } else {
1290 blk_plug_device(q);
1291 return 0;
1292 }
1293 }
1294 if (sdev->device_blocked)
1295 return 0;
1296
1297 return 1;
1298 }
1299
1300 /*
1301 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1302 * return 0. We must end up running the queue again whenever 0 is
1303 * returned, else IO can hang.
1304 *
1305 * Called with host_lock held.
1306 */
1307 static inline int scsi_host_queue_ready(struct request_queue *q,
1308 struct Scsi_Host *shost,
1309 struct scsi_device *sdev)
1310 {
1311 if (scsi_host_in_recovery(shost))
1312 return 0;
1313 if (shost->host_busy == 0 && shost->host_blocked) {
1314 /*
1315 * unblock after host_blocked iterates to zero
1316 */
1317 if (--shost->host_blocked == 0) {
1318 SCSI_LOG_MLQUEUE(3,
1319 printk("scsi%d unblocking host at zero depth\n",
1320 shost->host_no));
1321 } else {
1322 blk_plug_device(q);
1323 return 0;
1324 }
1325 }
1326 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1327 shost->host_blocked || shost->host_self_blocked) {
1328 if (list_empty(&sdev->starved_entry))
1329 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1330 return 0;
1331 }
1332
1333 /* We're OK to process the command, so we can't be starved */
1334 if (!list_empty(&sdev->starved_entry))
1335 list_del_init(&sdev->starved_entry);
1336
1337 return 1;
1338 }
1339
1340 /*
1341 * Kill a request for a dead device
1342 */
1343 static void scsi_kill_request(struct request *req, struct request_queue *q)
1344 {
1345 struct scsi_cmnd *cmd = req->special;
1346 struct scsi_device *sdev = cmd->device;
1347 struct Scsi_Host *shost = sdev->host;
1348
1349 blkdev_dequeue_request(req);
1350
1351 if (unlikely(cmd == NULL)) {
1352 printk(KERN_CRIT "impossible request in %s.\n",
1353 __FUNCTION__);
1354 BUG();
1355 }
1356
1357 scsi_init_cmd_errh(cmd);
1358 cmd->result = DID_NO_CONNECT << 16;
1359 atomic_inc(&cmd->device->iorequest_cnt);
1360
1361 /*
1362 * SCSI request completion path will do scsi_device_unbusy(),
1363 * bump busy counts. To bump the counters, we need to dance
1364 * with the locks as normal issue path does.
1365 */
1366 sdev->device_busy++;
1367 spin_unlock(sdev->request_queue->queue_lock);
1368 spin_lock(shost->host_lock);
1369 shost->host_busy++;
1370 spin_unlock(shost->host_lock);
1371 spin_lock(sdev->request_queue->queue_lock);
1372
1373 __scsi_done(cmd);
1374 }
1375
1376 static void scsi_softirq_done(struct request *rq)
1377 {
1378 struct scsi_cmnd *cmd = rq->completion_data;
1379 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1380 int disposition;
1381
1382 INIT_LIST_HEAD(&cmd->eh_entry);
1383
1384 disposition = scsi_decide_disposition(cmd);
1385 if (disposition != SUCCESS &&
1386 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1387 sdev_printk(KERN_ERR, cmd->device,
1388 "timing out command, waited %lus\n",
1389 wait_for/HZ);
1390 disposition = SUCCESS;
1391 }
1392
1393 scsi_log_completion(cmd, disposition);
1394
1395 switch (disposition) {
1396 case SUCCESS:
1397 scsi_finish_command(cmd);
1398 break;
1399 case NEEDS_RETRY:
1400 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1401 break;
1402 case ADD_TO_MLQUEUE:
1403 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1404 break;
1405 default:
1406 if (!scsi_eh_scmd_add(cmd, 0))
1407 scsi_finish_command(cmd);
1408 }
1409 }
1410
1411 /*
1412 * Function: scsi_request_fn()
1413 *
1414 * Purpose: Main strategy routine for SCSI.
1415 *
1416 * Arguments: q - Pointer to actual queue.
1417 *
1418 * Returns: Nothing
1419 *
1420 * Lock status: IO request lock assumed to be held when called.
1421 */
1422 static void scsi_request_fn(struct request_queue *q)
1423 {
1424 struct scsi_device *sdev = q->queuedata;
1425 struct Scsi_Host *shost;
1426 struct scsi_cmnd *cmd;
1427 struct request *req;
1428
1429 if (!sdev) {
1430 printk("scsi: killing requests for dead queue\n");
1431 while ((req = elv_next_request(q)) != NULL)
1432 scsi_kill_request(req, q);
1433 return;
1434 }
1435
1436 if(!get_device(&sdev->sdev_gendev))
1437 /* We must be tearing the block queue down already */
1438 return;
1439
1440 /*
1441 * To start with, we keep looping until the queue is empty, or until
1442 * the host is no longer able to accept any more requests.
1443 */
1444 shost = sdev->host;
1445 while (!blk_queue_plugged(q)) {
1446 int rtn;
1447 /*
1448 * get next queueable request. We do this early to make sure
1449 * that the request is fully prepared even if we cannot
1450 * accept it.
1451 */
1452 req = elv_next_request(q);
1453 if (!req || !scsi_dev_queue_ready(q, sdev))
1454 break;
1455
1456 if (unlikely(!scsi_device_online(sdev))) {
1457 sdev_printk(KERN_ERR, sdev,
1458 "rejecting I/O to offline device\n");
1459 scsi_kill_request(req, q);
1460 continue;
1461 }
1462
1463
1464 /*
1465 * Remove the request from the request list.
1466 */
1467 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1468 blkdev_dequeue_request(req);
1469 sdev->device_busy++;
1470
1471 spin_unlock(q->queue_lock);
1472 cmd = req->special;
1473 if (unlikely(cmd == NULL)) {
1474 printk(KERN_CRIT "impossible request in %s.\n"
1475 "please mail a stack trace to "
1476 "linux-scsi@vger.kernel.org\n",
1477 __FUNCTION__);
1478 blk_dump_rq_flags(req, "foo");
1479 BUG();
1480 }
1481 spin_lock(shost->host_lock);
1482
1483 if (!scsi_host_queue_ready(q, shost, sdev))
1484 goto not_ready;
1485 if (scsi_target(sdev)->single_lun) {
1486 if (scsi_target(sdev)->starget_sdev_user &&
1487 scsi_target(sdev)->starget_sdev_user != sdev)
1488 goto not_ready;
1489 scsi_target(sdev)->starget_sdev_user = sdev;
1490 }
1491 shost->host_busy++;
1492
1493 /*
1494 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1495 * take the lock again.
1496 */
1497 spin_unlock_irq(shost->host_lock);
1498
1499 /*
1500 * Finally, initialize any error handling parameters, and set up
1501 * the timers for timeouts.
1502 */
1503 scsi_init_cmd_errh(cmd);
1504
1505 /*
1506 * Dispatch the command to the low-level driver.
1507 */
1508 rtn = scsi_dispatch_cmd(cmd);
1509 spin_lock_irq(q->queue_lock);
1510 if(rtn) {
1511 /* we're refusing the command; because of
1512 * the way locks get dropped, we need to
1513 * check here if plugging is required */
1514 if(sdev->device_busy == 0)
1515 blk_plug_device(q);
1516
1517 break;
1518 }
1519 }
1520
1521 goto out;
1522
1523 not_ready:
1524 spin_unlock_irq(shost->host_lock);
1525
1526 /*
1527 * lock q, handle tag, requeue req, and decrement device_busy. We
1528 * must return with queue_lock held.
1529 *
1530 * Decrementing device_busy without checking it is OK, as all such
1531 * cases (host limits or settings) should run the queue at some
1532 * later time.
1533 */
1534 spin_lock_irq(q->queue_lock);
1535 blk_requeue_request(q, req);
1536 sdev->device_busy--;
1537 if(sdev->device_busy == 0)
1538 blk_plug_device(q);
1539 out:
1540 /* must be careful here...if we trigger the ->remove() function
1541 * we cannot be holding the q lock */
1542 spin_unlock_irq(q->queue_lock);
1543 put_device(&sdev->sdev_gendev);
1544 spin_lock_irq(q->queue_lock);
1545 }
1546
1547 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1548 {
1549 struct device *host_dev;
1550 u64 bounce_limit = 0xffffffff;
1551
1552 if (shost->unchecked_isa_dma)
1553 return BLK_BOUNCE_ISA;
1554 /*
1555 * Platforms with virtual-DMA translation
1556 * hardware have no practical limit.
1557 */
1558 if (!PCI_DMA_BUS_IS_PHYS)
1559 return BLK_BOUNCE_ANY;
1560
1561 host_dev = scsi_get_device(shost);
1562 if (host_dev && host_dev->dma_mask)
1563 bounce_limit = *host_dev->dma_mask;
1564
1565 return bounce_limit;
1566 }
1567 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1568
1569 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1570 request_fn_proc *request_fn)
1571 {
1572 struct request_queue *q;
1573 struct device *dev = shost->shost_gendev.parent;
1574
1575 q = blk_init_queue(request_fn, NULL);
1576 if (!q)
1577 return NULL;
1578
1579 /*
1580 * this limit is imposed by hardware restrictions
1581 */
1582 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1583 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1584
1585 blk_queue_max_sectors(q, shost->max_sectors);
1586 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1587 blk_queue_segment_boundary(q, shost->dma_boundary);
1588 dma_set_seg_boundary(dev, shost->dma_boundary);
1589
1590 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1591
1592 /* New queue, no concurrency on queue_flags */
1593 if (!shost->use_clustering)
1594 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1595
1596 /*
1597 * set a reasonable default alignment on word boundaries: the
1598 * host and device may alter it using
1599 * blk_queue_update_dma_alignment() later.
1600 */
1601 blk_queue_dma_alignment(q, 0x03);
1602
1603 return q;
1604 }
1605 EXPORT_SYMBOL(__scsi_alloc_queue);
1606
1607 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1608 {
1609 struct request_queue *q;
1610
1611 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1612 if (!q)
1613 return NULL;
1614
1615 blk_queue_prep_rq(q, scsi_prep_fn);
1616 blk_queue_softirq_done(q, scsi_softirq_done);
1617 return q;
1618 }
1619
1620 void scsi_free_queue(struct request_queue *q)
1621 {
1622 blk_cleanup_queue(q);
1623 }
1624
1625 /*
1626 * Function: scsi_block_requests()
1627 *
1628 * Purpose: Utility function used by low-level drivers to prevent further
1629 * commands from being queued to the device.
1630 *
1631 * Arguments: shost - Host in question
1632 *
1633 * Returns: Nothing
1634 *
1635 * Lock status: No locks are assumed held.
1636 *
1637 * Notes: There is no timer nor any other means by which the requests
1638 * get unblocked other than the low-level driver calling
1639 * scsi_unblock_requests().
1640 */
1641 void scsi_block_requests(struct Scsi_Host *shost)
1642 {
1643 shost->host_self_blocked = 1;
1644 }
1645 EXPORT_SYMBOL(scsi_block_requests);
1646
1647 /*
1648 * Function: scsi_unblock_requests()
1649 *
1650 * Purpose: Utility function used by low-level drivers to allow further
1651 * commands from being queued to the device.
1652 *
1653 * Arguments: shost - Host in question
1654 *
1655 * Returns: Nothing
1656 *
1657 * Lock status: No locks are assumed held.
1658 *
1659 * Notes: There is no timer nor any other means by which the requests
1660 * get unblocked other than the low-level driver calling
1661 * scsi_unblock_requests().
1662 *
1663 * This is done as an API function so that changes to the
1664 * internals of the scsi mid-layer won't require wholesale
1665 * changes to drivers that use this feature.
1666 */
1667 void scsi_unblock_requests(struct Scsi_Host *shost)
1668 {
1669 shost->host_self_blocked = 0;
1670 scsi_run_host_queues(shost);
1671 }
1672 EXPORT_SYMBOL(scsi_unblock_requests);
1673
1674 int __init scsi_init_queue(void)
1675 {
1676 int i;
1677
1678 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1679 sizeof(struct scsi_io_context),
1680 0, 0, NULL);
1681 if (!scsi_io_context_cache) {
1682 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1683 return -ENOMEM;
1684 }
1685
1686 scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1687 sizeof(struct scsi_data_buffer),
1688 0, 0, NULL);
1689 if (!scsi_bidi_sdb_cache) {
1690 printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1691 goto cleanup_io_context;
1692 }
1693
1694 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1695 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1696 int size = sgp->size * sizeof(struct scatterlist);
1697
1698 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1699 SLAB_HWCACHE_ALIGN, NULL);
1700 if (!sgp->slab) {
1701 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1702 sgp->name);
1703 goto cleanup_bidi_sdb;
1704 }
1705
1706 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1707 sgp->slab);
1708 if (!sgp->pool) {
1709 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1710 sgp->name);
1711 goto cleanup_bidi_sdb;
1712 }
1713 }
1714
1715 return 0;
1716
1717 cleanup_bidi_sdb:
1718 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1719 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1720 if (sgp->pool)
1721 mempool_destroy(sgp->pool);
1722 if (sgp->slab)
1723 kmem_cache_destroy(sgp->slab);
1724 }
1725 kmem_cache_destroy(scsi_bidi_sdb_cache);
1726 cleanup_io_context:
1727 kmem_cache_destroy(scsi_io_context_cache);
1728
1729 return -ENOMEM;
1730 }
1731
1732 void scsi_exit_queue(void)
1733 {
1734 int i;
1735
1736 kmem_cache_destroy(scsi_io_context_cache);
1737 kmem_cache_destroy(scsi_bidi_sdb_cache);
1738
1739 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1740 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1741 mempool_destroy(sgp->pool);
1742 kmem_cache_destroy(sgp->slab);
1743 }
1744 }
1745
1746 /**
1747 * scsi_mode_select - issue a mode select
1748 * @sdev: SCSI device to be queried
1749 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1750 * @sp: Save page bit (0 == don't save, 1 == save)
1751 * @modepage: mode page being requested
1752 * @buffer: request buffer (may not be smaller than eight bytes)
1753 * @len: length of request buffer.
1754 * @timeout: command timeout
1755 * @retries: number of retries before failing
1756 * @data: returns a structure abstracting the mode header data
1757 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1758 * must be SCSI_SENSE_BUFFERSIZE big.
1759 *
1760 * Returns zero if successful; negative error number or scsi
1761 * status on error
1762 *
1763 */
1764 int
1765 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1766 unsigned char *buffer, int len, int timeout, int retries,
1767 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1768 {
1769 unsigned char cmd[10];
1770 unsigned char *real_buffer;
1771 int ret;
1772
1773 memset(cmd, 0, sizeof(cmd));
1774 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1775
1776 if (sdev->use_10_for_ms) {
1777 if (len > 65535)
1778 return -EINVAL;
1779 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1780 if (!real_buffer)
1781 return -ENOMEM;
1782 memcpy(real_buffer + 8, buffer, len);
1783 len += 8;
1784 real_buffer[0] = 0;
1785 real_buffer[1] = 0;
1786 real_buffer[2] = data->medium_type;
1787 real_buffer[3] = data->device_specific;
1788 real_buffer[4] = data->longlba ? 0x01 : 0;
1789 real_buffer[5] = 0;
1790 real_buffer[6] = data->block_descriptor_length >> 8;
1791 real_buffer[7] = data->block_descriptor_length;
1792
1793 cmd[0] = MODE_SELECT_10;
1794 cmd[7] = len >> 8;
1795 cmd[8] = len;
1796 } else {
1797 if (len > 255 || data->block_descriptor_length > 255 ||
1798 data->longlba)
1799 return -EINVAL;
1800
1801 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1802 if (!real_buffer)
1803 return -ENOMEM;
1804 memcpy(real_buffer + 4, buffer, len);
1805 len += 4;
1806 real_buffer[0] = 0;
1807 real_buffer[1] = data->medium_type;
1808 real_buffer[2] = data->device_specific;
1809 real_buffer[3] = data->block_descriptor_length;
1810
1811
1812 cmd[0] = MODE_SELECT;
1813 cmd[4] = len;
1814 }
1815
1816 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1817 sshdr, timeout, retries);
1818 kfree(real_buffer);
1819 return ret;
1820 }
1821 EXPORT_SYMBOL_GPL(scsi_mode_select);
1822
1823 /**
1824 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1825 * @sdev: SCSI device to be queried
1826 * @dbd: set if mode sense will allow block descriptors to be returned
1827 * @modepage: mode page being requested
1828 * @buffer: request buffer (may not be smaller than eight bytes)
1829 * @len: length of request buffer.
1830 * @timeout: command timeout
1831 * @retries: number of retries before failing
1832 * @data: returns a structure abstracting the mode header data
1833 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1834 * must be SCSI_SENSE_BUFFERSIZE big.
1835 *
1836 * Returns zero if unsuccessful, or the header offset (either 4
1837 * or 8 depending on whether a six or ten byte command was
1838 * issued) if successful.
1839 */
1840 int
1841 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1842 unsigned char *buffer, int len, int timeout, int retries,
1843 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1844 {
1845 unsigned char cmd[12];
1846 int use_10_for_ms;
1847 int header_length;
1848 int result;
1849 struct scsi_sense_hdr my_sshdr;
1850
1851 memset(data, 0, sizeof(*data));
1852 memset(&cmd[0], 0, 12);
1853 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1854 cmd[2] = modepage;
1855
1856 /* caller might not be interested in sense, but we need it */
1857 if (!sshdr)
1858 sshdr = &my_sshdr;
1859
1860 retry:
1861 use_10_for_ms = sdev->use_10_for_ms;
1862
1863 if (use_10_for_ms) {
1864 if (len < 8)
1865 len = 8;
1866
1867 cmd[0] = MODE_SENSE_10;
1868 cmd[8] = len;
1869 header_length = 8;
1870 } else {
1871 if (len < 4)
1872 len = 4;
1873
1874 cmd[0] = MODE_SENSE;
1875 cmd[4] = len;
1876 header_length = 4;
1877 }
1878
1879 memset(buffer, 0, len);
1880
1881 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1882 sshdr, timeout, retries);
1883
1884 /* This code looks awful: what it's doing is making sure an
1885 * ILLEGAL REQUEST sense return identifies the actual command
1886 * byte as the problem. MODE_SENSE commands can return
1887 * ILLEGAL REQUEST if the code page isn't supported */
1888
1889 if (use_10_for_ms && !scsi_status_is_good(result) &&
1890 (driver_byte(result) & DRIVER_SENSE)) {
1891 if (scsi_sense_valid(sshdr)) {
1892 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1893 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1894 /*
1895 * Invalid command operation code
1896 */
1897 sdev->use_10_for_ms = 0;
1898 goto retry;
1899 }
1900 }
1901 }
1902
1903 if(scsi_status_is_good(result)) {
1904 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1905 (modepage == 6 || modepage == 8))) {
1906 /* Initio breakage? */
1907 header_length = 0;
1908 data->length = 13;
1909 data->medium_type = 0;
1910 data->device_specific = 0;
1911 data->longlba = 0;
1912 data->block_descriptor_length = 0;
1913 } else if(use_10_for_ms) {
1914 data->length = buffer[0]*256 + buffer[1] + 2;
1915 data->medium_type = buffer[2];
1916 data->device_specific = buffer[3];
1917 data->longlba = buffer[4] & 0x01;
1918 data->block_descriptor_length = buffer[6]*256
1919 + buffer[7];
1920 } else {
1921 data->length = buffer[0] + 1;
1922 data->medium_type = buffer[1];
1923 data->device_specific = buffer[2];
1924 data->block_descriptor_length = buffer[3];
1925 }
1926 data->header_length = header_length;
1927 }
1928
1929 return result;
1930 }
1931 EXPORT_SYMBOL(scsi_mode_sense);
1932
1933 /**
1934 * scsi_test_unit_ready - test if unit is ready
1935 * @sdev: scsi device to change the state of.
1936 * @timeout: command timeout
1937 * @retries: number of retries before failing
1938 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1939 * returning sense. Make sure that this is cleared before passing
1940 * in.
1941 *
1942 * Returns zero if unsuccessful or an error if TUR failed. For
1943 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1944 * translated to success, with the ->changed flag updated.
1945 **/
1946 int
1947 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1948 struct scsi_sense_hdr *sshdr_external)
1949 {
1950 char cmd[] = {
1951 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1952 };
1953 struct scsi_sense_hdr *sshdr;
1954 int result;
1955
1956 if (!sshdr_external)
1957 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1958 else
1959 sshdr = sshdr_external;
1960
1961 /* try to eat the UNIT_ATTENTION if there are enough retries */
1962 do {
1963 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1964 timeout, retries);
1965 } while ((driver_byte(result) & DRIVER_SENSE) &&
1966 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1967 --retries);
1968
1969 if (!sshdr)
1970 /* could not allocate sense buffer, so can't process it */
1971 return result;
1972
1973 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1974
1975 if ((scsi_sense_valid(sshdr)) &&
1976 ((sshdr->sense_key == UNIT_ATTENTION) ||
1977 (sshdr->sense_key == NOT_READY))) {
1978 sdev->changed = 1;
1979 result = 0;
1980 }
1981 }
1982 if (!sshdr_external)
1983 kfree(sshdr);
1984 return result;
1985 }
1986 EXPORT_SYMBOL(scsi_test_unit_ready);
1987
1988 /**
1989 * scsi_device_set_state - Take the given device through the device state model.
1990 * @sdev: scsi device to change the state of.
1991 * @state: state to change to.
1992 *
1993 * Returns zero if unsuccessful or an error if the requested
1994 * transition is illegal.
1995 */
1996 int
1997 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1998 {
1999 enum scsi_device_state oldstate = sdev->sdev_state;
2000
2001 if (state == oldstate)
2002 return 0;
2003
2004 switch (state) {
2005 case SDEV_CREATED:
2006 /* There are no legal states that come back to
2007 * created. This is the manually initialised start
2008 * state */
2009 goto illegal;
2010
2011 case SDEV_RUNNING:
2012 switch (oldstate) {
2013 case SDEV_CREATED:
2014 case SDEV_OFFLINE:
2015 case SDEV_QUIESCE:
2016 case SDEV_BLOCK:
2017 break;
2018 default:
2019 goto illegal;
2020 }
2021 break;
2022
2023 case SDEV_QUIESCE:
2024 switch (oldstate) {
2025 case SDEV_RUNNING:
2026 case SDEV_OFFLINE:
2027 break;
2028 default:
2029 goto illegal;
2030 }
2031 break;
2032
2033 case SDEV_OFFLINE:
2034 switch (oldstate) {
2035 case SDEV_CREATED:
2036 case SDEV_RUNNING:
2037 case SDEV_QUIESCE:
2038 case SDEV_BLOCK:
2039 break;
2040 default:
2041 goto illegal;
2042 }
2043 break;
2044
2045 case SDEV_BLOCK:
2046 switch (oldstate) {
2047 case SDEV_CREATED:
2048 case SDEV_RUNNING:
2049 break;
2050 default:
2051 goto illegal;
2052 }
2053 break;
2054
2055 case SDEV_CANCEL:
2056 switch (oldstate) {
2057 case SDEV_CREATED:
2058 case SDEV_RUNNING:
2059 case SDEV_QUIESCE:
2060 case SDEV_OFFLINE:
2061 case SDEV_BLOCK:
2062 break;
2063 default:
2064 goto illegal;
2065 }
2066 break;
2067
2068 case SDEV_DEL:
2069 switch (oldstate) {
2070 case SDEV_CREATED:
2071 case SDEV_RUNNING:
2072 case SDEV_OFFLINE:
2073 case SDEV_CANCEL:
2074 break;
2075 default:
2076 goto illegal;
2077 }
2078 break;
2079
2080 }
2081 sdev->sdev_state = state;
2082 return 0;
2083
2084 illegal:
2085 SCSI_LOG_ERROR_RECOVERY(1,
2086 sdev_printk(KERN_ERR, sdev,
2087 "Illegal state transition %s->%s\n",
2088 scsi_device_state_name(oldstate),
2089 scsi_device_state_name(state))
2090 );
2091 return -EINVAL;
2092 }
2093 EXPORT_SYMBOL(scsi_device_set_state);
2094
2095 /**
2096 * sdev_evt_emit - emit a single SCSI device uevent
2097 * @sdev: associated SCSI device
2098 * @evt: event to emit
2099 *
2100 * Send a single uevent (scsi_event) to the associated scsi_device.
2101 */
2102 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2103 {
2104 int idx = 0;
2105 char *envp[3];
2106
2107 switch (evt->evt_type) {
2108 case SDEV_EVT_MEDIA_CHANGE:
2109 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2110 break;
2111
2112 default:
2113 /* do nothing */
2114 break;
2115 }
2116
2117 envp[idx++] = NULL;
2118
2119 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2120 }
2121
2122 /**
2123 * sdev_evt_thread - send a uevent for each scsi event
2124 * @work: work struct for scsi_device
2125 *
2126 * Dispatch queued events to their associated scsi_device kobjects
2127 * as uevents.
2128 */
2129 void scsi_evt_thread(struct work_struct *work)
2130 {
2131 struct scsi_device *sdev;
2132 LIST_HEAD(event_list);
2133
2134 sdev = container_of(work, struct scsi_device, event_work);
2135
2136 while (1) {
2137 struct scsi_event *evt;
2138 struct list_head *this, *tmp;
2139 unsigned long flags;
2140
2141 spin_lock_irqsave(&sdev->list_lock, flags);
2142 list_splice_init(&sdev->event_list, &event_list);
2143 spin_unlock_irqrestore(&sdev->list_lock, flags);
2144
2145 if (list_empty(&event_list))
2146 break;
2147
2148 list_for_each_safe(this, tmp, &event_list) {
2149 evt = list_entry(this, struct scsi_event, node);
2150 list_del(&evt->node);
2151 scsi_evt_emit(sdev, evt);
2152 kfree(evt);
2153 }
2154 }
2155 }
2156
2157 /**
2158 * sdev_evt_send - send asserted event to uevent thread
2159 * @sdev: scsi_device event occurred on
2160 * @evt: event to send
2161 *
2162 * Assert scsi device event asynchronously.
2163 */
2164 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2165 {
2166 unsigned long flags;
2167
2168 #if 0
2169 /* FIXME: currently this check eliminates all media change events
2170 * for polled devices. Need to update to discriminate between AN
2171 * and polled events */
2172 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2173 kfree(evt);
2174 return;
2175 }
2176 #endif
2177
2178 spin_lock_irqsave(&sdev->list_lock, flags);
2179 list_add_tail(&evt->node, &sdev->event_list);
2180 schedule_work(&sdev->event_work);
2181 spin_unlock_irqrestore(&sdev->list_lock, flags);
2182 }
2183 EXPORT_SYMBOL_GPL(sdev_evt_send);
2184
2185 /**
2186 * sdev_evt_alloc - allocate a new scsi event
2187 * @evt_type: type of event to allocate
2188 * @gfpflags: GFP flags for allocation
2189 *
2190 * Allocates and returns a new scsi_event.
2191 */
2192 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2193 gfp_t gfpflags)
2194 {
2195 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2196 if (!evt)
2197 return NULL;
2198
2199 evt->evt_type = evt_type;
2200 INIT_LIST_HEAD(&evt->node);
2201
2202 /* evt_type-specific initialization, if any */
2203 switch (evt_type) {
2204 case SDEV_EVT_MEDIA_CHANGE:
2205 default:
2206 /* do nothing */
2207 break;
2208 }
2209
2210 return evt;
2211 }
2212 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2213
2214 /**
2215 * sdev_evt_send_simple - send asserted event to uevent thread
2216 * @sdev: scsi_device event occurred on
2217 * @evt_type: type of event to send
2218 * @gfpflags: GFP flags for allocation
2219 *
2220 * Assert scsi device event asynchronously, given an event type.
2221 */
2222 void sdev_evt_send_simple(struct scsi_device *sdev,
2223 enum scsi_device_event evt_type, gfp_t gfpflags)
2224 {
2225 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2226 if (!evt) {
2227 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2228 evt_type);
2229 return;
2230 }
2231
2232 sdev_evt_send(sdev, evt);
2233 }
2234 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2235
2236 /**
2237 * scsi_device_quiesce - Block user issued commands.
2238 * @sdev: scsi device to quiesce.
2239 *
2240 * This works by trying to transition to the SDEV_QUIESCE state
2241 * (which must be a legal transition). When the device is in this
2242 * state, only special requests will be accepted, all others will
2243 * be deferred. Since special requests may also be requeued requests,
2244 * a successful return doesn't guarantee the device will be
2245 * totally quiescent.
2246 *
2247 * Must be called with user context, may sleep.
2248 *
2249 * Returns zero if unsuccessful or an error if not.
2250 */
2251 int
2252 scsi_device_quiesce(struct scsi_device *sdev)
2253 {
2254 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2255 if (err)
2256 return err;
2257
2258 scsi_run_queue(sdev->request_queue);
2259 while (sdev->device_busy) {
2260 msleep_interruptible(200);
2261 scsi_run_queue(sdev->request_queue);
2262 }
2263 return 0;
2264 }
2265 EXPORT_SYMBOL(scsi_device_quiesce);
2266
2267 /**
2268 * scsi_device_resume - Restart user issued commands to a quiesced device.
2269 * @sdev: scsi device to resume.
2270 *
2271 * Moves the device from quiesced back to running and restarts the
2272 * queues.
2273 *
2274 * Must be called with user context, may sleep.
2275 */
2276 void
2277 scsi_device_resume(struct scsi_device *sdev)
2278 {
2279 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2280 return;
2281 scsi_run_queue(sdev->request_queue);
2282 }
2283 EXPORT_SYMBOL(scsi_device_resume);
2284
2285 static void
2286 device_quiesce_fn(struct scsi_device *sdev, void *data)
2287 {
2288 scsi_device_quiesce(sdev);
2289 }
2290
2291 void
2292 scsi_target_quiesce(struct scsi_target *starget)
2293 {
2294 starget_for_each_device(starget, NULL, device_quiesce_fn);
2295 }
2296 EXPORT_SYMBOL(scsi_target_quiesce);
2297
2298 static void
2299 device_resume_fn(struct scsi_device *sdev, void *data)
2300 {
2301 scsi_device_resume(sdev);
2302 }
2303
2304 void
2305 scsi_target_resume(struct scsi_target *starget)
2306 {
2307 starget_for_each_device(starget, NULL, device_resume_fn);
2308 }
2309 EXPORT_SYMBOL(scsi_target_resume);
2310
2311 /**
2312 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2313 * @sdev: device to block
2314 *
2315 * Block request made by scsi lld's to temporarily stop all
2316 * scsi commands on the specified device. Called from interrupt
2317 * or normal process context.
2318 *
2319 * Returns zero if successful or error if not
2320 *
2321 * Notes:
2322 * This routine transitions the device to the SDEV_BLOCK state
2323 * (which must be a legal transition). When the device is in this
2324 * state, all commands are deferred until the scsi lld reenables
2325 * the device with scsi_device_unblock or device_block_tmo fires.
2326 * This routine assumes the host_lock is held on entry.
2327 */
2328 int
2329 scsi_internal_device_block(struct scsi_device *sdev)
2330 {
2331 struct request_queue *q = sdev->request_queue;
2332 unsigned long flags;
2333 int err = 0;
2334
2335 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2336 if (err)
2337 return err;
2338
2339 /*
2340 * The device has transitioned to SDEV_BLOCK. Stop the
2341 * block layer from calling the midlayer with this device's
2342 * request queue.
2343 */
2344 spin_lock_irqsave(q->queue_lock, flags);
2345 blk_stop_queue(q);
2346 spin_unlock_irqrestore(q->queue_lock, flags);
2347
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2351
2352 /**
2353 * scsi_internal_device_unblock - resume a device after a block request
2354 * @sdev: device to resume
2355 *
2356 * Called by scsi lld's or the midlayer to restart the device queue
2357 * for the previously suspended scsi device. Called from interrupt or
2358 * normal process context.
2359 *
2360 * Returns zero if successful or error if not.
2361 *
2362 * Notes:
2363 * This routine transitions the device to the SDEV_RUNNING state
2364 * (which must be a legal transition) allowing the midlayer to
2365 * goose the queue for this device. This routine assumes the
2366 * host_lock is held upon entry.
2367 */
2368 int
2369 scsi_internal_device_unblock(struct scsi_device *sdev)
2370 {
2371 struct request_queue *q = sdev->request_queue;
2372 int err;
2373 unsigned long flags;
2374
2375 /*
2376 * Try to transition the scsi device to SDEV_RUNNING
2377 * and goose the device queue if successful.
2378 */
2379 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2380 if (err)
2381 return err;
2382
2383 spin_lock_irqsave(q->queue_lock, flags);
2384 blk_start_queue(q);
2385 spin_unlock_irqrestore(q->queue_lock, flags);
2386
2387 return 0;
2388 }
2389 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2390
2391 static void
2392 device_block(struct scsi_device *sdev, void *data)
2393 {
2394 scsi_internal_device_block(sdev);
2395 }
2396
2397 static int
2398 target_block(struct device *dev, void *data)
2399 {
2400 if (scsi_is_target_device(dev))
2401 starget_for_each_device(to_scsi_target(dev), NULL,
2402 device_block);
2403 return 0;
2404 }
2405
2406 void
2407 scsi_target_block(struct device *dev)
2408 {
2409 if (scsi_is_target_device(dev))
2410 starget_for_each_device(to_scsi_target(dev), NULL,
2411 device_block);
2412 else
2413 device_for_each_child(dev, NULL, target_block);
2414 }
2415 EXPORT_SYMBOL_GPL(scsi_target_block);
2416
2417 static void
2418 device_unblock(struct scsi_device *sdev, void *data)
2419 {
2420 scsi_internal_device_unblock(sdev);
2421 }
2422
2423 static int
2424 target_unblock(struct device *dev, void *data)
2425 {
2426 if (scsi_is_target_device(dev))
2427 starget_for_each_device(to_scsi_target(dev), NULL,
2428 device_unblock);
2429 return 0;
2430 }
2431
2432 void
2433 scsi_target_unblock(struct device *dev)
2434 {
2435 if (scsi_is_target_device(dev))
2436 starget_for_each_device(to_scsi_target(dev), NULL,
2437 device_unblock);
2438 else
2439 device_for_each_child(dev, NULL, target_unblock);
2440 }
2441 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2442
2443 /**
2444 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2445 * @sgl: scatter-gather list
2446 * @sg_count: number of segments in sg
2447 * @offset: offset in bytes into sg, on return offset into the mapped area
2448 * @len: bytes to map, on return number of bytes mapped
2449 *
2450 * Returns virtual address of the start of the mapped page
2451 */
2452 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2453 size_t *offset, size_t *len)
2454 {
2455 int i;
2456 size_t sg_len = 0, len_complete = 0;
2457 struct scatterlist *sg;
2458 struct page *page;
2459
2460 WARN_ON(!irqs_disabled());
2461
2462 for_each_sg(sgl, sg, sg_count, i) {
2463 len_complete = sg_len; /* Complete sg-entries */
2464 sg_len += sg->length;
2465 if (sg_len > *offset)
2466 break;
2467 }
2468
2469 if (unlikely(i == sg_count)) {
2470 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2471 "elements %d\n",
2472 __FUNCTION__, sg_len, *offset, sg_count);
2473 WARN_ON(1);
2474 return NULL;
2475 }
2476
2477 /* Offset starting from the beginning of first page in this sg-entry */
2478 *offset = *offset - len_complete + sg->offset;
2479
2480 /* Assumption: contiguous pages can be accessed as "page + i" */
2481 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2482 *offset &= ~PAGE_MASK;
2483
2484 /* Bytes in this sg-entry from *offset to the end of the page */
2485 sg_len = PAGE_SIZE - *offset;
2486 if (*len > sg_len)
2487 *len = sg_len;
2488
2489 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2490 }
2491 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2492
2493 /**
2494 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2495 * @virt: virtual address to be unmapped
2496 */
2497 void scsi_kunmap_atomic_sg(void *virt)
2498 {
2499 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2500 }
2501 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.089923 seconds and 5 git commands to generate.