Merge branch 'acpi-pci-hotplug'
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81 bus->match = acpi_scsi_bus_match;
82 return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95 * not change behaviour from the previous unplug mechanism, experimentation
96 * may prove this needs changing.
97 */
98 #define SCSI_QUEUE_DELAY 3
99
100 /*
101 * Function: scsi_unprep_request()
102 *
103 * Purpose: Remove all preparation done for a request, including its
104 * associated scsi_cmnd, so that it can be requeued.
105 *
106 * Arguments: req - request to unprepare
107 *
108 * Lock status: Assumed that no locks are held upon entry.
109 *
110 * Returns: Nothing.
111 */
112 static void scsi_unprep_request(struct request *req)
113 {
114 struct scsi_cmnd *cmd = req->special;
115
116 blk_unprep_request(req);
117 req->special = NULL;
118
119 scsi_put_command(cmd);
120 }
121
122 /**
123 * __scsi_queue_insert - private queue insertion
124 * @cmd: The SCSI command being requeued
125 * @reason: The reason for the requeue
126 * @unbusy: Whether the queue should be unbusied
127 *
128 * This is a private queue insertion. The public interface
129 * scsi_queue_insert() always assumes the queue should be unbusied
130 * because it's always called before the completion. This function is
131 * for a requeue after completion, which should only occur in this
132 * file.
133 */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 struct Scsi_Host *host = cmd->device->host;
137 struct scsi_device *device = cmd->device;
138 struct scsi_target *starget = scsi_target(device);
139 struct request_queue *q = device->request_queue;
140 unsigned long flags;
141
142 SCSI_LOG_MLQUEUE(1,
143 printk("Inserting command %p into mlqueue\n", cmd));
144
145 /*
146 * Set the appropriate busy bit for the device/host.
147 *
148 * If the host/device isn't busy, assume that something actually
149 * completed, and that we should be able to queue a command now.
150 *
151 * Note that the prior mid-layer assumption that any host could
152 * always queue at least one command is now broken. The mid-layer
153 * will implement a user specifiable stall (see
154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 * if a command is requeued with no other commands outstanding
156 * either for the device or for the host.
157 */
158 switch (reason) {
159 case SCSI_MLQUEUE_HOST_BUSY:
160 host->host_blocked = host->max_host_blocked;
161 break;
162 case SCSI_MLQUEUE_DEVICE_BUSY:
163 case SCSI_MLQUEUE_EH_RETRY:
164 device->device_blocked = device->max_device_blocked;
165 break;
166 case SCSI_MLQUEUE_TARGET_BUSY:
167 starget->target_blocked = starget->max_target_blocked;
168 break;
169 }
170
171 /*
172 * Decrement the counters, since these commands are no longer
173 * active on the host/device.
174 */
175 if (unbusy)
176 scsi_device_unbusy(device);
177
178 /*
179 * Requeue this command. It will go before all other commands
180 * that are already in the queue. Schedule requeue work under
181 * lock such that the kblockd_schedule_work() call happens
182 * before blk_cleanup_queue() finishes.
183 */
184 spin_lock_irqsave(q->queue_lock, flags);
185 blk_requeue_request(q, cmd->request);
186 kblockd_schedule_work(q, &device->requeue_work);
187 spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191 * Function: scsi_queue_insert()
192 *
193 * Purpose: Insert a command in the midlevel queue.
194 *
195 * Arguments: cmd - command that we are adding to queue.
196 * reason - why we are inserting command to queue.
197 *
198 * Lock status: Assumed that lock is not held upon entry.
199 *
200 * Returns: Nothing.
201 *
202 * Notes: We do this for one of two cases. Either the host is busy
203 * and it cannot accept any more commands for the time being,
204 * or the device returned QUEUE_FULL and can accept no more
205 * commands.
206 * Notes: This could be called either from an interrupt context or a
207 * normal process context.
208 */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214 * scsi_execute - insert request and wait for the result
215 * @sdev: scsi device
216 * @cmd: scsi command
217 * @data_direction: data direction
218 * @buffer: data buffer
219 * @bufflen: len of buffer
220 * @sense: optional sense buffer
221 * @timeout: request timeout in seconds
222 * @retries: number of times to retry request
223 * @flags: or into request flags;
224 * @resid: optional residual length
225 *
226 * returns the req->errors value which is the scsi_cmnd result
227 * field.
228 */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 int data_direction, void *buffer, unsigned bufflen,
231 unsigned char *sense, int timeout, int retries, int flags,
232 int *resid)
233 {
234 struct request *req;
235 int write = (data_direction == DMA_TO_DEVICE);
236 int ret = DRIVER_ERROR << 24;
237
238 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 if (!req)
240 return ret;
241
242 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
243 buffer, bufflen, __GFP_WAIT))
244 goto out;
245
246 req->cmd_len = COMMAND_SIZE(cmd[0]);
247 memcpy(req->cmd, cmd, req->cmd_len);
248 req->sense = sense;
249 req->sense_len = 0;
250 req->retries = retries;
251 req->timeout = timeout;
252 req->cmd_type = REQ_TYPE_BLOCK_PC;
253 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255 /*
256 * head injection *required* here otherwise quiesce won't work
257 */
258 blk_execute_rq(req->q, NULL, req, 1);
259
260 /*
261 * Some devices (USB mass-storage in particular) may transfer
262 * garbage data together with a residue indicating that the data
263 * is invalid. Prevent the garbage from being misinterpreted
264 * and prevent security leaks by zeroing out the excess data.
265 */
266 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269 if (resid)
270 *resid = req->resid_len;
271 ret = req->errors;
272 out:
273 blk_put_request(req);
274
275 return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280 int data_direction, void *buffer, unsigned bufflen,
281 struct scsi_sense_hdr *sshdr, int timeout, int retries,
282 int *resid, int flags)
283 {
284 char *sense = NULL;
285 int result;
286
287 if (sshdr) {
288 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 if (!sense)
290 return DRIVER_ERROR << 24;
291 }
292 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293 sense, timeout, retries, flags, resid);
294 if (sshdr)
295 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296
297 kfree(sense);
298 return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301
302 /*
303 * Function: scsi_init_cmd_errh()
304 *
305 * Purpose: Initialize cmd fields related to error handling.
306 *
307 * Arguments: cmd - command that is ready to be queued.
308 *
309 * Notes: This function has the job of initializing a number of
310 * fields related to error handling. Typically this will
311 * be called once for each command, as required.
312 */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 cmd->serial_number = 0;
316 scsi_set_resid(cmd, 0);
317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 if (cmd->cmd_len == 0)
319 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324 struct Scsi_Host *shost = sdev->host;
325 struct scsi_target *starget = scsi_target(sdev);
326 unsigned long flags;
327
328 spin_lock_irqsave(shost->host_lock, flags);
329 shost->host_busy--;
330 starget->target_busy--;
331 if (unlikely(scsi_host_in_recovery(shost) &&
332 (shost->host_failed || shost->host_eh_scheduled)))
333 scsi_eh_wakeup(shost);
334 spin_unlock(shost->host_lock);
335 spin_lock(sdev->request_queue->queue_lock);
336 sdev->device_busy--;
337 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339
340 /*
341 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342 * and call blk_run_queue for all the scsi_devices on the target -
343 * including current_sdev first.
344 *
345 * Called with *no* scsi locks held.
346 */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349 struct Scsi_Host *shost = current_sdev->host;
350 struct scsi_device *sdev, *tmp;
351 struct scsi_target *starget = scsi_target(current_sdev);
352 unsigned long flags;
353
354 spin_lock_irqsave(shost->host_lock, flags);
355 starget->starget_sdev_user = NULL;
356 spin_unlock_irqrestore(shost->host_lock, flags);
357
358 /*
359 * Call blk_run_queue for all LUNs on the target, starting with
360 * current_sdev. We race with others (to set starget_sdev_user),
361 * but in most cases, we will be first. Ideally, each LU on the
362 * target would get some limited time or requests on the target.
363 */
364 blk_run_queue(current_sdev->request_queue);
365
366 spin_lock_irqsave(shost->host_lock, flags);
367 if (starget->starget_sdev_user)
368 goto out;
369 list_for_each_entry_safe(sdev, tmp, &starget->devices,
370 same_target_siblings) {
371 if (sdev == current_sdev)
372 continue;
373 if (scsi_device_get(sdev))
374 continue;
375
376 spin_unlock_irqrestore(shost->host_lock, flags);
377 blk_run_queue(sdev->request_queue);
378 spin_lock_irqsave(shost->host_lock, flags);
379
380 scsi_device_put(sdev);
381 }
382 out:
383 spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389 return 1;
390
391 return 0;
392 }
393
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396 return ((starget->can_queue > 0 &&
397 starget->target_busy >= starget->can_queue) ||
398 starget->target_blocked);
399 }
400
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404 shost->host_blocked || shost->host_self_blocked)
405 return 1;
406
407 return 0;
408 }
409
410 /*
411 * Function: scsi_run_queue()
412 *
413 * Purpose: Select a proper request queue to serve next
414 *
415 * Arguments: q - last request's queue
416 *
417 * Returns: Nothing
418 *
419 * Notes: The previous command was completely finished, start
420 * a new one if possible.
421 */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424 struct scsi_device *sdev = q->queuedata;
425 struct Scsi_Host *shost;
426 LIST_HEAD(starved_list);
427 unsigned long flags;
428
429 shost = sdev->host;
430 if (scsi_target(sdev)->single_lun)
431 scsi_single_lun_run(sdev);
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 list_splice_init(&shost->starved_list, &starved_list);
435
436 while (!list_empty(&starved_list)) {
437 struct request_queue *slq;
438
439 /*
440 * As long as shost is accepting commands and we have
441 * starved queues, call blk_run_queue. scsi_request_fn
442 * drops the queue_lock and can add us back to the
443 * starved_list.
444 *
445 * host_lock protects the starved_list and starved_entry.
446 * scsi_request_fn must get the host_lock before checking
447 * or modifying starved_list or starved_entry.
448 */
449 if (scsi_host_is_busy(shost))
450 break;
451
452 sdev = list_entry(starved_list.next,
453 struct scsi_device, starved_entry);
454 list_del_init(&sdev->starved_entry);
455 if (scsi_target_is_busy(scsi_target(sdev))) {
456 list_move_tail(&sdev->starved_entry,
457 &shost->starved_list);
458 continue;
459 }
460
461 /*
462 * Once we drop the host lock, a racing scsi_remove_device()
463 * call may remove the sdev from the starved list and destroy
464 * it and the queue. Mitigate by taking a reference to the
465 * queue and never touching the sdev again after we drop the
466 * host lock. Note: if __scsi_remove_device() invokes
467 * blk_cleanup_queue() before the queue is run from this
468 * function then blk_run_queue() will return immediately since
469 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 */
471 slq = sdev->request_queue;
472 if (!blk_get_queue(slq))
473 continue;
474 spin_unlock_irqrestore(shost->host_lock, flags);
475
476 blk_run_queue(slq);
477 blk_put_queue(slq);
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 }
481 /* put any unprocessed entries back */
482 list_splice(&starved_list, &shost->starved_list);
483 spin_unlock_irqrestore(shost->host_lock, flags);
484
485 blk_run_queue(q);
486 }
487
488 void scsi_requeue_run_queue(struct work_struct *work)
489 {
490 struct scsi_device *sdev;
491 struct request_queue *q;
492
493 sdev = container_of(work, struct scsi_device, requeue_work);
494 q = sdev->request_queue;
495 scsi_run_queue(q);
496 }
497
498 /*
499 * Function: scsi_requeue_command()
500 *
501 * Purpose: Handle post-processing of completed commands.
502 *
503 * Arguments: q - queue to operate on
504 * cmd - command that may need to be requeued.
505 *
506 * Returns: Nothing
507 *
508 * Notes: After command completion, there may be blocks left
509 * over which weren't finished by the previous command
510 * this can be for a number of reasons - the main one is
511 * I/O errors in the middle of the request, in which case
512 * we need to request the blocks that come after the bad
513 * sector.
514 * Notes: Upon return, cmd is a stale pointer.
515 */
516 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
517 {
518 struct scsi_device *sdev = cmd->device;
519 struct request *req = cmd->request;
520 unsigned long flags;
521
522 /*
523 * We need to hold a reference on the device to avoid the queue being
524 * killed after the unlock and before scsi_run_queue is invoked which
525 * may happen because scsi_unprep_request() puts the command which
526 * releases its reference on the device.
527 */
528 get_device(&sdev->sdev_gendev);
529
530 spin_lock_irqsave(q->queue_lock, flags);
531 scsi_unprep_request(req);
532 blk_requeue_request(q, req);
533 spin_unlock_irqrestore(q->queue_lock, flags);
534
535 scsi_run_queue(q);
536
537 put_device(&sdev->sdev_gendev);
538 }
539
540 void scsi_next_command(struct scsi_cmnd *cmd)
541 {
542 struct scsi_device *sdev = cmd->device;
543 struct request_queue *q = sdev->request_queue;
544
545 /* need to hold a reference on the device before we let go of the cmd */
546 get_device(&sdev->sdev_gendev);
547
548 scsi_put_command(cmd);
549 scsi_run_queue(q);
550
551 /* ok to remove device now */
552 put_device(&sdev->sdev_gendev);
553 }
554
555 void scsi_run_host_queues(struct Scsi_Host *shost)
556 {
557 struct scsi_device *sdev;
558
559 shost_for_each_device(sdev, shost)
560 scsi_run_queue(sdev->request_queue);
561 }
562
563 static void __scsi_release_buffers(struct scsi_cmnd *, int);
564
565 /*
566 * Function: scsi_end_request()
567 *
568 * Purpose: Post-processing of completed commands (usually invoked at end
569 * of upper level post-processing and scsi_io_completion).
570 *
571 * Arguments: cmd - command that is complete.
572 * error - 0 if I/O indicates success, < 0 for I/O error.
573 * bytes - number of bytes of completed I/O
574 * requeue - indicates whether we should requeue leftovers.
575 *
576 * Lock status: Assumed that lock is not held upon entry.
577 *
578 * Returns: cmd if requeue required, NULL otherwise.
579 *
580 * Notes: This is called for block device requests in order to
581 * mark some number of sectors as complete.
582 *
583 * We are guaranteeing that the request queue will be goosed
584 * at some point during this call.
585 * Notes: If cmd was requeued, upon return it will be a stale pointer.
586 */
587 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
588 int bytes, int requeue)
589 {
590 struct request_queue *q = cmd->device->request_queue;
591 struct request *req = cmd->request;
592
593 /*
594 * If there are blocks left over at the end, set up the command
595 * to queue the remainder of them.
596 */
597 if (blk_end_request(req, error, bytes)) {
598 /* kill remainder if no retrys */
599 if (error && scsi_noretry_cmd(cmd))
600 blk_end_request_all(req, error);
601 else {
602 if (requeue) {
603 /*
604 * Bleah. Leftovers again. Stick the
605 * leftovers in the front of the
606 * queue, and goose the queue again.
607 */
608 scsi_release_buffers(cmd);
609 scsi_requeue_command(q, cmd);
610 cmd = NULL;
611 }
612 return cmd;
613 }
614 }
615
616 /*
617 * This will goose the queue request function at the end, so we don't
618 * need to worry about launching another command.
619 */
620 __scsi_release_buffers(cmd, 0);
621 scsi_next_command(cmd);
622 return NULL;
623 }
624
625 static inline unsigned int scsi_sgtable_index(unsigned short nents)
626 {
627 unsigned int index;
628
629 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
630
631 if (nents <= 8)
632 index = 0;
633 else
634 index = get_count_order(nents) - 3;
635
636 return index;
637 }
638
639 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
640 {
641 struct scsi_host_sg_pool *sgp;
642
643 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
644 mempool_free(sgl, sgp->pool);
645 }
646
647 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
648 {
649 struct scsi_host_sg_pool *sgp;
650
651 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
652 return mempool_alloc(sgp->pool, gfp_mask);
653 }
654
655 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
656 gfp_t gfp_mask)
657 {
658 int ret;
659
660 BUG_ON(!nents);
661
662 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
663 gfp_mask, scsi_sg_alloc);
664 if (unlikely(ret))
665 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
666 scsi_sg_free);
667
668 return ret;
669 }
670
671 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
672 {
673 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
674 }
675
676 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
677 {
678
679 if (cmd->sdb.table.nents)
680 scsi_free_sgtable(&cmd->sdb);
681
682 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
683
684 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
685 struct scsi_data_buffer *bidi_sdb =
686 cmd->request->next_rq->special;
687 scsi_free_sgtable(bidi_sdb);
688 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
689 cmd->request->next_rq->special = NULL;
690 }
691
692 if (scsi_prot_sg_count(cmd))
693 scsi_free_sgtable(cmd->prot_sdb);
694 }
695
696 /*
697 * Function: scsi_release_buffers()
698 *
699 * Purpose: Completion processing for block device I/O requests.
700 *
701 * Arguments: cmd - command that we are bailing.
702 *
703 * Lock status: Assumed that no lock is held upon entry.
704 *
705 * Returns: Nothing
706 *
707 * Notes: In the event that an upper level driver rejects a
708 * command, we must release resources allocated during
709 * the __init_io() function. Primarily this would involve
710 * the scatter-gather table, and potentially any bounce
711 * buffers.
712 */
713 void scsi_release_buffers(struct scsi_cmnd *cmd)
714 {
715 __scsi_release_buffers(cmd, 1);
716 }
717 EXPORT_SYMBOL(scsi_release_buffers);
718
719 /**
720 * __scsi_error_from_host_byte - translate SCSI error code into errno
721 * @cmd: SCSI command (unused)
722 * @result: scsi error code
723 *
724 * Translate SCSI error code into standard UNIX errno.
725 * Return values:
726 * -ENOLINK temporary transport failure
727 * -EREMOTEIO permanent target failure, do not retry
728 * -EBADE permanent nexus failure, retry on other path
729 * -ENOSPC No write space available
730 * -ENODATA Medium error
731 * -EIO unspecified I/O error
732 */
733 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
734 {
735 int error = 0;
736
737 switch(host_byte(result)) {
738 case DID_TRANSPORT_FAILFAST:
739 error = -ENOLINK;
740 break;
741 case DID_TARGET_FAILURE:
742 set_host_byte(cmd, DID_OK);
743 error = -EREMOTEIO;
744 break;
745 case DID_NEXUS_FAILURE:
746 set_host_byte(cmd, DID_OK);
747 error = -EBADE;
748 break;
749 case DID_ALLOC_FAILURE:
750 set_host_byte(cmd, DID_OK);
751 error = -ENOSPC;
752 break;
753 case DID_MEDIUM_ERROR:
754 set_host_byte(cmd, DID_OK);
755 error = -ENODATA;
756 break;
757 default:
758 error = -EIO;
759 break;
760 }
761
762 return error;
763 }
764
765 /*
766 * Function: scsi_io_completion()
767 *
768 * Purpose: Completion processing for block device I/O requests.
769 *
770 * Arguments: cmd - command that is finished.
771 *
772 * Lock status: Assumed that no lock is held upon entry.
773 *
774 * Returns: Nothing
775 *
776 * Notes: This function is matched in terms of capabilities to
777 * the function that created the scatter-gather list.
778 * In other words, if there are no bounce buffers
779 * (the normal case for most drivers), we don't need
780 * the logic to deal with cleaning up afterwards.
781 *
782 * We must call scsi_end_request(). This will finish off
783 * the specified number of sectors. If we are done, the
784 * command block will be released and the queue function
785 * will be goosed. If we are not done then we have to
786 * figure out what to do next:
787 *
788 * a) We can call scsi_requeue_command(). The request
789 * will be unprepared and put back on the queue. Then
790 * a new command will be created for it. This should
791 * be used if we made forward progress, or if we want
792 * to switch from READ(10) to READ(6) for example.
793 *
794 * b) We can call scsi_queue_insert(). The request will
795 * be put back on the queue and retried using the same
796 * command as before, possibly after a delay.
797 *
798 * c) We can call blk_end_request() with -EIO to fail
799 * the remainder of the request.
800 */
801 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
802 {
803 int result = cmd->result;
804 struct request_queue *q = cmd->device->request_queue;
805 struct request *req = cmd->request;
806 int error = 0;
807 struct scsi_sense_hdr sshdr;
808 int sense_valid = 0;
809 int sense_deferred = 0;
810 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
811 ACTION_DELAYED_RETRY} action;
812 char *description = NULL;
813
814 if (result) {
815 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
816 if (sense_valid)
817 sense_deferred = scsi_sense_is_deferred(&sshdr);
818 }
819
820 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
821 if (result) {
822 if (sense_valid && req->sense) {
823 /*
824 * SG_IO wants current and deferred errors
825 */
826 int len = 8 + cmd->sense_buffer[7];
827
828 if (len > SCSI_SENSE_BUFFERSIZE)
829 len = SCSI_SENSE_BUFFERSIZE;
830 memcpy(req->sense, cmd->sense_buffer, len);
831 req->sense_len = len;
832 }
833 if (!sense_deferred)
834 error = __scsi_error_from_host_byte(cmd, result);
835 }
836 /*
837 * __scsi_error_from_host_byte may have reset the host_byte
838 */
839 req->errors = cmd->result;
840
841 req->resid_len = scsi_get_resid(cmd);
842
843 if (scsi_bidi_cmnd(cmd)) {
844 /*
845 * Bidi commands Must be complete as a whole,
846 * both sides at once.
847 */
848 req->next_rq->resid_len = scsi_in(cmd)->resid;
849
850 scsi_release_buffers(cmd);
851 blk_end_request_all(req, 0);
852
853 scsi_next_command(cmd);
854 return;
855 }
856 }
857
858 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
859 BUG_ON(blk_bidi_rq(req));
860
861 /*
862 * Next deal with any sectors which we were able to correctly
863 * handle.
864 */
865 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
866 "%d bytes done.\n",
867 blk_rq_sectors(req), good_bytes));
868
869 /*
870 * Recovered errors need reporting, but they're always treated
871 * as success, so fiddle the result code here. For BLOCK_PC
872 * we already took a copy of the original into rq->errors which
873 * is what gets returned to the user
874 */
875 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
876 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
877 * print since caller wants ATA registers. Only occurs on
878 * SCSI ATA PASS_THROUGH commands when CK_COND=1
879 */
880 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
881 ;
882 else if (!(req->cmd_flags & REQ_QUIET))
883 scsi_print_sense("", cmd);
884 result = 0;
885 /* BLOCK_PC may have set error */
886 error = 0;
887 }
888
889 /*
890 * A number of bytes were successfully read. If there
891 * are leftovers and there is some kind of error
892 * (result != 0), retry the rest.
893 */
894 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
895 return;
896
897 error = __scsi_error_from_host_byte(cmd, result);
898
899 if (host_byte(result) == DID_RESET) {
900 /* Third party bus reset or reset for error recovery
901 * reasons. Just retry the command and see what
902 * happens.
903 */
904 action = ACTION_RETRY;
905 } else if (sense_valid && !sense_deferred) {
906 switch (sshdr.sense_key) {
907 case UNIT_ATTENTION:
908 if (cmd->device->removable) {
909 /* Detected disc change. Set a bit
910 * and quietly refuse further access.
911 */
912 cmd->device->changed = 1;
913 description = "Media Changed";
914 action = ACTION_FAIL;
915 } else {
916 /* Must have been a power glitch, or a
917 * bus reset. Could not have been a
918 * media change, so we just retry the
919 * command and see what happens.
920 */
921 action = ACTION_RETRY;
922 }
923 break;
924 case ILLEGAL_REQUEST:
925 /* If we had an ILLEGAL REQUEST returned, then
926 * we may have performed an unsupported
927 * command. The only thing this should be
928 * would be a ten byte read where only a six
929 * byte read was supported. Also, on a system
930 * where READ CAPACITY failed, we may have
931 * read past the end of the disk.
932 */
933 if ((cmd->device->use_10_for_rw &&
934 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
935 (cmd->cmnd[0] == READ_10 ||
936 cmd->cmnd[0] == WRITE_10)) {
937 /* This will issue a new 6-byte command. */
938 cmd->device->use_10_for_rw = 0;
939 action = ACTION_REPREP;
940 } else if (sshdr.asc == 0x10) /* DIX */ {
941 description = "Host Data Integrity Failure";
942 action = ACTION_FAIL;
943 error = -EILSEQ;
944 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
945 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
946 switch (cmd->cmnd[0]) {
947 case UNMAP:
948 description = "Discard failure";
949 break;
950 case WRITE_SAME:
951 case WRITE_SAME_16:
952 if (cmd->cmnd[1] & 0x8)
953 description = "Discard failure";
954 else
955 description =
956 "Write same failure";
957 break;
958 default:
959 description = "Invalid command failure";
960 break;
961 }
962 action = ACTION_FAIL;
963 error = -EREMOTEIO;
964 } else
965 action = ACTION_FAIL;
966 break;
967 case ABORTED_COMMAND:
968 action = ACTION_FAIL;
969 if (sshdr.asc == 0x10) { /* DIF */
970 description = "Target Data Integrity Failure";
971 error = -EILSEQ;
972 }
973 break;
974 case NOT_READY:
975 /* If the device is in the process of becoming
976 * ready, or has a temporary blockage, retry.
977 */
978 if (sshdr.asc == 0x04) {
979 switch (sshdr.ascq) {
980 case 0x01: /* becoming ready */
981 case 0x04: /* format in progress */
982 case 0x05: /* rebuild in progress */
983 case 0x06: /* recalculation in progress */
984 case 0x07: /* operation in progress */
985 case 0x08: /* Long write in progress */
986 case 0x09: /* self test in progress */
987 case 0x14: /* space allocation in progress */
988 action = ACTION_DELAYED_RETRY;
989 break;
990 default:
991 description = "Device not ready";
992 action = ACTION_FAIL;
993 break;
994 }
995 } else {
996 description = "Device not ready";
997 action = ACTION_FAIL;
998 }
999 break;
1000 case VOLUME_OVERFLOW:
1001 /* See SSC3rXX or current. */
1002 action = ACTION_FAIL;
1003 break;
1004 default:
1005 description = "Unhandled sense code";
1006 action = ACTION_FAIL;
1007 break;
1008 }
1009 } else {
1010 description = "Unhandled error code";
1011 action = ACTION_FAIL;
1012 }
1013
1014 switch (action) {
1015 case ACTION_FAIL:
1016 /* Give up and fail the remainder of the request */
1017 scsi_release_buffers(cmd);
1018 if (!(req->cmd_flags & REQ_QUIET)) {
1019 if (description)
1020 scmd_printk(KERN_INFO, cmd, "%s\n",
1021 description);
1022 scsi_print_result(cmd);
1023 if (driver_byte(result) & DRIVER_SENSE)
1024 scsi_print_sense("", cmd);
1025 scsi_print_command(cmd);
1026 }
1027 if (blk_end_request_err(req, error))
1028 scsi_requeue_command(q, cmd);
1029 else
1030 scsi_next_command(cmd);
1031 break;
1032 case ACTION_REPREP:
1033 /* Unprep the request and put it back at the head of the queue.
1034 * A new command will be prepared and issued.
1035 */
1036 scsi_release_buffers(cmd);
1037 scsi_requeue_command(q, cmd);
1038 break;
1039 case ACTION_RETRY:
1040 /* Retry the same command immediately */
1041 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1042 break;
1043 case ACTION_DELAYED_RETRY:
1044 /* Retry the same command after a delay */
1045 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1046 break;
1047 }
1048 }
1049
1050 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1051 gfp_t gfp_mask)
1052 {
1053 int count;
1054
1055 /*
1056 * If sg table allocation fails, requeue request later.
1057 */
1058 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1059 gfp_mask))) {
1060 return BLKPREP_DEFER;
1061 }
1062
1063 req->buffer = NULL;
1064
1065 /*
1066 * Next, walk the list, and fill in the addresses and sizes of
1067 * each segment.
1068 */
1069 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1070 BUG_ON(count > sdb->table.nents);
1071 sdb->table.nents = count;
1072 sdb->length = blk_rq_bytes(req);
1073 return BLKPREP_OK;
1074 }
1075
1076 /*
1077 * Function: scsi_init_io()
1078 *
1079 * Purpose: SCSI I/O initialize function.
1080 *
1081 * Arguments: cmd - Command descriptor we wish to initialize
1082 *
1083 * Returns: 0 on success
1084 * BLKPREP_DEFER if the failure is retryable
1085 * BLKPREP_KILL if the failure is fatal
1086 */
1087 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1088 {
1089 struct request *rq = cmd->request;
1090
1091 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1092 if (error)
1093 goto err_exit;
1094
1095 if (blk_bidi_rq(rq)) {
1096 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1097 scsi_sdb_cache, GFP_ATOMIC);
1098 if (!bidi_sdb) {
1099 error = BLKPREP_DEFER;
1100 goto err_exit;
1101 }
1102
1103 rq->next_rq->special = bidi_sdb;
1104 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1105 if (error)
1106 goto err_exit;
1107 }
1108
1109 if (blk_integrity_rq(rq)) {
1110 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1111 int ivecs, count;
1112
1113 BUG_ON(prot_sdb == NULL);
1114 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1115
1116 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1117 error = BLKPREP_DEFER;
1118 goto err_exit;
1119 }
1120
1121 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1122 prot_sdb->table.sgl);
1123 BUG_ON(unlikely(count > ivecs));
1124 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1125
1126 cmd->prot_sdb = prot_sdb;
1127 cmd->prot_sdb->table.nents = count;
1128 }
1129
1130 return BLKPREP_OK ;
1131
1132 err_exit:
1133 scsi_release_buffers(cmd);
1134 cmd->request->special = NULL;
1135 scsi_put_command(cmd);
1136 return error;
1137 }
1138 EXPORT_SYMBOL(scsi_init_io);
1139
1140 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1141 struct request *req)
1142 {
1143 struct scsi_cmnd *cmd;
1144
1145 if (!req->special) {
1146 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1147 if (unlikely(!cmd))
1148 return NULL;
1149 req->special = cmd;
1150 } else {
1151 cmd = req->special;
1152 }
1153
1154 /* pull a tag out of the request if we have one */
1155 cmd->tag = req->tag;
1156 cmd->request = req;
1157
1158 cmd->cmnd = req->cmd;
1159 cmd->prot_op = SCSI_PROT_NORMAL;
1160
1161 return cmd;
1162 }
1163
1164 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166 struct scsi_cmnd *cmd;
1167 int ret = scsi_prep_state_check(sdev, req);
1168
1169 if (ret != BLKPREP_OK)
1170 return ret;
1171
1172 cmd = scsi_get_cmd_from_req(sdev, req);
1173 if (unlikely(!cmd))
1174 return BLKPREP_DEFER;
1175
1176 /*
1177 * BLOCK_PC requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1181 */
1182 if (req->bio) {
1183 int ret;
1184
1185 BUG_ON(!req->nr_phys_segments);
1186
1187 ret = scsi_init_io(cmd, GFP_ATOMIC);
1188 if (unlikely(ret))
1189 return ret;
1190 } else {
1191 BUG_ON(blk_rq_bytes(req));
1192
1193 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 req->buffer = NULL;
1195 }
1196
1197 cmd->cmd_len = req->cmd_len;
1198 if (!blk_rq_bytes(req))
1199 cmd->sc_data_direction = DMA_NONE;
1200 else if (rq_data_dir(req) == WRITE)
1201 cmd->sc_data_direction = DMA_TO_DEVICE;
1202 else
1203 cmd->sc_data_direction = DMA_FROM_DEVICE;
1204
1205 cmd->transfersize = blk_rq_bytes(req);
1206 cmd->allowed = req->retries;
1207 return BLKPREP_OK;
1208 }
1209 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1210
1211 /*
1212 * Setup a REQ_TYPE_FS command. These are simple read/write request
1213 * from filesystems that still need to be translated to SCSI CDBs from
1214 * the ULD.
1215 */
1216 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1217 {
1218 struct scsi_cmnd *cmd;
1219 int ret = scsi_prep_state_check(sdev, req);
1220
1221 if (ret != BLKPREP_OK)
1222 return ret;
1223
1224 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1225 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1226 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1227 if (ret != BLKPREP_OK)
1228 return ret;
1229 }
1230
1231 /*
1232 * Filesystem requests must transfer data.
1233 */
1234 BUG_ON(!req->nr_phys_segments);
1235
1236 cmd = scsi_get_cmd_from_req(sdev, req);
1237 if (unlikely(!cmd))
1238 return BLKPREP_DEFER;
1239
1240 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1241 return scsi_init_io(cmd, GFP_ATOMIC);
1242 }
1243 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1244
1245 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1246 {
1247 int ret = BLKPREP_OK;
1248
1249 /*
1250 * If the device is not in running state we will reject some
1251 * or all commands.
1252 */
1253 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1254 switch (sdev->sdev_state) {
1255 case SDEV_OFFLINE:
1256 case SDEV_TRANSPORT_OFFLINE:
1257 /*
1258 * If the device is offline we refuse to process any
1259 * commands. The device must be brought online
1260 * before trying any recovery commands.
1261 */
1262 sdev_printk(KERN_ERR, sdev,
1263 "rejecting I/O to offline device\n");
1264 ret = BLKPREP_KILL;
1265 break;
1266 case SDEV_DEL:
1267 /*
1268 * If the device is fully deleted, we refuse to
1269 * process any commands as well.
1270 */
1271 sdev_printk(KERN_ERR, sdev,
1272 "rejecting I/O to dead device\n");
1273 ret = BLKPREP_KILL;
1274 break;
1275 case SDEV_QUIESCE:
1276 case SDEV_BLOCK:
1277 case SDEV_CREATED_BLOCK:
1278 /*
1279 * If the devices is blocked we defer normal commands.
1280 */
1281 if (!(req->cmd_flags & REQ_PREEMPT))
1282 ret = BLKPREP_DEFER;
1283 break;
1284 default:
1285 /*
1286 * For any other not fully online state we only allow
1287 * special commands. In particular any user initiated
1288 * command is not allowed.
1289 */
1290 if (!(req->cmd_flags & REQ_PREEMPT))
1291 ret = BLKPREP_KILL;
1292 break;
1293 }
1294 }
1295 return ret;
1296 }
1297 EXPORT_SYMBOL(scsi_prep_state_check);
1298
1299 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1300 {
1301 struct scsi_device *sdev = q->queuedata;
1302
1303 switch (ret) {
1304 case BLKPREP_KILL:
1305 req->errors = DID_NO_CONNECT << 16;
1306 /* release the command and kill it */
1307 if (req->special) {
1308 struct scsi_cmnd *cmd = req->special;
1309 scsi_release_buffers(cmd);
1310 scsi_put_command(cmd);
1311 req->special = NULL;
1312 }
1313 break;
1314 case BLKPREP_DEFER:
1315 /*
1316 * If we defer, the blk_peek_request() returns NULL, but the
1317 * queue must be restarted, so we schedule a callback to happen
1318 * shortly.
1319 */
1320 if (sdev->device_busy == 0)
1321 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1322 break;
1323 default:
1324 req->cmd_flags |= REQ_DONTPREP;
1325 }
1326
1327 return ret;
1328 }
1329 EXPORT_SYMBOL(scsi_prep_return);
1330
1331 int scsi_prep_fn(struct request_queue *q, struct request *req)
1332 {
1333 struct scsi_device *sdev = q->queuedata;
1334 int ret = BLKPREP_KILL;
1335
1336 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1337 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1338 return scsi_prep_return(q, req, ret);
1339 }
1340 EXPORT_SYMBOL(scsi_prep_fn);
1341
1342 /*
1343 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1344 * return 0.
1345 *
1346 * Called with the queue_lock held.
1347 */
1348 static inline int scsi_dev_queue_ready(struct request_queue *q,
1349 struct scsi_device *sdev)
1350 {
1351 if (sdev->device_busy == 0 && sdev->device_blocked) {
1352 /*
1353 * unblock after device_blocked iterates to zero
1354 */
1355 if (--sdev->device_blocked == 0) {
1356 SCSI_LOG_MLQUEUE(3,
1357 sdev_printk(KERN_INFO, sdev,
1358 "unblocking device at zero depth\n"));
1359 } else {
1360 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1361 return 0;
1362 }
1363 }
1364 if (scsi_device_is_busy(sdev))
1365 return 0;
1366
1367 return 1;
1368 }
1369
1370
1371 /*
1372 * scsi_target_queue_ready: checks if there we can send commands to target
1373 * @sdev: scsi device on starget to check.
1374 *
1375 * Called with the host lock held.
1376 */
1377 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1378 struct scsi_device *sdev)
1379 {
1380 struct scsi_target *starget = scsi_target(sdev);
1381
1382 if (starget->single_lun) {
1383 if (starget->starget_sdev_user &&
1384 starget->starget_sdev_user != sdev)
1385 return 0;
1386 starget->starget_sdev_user = sdev;
1387 }
1388
1389 if (starget->target_busy == 0 && starget->target_blocked) {
1390 /*
1391 * unblock after target_blocked iterates to zero
1392 */
1393 if (--starget->target_blocked == 0) {
1394 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1395 "unblocking target at zero depth\n"));
1396 } else
1397 return 0;
1398 }
1399
1400 if (scsi_target_is_busy(starget)) {
1401 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1402 return 0;
1403 }
1404
1405 return 1;
1406 }
1407
1408 /*
1409 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1410 * return 0. We must end up running the queue again whenever 0 is
1411 * returned, else IO can hang.
1412 *
1413 * Called with host_lock held.
1414 */
1415 static inline int scsi_host_queue_ready(struct request_queue *q,
1416 struct Scsi_Host *shost,
1417 struct scsi_device *sdev)
1418 {
1419 if (scsi_host_in_recovery(shost))
1420 return 0;
1421 if (shost->host_busy == 0 && shost->host_blocked) {
1422 /*
1423 * unblock after host_blocked iterates to zero
1424 */
1425 if (--shost->host_blocked == 0) {
1426 SCSI_LOG_MLQUEUE(3,
1427 printk("scsi%d unblocking host at zero depth\n",
1428 shost->host_no));
1429 } else {
1430 return 0;
1431 }
1432 }
1433 if (scsi_host_is_busy(shost)) {
1434 if (list_empty(&sdev->starved_entry))
1435 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1436 return 0;
1437 }
1438
1439 /* We're OK to process the command, so we can't be starved */
1440 if (!list_empty(&sdev->starved_entry))
1441 list_del_init(&sdev->starved_entry);
1442
1443 return 1;
1444 }
1445
1446 /*
1447 * Busy state exporting function for request stacking drivers.
1448 *
1449 * For efficiency, no lock is taken to check the busy state of
1450 * shost/starget/sdev, since the returned value is not guaranteed and
1451 * may be changed after request stacking drivers call the function,
1452 * regardless of taking lock or not.
1453 *
1454 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1455 * needs to return 'not busy'. Otherwise, request stacking drivers
1456 * may hold requests forever.
1457 */
1458 static int scsi_lld_busy(struct request_queue *q)
1459 {
1460 struct scsi_device *sdev = q->queuedata;
1461 struct Scsi_Host *shost;
1462
1463 if (blk_queue_dying(q))
1464 return 0;
1465
1466 shost = sdev->host;
1467
1468 /*
1469 * Ignore host/starget busy state.
1470 * Since block layer does not have a concept of fairness across
1471 * multiple queues, congestion of host/starget needs to be handled
1472 * in SCSI layer.
1473 */
1474 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1475 return 1;
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * Kill a request for a dead device
1482 */
1483 static void scsi_kill_request(struct request *req, struct request_queue *q)
1484 {
1485 struct scsi_cmnd *cmd = req->special;
1486 struct scsi_device *sdev;
1487 struct scsi_target *starget;
1488 struct Scsi_Host *shost;
1489
1490 blk_start_request(req);
1491
1492 scmd_printk(KERN_INFO, cmd, "killing request\n");
1493
1494 sdev = cmd->device;
1495 starget = scsi_target(sdev);
1496 shost = sdev->host;
1497 scsi_init_cmd_errh(cmd);
1498 cmd->result = DID_NO_CONNECT << 16;
1499 atomic_inc(&cmd->device->iorequest_cnt);
1500
1501 /*
1502 * SCSI request completion path will do scsi_device_unbusy(),
1503 * bump busy counts. To bump the counters, we need to dance
1504 * with the locks as normal issue path does.
1505 */
1506 sdev->device_busy++;
1507 spin_unlock(sdev->request_queue->queue_lock);
1508 spin_lock(shost->host_lock);
1509 shost->host_busy++;
1510 starget->target_busy++;
1511 spin_unlock(shost->host_lock);
1512 spin_lock(sdev->request_queue->queue_lock);
1513
1514 blk_complete_request(req);
1515 }
1516
1517 static void scsi_softirq_done(struct request *rq)
1518 {
1519 struct scsi_cmnd *cmd = rq->special;
1520 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1521 int disposition;
1522
1523 INIT_LIST_HEAD(&cmd->eh_entry);
1524
1525 atomic_inc(&cmd->device->iodone_cnt);
1526 if (cmd->result)
1527 atomic_inc(&cmd->device->ioerr_cnt);
1528
1529 disposition = scsi_decide_disposition(cmd);
1530 if (disposition != SUCCESS &&
1531 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1532 sdev_printk(KERN_ERR, cmd->device,
1533 "timing out command, waited %lus\n",
1534 wait_for/HZ);
1535 disposition = SUCCESS;
1536 }
1537
1538 scsi_log_completion(cmd, disposition);
1539
1540 switch (disposition) {
1541 case SUCCESS:
1542 scsi_finish_command(cmd);
1543 break;
1544 case NEEDS_RETRY:
1545 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1546 break;
1547 case ADD_TO_MLQUEUE:
1548 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1549 break;
1550 default:
1551 if (!scsi_eh_scmd_add(cmd, 0))
1552 scsi_finish_command(cmd);
1553 }
1554 }
1555
1556 /*
1557 * Function: scsi_request_fn()
1558 *
1559 * Purpose: Main strategy routine for SCSI.
1560 *
1561 * Arguments: q - Pointer to actual queue.
1562 *
1563 * Returns: Nothing
1564 *
1565 * Lock status: IO request lock assumed to be held when called.
1566 */
1567 static void scsi_request_fn(struct request_queue *q)
1568 {
1569 struct scsi_device *sdev = q->queuedata;
1570 struct Scsi_Host *shost;
1571 struct scsi_cmnd *cmd;
1572 struct request *req;
1573
1574 if(!get_device(&sdev->sdev_gendev))
1575 /* We must be tearing the block queue down already */
1576 return;
1577
1578 /*
1579 * To start with, we keep looping until the queue is empty, or until
1580 * the host is no longer able to accept any more requests.
1581 */
1582 shost = sdev->host;
1583 for (;;) {
1584 int rtn;
1585 /*
1586 * get next queueable request. We do this early to make sure
1587 * that the request is fully prepared even if we cannot
1588 * accept it.
1589 */
1590 req = blk_peek_request(q);
1591 if (!req || !scsi_dev_queue_ready(q, sdev))
1592 break;
1593
1594 if (unlikely(!scsi_device_online(sdev))) {
1595 sdev_printk(KERN_ERR, sdev,
1596 "rejecting I/O to offline device\n");
1597 scsi_kill_request(req, q);
1598 continue;
1599 }
1600
1601
1602 /*
1603 * Remove the request from the request list.
1604 */
1605 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1606 blk_start_request(req);
1607 sdev->device_busy++;
1608
1609 spin_unlock(q->queue_lock);
1610 cmd = req->special;
1611 if (unlikely(cmd == NULL)) {
1612 printk(KERN_CRIT "impossible request in %s.\n"
1613 "please mail a stack trace to "
1614 "linux-scsi@vger.kernel.org\n",
1615 __func__);
1616 blk_dump_rq_flags(req, "foo");
1617 BUG();
1618 }
1619 spin_lock(shost->host_lock);
1620
1621 /*
1622 * We hit this when the driver is using a host wide
1623 * tag map. For device level tag maps the queue_depth check
1624 * in the device ready fn would prevent us from trying
1625 * to allocate a tag. Since the map is a shared host resource
1626 * we add the dev to the starved list so it eventually gets
1627 * a run when a tag is freed.
1628 */
1629 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1630 if (list_empty(&sdev->starved_entry))
1631 list_add_tail(&sdev->starved_entry,
1632 &shost->starved_list);
1633 goto not_ready;
1634 }
1635
1636 if (!scsi_target_queue_ready(shost, sdev))
1637 goto not_ready;
1638
1639 if (!scsi_host_queue_ready(q, shost, sdev))
1640 goto not_ready;
1641
1642 scsi_target(sdev)->target_busy++;
1643 shost->host_busy++;
1644
1645 /*
1646 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1647 * take the lock again.
1648 */
1649 spin_unlock_irq(shost->host_lock);
1650
1651 /*
1652 * Finally, initialize any error handling parameters, and set up
1653 * the timers for timeouts.
1654 */
1655 scsi_init_cmd_errh(cmd);
1656
1657 /*
1658 * Dispatch the command to the low-level driver.
1659 */
1660 rtn = scsi_dispatch_cmd(cmd);
1661 spin_lock_irq(q->queue_lock);
1662 if (rtn)
1663 goto out_delay;
1664 }
1665
1666 goto out;
1667
1668 not_ready:
1669 spin_unlock_irq(shost->host_lock);
1670
1671 /*
1672 * lock q, handle tag, requeue req, and decrement device_busy. We
1673 * must return with queue_lock held.
1674 *
1675 * Decrementing device_busy without checking it is OK, as all such
1676 * cases (host limits or settings) should run the queue at some
1677 * later time.
1678 */
1679 spin_lock_irq(q->queue_lock);
1680 blk_requeue_request(q, req);
1681 sdev->device_busy--;
1682 out_delay:
1683 if (sdev->device_busy == 0)
1684 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1685 out:
1686 /* must be careful here...if we trigger the ->remove() function
1687 * we cannot be holding the q lock */
1688 spin_unlock_irq(q->queue_lock);
1689 put_device(&sdev->sdev_gendev);
1690 spin_lock_irq(q->queue_lock);
1691 }
1692
1693 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1694 {
1695 struct device *host_dev;
1696 u64 bounce_limit = 0xffffffff;
1697
1698 if (shost->unchecked_isa_dma)
1699 return BLK_BOUNCE_ISA;
1700 /*
1701 * Platforms with virtual-DMA translation
1702 * hardware have no practical limit.
1703 */
1704 if (!PCI_DMA_BUS_IS_PHYS)
1705 return BLK_BOUNCE_ANY;
1706
1707 host_dev = scsi_get_device(shost);
1708 if (host_dev && host_dev->dma_mask)
1709 bounce_limit = *host_dev->dma_mask;
1710
1711 return bounce_limit;
1712 }
1713 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1714
1715 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1716 request_fn_proc *request_fn)
1717 {
1718 struct request_queue *q;
1719 struct device *dev = shost->dma_dev;
1720
1721 q = blk_init_queue(request_fn, NULL);
1722 if (!q)
1723 return NULL;
1724
1725 /*
1726 * this limit is imposed by hardware restrictions
1727 */
1728 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1729 SCSI_MAX_SG_CHAIN_SEGMENTS));
1730
1731 if (scsi_host_prot_dma(shost)) {
1732 shost->sg_prot_tablesize =
1733 min_not_zero(shost->sg_prot_tablesize,
1734 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1735 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1736 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1737 }
1738
1739 blk_queue_max_hw_sectors(q, shost->max_sectors);
1740 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1741 blk_queue_segment_boundary(q, shost->dma_boundary);
1742 dma_set_seg_boundary(dev, shost->dma_boundary);
1743
1744 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1745
1746 if (!shost->use_clustering)
1747 q->limits.cluster = 0;
1748
1749 /*
1750 * set a reasonable default alignment on word boundaries: the
1751 * host and device may alter it using
1752 * blk_queue_update_dma_alignment() later.
1753 */
1754 blk_queue_dma_alignment(q, 0x03);
1755
1756 return q;
1757 }
1758 EXPORT_SYMBOL(__scsi_alloc_queue);
1759
1760 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1761 {
1762 struct request_queue *q;
1763
1764 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1765 if (!q)
1766 return NULL;
1767
1768 blk_queue_prep_rq(q, scsi_prep_fn);
1769 blk_queue_softirq_done(q, scsi_softirq_done);
1770 blk_queue_rq_timed_out(q, scsi_times_out);
1771 blk_queue_lld_busy(q, scsi_lld_busy);
1772 return q;
1773 }
1774
1775 /*
1776 * Function: scsi_block_requests()
1777 *
1778 * Purpose: Utility function used by low-level drivers to prevent further
1779 * commands from being queued to the device.
1780 *
1781 * Arguments: shost - Host in question
1782 *
1783 * Returns: Nothing
1784 *
1785 * Lock status: No locks are assumed held.
1786 *
1787 * Notes: There is no timer nor any other means by which the requests
1788 * get unblocked other than the low-level driver calling
1789 * scsi_unblock_requests().
1790 */
1791 void scsi_block_requests(struct Scsi_Host *shost)
1792 {
1793 shost->host_self_blocked = 1;
1794 }
1795 EXPORT_SYMBOL(scsi_block_requests);
1796
1797 /*
1798 * Function: scsi_unblock_requests()
1799 *
1800 * Purpose: Utility function used by low-level drivers to allow further
1801 * commands from being queued to the device.
1802 *
1803 * Arguments: shost - Host in question
1804 *
1805 * Returns: Nothing
1806 *
1807 * Lock status: No locks are assumed held.
1808 *
1809 * Notes: There is no timer nor any other means by which the requests
1810 * get unblocked other than the low-level driver calling
1811 * scsi_unblock_requests().
1812 *
1813 * This is done as an API function so that changes to the
1814 * internals of the scsi mid-layer won't require wholesale
1815 * changes to drivers that use this feature.
1816 */
1817 void scsi_unblock_requests(struct Scsi_Host *shost)
1818 {
1819 shost->host_self_blocked = 0;
1820 scsi_run_host_queues(shost);
1821 }
1822 EXPORT_SYMBOL(scsi_unblock_requests);
1823
1824 int __init scsi_init_queue(void)
1825 {
1826 int i;
1827
1828 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1829 sizeof(struct scsi_data_buffer),
1830 0, 0, NULL);
1831 if (!scsi_sdb_cache) {
1832 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1833 return -ENOMEM;
1834 }
1835
1836 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838 int size = sgp->size * sizeof(struct scatterlist);
1839
1840 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1841 SLAB_HWCACHE_ALIGN, NULL);
1842 if (!sgp->slab) {
1843 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1844 sgp->name);
1845 goto cleanup_sdb;
1846 }
1847
1848 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1849 sgp->slab);
1850 if (!sgp->pool) {
1851 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1852 sgp->name);
1853 goto cleanup_sdb;
1854 }
1855 }
1856
1857 return 0;
1858
1859 cleanup_sdb:
1860 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1861 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1862 if (sgp->pool)
1863 mempool_destroy(sgp->pool);
1864 if (sgp->slab)
1865 kmem_cache_destroy(sgp->slab);
1866 }
1867 kmem_cache_destroy(scsi_sdb_cache);
1868
1869 return -ENOMEM;
1870 }
1871
1872 void scsi_exit_queue(void)
1873 {
1874 int i;
1875
1876 kmem_cache_destroy(scsi_sdb_cache);
1877
1878 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1879 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1880 mempool_destroy(sgp->pool);
1881 kmem_cache_destroy(sgp->slab);
1882 }
1883 }
1884
1885 /**
1886 * scsi_mode_select - issue a mode select
1887 * @sdev: SCSI device to be queried
1888 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1889 * @sp: Save page bit (0 == don't save, 1 == save)
1890 * @modepage: mode page being requested
1891 * @buffer: request buffer (may not be smaller than eight bytes)
1892 * @len: length of request buffer.
1893 * @timeout: command timeout
1894 * @retries: number of retries before failing
1895 * @data: returns a structure abstracting the mode header data
1896 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1897 * must be SCSI_SENSE_BUFFERSIZE big.
1898 *
1899 * Returns zero if successful; negative error number or scsi
1900 * status on error
1901 *
1902 */
1903 int
1904 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1905 unsigned char *buffer, int len, int timeout, int retries,
1906 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1907 {
1908 unsigned char cmd[10];
1909 unsigned char *real_buffer;
1910 int ret;
1911
1912 memset(cmd, 0, sizeof(cmd));
1913 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1914
1915 if (sdev->use_10_for_ms) {
1916 if (len > 65535)
1917 return -EINVAL;
1918 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1919 if (!real_buffer)
1920 return -ENOMEM;
1921 memcpy(real_buffer + 8, buffer, len);
1922 len += 8;
1923 real_buffer[0] = 0;
1924 real_buffer[1] = 0;
1925 real_buffer[2] = data->medium_type;
1926 real_buffer[3] = data->device_specific;
1927 real_buffer[4] = data->longlba ? 0x01 : 0;
1928 real_buffer[5] = 0;
1929 real_buffer[6] = data->block_descriptor_length >> 8;
1930 real_buffer[7] = data->block_descriptor_length;
1931
1932 cmd[0] = MODE_SELECT_10;
1933 cmd[7] = len >> 8;
1934 cmd[8] = len;
1935 } else {
1936 if (len > 255 || data->block_descriptor_length > 255 ||
1937 data->longlba)
1938 return -EINVAL;
1939
1940 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1941 if (!real_buffer)
1942 return -ENOMEM;
1943 memcpy(real_buffer + 4, buffer, len);
1944 len += 4;
1945 real_buffer[0] = 0;
1946 real_buffer[1] = data->medium_type;
1947 real_buffer[2] = data->device_specific;
1948 real_buffer[3] = data->block_descriptor_length;
1949
1950
1951 cmd[0] = MODE_SELECT;
1952 cmd[4] = len;
1953 }
1954
1955 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1956 sshdr, timeout, retries, NULL);
1957 kfree(real_buffer);
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(scsi_mode_select);
1961
1962 /**
1963 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1964 * @sdev: SCSI device to be queried
1965 * @dbd: set if mode sense will allow block descriptors to be returned
1966 * @modepage: mode page being requested
1967 * @buffer: request buffer (may not be smaller than eight bytes)
1968 * @len: length of request buffer.
1969 * @timeout: command timeout
1970 * @retries: number of retries before failing
1971 * @data: returns a structure abstracting the mode header data
1972 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1973 * must be SCSI_SENSE_BUFFERSIZE big.
1974 *
1975 * Returns zero if unsuccessful, or the header offset (either 4
1976 * or 8 depending on whether a six or ten byte command was
1977 * issued) if successful.
1978 */
1979 int
1980 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1981 unsigned char *buffer, int len, int timeout, int retries,
1982 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983 {
1984 unsigned char cmd[12];
1985 int use_10_for_ms;
1986 int header_length;
1987 int result;
1988 struct scsi_sense_hdr my_sshdr;
1989
1990 memset(data, 0, sizeof(*data));
1991 memset(&cmd[0], 0, 12);
1992 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1993 cmd[2] = modepage;
1994
1995 /* caller might not be interested in sense, but we need it */
1996 if (!sshdr)
1997 sshdr = &my_sshdr;
1998
1999 retry:
2000 use_10_for_ms = sdev->use_10_for_ms;
2001
2002 if (use_10_for_ms) {
2003 if (len < 8)
2004 len = 8;
2005
2006 cmd[0] = MODE_SENSE_10;
2007 cmd[8] = len;
2008 header_length = 8;
2009 } else {
2010 if (len < 4)
2011 len = 4;
2012
2013 cmd[0] = MODE_SENSE;
2014 cmd[4] = len;
2015 header_length = 4;
2016 }
2017
2018 memset(buffer, 0, len);
2019
2020 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2021 sshdr, timeout, retries, NULL);
2022
2023 /* This code looks awful: what it's doing is making sure an
2024 * ILLEGAL REQUEST sense return identifies the actual command
2025 * byte as the problem. MODE_SENSE commands can return
2026 * ILLEGAL REQUEST if the code page isn't supported */
2027
2028 if (use_10_for_ms && !scsi_status_is_good(result) &&
2029 (driver_byte(result) & DRIVER_SENSE)) {
2030 if (scsi_sense_valid(sshdr)) {
2031 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2032 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2033 /*
2034 * Invalid command operation code
2035 */
2036 sdev->use_10_for_ms = 0;
2037 goto retry;
2038 }
2039 }
2040 }
2041
2042 if(scsi_status_is_good(result)) {
2043 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2044 (modepage == 6 || modepage == 8))) {
2045 /* Initio breakage? */
2046 header_length = 0;
2047 data->length = 13;
2048 data->medium_type = 0;
2049 data->device_specific = 0;
2050 data->longlba = 0;
2051 data->block_descriptor_length = 0;
2052 } else if(use_10_for_ms) {
2053 data->length = buffer[0]*256 + buffer[1] + 2;
2054 data->medium_type = buffer[2];
2055 data->device_specific = buffer[3];
2056 data->longlba = buffer[4] & 0x01;
2057 data->block_descriptor_length = buffer[6]*256
2058 + buffer[7];
2059 } else {
2060 data->length = buffer[0] + 1;
2061 data->medium_type = buffer[1];
2062 data->device_specific = buffer[2];
2063 data->block_descriptor_length = buffer[3];
2064 }
2065 data->header_length = header_length;
2066 }
2067
2068 return result;
2069 }
2070 EXPORT_SYMBOL(scsi_mode_sense);
2071
2072 /**
2073 * scsi_test_unit_ready - test if unit is ready
2074 * @sdev: scsi device to change the state of.
2075 * @timeout: command timeout
2076 * @retries: number of retries before failing
2077 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2078 * returning sense. Make sure that this is cleared before passing
2079 * in.
2080 *
2081 * Returns zero if unsuccessful or an error if TUR failed. For
2082 * removable media, UNIT_ATTENTION sets ->changed flag.
2083 **/
2084 int
2085 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2086 struct scsi_sense_hdr *sshdr_external)
2087 {
2088 char cmd[] = {
2089 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2090 };
2091 struct scsi_sense_hdr *sshdr;
2092 int result;
2093
2094 if (!sshdr_external)
2095 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2096 else
2097 sshdr = sshdr_external;
2098
2099 /* try to eat the UNIT_ATTENTION if there are enough retries */
2100 do {
2101 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2102 timeout, retries, NULL);
2103 if (sdev->removable && scsi_sense_valid(sshdr) &&
2104 sshdr->sense_key == UNIT_ATTENTION)
2105 sdev->changed = 1;
2106 } while (scsi_sense_valid(sshdr) &&
2107 sshdr->sense_key == UNIT_ATTENTION && --retries);
2108
2109 if (!sshdr_external)
2110 kfree(sshdr);
2111 return result;
2112 }
2113 EXPORT_SYMBOL(scsi_test_unit_ready);
2114
2115 /**
2116 * scsi_device_set_state - Take the given device through the device state model.
2117 * @sdev: scsi device to change the state of.
2118 * @state: state to change to.
2119 *
2120 * Returns zero if unsuccessful or an error if the requested
2121 * transition is illegal.
2122 */
2123 int
2124 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2125 {
2126 enum scsi_device_state oldstate = sdev->sdev_state;
2127
2128 if (state == oldstate)
2129 return 0;
2130
2131 switch (state) {
2132 case SDEV_CREATED:
2133 switch (oldstate) {
2134 case SDEV_CREATED_BLOCK:
2135 break;
2136 default:
2137 goto illegal;
2138 }
2139 break;
2140
2141 case SDEV_RUNNING:
2142 switch (oldstate) {
2143 case SDEV_CREATED:
2144 case SDEV_OFFLINE:
2145 case SDEV_TRANSPORT_OFFLINE:
2146 case SDEV_QUIESCE:
2147 case SDEV_BLOCK:
2148 break;
2149 default:
2150 goto illegal;
2151 }
2152 break;
2153
2154 case SDEV_QUIESCE:
2155 switch (oldstate) {
2156 case SDEV_RUNNING:
2157 case SDEV_OFFLINE:
2158 case SDEV_TRANSPORT_OFFLINE:
2159 break;
2160 default:
2161 goto illegal;
2162 }
2163 break;
2164
2165 case SDEV_OFFLINE:
2166 case SDEV_TRANSPORT_OFFLINE:
2167 switch (oldstate) {
2168 case SDEV_CREATED:
2169 case SDEV_RUNNING:
2170 case SDEV_QUIESCE:
2171 case SDEV_BLOCK:
2172 break;
2173 default:
2174 goto illegal;
2175 }
2176 break;
2177
2178 case SDEV_BLOCK:
2179 switch (oldstate) {
2180 case SDEV_RUNNING:
2181 case SDEV_CREATED_BLOCK:
2182 break;
2183 default:
2184 goto illegal;
2185 }
2186 break;
2187
2188 case SDEV_CREATED_BLOCK:
2189 switch (oldstate) {
2190 case SDEV_CREATED:
2191 break;
2192 default:
2193 goto illegal;
2194 }
2195 break;
2196
2197 case SDEV_CANCEL:
2198 switch (oldstate) {
2199 case SDEV_CREATED:
2200 case SDEV_RUNNING:
2201 case SDEV_QUIESCE:
2202 case SDEV_OFFLINE:
2203 case SDEV_TRANSPORT_OFFLINE:
2204 case SDEV_BLOCK:
2205 break;
2206 default:
2207 goto illegal;
2208 }
2209 break;
2210
2211 case SDEV_DEL:
2212 switch (oldstate) {
2213 case SDEV_CREATED:
2214 case SDEV_RUNNING:
2215 case SDEV_OFFLINE:
2216 case SDEV_TRANSPORT_OFFLINE:
2217 case SDEV_CANCEL:
2218 case SDEV_CREATED_BLOCK:
2219 break;
2220 default:
2221 goto illegal;
2222 }
2223 break;
2224
2225 }
2226 sdev->sdev_state = state;
2227 return 0;
2228
2229 illegal:
2230 SCSI_LOG_ERROR_RECOVERY(1,
2231 sdev_printk(KERN_ERR, sdev,
2232 "Illegal state transition %s->%s\n",
2233 scsi_device_state_name(oldstate),
2234 scsi_device_state_name(state))
2235 );
2236 return -EINVAL;
2237 }
2238 EXPORT_SYMBOL(scsi_device_set_state);
2239
2240 /**
2241 * sdev_evt_emit - emit a single SCSI device uevent
2242 * @sdev: associated SCSI device
2243 * @evt: event to emit
2244 *
2245 * Send a single uevent (scsi_event) to the associated scsi_device.
2246 */
2247 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2248 {
2249 int idx = 0;
2250 char *envp[3];
2251
2252 switch (evt->evt_type) {
2253 case SDEV_EVT_MEDIA_CHANGE:
2254 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2255 break;
2256 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2257 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2258 break;
2259 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2260 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2261 break;
2262 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2263 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2264 break;
2265 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2266 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2267 break;
2268 case SDEV_EVT_LUN_CHANGE_REPORTED:
2269 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2270 break;
2271 default:
2272 /* do nothing */
2273 break;
2274 }
2275
2276 envp[idx++] = NULL;
2277
2278 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2279 }
2280
2281 /**
2282 * sdev_evt_thread - send a uevent for each scsi event
2283 * @work: work struct for scsi_device
2284 *
2285 * Dispatch queued events to their associated scsi_device kobjects
2286 * as uevents.
2287 */
2288 void scsi_evt_thread(struct work_struct *work)
2289 {
2290 struct scsi_device *sdev;
2291 enum scsi_device_event evt_type;
2292 LIST_HEAD(event_list);
2293
2294 sdev = container_of(work, struct scsi_device, event_work);
2295
2296 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2297 if (test_and_clear_bit(evt_type, sdev->pending_events))
2298 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2299
2300 while (1) {
2301 struct scsi_event *evt;
2302 struct list_head *this, *tmp;
2303 unsigned long flags;
2304
2305 spin_lock_irqsave(&sdev->list_lock, flags);
2306 list_splice_init(&sdev->event_list, &event_list);
2307 spin_unlock_irqrestore(&sdev->list_lock, flags);
2308
2309 if (list_empty(&event_list))
2310 break;
2311
2312 list_for_each_safe(this, tmp, &event_list) {
2313 evt = list_entry(this, struct scsi_event, node);
2314 list_del(&evt->node);
2315 scsi_evt_emit(sdev, evt);
2316 kfree(evt);
2317 }
2318 }
2319 }
2320
2321 /**
2322 * sdev_evt_send - send asserted event to uevent thread
2323 * @sdev: scsi_device event occurred on
2324 * @evt: event to send
2325 *
2326 * Assert scsi device event asynchronously.
2327 */
2328 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2329 {
2330 unsigned long flags;
2331
2332 #if 0
2333 /* FIXME: currently this check eliminates all media change events
2334 * for polled devices. Need to update to discriminate between AN
2335 * and polled events */
2336 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2337 kfree(evt);
2338 return;
2339 }
2340 #endif
2341
2342 spin_lock_irqsave(&sdev->list_lock, flags);
2343 list_add_tail(&evt->node, &sdev->event_list);
2344 schedule_work(&sdev->event_work);
2345 spin_unlock_irqrestore(&sdev->list_lock, flags);
2346 }
2347 EXPORT_SYMBOL_GPL(sdev_evt_send);
2348
2349 /**
2350 * sdev_evt_alloc - allocate a new scsi event
2351 * @evt_type: type of event to allocate
2352 * @gfpflags: GFP flags for allocation
2353 *
2354 * Allocates and returns a new scsi_event.
2355 */
2356 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2357 gfp_t gfpflags)
2358 {
2359 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2360 if (!evt)
2361 return NULL;
2362
2363 evt->evt_type = evt_type;
2364 INIT_LIST_HEAD(&evt->node);
2365
2366 /* evt_type-specific initialization, if any */
2367 switch (evt_type) {
2368 case SDEV_EVT_MEDIA_CHANGE:
2369 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2370 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2371 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2372 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2373 case SDEV_EVT_LUN_CHANGE_REPORTED:
2374 default:
2375 /* do nothing */
2376 break;
2377 }
2378
2379 return evt;
2380 }
2381 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2382
2383 /**
2384 * sdev_evt_send_simple - send asserted event to uevent thread
2385 * @sdev: scsi_device event occurred on
2386 * @evt_type: type of event to send
2387 * @gfpflags: GFP flags for allocation
2388 *
2389 * Assert scsi device event asynchronously, given an event type.
2390 */
2391 void sdev_evt_send_simple(struct scsi_device *sdev,
2392 enum scsi_device_event evt_type, gfp_t gfpflags)
2393 {
2394 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2395 if (!evt) {
2396 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2397 evt_type);
2398 return;
2399 }
2400
2401 sdev_evt_send(sdev, evt);
2402 }
2403 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2404
2405 /**
2406 * scsi_device_quiesce - Block user issued commands.
2407 * @sdev: scsi device to quiesce.
2408 *
2409 * This works by trying to transition to the SDEV_QUIESCE state
2410 * (which must be a legal transition). When the device is in this
2411 * state, only special requests will be accepted, all others will
2412 * be deferred. Since special requests may also be requeued requests,
2413 * a successful return doesn't guarantee the device will be
2414 * totally quiescent.
2415 *
2416 * Must be called with user context, may sleep.
2417 *
2418 * Returns zero if unsuccessful or an error if not.
2419 */
2420 int
2421 scsi_device_quiesce(struct scsi_device *sdev)
2422 {
2423 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2424 if (err)
2425 return err;
2426
2427 scsi_run_queue(sdev->request_queue);
2428 while (sdev->device_busy) {
2429 msleep_interruptible(200);
2430 scsi_run_queue(sdev->request_queue);
2431 }
2432 return 0;
2433 }
2434 EXPORT_SYMBOL(scsi_device_quiesce);
2435
2436 /**
2437 * scsi_device_resume - Restart user issued commands to a quiesced device.
2438 * @sdev: scsi device to resume.
2439 *
2440 * Moves the device from quiesced back to running and restarts the
2441 * queues.
2442 *
2443 * Must be called with user context, may sleep.
2444 */
2445 void scsi_device_resume(struct scsi_device *sdev)
2446 {
2447 /* check if the device state was mutated prior to resume, and if
2448 * so assume the state is being managed elsewhere (for example
2449 * device deleted during suspend)
2450 */
2451 if (sdev->sdev_state != SDEV_QUIESCE ||
2452 scsi_device_set_state(sdev, SDEV_RUNNING))
2453 return;
2454 scsi_run_queue(sdev->request_queue);
2455 }
2456 EXPORT_SYMBOL(scsi_device_resume);
2457
2458 static void
2459 device_quiesce_fn(struct scsi_device *sdev, void *data)
2460 {
2461 scsi_device_quiesce(sdev);
2462 }
2463
2464 void
2465 scsi_target_quiesce(struct scsi_target *starget)
2466 {
2467 starget_for_each_device(starget, NULL, device_quiesce_fn);
2468 }
2469 EXPORT_SYMBOL(scsi_target_quiesce);
2470
2471 static void
2472 device_resume_fn(struct scsi_device *sdev, void *data)
2473 {
2474 scsi_device_resume(sdev);
2475 }
2476
2477 void
2478 scsi_target_resume(struct scsi_target *starget)
2479 {
2480 starget_for_each_device(starget, NULL, device_resume_fn);
2481 }
2482 EXPORT_SYMBOL(scsi_target_resume);
2483
2484 /**
2485 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2486 * @sdev: device to block
2487 *
2488 * Block request made by scsi lld's to temporarily stop all
2489 * scsi commands on the specified device. Called from interrupt
2490 * or normal process context.
2491 *
2492 * Returns zero if successful or error if not
2493 *
2494 * Notes:
2495 * This routine transitions the device to the SDEV_BLOCK state
2496 * (which must be a legal transition). When the device is in this
2497 * state, all commands are deferred until the scsi lld reenables
2498 * the device with scsi_device_unblock or device_block_tmo fires.
2499 */
2500 int
2501 scsi_internal_device_block(struct scsi_device *sdev)
2502 {
2503 struct request_queue *q = sdev->request_queue;
2504 unsigned long flags;
2505 int err = 0;
2506
2507 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2508 if (err) {
2509 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2510
2511 if (err)
2512 return err;
2513 }
2514
2515 /*
2516 * The device has transitioned to SDEV_BLOCK. Stop the
2517 * block layer from calling the midlayer with this device's
2518 * request queue.
2519 */
2520 spin_lock_irqsave(q->queue_lock, flags);
2521 blk_stop_queue(q);
2522 spin_unlock_irqrestore(q->queue_lock, flags);
2523
2524 return 0;
2525 }
2526 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2527
2528 /**
2529 * scsi_internal_device_unblock - resume a device after a block request
2530 * @sdev: device to resume
2531 * @new_state: state to set devices to after unblocking
2532 *
2533 * Called by scsi lld's or the midlayer to restart the device queue
2534 * for the previously suspended scsi device. Called from interrupt or
2535 * normal process context.
2536 *
2537 * Returns zero if successful or error if not.
2538 *
2539 * Notes:
2540 * This routine transitions the device to the SDEV_RUNNING state
2541 * or to one of the offline states (which must be a legal transition)
2542 * allowing the midlayer to goose the queue for this device.
2543 */
2544 int
2545 scsi_internal_device_unblock(struct scsi_device *sdev,
2546 enum scsi_device_state new_state)
2547 {
2548 struct request_queue *q = sdev->request_queue;
2549 unsigned long flags;
2550
2551 /*
2552 * Try to transition the scsi device to SDEV_RUNNING or one of the
2553 * offlined states and goose the device queue if successful.
2554 */
2555 if ((sdev->sdev_state == SDEV_BLOCK) ||
2556 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2557 sdev->sdev_state = new_state;
2558 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2559 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2560 new_state == SDEV_OFFLINE)
2561 sdev->sdev_state = new_state;
2562 else
2563 sdev->sdev_state = SDEV_CREATED;
2564 } else if (sdev->sdev_state != SDEV_CANCEL &&
2565 sdev->sdev_state != SDEV_OFFLINE)
2566 return -EINVAL;
2567
2568 spin_lock_irqsave(q->queue_lock, flags);
2569 blk_start_queue(q);
2570 spin_unlock_irqrestore(q->queue_lock, flags);
2571
2572 return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2575
2576 static void
2577 device_block(struct scsi_device *sdev, void *data)
2578 {
2579 scsi_internal_device_block(sdev);
2580 }
2581
2582 static int
2583 target_block(struct device *dev, void *data)
2584 {
2585 if (scsi_is_target_device(dev))
2586 starget_for_each_device(to_scsi_target(dev), NULL,
2587 device_block);
2588 return 0;
2589 }
2590
2591 void
2592 scsi_target_block(struct device *dev)
2593 {
2594 if (scsi_is_target_device(dev))
2595 starget_for_each_device(to_scsi_target(dev), NULL,
2596 device_block);
2597 else
2598 device_for_each_child(dev, NULL, target_block);
2599 }
2600 EXPORT_SYMBOL_GPL(scsi_target_block);
2601
2602 static void
2603 device_unblock(struct scsi_device *sdev, void *data)
2604 {
2605 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2606 }
2607
2608 static int
2609 target_unblock(struct device *dev, void *data)
2610 {
2611 if (scsi_is_target_device(dev))
2612 starget_for_each_device(to_scsi_target(dev), data,
2613 device_unblock);
2614 return 0;
2615 }
2616
2617 void
2618 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2619 {
2620 if (scsi_is_target_device(dev))
2621 starget_for_each_device(to_scsi_target(dev), &new_state,
2622 device_unblock);
2623 else
2624 device_for_each_child(dev, &new_state, target_unblock);
2625 }
2626 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2627
2628 /**
2629 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2630 * @sgl: scatter-gather list
2631 * @sg_count: number of segments in sg
2632 * @offset: offset in bytes into sg, on return offset into the mapped area
2633 * @len: bytes to map, on return number of bytes mapped
2634 *
2635 * Returns virtual address of the start of the mapped page
2636 */
2637 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2638 size_t *offset, size_t *len)
2639 {
2640 int i;
2641 size_t sg_len = 0, len_complete = 0;
2642 struct scatterlist *sg;
2643 struct page *page;
2644
2645 WARN_ON(!irqs_disabled());
2646
2647 for_each_sg(sgl, sg, sg_count, i) {
2648 len_complete = sg_len; /* Complete sg-entries */
2649 sg_len += sg->length;
2650 if (sg_len > *offset)
2651 break;
2652 }
2653
2654 if (unlikely(i == sg_count)) {
2655 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2656 "elements %d\n",
2657 __func__, sg_len, *offset, sg_count);
2658 WARN_ON(1);
2659 return NULL;
2660 }
2661
2662 /* Offset starting from the beginning of first page in this sg-entry */
2663 *offset = *offset - len_complete + sg->offset;
2664
2665 /* Assumption: contiguous pages can be accessed as "page + i" */
2666 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2667 *offset &= ~PAGE_MASK;
2668
2669 /* Bytes in this sg-entry from *offset to the end of the page */
2670 sg_len = PAGE_SIZE - *offset;
2671 if (*len > sg_len)
2672 *len = sg_len;
2673
2674 return kmap_atomic(page);
2675 }
2676 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2677
2678 /**
2679 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2680 * @virt: virtual address to be unmapped
2681 */
2682 void scsi_kunmap_atomic_sg(void *virt)
2683 {
2684 kunmap_atomic(virt);
2685 }
2686 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2687
2688 void sdev_disable_disk_events(struct scsi_device *sdev)
2689 {
2690 atomic_inc(&sdev->disk_events_disable_depth);
2691 }
2692 EXPORT_SYMBOL(sdev_disable_disk_events);
2693
2694 void sdev_enable_disk_events(struct scsi_device *sdev)
2695 {
2696 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2697 return;
2698 atomic_dec(&sdev->disk_events_disable_depth);
2699 }
2700 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.126326 seconds and 6 git commands to generate.