[SCSI] Avoid dangling pointer in scsi_requeue_command()
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76 #define SCSI_QUEUE_DELAY 3
77
78 /*
79 * Function: scsi_unprep_request()
80 *
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
83 *
84 * Arguments: req - request to unprepare
85 *
86 * Lock status: Assumed that no locks are held upon entry.
87 *
88 * Returns: Nothing.
89 */
90 static void scsi_unprep_request(struct request *req)
91 {
92 struct scsi_cmnd *cmd = req->special;
93
94 blk_unprep_request(req);
95 req->special = NULL;
96
97 scsi_put_command(cmd);
98 }
99
100 /**
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
105 *
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
111 */
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 if (unbusy)
154 scsi_device_unbusy(device);
155
156 /*
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
159 */
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
163
164 kblockd_schedule_work(q, &device->requeue_work);
165
166 return 0;
167 }
168
169 /*
170 * Function: scsi_queue_insert()
171 *
172 * Purpose: Insert a command in the midlevel queue.
173 *
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns: Nothing.
180 *
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
187 */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
212 {
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
216
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 if (!req)
219 return ret;
220
221 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
222 buffer, bufflen, __GFP_WAIT))
223 goto out;
224
225 req->cmd_len = COMMAND_SIZE(cmd[0]);
226 memcpy(req->cmd, cmd, req->cmd_len);
227 req->sense = sense;
228 req->sense_len = 0;
229 req->retries = retries;
230 req->timeout = timeout;
231 req->cmd_type = REQ_TYPE_BLOCK_PC;
232 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234 /*
235 * head injection *required* here otherwise quiesce won't work
236 */
237 blk_execute_rq(req->q, NULL, req, 1);
238
239 /*
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
244 */
245 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248 if (resid)
249 *resid = req->resid_len;
250 ret = req->errors;
251 out:
252 blk_put_request(req);
253
254 return ret;
255 }
256 EXPORT_SYMBOL(scsi_execute);
257
258
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260 int data_direction, void *buffer, unsigned bufflen,
261 struct scsi_sense_hdr *sshdr, int timeout, int retries,
262 int *resid)
263 {
264 char *sense = NULL;
265 int result;
266
267 if (sshdr) {
268 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269 if (!sense)
270 return DRIVER_ERROR << 24;
271 }
272 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273 sense, timeout, retries, 0, resid);
274 if (sshdr)
275 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277 kfree(sense);
278 return result;
279 }
280 EXPORT_SYMBOL(scsi_execute_req);
281
282 /*
283 * Function: scsi_init_cmd_errh()
284 *
285 * Purpose: Initialize cmd fields related to error handling.
286 *
287 * Arguments: cmd - command that is ready to be queued.
288 *
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
292 */
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294 {
295 cmd->serial_number = 0;
296 scsi_set_resid(cmd, 0);
297 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298 if (cmd->cmd_len == 0)
299 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 }
301
302 void scsi_device_unbusy(struct scsi_device *sdev)
303 {
304 struct Scsi_Host *shost = sdev->host;
305 struct scsi_target *starget = scsi_target(sdev);
306 unsigned long flags;
307
308 spin_lock_irqsave(shost->host_lock, flags);
309 shost->host_busy--;
310 starget->target_busy--;
311 if (unlikely(scsi_host_in_recovery(shost) &&
312 (shost->host_failed || shost->host_eh_scheduled)))
313 scsi_eh_wakeup(shost);
314 spin_unlock(shost->host_lock);
315 spin_lock(sdev->request_queue->queue_lock);
316 sdev->device_busy--;
317 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318 }
319
320 /*
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
324 *
325 * Called with *no* scsi locks held.
326 */
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
328 {
329 struct Scsi_Host *shost = current_sdev->host;
330 struct scsi_device *sdev, *tmp;
331 struct scsi_target *starget = scsi_target(current_sdev);
332 unsigned long flags;
333
334 spin_lock_irqsave(shost->host_lock, flags);
335 starget->starget_sdev_user = NULL;
336 spin_unlock_irqrestore(shost->host_lock, flags);
337
338 /*
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
343 */
344 blk_run_queue(current_sdev->request_queue);
345
346 spin_lock_irqsave(shost->host_lock, flags);
347 if (starget->starget_sdev_user)
348 goto out;
349 list_for_each_entry_safe(sdev, tmp, &starget->devices,
350 same_target_siblings) {
351 if (sdev == current_sdev)
352 continue;
353 if (scsi_device_get(sdev))
354 continue;
355
356 spin_unlock_irqrestore(shost->host_lock, flags);
357 blk_run_queue(sdev->request_queue);
358 spin_lock_irqsave(shost->host_lock, flags);
359
360 scsi_device_put(sdev);
361 }
362 out:
363 spin_unlock_irqrestore(shost->host_lock, flags);
364 }
365
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
367 {
368 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369 return 1;
370
371 return 0;
372 }
373
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
375 {
376 return ((starget->can_queue > 0 &&
377 starget->target_busy >= starget->can_queue) ||
378 starget->target_blocked);
379 }
380
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382 {
383 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384 shost->host_blocked || shost->host_self_blocked)
385 return 1;
386
387 return 0;
388 }
389
390 /*
391 * Function: scsi_run_queue()
392 *
393 * Purpose: Select a proper request queue to serve next
394 *
395 * Arguments: q - last request's queue
396 *
397 * Returns: Nothing
398 *
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
401 */
402 static void scsi_run_queue(struct request_queue *q)
403 {
404 struct scsi_device *sdev = q->queuedata;
405 struct Scsi_Host *shost;
406 LIST_HEAD(starved_list);
407 unsigned long flags;
408
409 shost = sdev->host;
410 if (scsi_target(sdev)->single_lun)
411 scsi_single_lun_run(sdev);
412
413 spin_lock_irqsave(shost->host_lock, flags);
414 list_splice_init(&shost->starved_list, &starved_list);
415
416 while (!list_empty(&starved_list)) {
417 /*
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
422 *
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
426 */
427 if (scsi_host_is_busy(shost))
428 break;
429
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
437 }
438
439 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 __blk_run_queue(sdev->request_queue);
442 spin_unlock(sdev->request_queue->queue_lock);
443 spin_lock(shost->host_lock);
444 }
445 /* put any unprocessed entries back */
446 list_splice(&starved_list, &shost->starved_list);
447 spin_unlock_irqrestore(shost->host_lock, flags);
448
449 blk_run_queue(q);
450 }
451
452 void scsi_requeue_run_queue(struct work_struct *work)
453 {
454 struct scsi_device *sdev;
455 struct request_queue *q;
456
457 sdev = container_of(work, struct scsi_device, requeue_work);
458 q = sdev->request_queue;
459 scsi_run_queue(q);
460 }
461
462 /*
463 * Function: scsi_requeue_command()
464 *
465 * Purpose: Handle post-processing of completed commands.
466 *
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
469 *
470 * Returns: Nothing
471 *
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
477 * sector.
478 * Notes: Upon return, cmd is a stale pointer.
479 */
480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481 {
482 struct scsi_device *sdev = cmd->device;
483 struct request *req = cmd->request;
484 unsigned long flags;
485
486 /*
487 * We need to hold a reference on the device to avoid the queue being
488 * killed after the unlock and before scsi_run_queue is invoked which
489 * may happen because scsi_unprep_request() puts the command which
490 * releases its reference on the device.
491 */
492 get_device(&sdev->sdev_gendev);
493
494 spin_lock_irqsave(q->queue_lock, flags);
495 scsi_unprep_request(req);
496 blk_requeue_request(q, req);
497 spin_unlock_irqrestore(q->queue_lock, flags);
498
499 scsi_run_queue(q);
500
501 put_device(&sdev->sdev_gendev);
502 }
503
504 void scsi_next_command(struct scsi_cmnd *cmd)
505 {
506 struct scsi_device *sdev = cmd->device;
507 struct request_queue *q = sdev->request_queue;
508
509 /* need to hold a reference on the device before we let go of the cmd */
510 get_device(&sdev->sdev_gendev);
511
512 scsi_put_command(cmd);
513 scsi_run_queue(q);
514
515 /* ok to remove device now */
516 put_device(&sdev->sdev_gendev);
517 }
518
519 void scsi_run_host_queues(struct Scsi_Host *shost)
520 {
521 struct scsi_device *sdev;
522
523 shost_for_each_device(sdev, shost)
524 scsi_run_queue(sdev->request_queue);
525 }
526
527 static void __scsi_release_buffers(struct scsi_cmnd *, int);
528
529 /*
530 * Function: scsi_end_request()
531 *
532 * Purpose: Post-processing of completed commands (usually invoked at end
533 * of upper level post-processing and scsi_io_completion).
534 *
535 * Arguments: cmd - command that is complete.
536 * error - 0 if I/O indicates success, < 0 for I/O error.
537 * bytes - number of bytes of completed I/O
538 * requeue - indicates whether we should requeue leftovers.
539 *
540 * Lock status: Assumed that lock is not held upon entry.
541 *
542 * Returns: cmd if requeue required, NULL otherwise.
543 *
544 * Notes: This is called for block device requests in order to
545 * mark some number of sectors as complete.
546 *
547 * We are guaranteeing that the request queue will be goosed
548 * at some point during this call.
549 * Notes: If cmd was requeued, upon return it will be a stale pointer.
550 */
551 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
552 int bytes, int requeue)
553 {
554 struct request_queue *q = cmd->device->request_queue;
555 struct request *req = cmd->request;
556
557 /*
558 * If there are blocks left over at the end, set up the command
559 * to queue the remainder of them.
560 */
561 if (blk_end_request(req, error, bytes)) {
562 /* kill remainder if no retrys */
563 if (error && scsi_noretry_cmd(cmd))
564 blk_end_request_all(req, error);
565 else {
566 if (requeue) {
567 /*
568 * Bleah. Leftovers again. Stick the
569 * leftovers in the front of the
570 * queue, and goose the queue again.
571 */
572 scsi_release_buffers(cmd);
573 scsi_requeue_command(q, cmd);
574 cmd = NULL;
575 }
576 return cmd;
577 }
578 }
579
580 /*
581 * This will goose the queue request function at the end, so we don't
582 * need to worry about launching another command.
583 */
584 __scsi_release_buffers(cmd, 0);
585 scsi_next_command(cmd);
586 return NULL;
587 }
588
589 static inline unsigned int scsi_sgtable_index(unsigned short nents)
590 {
591 unsigned int index;
592
593 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
594
595 if (nents <= 8)
596 index = 0;
597 else
598 index = get_count_order(nents) - 3;
599
600 return index;
601 }
602
603 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
604 {
605 struct scsi_host_sg_pool *sgp;
606
607 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 mempool_free(sgl, sgp->pool);
609 }
610
611 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
612 {
613 struct scsi_host_sg_pool *sgp;
614
615 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
616 return mempool_alloc(sgp->pool, gfp_mask);
617 }
618
619 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
620 gfp_t gfp_mask)
621 {
622 int ret;
623
624 BUG_ON(!nents);
625
626 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
627 gfp_mask, scsi_sg_alloc);
628 if (unlikely(ret))
629 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
630 scsi_sg_free);
631
632 return ret;
633 }
634
635 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
636 {
637 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
638 }
639
640 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
641 {
642
643 if (cmd->sdb.table.nents)
644 scsi_free_sgtable(&cmd->sdb);
645
646 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
647
648 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
649 struct scsi_data_buffer *bidi_sdb =
650 cmd->request->next_rq->special;
651 scsi_free_sgtable(bidi_sdb);
652 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
653 cmd->request->next_rq->special = NULL;
654 }
655
656 if (scsi_prot_sg_count(cmd))
657 scsi_free_sgtable(cmd->prot_sdb);
658 }
659
660 /*
661 * Function: scsi_release_buffers()
662 *
663 * Purpose: Completion processing for block device I/O requests.
664 *
665 * Arguments: cmd - command that we are bailing.
666 *
667 * Lock status: Assumed that no lock is held upon entry.
668 *
669 * Returns: Nothing
670 *
671 * Notes: In the event that an upper level driver rejects a
672 * command, we must release resources allocated during
673 * the __init_io() function. Primarily this would involve
674 * the scatter-gather table, and potentially any bounce
675 * buffers.
676 */
677 void scsi_release_buffers(struct scsi_cmnd *cmd)
678 {
679 __scsi_release_buffers(cmd, 1);
680 }
681 EXPORT_SYMBOL(scsi_release_buffers);
682
683 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
684 {
685 int error = 0;
686
687 switch(host_byte(result)) {
688 case DID_TRANSPORT_FAILFAST:
689 error = -ENOLINK;
690 break;
691 case DID_TARGET_FAILURE:
692 set_host_byte(cmd, DID_OK);
693 error = -EREMOTEIO;
694 break;
695 case DID_NEXUS_FAILURE:
696 set_host_byte(cmd, DID_OK);
697 error = -EBADE;
698 break;
699 default:
700 error = -EIO;
701 break;
702 }
703
704 return error;
705 }
706
707 /*
708 * Function: scsi_io_completion()
709 *
710 * Purpose: Completion processing for block device I/O requests.
711 *
712 * Arguments: cmd - command that is finished.
713 *
714 * Lock status: Assumed that no lock is held upon entry.
715 *
716 * Returns: Nothing
717 *
718 * Notes: This function is matched in terms of capabilities to
719 * the function that created the scatter-gather list.
720 * In other words, if there are no bounce buffers
721 * (the normal case for most drivers), we don't need
722 * the logic to deal with cleaning up afterwards.
723 *
724 * We must call scsi_end_request(). This will finish off
725 * the specified number of sectors. If we are done, the
726 * command block will be released and the queue function
727 * will be goosed. If we are not done then we have to
728 * figure out what to do next:
729 *
730 * a) We can call scsi_requeue_command(). The request
731 * will be unprepared and put back on the queue. Then
732 * a new command will be created for it. This should
733 * be used if we made forward progress, or if we want
734 * to switch from READ(10) to READ(6) for example.
735 *
736 * b) We can call scsi_queue_insert(). The request will
737 * be put back on the queue and retried using the same
738 * command as before, possibly after a delay.
739 *
740 * c) We can call blk_end_request() with -EIO to fail
741 * the remainder of the request.
742 */
743 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
744 {
745 int result = cmd->result;
746 struct request_queue *q = cmd->device->request_queue;
747 struct request *req = cmd->request;
748 int error = 0;
749 struct scsi_sense_hdr sshdr;
750 int sense_valid = 0;
751 int sense_deferred = 0;
752 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
753 ACTION_DELAYED_RETRY} action;
754 char *description = NULL;
755
756 if (result) {
757 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
758 if (sense_valid)
759 sense_deferred = scsi_sense_is_deferred(&sshdr);
760 }
761
762 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
763 req->errors = result;
764 if (result) {
765 if (sense_valid && req->sense) {
766 /*
767 * SG_IO wants current and deferred errors
768 */
769 int len = 8 + cmd->sense_buffer[7];
770
771 if (len > SCSI_SENSE_BUFFERSIZE)
772 len = SCSI_SENSE_BUFFERSIZE;
773 memcpy(req->sense, cmd->sense_buffer, len);
774 req->sense_len = len;
775 }
776 if (!sense_deferred)
777 error = __scsi_error_from_host_byte(cmd, result);
778 }
779
780 req->resid_len = scsi_get_resid(cmd);
781
782 if (scsi_bidi_cmnd(cmd)) {
783 /*
784 * Bidi commands Must be complete as a whole,
785 * both sides at once.
786 */
787 req->next_rq->resid_len = scsi_in(cmd)->resid;
788
789 scsi_release_buffers(cmd);
790 blk_end_request_all(req, 0);
791
792 scsi_next_command(cmd);
793 return;
794 }
795 }
796
797 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
798 BUG_ON(blk_bidi_rq(req));
799
800 /*
801 * Next deal with any sectors which we were able to correctly
802 * handle.
803 */
804 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
805 "%d bytes done.\n",
806 blk_rq_sectors(req), good_bytes));
807
808 /*
809 * Recovered errors need reporting, but they're always treated
810 * as success, so fiddle the result code here. For BLOCK_PC
811 * we already took a copy of the original into rq->errors which
812 * is what gets returned to the user
813 */
814 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816 * print since caller wants ATA registers. Only occurs on
817 * SCSI ATA PASS_THROUGH commands when CK_COND=1
818 */
819 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820 ;
821 else if (!(req->cmd_flags & REQ_QUIET))
822 scsi_print_sense("", cmd);
823 result = 0;
824 /* BLOCK_PC may have set error */
825 error = 0;
826 }
827
828 /*
829 * A number of bytes were successfully read. If there
830 * are leftovers and there is some kind of error
831 * (result != 0), retry the rest.
832 */
833 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
834 return;
835
836 error = __scsi_error_from_host_byte(cmd, result);
837
838 if (host_byte(result) == DID_RESET) {
839 /* Third party bus reset or reset for error recovery
840 * reasons. Just retry the command and see what
841 * happens.
842 */
843 action = ACTION_RETRY;
844 } else if (sense_valid && !sense_deferred) {
845 switch (sshdr.sense_key) {
846 case UNIT_ATTENTION:
847 if (cmd->device->removable) {
848 /* Detected disc change. Set a bit
849 * and quietly refuse further access.
850 */
851 cmd->device->changed = 1;
852 description = "Media Changed";
853 action = ACTION_FAIL;
854 } else {
855 /* Must have been a power glitch, or a
856 * bus reset. Could not have been a
857 * media change, so we just retry the
858 * command and see what happens.
859 */
860 action = ACTION_RETRY;
861 }
862 break;
863 case ILLEGAL_REQUEST:
864 /* If we had an ILLEGAL REQUEST returned, then
865 * we may have performed an unsupported
866 * command. The only thing this should be
867 * would be a ten byte read where only a six
868 * byte read was supported. Also, on a system
869 * where READ CAPACITY failed, we may have
870 * read past the end of the disk.
871 */
872 if ((cmd->device->use_10_for_rw &&
873 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
874 (cmd->cmnd[0] == READ_10 ||
875 cmd->cmnd[0] == WRITE_10)) {
876 /* This will issue a new 6-byte command. */
877 cmd->device->use_10_for_rw = 0;
878 action = ACTION_REPREP;
879 } else if (sshdr.asc == 0x10) /* DIX */ {
880 description = "Host Data Integrity Failure";
881 action = ACTION_FAIL;
882 error = -EILSEQ;
883 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
884 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
885 (cmd->cmnd[0] == UNMAP ||
886 cmd->cmnd[0] == WRITE_SAME_16 ||
887 cmd->cmnd[0] == WRITE_SAME)) {
888 description = "Discard failure";
889 action = ACTION_FAIL;
890 error = -EREMOTEIO;
891 } else
892 action = ACTION_FAIL;
893 break;
894 case ABORTED_COMMAND:
895 action = ACTION_FAIL;
896 if (sshdr.asc == 0x10) { /* DIF */
897 description = "Target Data Integrity Failure";
898 error = -EILSEQ;
899 }
900 break;
901 case NOT_READY:
902 /* If the device is in the process of becoming
903 * ready, or has a temporary blockage, retry.
904 */
905 if (sshdr.asc == 0x04) {
906 switch (sshdr.ascq) {
907 case 0x01: /* becoming ready */
908 case 0x04: /* format in progress */
909 case 0x05: /* rebuild in progress */
910 case 0x06: /* recalculation in progress */
911 case 0x07: /* operation in progress */
912 case 0x08: /* Long write in progress */
913 case 0x09: /* self test in progress */
914 case 0x14: /* space allocation in progress */
915 action = ACTION_DELAYED_RETRY;
916 break;
917 default:
918 description = "Device not ready";
919 action = ACTION_FAIL;
920 break;
921 }
922 } else {
923 description = "Device not ready";
924 action = ACTION_FAIL;
925 }
926 break;
927 case VOLUME_OVERFLOW:
928 /* See SSC3rXX or current. */
929 action = ACTION_FAIL;
930 break;
931 default:
932 description = "Unhandled sense code";
933 action = ACTION_FAIL;
934 break;
935 }
936 } else {
937 description = "Unhandled error code";
938 action = ACTION_FAIL;
939 }
940
941 switch (action) {
942 case ACTION_FAIL:
943 /* Give up and fail the remainder of the request */
944 scsi_release_buffers(cmd);
945 if (!(req->cmd_flags & REQ_QUIET)) {
946 if (description)
947 scmd_printk(KERN_INFO, cmd, "%s\n",
948 description);
949 scsi_print_result(cmd);
950 if (driver_byte(result) & DRIVER_SENSE)
951 scsi_print_sense("", cmd);
952 scsi_print_command(cmd);
953 }
954 if (blk_end_request_err(req, error))
955 scsi_requeue_command(q, cmd);
956 else
957 scsi_next_command(cmd);
958 break;
959 case ACTION_REPREP:
960 /* Unprep the request and put it back at the head of the queue.
961 * A new command will be prepared and issued.
962 */
963 scsi_release_buffers(cmd);
964 scsi_requeue_command(q, cmd);
965 break;
966 case ACTION_RETRY:
967 /* Retry the same command immediately */
968 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
969 break;
970 case ACTION_DELAYED_RETRY:
971 /* Retry the same command after a delay */
972 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
973 break;
974 }
975 }
976
977 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
978 gfp_t gfp_mask)
979 {
980 int count;
981
982 /*
983 * If sg table allocation fails, requeue request later.
984 */
985 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
986 gfp_mask))) {
987 return BLKPREP_DEFER;
988 }
989
990 req->buffer = NULL;
991
992 /*
993 * Next, walk the list, and fill in the addresses and sizes of
994 * each segment.
995 */
996 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
997 BUG_ON(count > sdb->table.nents);
998 sdb->table.nents = count;
999 sdb->length = blk_rq_bytes(req);
1000 return BLKPREP_OK;
1001 }
1002
1003 /*
1004 * Function: scsi_init_io()
1005 *
1006 * Purpose: SCSI I/O initialize function.
1007 *
1008 * Arguments: cmd - Command descriptor we wish to initialize
1009 *
1010 * Returns: 0 on success
1011 * BLKPREP_DEFER if the failure is retryable
1012 * BLKPREP_KILL if the failure is fatal
1013 */
1014 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1015 {
1016 struct request *rq = cmd->request;
1017
1018 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1019 if (error)
1020 goto err_exit;
1021
1022 if (blk_bidi_rq(rq)) {
1023 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1024 scsi_sdb_cache, GFP_ATOMIC);
1025 if (!bidi_sdb) {
1026 error = BLKPREP_DEFER;
1027 goto err_exit;
1028 }
1029
1030 rq->next_rq->special = bidi_sdb;
1031 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1032 if (error)
1033 goto err_exit;
1034 }
1035
1036 if (blk_integrity_rq(rq)) {
1037 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1038 int ivecs, count;
1039
1040 BUG_ON(prot_sdb == NULL);
1041 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1042
1043 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1044 error = BLKPREP_DEFER;
1045 goto err_exit;
1046 }
1047
1048 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1049 prot_sdb->table.sgl);
1050 BUG_ON(unlikely(count > ivecs));
1051 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1052
1053 cmd->prot_sdb = prot_sdb;
1054 cmd->prot_sdb->table.nents = count;
1055 }
1056
1057 return BLKPREP_OK ;
1058
1059 err_exit:
1060 scsi_release_buffers(cmd);
1061 cmd->request->special = NULL;
1062 scsi_put_command(cmd);
1063 return error;
1064 }
1065 EXPORT_SYMBOL(scsi_init_io);
1066
1067 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1068 struct request *req)
1069 {
1070 struct scsi_cmnd *cmd;
1071
1072 if (!req->special) {
1073 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1074 if (unlikely(!cmd))
1075 return NULL;
1076 req->special = cmd;
1077 } else {
1078 cmd = req->special;
1079 }
1080
1081 /* pull a tag out of the request if we have one */
1082 cmd->tag = req->tag;
1083 cmd->request = req;
1084
1085 cmd->cmnd = req->cmd;
1086 cmd->prot_op = SCSI_PROT_NORMAL;
1087
1088 return cmd;
1089 }
1090
1091 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1092 {
1093 struct scsi_cmnd *cmd;
1094 int ret = scsi_prep_state_check(sdev, req);
1095
1096 if (ret != BLKPREP_OK)
1097 return ret;
1098
1099 cmd = scsi_get_cmd_from_req(sdev, req);
1100 if (unlikely(!cmd))
1101 return BLKPREP_DEFER;
1102
1103 /*
1104 * BLOCK_PC requests may transfer data, in which case they must
1105 * a bio attached to them. Or they might contain a SCSI command
1106 * that does not transfer data, in which case they may optionally
1107 * submit a request without an attached bio.
1108 */
1109 if (req->bio) {
1110 int ret;
1111
1112 BUG_ON(!req->nr_phys_segments);
1113
1114 ret = scsi_init_io(cmd, GFP_ATOMIC);
1115 if (unlikely(ret))
1116 return ret;
1117 } else {
1118 BUG_ON(blk_rq_bytes(req));
1119
1120 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1121 req->buffer = NULL;
1122 }
1123
1124 cmd->cmd_len = req->cmd_len;
1125 if (!blk_rq_bytes(req))
1126 cmd->sc_data_direction = DMA_NONE;
1127 else if (rq_data_dir(req) == WRITE)
1128 cmd->sc_data_direction = DMA_TO_DEVICE;
1129 else
1130 cmd->sc_data_direction = DMA_FROM_DEVICE;
1131
1132 cmd->transfersize = blk_rq_bytes(req);
1133 cmd->allowed = req->retries;
1134 return BLKPREP_OK;
1135 }
1136 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1137
1138 /*
1139 * Setup a REQ_TYPE_FS command. These are simple read/write request
1140 * from filesystems that still need to be translated to SCSI CDBs from
1141 * the ULD.
1142 */
1143 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1144 {
1145 struct scsi_cmnd *cmd;
1146 int ret = scsi_prep_state_check(sdev, req);
1147
1148 if (ret != BLKPREP_OK)
1149 return ret;
1150
1151 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1152 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1153 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1154 if (ret != BLKPREP_OK)
1155 return ret;
1156 }
1157
1158 /*
1159 * Filesystem requests must transfer data.
1160 */
1161 BUG_ON(!req->nr_phys_segments);
1162
1163 cmd = scsi_get_cmd_from_req(sdev, req);
1164 if (unlikely(!cmd))
1165 return BLKPREP_DEFER;
1166
1167 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1168 return scsi_init_io(cmd, GFP_ATOMIC);
1169 }
1170 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1171
1172 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1173 {
1174 int ret = BLKPREP_OK;
1175
1176 /*
1177 * If the device is not in running state we will reject some
1178 * or all commands.
1179 */
1180 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1181 switch (sdev->sdev_state) {
1182 case SDEV_OFFLINE:
1183 case SDEV_TRANSPORT_OFFLINE:
1184 /*
1185 * If the device is offline we refuse to process any
1186 * commands. The device must be brought online
1187 * before trying any recovery commands.
1188 */
1189 sdev_printk(KERN_ERR, sdev,
1190 "rejecting I/O to offline device\n");
1191 ret = BLKPREP_KILL;
1192 break;
1193 case SDEV_DEL:
1194 /*
1195 * If the device is fully deleted, we refuse to
1196 * process any commands as well.
1197 */
1198 sdev_printk(KERN_ERR, sdev,
1199 "rejecting I/O to dead device\n");
1200 ret = BLKPREP_KILL;
1201 break;
1202 case SDEV_QUIESCE:
1203 case SDEV_BLOCK:
1204 case SDEV_CREATED_BLOCK:
1205 /*
1206 * If the devices is blocked we defer normal commands.
1207 */
1208 if (!(req->cmd_flags & REQ_PREEMPT))
1209 ret = BLKPREP_DEFER;
1210 break;
1211 default:
1212 /*
1213 * For any other not fully online state we only allow
1214 * special commands. In particular any user initiated
1215 * command is not allowed.
1216 */
1217 if (!(req->cmd_flags & REQ_PREEMPT))
1218 ret = BLKPREP_KILL;
1219 break;
1220 }
1221 }
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(scsi_prep_state_check);
1225
1226 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1227 {
1228 struct scsi_device *sdev = q->queuedata;
1229
1230 switch (ret) {
1231 case BLKPREP_KILL:
1232 req->errors = DID_NO_CONNECT << 16;
1233 /* release the command and kill it */
1234 if (req->special) {
1235 struct scsi_cmnd *cmd = req->special;
1236 scsi_release_buffers(cmd);
1237 scsi_put_command(cmd);
1238 req->special = NULL;
1239 }
1240 break;
1241 case BLKPREP_DEFER:
1242 /*
1243 * If we defer, the blk_peek_request() returns NULL, but the
1244 * queue must be restarted, so we schedule a callback to happen
1245 * shortly.
1246 */
1247 if (sdev->device_busy == 0)
1248 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1249 break;
1250 default:
1251 req->cmd_flags |= REQ_DONTPREP;
1252 }
1253
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(scsi_prep_return);
1257
1258 int scsi_prep_fn(struct request_queue *q, struct request *req)
1259 {
1260 struct scsi_device *sdev = q->queuedata;
1261 int ret = BLKPREP_KILL;
1262
1263 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1264 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1265 return scsi_prep_return(q, req, ret);
1266 }
1267 EXPORT_SYMBOL(scsi_prep_fn);
1268
1269 /*
1270 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1271 * return 0.
1272 *
1273 * Called with the queue_lock held.
1274 */
1275 static inline int scsi_dev_queue_ready(struct request_queue *q,
1276 struct scsi_device *sdev)
1277 {
1278 if (sdev->device_busy == 0 && sdev->device_blocked) {
1279 /*
1280 * unblock after device_blocked iterates to zero
1281 */
1282 if (--sdev->device_blocked == 0) {
1283 SCSI_LOG_MLQUEUE(3,
1284 sdev_printk(KERN_INFO, sdev,
1285 "unblocking device at zero depth\n"));
1286 } else {
1287 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1288 return 0;
1289 }
1290 }
1291 if (scsi_device_is_busy(sdev))
1292 return 0;
1293
1294 return 1;
1295 }
1296
1297
1298 /*
1299 * scsi_target_queue_ready: checks if there we can send commands to target
1300 * @sdev: scsi device on starget to check.
1301 *
1302 * Called with the host lock held.
1303 */
1304 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1305 struct scsi_device *sdev)
1306 {
1307 struct scsi_target *starget = scsi_target(sdev);
1308
1309 if (starget->single_lun) {
1310 if (starget->starget_sdev_user &&
1311 starget->starget_sdev_user != sdev)
1312 return 0;
1313 starget->starget_sdev_user = sdev;
1314 }
1315
1316 if (starget->target_busy == 0 && starget->target_blocked) {
1317 /*
1318 * unblock after target_blocked iterates to zero
1319 */
1320 if (--starget->target_blocked == 0) {
1321 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1322 "unblocking target at zero depth\n"));
1323 } else
1324 return 0;
1325 }
1326
1327 if (scsi_target_is_busy(starget)) {
1328 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1329 return 0;
1330 }
1331
1332 return 1;
1333 }
1334
1335 /*
1336 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1337 * return 0. We must end up running the queue again whenever 0 is
1338 * returned, else IO can hang.
1339 *
1340 * Called with host_lock held.
1341 */
1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 struct Scsi_Host *shost,
1344 struct scsi_device *sdev)
1345 {
1346 if (scsi_host_in_recovery(shost))
1347 return 0;
1348 if (shost->host_busy == 0 && shost->host_blocked) {
1349 /*
1350 * unblock after host_blocked iterates to zero
1351 */
1352 if (--shost->host_blocked == 0) {
1353 SCSI_LOG_MLQUEUE(3,
1354 printk("scsi%d unblocking host at zero depth\n",
1355 shost->host_no));
1356 } else {
1357 return 0;
1358 }
1359 }
1360 if (scsi_host_is_busy(shost)) {
1361 if (list_empty(&sdev->starved_entry))
1362 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363 return 0;
1364 }
1365
1366 /* We're OK to process the command, so we can't be starved */
1367 if (!list_empty(&sdev->starved_entry))
1368 list_del_init(&sdev->starved_entry);
1369
1370 return 1;
1371 }
1372
1373 /*
1374 * Busy state exporting function for request stacking drivers.
1375 *
1376 * For efficiency, no lock is taken to check the busy state of
1377 * shost/starget/sdev, since the returned value is not guaranteed and
1378 * may be changed after request stacking drivers call the function,
1379 * regardless of taking lock or not.
1380 *
1381 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1382 * needs to return 'not busy'. Otherwise, request stacking drivers
1383 * may hold requests forever.
1384 */
1385 static int scsi_lld_busy(struct request_queue *q)
1386 {
1387 struct scsi_device *sdev = q->queuedata;
1388 struct Scsi_Host *shost;
1389
1390 if (blk_queue_dead(q))
1391 return 0;
1392
1393 shost = sdev->host;
1394
1395 /*
1396 * Ignore host/starget busy state.
1397 * Since block layer does not have a concept of fairness across
1398 * multiple queues, congestion of host/starget needs to be handled
1399 * in SCSI layer.
1400 */
1401 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1402 return 1;
1403
1404 return 0;
1405 }
1406
1407 /*
1408 * Kill a request for a dead device
1409 */
1410 static void scsi_kill_request(struct request *req, struct request_queue *q)
1411 {
1412 struct scsi_cmnd *cmd = req->special;
1413 struct scsi_device *sdev;
1414 struct scsi_target *starget;
1415 struct Scsi_Host *shost;
1416
1417 blk_start_request(req);
1418
1419 scmd_printk(KERN_INFO, cmd, "killing request\n");
1420
1421 sdev = cmd->device;
1422 starget = scsi_target(sdev);
1423 shost = sdev->host;
1424 scsi_init_cmd_errh(cmd);
1425 cmd->result = DID_NO_CONNECT << 16;
1426 atomic_inc(&cmd->device->iorequest_cnt);
1427
1428 /*
1429 * SCSI request completion path will do scsi_device_unbusy(),
1430 * bump busy counts. To bump the counters, we need to dance
1431 * with the locks as normal issue path does.
1432 */
1433 sdev->device_busy++;
1434 spin_unlock(sdev->request_queue->queue_lock);
1435 spin_lock(shost->host_lock);
1436 shost->host_busy++;
1437 starget->target_busy++;
1438 spin_unlock(shost->host_lock);
1439 spin_lock(sdev->request_queue->queue_lock);
1440
1441 blk_complete_request(req);
1442 }
1443
1444 static void scsi_softirq_done(struct request *rq)
1445 {
1446 struct scsi_cmnd *cmd = rq->special;
1447 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1448 int disposition;
1449
1450 INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452 atomic_inc(&cmd->device->iodone_cnt);
1453 if (cmd->result)
1454 atomic_inc(&cmd->device->ioerr_cnt);
1455
1456 disposition = scsi_decide_disposition(cmd);
1457 if (disposition != SUCCESS &&
1458 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1459 sdev_printk(KERN_ERR, cmd->device,
1460 "timing out command, waited %lus\n",
1461 wait_for/HZ);
1462 disposition = SUCCESS;
1463 }
1464
1465 scsi_log_completion(cmd, disposition);
1466
1467 switch (disposition) {
1468 case SUCCESS:
1469 scsi_finish_command(cmd);
1470 break;
1471 case NEEDS_RETRY:
1472 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1473 break;
1474 case ADD_TO_MLQUEUE:
1475 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1476 break;
1477 default:
1478 if (!scsi_eh_scmd_add(cmd, 0))
1479 scsi_finish_command(cmd);
1480 }
1481 }
1482
1483 /*
1484 * Function: scsi_request_fn()
1485 *
1486 * Purpose: Main strategy routine for SCSI.
1487 *
1488 * Arguments: q - Pointer to actual queue.
1489 *
1490 * Returns: Nothing
1491 *
1492 * Lock status: IO request lock assumed to be held when called.
1493 */
1494 static void scsi_request_fn(struct request_queue *q)
1495 {
1496 struct scsi_device *sdev = q->queuedata;
1497 struct Scsi_Host *shost;
1498 struct scsi_cmnd *cmd;
1499 struct request *req;
1500
1501 if(!get_device(&sdev->sdev_gendev))
1502 /* We must be tearing the block queue down already */
1503 return;
1504
1505 /*
1506 * To start with, we keep looping until the queue is empty, or until
1507 * the host is no longer able to accept any more requests.
1508 */
1509 shost = sdev->host;
1510 for (;;) {
1511 int rtn;
1512 /*
1513 * get next queueable request. We do this early to make sure
1514 * that the request is fully prepared even if we cannot
1515 * accept it.
1516 */
1517 req = blk_peek_request(q);
1518 if (!req || !scsi_dev_queue_ready(q, sdev))
1519 break;
1520
1521 if (unlikely(!scsi_device_online(sdev))) {
1522 sdev_printk(KERN_ERR, sdev,
1523 "rejecting I/O to offline device\n");
1524 scsi_kill_request(req, q);
1525 continue;
1526 }
1527
1528
1529 /*
1530 * Remove the request from the request list.
1531 */
1532 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1533 blk_start_request(req);
1534 sdev->device_busy++;
1535
1536 spin_unlock(q->queue_lock);
1537 cmd = req->special;
1538 if (unlikely(cmd == NULL)) {
1539 printk(KERN_CRIT "impossible request in %s.\n"
1540 "please mail a stack trace to "
1541 "linux-scsi@vger.kernel.org\n",
1542 __func__);
1543 blk_dump_rq_flags(req, "foo");
1544 BUG();
1545 }
1546 spin_lock(shost->host_lock);
1547
1548 /*
1549 * We hit this when the driver is using a host wide
1550 * tag map. For device level tag maps the queue_depth check
1551 * in the device ready fn would prevent us from trying
1552 * to allocate a tag. Since the map is a shared host resource
1553 * we add the dev to the starved list so it eventually gets
1554 * a run when a tag is freed.
1555 */
1556 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1557 if (list_empty(&sdev->starved_entry))
1558 list_add_tail(&sdev->starved_entry,
1559 &shost->starved_list);
1560 goto not_ready;
1561 }
1562
1563 if (!scsi_target_queue_ready(shost, sdev))
1564 goto not_ready;
1565
1566 if (!scsi_host_queue_ready(q, shost, sdev))
1567 goto not_ready;
1568
1569 scsi_target(sdev)->target_busy++;
1570 shost->host_busy++;
1571
1572 /*
1573 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1574 * take the lock again.
1575 */
1576 spin_unlock_irq(shost->host_lock);
1577
1578 /*
1579 * Finally, initialize any error handling parameters, and set up
1580 * the timers for timeouts.
1581 */
1582 scsi_init_cmd_errh(cmd);
1583
1584 /*
1585 * Dispatch the command to the low-level driver.
1586 */
1587 rtn = scsi_dispatch_cmd(cmd);
1588 spin_lock_irq(q->queue_lock);
1589 if (rtn)
1590 goto out_delay;
1591 }
1592
1593 goto out;
1594
1595 not_ready:
1596 spin_unlock_irq(shost->host_lock);
1597
1598 /*
1599 * lock q, handle tag, requeue req, and decrement device_busy. We
1600 * must return with queue_lock held.
1601 *
1602 * Decrementing device_busy without checking it is OK, as all such
1603 * cases (host limits or settings) should run the queue at some
1604 * later time.
1605 */
1606 spin_lock_irq(q->queue_lock);
1607 blk_requeue_request(q, req);
1608 sdev->device_busy--;
1609 out_delay:
1610 if (sdev->device_busy == 0)
1611 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1612 out:
1613 /* must be careful here...if we trigger the ->remove() function
1614 * we cannot be holding the q lock */
1615 spin_unlock_irq(q->queue_lock);
1616 put_device(&sdev->sdev_gendev);
1617 spin_lock_irq(q->queue_lock);
1618 }
1619
1620 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1621 {
1622 struct device *host_dev;
1623 u64 bounce_limit = 0xffffffff;
1624
1625 if (shost->unchecked_isa_dma)
1626 return BLK_BOUNCE_ISA;
1627 /*
1628 * Platforms with virtual-DMA translation
1629 * hardware have no practical limit.
1630 */
1631 if (!PCI_DMA_BUS_IS_PHYS)
1632 return BLK_BOUNCE_ANY;
1633
1634 host_dev = scsi_get_device(shost);
1635 if (host_dev && host_dev->dma_mask)
1636 bounce_limit = *host_dev->dma_mask;
1637
1638 return bounce_limit;
1639 }
1640 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1641
1642 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1643 request_fn_proc *request_fn)
1644 {
1645 struct request_queue *q;
1646 struct device *dev = shost->dma_dev;
1647
1648 q = blk_init_queue(request_fn, NULL);
1649 if (!q)
1650 return NULL;
1651
1652 /*
1653 * this limit is imposed by hardware restrictions
1654 */
1655 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1656 SCSI_MAX_SG_CHAIN_SEGMENTS));
1657
1658 if (scsi_host_prot_dma(shost)) {
1659 shost->sg_prot_tablesize =
1660 min_not_zero(shost->sg_prot_tablesize,
1661 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1662 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1663 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1664 }
1665
1666 blk_queue_max_hw_sectors(q, shost->max_sectors);
1667 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1668 blk_queue_segment_boundary(q, shost->dma_boundary);
1669 dma_set_seg_boundary(dev, shost->dma_boundary);
1670
1671 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1672
1673 if (!shost->use_clustering)
1674 q->limits.cluster = 0;
1675
1676 /*
1677 * set a reasonable default alignment on word boundaries: the
1678 * host and device may alter it using
1679 * blk_queue_update_dma_alignment() later.
1680 */
1681 blk_queue_dma_alignment(q, 0x03);
1682
1683 return q;
1684 }
1685 EXPORT_SYMBOL(__scsi_alloc_queue);
1686
1687 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1688 {
1689 struct request_queue *q;
1690
1691 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1692 if (!q)
1693 return NULL;
1694
1695 blk_queue_prep_rq(q, scsi_prep_fn);
1696 blk_queue_softirq_done(q, scsi_softirq_done);
1697 blk_queue_rq_timed_out(q, scsi_times_out);
1698 blk_queue_lld_busy(q, scsi_lld_busy);
1699 return q;
1700 }
1701
1702 /*
1703 * Function: scsi_block_requests()
1704 *
1705 * Purpose: Utility function used by low-level drivers to prevent further
1706 * commands from being queued to the device.
1707 *
1708 * Arguments: shost - Host in question
1709 *
1710 * Returns: Nothing
1711 *
1712 * Lock status: No locks are assumed held.
1713 *
1714 * Notes: There is no timer nor any other means by which the requests
1715 * get unblocked other than the low-level driver calling
1716 * scsi_unblock_requests().
1717 */
1718 void scsi_block_requests(struct Scsi_Host *shost)
1719 {
1720 shost->host_self_blocked = 1;
1721 }
1722 EXPORT_SYMBOL(scsi_block_requests);
1723
1724 /*
1725 * Function: scsi_unblock_requests()
1726 *
1727 * Purpose: Utility function used by low-level drivers to allow further
1728 * commands from being queued to the device.
1729 *
1730 * Arguments: shost - Host in question
1731 *
1732 * Returns: Nothing
1733 *
1734 * Lock status: No locks are assumed held.
1735 *
1736 * Notes: There is no timer nor any other means by which the requests
1737 * get unblocked other than the low-level driver calling
1738 * scsi_unblock_requests().
1739 *
1740 * This is done as an API function so that changes to the
1741 * internals of the scsi mid-layer won't require wholesale
1742 * changes to drivers that use this feature.
1743 */
1744 void scsi_unblock_requests(struct Scsi_Host *shost)
1745 {
1746 shost->host_self_blocked = 0;
1747 scsi_run_host_queues(shost);
1748 }
1749 EXPORT_SYMBOL(scsi_unblock_requests);
1750
1751 int __init scsi_init_queue(void)
1752 {
1753 int i;
1754
1755 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1756 sizeof(struct scsi_data_buffer),
1757 0, 0, NULL);
1758 if (!scsi_sdb_cache) {
1759 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1760 return -ENOMEM;
1761 }
1762
1763 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1764 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1765 int size = sgp->size * sizeof(struct scatterlist);
1766
1767 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1768 SLAB_HWCACHE_ALIGN, NULL);
1769 if (!sgp->slab) {
1770 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1771 sgp->name);
1772 goto cleanup_sdb;
1773 }
1774
1775 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1776 sgp->slab);
1777 if (!sgp->pool) {
1778 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1779 sgp->name);
1780 goto cleanup_sdb;
1781 }
1782 }
1783
1784 return 0;
1785
1786 cleanup_sdb:
1787 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1788 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1789 if (sgp->pool)
1790 mempool_destroy(sgp->pool);
1791 if (sgp->slab)
1792 kmem_cache_destroy(sgp->slab);
1793 }
1794 kmem_cache_destroy(scsi_sdb_cache);
1795
1796 return -ENOMEM;
1797 }
1798
1799 void scsi_exit_queue(void)
1800 {
1801 int i;
1802
1803 kmem_cache_destroy(scsi_sdb_cache);
1804
1805 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1806 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1807 mempool_destroy(sgp->pool);
1808 kmem_cache_destroy(sgp->slab);
1809 }
1810 }
1811
1812 /**
1813 * scsi_mode_select - issue a mode select
1814 * @sdev: SCSI device to be queried
1815 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1816 * @sp: Save page bit (0 == don't save, 1 == save)
1817 * @modepage: mode page being requested
1818 * @buffer: request buffer (may not be smaller than eight bytes)
1819 * @len: length of request buffer.
1820 * @timeout: command timeout
1821 * @retries: number of retries before failing
1822 * @data: returns a structure abstracting the mode header data
1823 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1824 * must be SCSI_SENSE_BUFFERSIZE big.
1825 *
1826 * Returns zero if successful; negative error number or scsi
1827 * status on error
1828 *
1829 */
1830 int
1831 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1832 unsigned char *buffer, int len, int timeout, int retries,
1833 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1834 {
1835 unsigned char cmd[10];
1836 unsigned char *real_buffer;
1837 int ret;
1838
1839 memset(cmd, 0, sizeof(cmd));
1840 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1841
1842 if (sdev->use_10_for_ms) {
1843 if (len > 65535)
1844 return -EINVAL;
1845 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1846 if (!real_buffer)
1847 return -ENOMEM;
1848 memcpy(real_buffer + 8, buffer, len);
1849 len += 8;
1850 real_buffer[0] = 0;
1851 real_buffer[1] = 0;
1852 real_buffer[2] = data->medium_type;
1853 real_buffer[3] = data->device_specific;
1854 real_buffer[4] = data->longlba ? 0x01 : 0;
1855 real_buffer[5] = 0;
1856 real_buffer[6] = data->block_descriptor_length >> 8;
1857 real_buffer[7] = data->block_descriptor_length;
1858
1859 cmd[0] = MODE_SELECT_10;
1860 cmd[7] = len >> 8;
1861 cmd[8] = len;
1862 } else {
1863 if (len > 255 || data->block_descriptor_length > 255 ||
1864 data->longlba)
1865 return -EINVAL;
1866
1867 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1868 if (!real_buffer)
1869 return -ENOMEM;
1870 memcpy(real_buffer + 4, buffer, len);
1871 len += 4;
1872 real_buffer[0] = 0;
1873 real_buffer[1] = data->medium_type;
1874 real_buffer[2] = data->device_specific;
1875 real_buffer[3] = data->block_descriptor_length;
1876
1877
1878 cmd[0] = MODE_SELECT;
1879 cmd[4] = len;
1880 }
1881
1882 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1883 sshdr, timeout, retries, NULL);
1884 kfree(real_buffer);
1885 return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(scsi_mode_select);
1888
1889 /**
1890 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1891 * @sdev: SCSI device to be queried
1892 * @dbd: set if mode sense will allow block descriptors to be returned
1893 * @modepage: mode page being requested
1894 * @buffer: request buffer (may not be smaller than eight bytes)
1895 * @len: length of request buffer.
1896 * @timeout: command timeout
1897 * @retries: number of retries before failing
1898 * @data: returns a structure abstracting the mode header data
1899 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1900 * must be SCSI_SENSE_BUFFERSIZE big.
1901 *
1902 * Returns zero if unsuccessful, or the header offset (either 4
1903 * or 8 depending on whether a six or ten byte command was
1904 * issued) if successful.
1905 */
1906 int
1907 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1908 unsigned char *buffer, int len, int timeout, int retries,
1909 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1910 {
1911 unsigned char cmd[12];
1912 int use_10_for_ms;
1913 int header_length;
1914 int result;
1915 struct scsi_sense_hdr my_sshdr;
1916
1917 memset(data, 0, sizeof(*data));
1918 memset(&cmd[0], 0, 12);
1919 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1920 cmd[2] = modepage;
1921
1922 /* caller might not be interested in sense, but we need it */
1923 if (!sshdr)
1924 sshdr = &my_sshdr;
1925
1926 retry:
1927 use_10_for_ms = sdev->use_10_for_ms;
1928
1929 if (use_10_for_ms) {
1930 if (len < 8)
1931 len = 8;
1932
1933 cmd[0] = MODE_SENSE_10;
1934 cmd[8] = len;
1935 header_length = 8;
1936 } else {
1937 if (len < 4)
1938 len = 4;
1939
1940 cmd[0] = MODE_SENSE;
1941 cmd[4] = len;
1942 header_length = 4;
1943 }
1944
1945 memset(buffer, 0, len);
1946
1947 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1948 sshdr, timeout, retries, NULL);
1949
1950 /* This code looks awful: what it's doing is making sure an
1951 * ILLEGAL REQUEST sense return identifies the actual command
1952 * byte as the problem. MODE_SENSE commands can return
1953 * ILLEGAL REQUEST if the code page isn't supported */
1954
1955 if (use_10_for_ms && !scsi_status_is_good(result) &&
1956 (driver_byte(result) & DRIVER_SENSE)) {
1957 if (scsi_sense_valid(sshdr)) {
1958 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1959 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1960 /*
1961 * Invalid command operation code
1962 */
1963 sdev->use_10_for_ms = 0;
1964 goto retry;
1965 }
1966 }
1967 }
1968
1969 if(scsi_status_is_good(result)) {
1970 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1971 (modepage == 6 || modepage == 8))) {
1972 /* Initio breakage? */
1973 header_length = 0;
1974 data->length = 13;
1975 data->medium_type = 0;
1976 data->device_specific = 0;
1977 data->longlba = 0;
1978 data->block_descriptor_length = 0;
1979 } else if(use_10_for_ms) {
1980 data->length = buffer[0]*256 + buffer[1] + 2;
1981 data->medium_type = buffer[2];
1982 data->device_specific = buffer[3];
1983 data->longlba = buffer[4] & 0x01;
1984 data->block_descriptor_length = buffer[6]*256
1985 + buffer[7];
1986 } else {
1987 data->length = buffer[0] + 1;
1988 data->medium_type = buffer[1];
1989 data->device_specific = buffer[2];
1990 data->block_descriptor_length = buffer[3];
1991 }
1992 data->header_length = header_length;
1993 }
1994
1995 return result;
1996 }
1997 EXPORT_SYMBOL(scsi_mode_sense);
1998
1999 /**
2000 * scsi_test_unit_ready - test if unit is ready
2001 * @sdev: scsi device to change the state of.
2002 * @timeout: command timeout
2003 * @retries: number of retries before failing
2004 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2005 * returning sense. Make sure that this is cleared before passing
2006 * in.
2007 *
2008 * Returns zero if unsuccessful or an error if TUR failed. For
2009 * removable media, UNIT_ATTENTION sets ->changed flag.
2010 **/
2011 int
2012 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2013 struct scsi_sense_hdr *sshdr_external)
2014 {
2015 char cmd[] = {
2016 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2017 };
2018 struct scsi_sense_hdr *sshdr;
2019 int result;
2020
2021 if (!sshdr_external)
2022 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2023 else
2024 sshdr = sshdr_external;
2025
2026 /* try to eat the UNIT_ATTENTION if there are enough retries */
2027 do {
2028 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2029 timeout, retries, NULL);
2030 if (sdev->removable && scsi_sense_valid(sshdr) &&
2031 sshdr->sense_key == UNIT_ATTENTION)
2032 sdev->changed = 1;
2033 } while (scsi_sense_valid(sshdr) &&
2034 sshdr->sense_key == UNIT_ATTENTION && --retries);
2035
2036 if (!sshdr_external)
2037 kfree(sshdr);
2038 return result;
2039 }
2040 EXPORT_SYMBOL(scsi_test_unit_ready);
2041
2042 /**
2043 * scsi_device_set_state - Take the given device through the device state model.
2044 * @sdev: scsi device to change the state of.
2045 * @state: state to change to.
2046 *
2047 * Returns zero if unsuccessful or an error if the requested
2048 * transition is illegal.
2049 */
2050 int
2051 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2052 {
2053 enum scsi_device_state oldstate = sdev->sdev_state;
2054
2055 if (state == oldstate)
2056 return 0;
2057
2058 switch (state) {
2059 case SDEV_CREATED:
2060 switch (oldstate) {
2061 case SDEV_CREATED_BLOCK:
2062 break;
2063 default:
2064 goto illegal;
2065 }
2066 break;
2067
2068 case SDEV_RUNNING:
2069 switch (oldstate) {
2070 case SDEV_CREATED:
2071 case SDEV_OFFLINE:
2072 case SDEV_TRANSPORT_OFFLINE:
2073 case SDEV_QUIESCE:
2074 case SDEV_BLOCK:
2075 break;
2076 default:
2077 goto illegal;
2078 }
2079 break;
2080
2081 case SDEV_QUIESCE:
2082 switch (oldstate) {
2083 case SDEV_RUNNING:
2084 case SDEV_OFFLINE:
2085 case SDEV_TRANSPORT_OFFLINE:
2086 break;
2087 default:
2088 goto illegal;
2089 }
2090 break;
2091
2092 case SDEV_OFFLINE:
2093 case SDEV_TRANSPORT_OFFLINE:
2094 switch (oldstate) {
2095 case SDEV_CREATED:
2096 case SDEV_RUNNING:
2097 case SDEV_QUIESCE:
2098 case SDEV_BLOCK:
2099 break;
2100 default:
2101 goto illegal;
2102 }
2103 break;
2104
2105 case SDEV_BLOCK:
2106 switch (oldstate) {
2107 case SDEV_RUNNING:
2108 case SDEV_CREATED_BLOCK:
2109 break;
2110 default:
2111 goto illegal;
2112 }
2113 break;
2114
2115 case SDEV_CREATED_BLOCK:
2116 switch (oldstate) {
2117 case SDEV_CREATED:
2118 break;
2119 default:
2120 goto illegal;
2121 }
2122 break;
2123
2124 case SDEV_CANCEL:
2125 switch (oldstate) {
2126 case SDEV_CREATED:
2127 case SDEV_RUNNING:
2128 case SDEV_QUIESCE:
2129 case SDEV_OFFLINE:
2130 case SDEV_TRANSPORT_OFFLINE:
2131 case SDEV_BLOCK:
2132 break;
2133 default:
2134 goto illegal;
2135 }
2136 break;
2137
2138 case SDEV_DEL:
2139 switch (oldstate) {
2140 case SDEV_CREATED:
2141 case SDEV_RUNNING:
2142 case SDEV_OFFLINE:
2143 case SDEV_TRANSPORT_OFFLINE:
2144 case SDEV_CANCEL:
2145 break;
2146 default:
2147 goto illegal;
2148 }
2149 break;
2150
2151 }
2152 sdev->sdev_state = state;
2153 return 0;
2154
2155 illegal:
2156 SCSI_LOG_ERROR_RECOVERY(1,
2157 sdev_printk(KERN_ERR, sdev,
2158 "Illegal state transition %s->%s\n",
2159 scsi_device_state_name(oldstate),
2160 scsi_device_state_name(state))
2161 );
2162 return -EINVAL;
2163 }
2164 EXPORT_SYMBOL(scsi_device_set_state);
2165
2166 /**
2167 * sdev_evt_emit - emit a single SCSI device uevent
2168 * @sdev: associated SCSI device
2169 * @evt: event to emit
2170 *
2171 * Send a single uevent (scsi_event) to the associated scsi_device.
2172 */
2173 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2174 {
2175 int idx = 0;
2176 char *envp[3];
2177
2178 switch (evt->evt_type) {
2179 case SDEV_EVT_MEDIA_CHANGE:
2180 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2181 break;
2182
2183 default:
2184 /* do nothing */
2185 break;
2186 }
2187
2188 envp[idx++] = NULL;
2189
2190 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2191 }
2192
2193 /**
2194 * sdev_evt_thread - send a uevent for each scsi event
2195 * @work: work struct for scsi_device
2196 *
2197 * Dispatch queued events to their associated scsi_device kobjects
2198 * as uevents.
2199 */
2200 void scsi_evt_thread(struct work_struct *work)
2201 {
2202 struct scsi_device *sdev;
2203 LIST_HEAD(event_list);
2204
2205 sdev = container_of(work, struct scsi_device, event_work);
2206
2207 while (1) {
2208 struct scsi_event *evt;
2209 struct list_head *this, *tmp;
2210 unsigned long flags;
2211
2212 spin_lock_irqsave(&sdev->list_lock, flags);
2213 list_splice_init(&sdev->event_list, &event_list);
2214 spin_unlock_irqrestore(&sdev->list_lock, flags);
2215
2216 if (list_empty(&event_list))
2217 break;
2218
2219 list_for_each_safe(this, tmp, &event_list) {
2220 evt = list_entry(this, struct scsi_event, node);
2221 list_del(&evt->node);
2222 scsi_evt_emit(sdev, evt);
2223 kfree(evt);
2224 }
2225 }
2226 }
2227
2228 /**
2229 * sdev_evt_send - send asserted event to uevent thread
2230 * @sdev: scsi_device event occurred on
2231 * @evt: event to send
2232 *
2233 * Assert scsi device event asynchronously.
2234 */
2235 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2236 {
2237 unsigned long flags;
2238
2239 #if 0
2240 /* FIXME: currently this check eliminates all media change events
2241 * for polled devices. Need to update to discriminate between AN
2242 * and polled events */
2243 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2244 kfree(evt);
2245 return;
2246 }
2247 #endif
2248
2249 spin_lock_irqsave(&sdev->list_lock, flags);
2250 list_add_tail(&evt->node, &sdev->event_list);
2251 schedule_work(&sdev->event_work);
2252 spin_unlock_irqrestore(&sdev->list_lock, flags);
2253 }
2254 EXPORT_SYMBOL_GPL(sdev_evt_send);
2255
2256 /**
2257 * sdev_evt_alloc - allocate a new scsi event
2258 * @evt_type: type of event to allocate
2259 * @gfpflags: GFP flags for allocation
2260 *
2261 * Allocates and returns a new scsi_event.
2262 */
2263 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2264 gfp_t gfpflags)
2265 {
2266 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2267 if (!evt)
2268 return NULL;
2269
2270 evt->evt_type = evt_type;
2271 INIT_LIST_HEAD(&evt->node);
2272
2273 /* evt_type-specific initialization, if any */
2274 switch (evt_type) {
2275 case SDEV_EVT_MEDIA_CHANGE:
2276 default:
2277 /* do nothing */
2278 break;
2279 }
2280
2281 return evt;
2282 }
2283 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2284
2285 /**
2286 * sdev_evt_send_simple - send asserted event to uevent thread
2287 * @sdev: scsi_device event occurred on
2288 * @evt_type: type of event to send
2289 * @gfpflags: GFP flags for allocation
2290 *
2291 * Assert scsi device event asynchronously, given an event type.
2292 */
2293 void sdev_evt_send_simple(struct scsi_device *sdev,
2294 enum scsi_device_event evt_type, gfp_t gfpflags)
2295 {
2296 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2297 if (!evt) {
2298 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2299 evt_type);
2300 return;
2301 }
2302
2303 sdev_evt_send(sdev, evt);
2304 }
2305 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2306
2307 /**
2308 * scsi_device_quiesce - Block user issued commands.
2309 * @sdev: scsi device to quiesce.
2310 *
2311 * This works by trying to transition to the SDEV_QUIESCE state
2312 * (which must be a legal transition). When the device is in this
2313 * state, only special requests will be accepted, all others will
2314 * be deferred. Since special requests may also be requeued requests,
2315 * a successful return doesn't guarantee the device will be
2316 * totally quiescent.
2317 *
2318 * Must be called with user context, may sleep.
2319 *
2320 * Returns zero if unsuccessful or an error if not.
2321 */
2322 int
2323 scsi_device_quiesce(struct scsi_device *sdev)
2324 {
2325 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2326 if (err)
2327 return err;
2328
2329 scsi_run_queue(sdev->request_queue);
2330 while (sdev->device_busy) {
2331 msleep_interruptible(200);
2332 scsi_run_queue(sdev->request_queue);
2333 }
2334 return 0;
2335 }
2336 EXPORT_SYMBOL(scsi_device_quiesce);
2337
2338 /**
2339 * scsi_device_resume - Restart user issued commands to a quiesced device.
2340 * @sdev: scsi device to resume.
2341 *
2342 * Moves the device from quiesced back to running and restarts the
2343 * queues.
2344 *
2345 * Must be called with user context, may sleep.
2346 */
2347 void scsi_device_resume(struct scsi_device *sdev)
2348 {
2349 /* check if the device state was mutated prior to resume, and if
2350 * so assume the state is being managed elsewhere (for example
2351 * device deleted during suspend)
2352 */
2353 if (sdev->sdev_state != SDEV_QUIESCE ||
2354 scsi_device_set_state(sdev, SDEV_RUNNING))
2355 return;
2356 scsi_run_queue(sdev->request_queue);
2357 }
2358 EXPORT_SYMBOL(scsi_device_resume);
2359
2360 static void
2361 device_quiesce_fn(struct scsi_device *sdev, void *data)
2362 {
2363 scsi_device_quiesce(sdev);
2364 }
2365
2366 void
2367 scsi_target_quiesce(struct scsi_target *starget)
2368 {
2369 starget_for_each_device(starget, NULL, device_quiesce_fn);
2370 }
2371 EXPORT_SYMBOL(scsi_target_quiesce);
2372
2373 static void
2374 device_resume_fn(struct scsi_device *sdev, void *data)
2375 {
2376 scsi_device_resume(sdev);
2377 }
2378
2379 void
2380 scsi_target_resume(struct scsi_target *starget)
2381 {
2382 starget_for_each_device(starget, NULL, device_resume_fn);
2383 }
2384 EXPORT_SYMBOL(scsi_target_resume);
2385
2386 /**
2387 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2388 * @sdev: device to block
2389 *
2390 * Block request made by scsi lld's to temporarily stop all
2391 * scsi commands on the specified device. Called from interrupt
2392 * or normal process context.
2393 *
2394 * Returns zero if successful or error if not
2395 *
2396 * Notes:
2397 * This routine transitions the device to the SDEV_BLOCK state
2398 * (which must be a legal transition). When the device is in this
2399 * state, all commands are deferred until the scsi lld reenables
2400 * the device with scsi_device_unblock or device_block_tmo fires.
2401 */
2402 int
2403 scsi_internal_device_block(struct scsi_device *sdev)
2404 {
2405 struct request_queue *q = sdev->request_queue;
2406 unsigned long flags;
2407 int err = 0;
2408
2409 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2410 if (err) {
2411 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2412
2413 if (err)
2414 return err;
2415 }
2416
2417 /*
2418 * The device has transitioned to SDEV_BLOCK. Stop the
2419 * block layer from calling the midlayer with this device's
2420 * request queue.
2421 */
2422 spin_lock_irqsave(q->queue_lock, flags);
2423 blk_stop_queue(q);
2424 spin_unlock_irqrestore(q->queue_lock, flags);
2425
2426 return 0;
2427 }
2428 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2429
2430 /**
2431 * scsi_internal_device_unblock - resume a device after a block request
2432 * @sdev: device to resume
2433 * @new_state: state to set devices to after unblocking
2434 *
2435 * Called by scsi lld's or the midlayer to restart the device queue
2436 * for the previously suspended scsi device. Called from interrupt or
2437 * normal process context.
2438 *
2439 * Returns zero if successful or error if not.
2440 *
2441 * Notes:
2442 * This routine transitions the device to the SDEV_RUNNING state
2443 * or to one of the offline states (which must be a legal transition)
2444 * allowing the midlayer to goose the queue for this device.
2445 */
2446 int
2447 scsi_internal_device_unblock(struct scsi_device *sdev,
2448 enum scsi_device_state new_state)
2449 {
2450 struct request_queue *q = sdev->request_queue;
2451 unsigned long flags;
2452
2453 /*
2454 * Try to transition the scsi device to SDEV_RUNNING or one of the
2455 * offlined states and goose the device queue if successful.
2456 */
2457 if (sdev->sdev_state == SDEV_BLOCK)
2458 sdev->sdev_state = new_state;
2459 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2460 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2461 new_state == SDEV_OFFLINE)
2462 sdev->sdev_state = new_state;
2463 else
2464 sdev->sdev_state = SDEV_CREATED;
2465 } else if (sdev->sdev_state != SDEV_CANCEL &&
2466 sdev->sdev_state != SDEV_OFFLINE)
2467 return -EINVAL;
2468
2469 spin_lock_irqsave(q->queue_lock, flags);
2470 blk_start_queue(q);
2471 spin_unlock_irqrestore(q->queue_lock, flags);
2472
2473 return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2476
2477 static void
2478 device_block(struct scsi_device *sdev, void *data)
2479 {
2480 scsi_internal_device_block(sdev);
2481 }
2482
2483 static int
2484 target_block(struct device *dev, void *data)
2485 {
2486 if (scsi_is_target_device(dev))
2487 starget_for_each_device(to_scsi_target(dev), NULL,
2488 device_block);
2489 return 0;
2490 }
2491
2492 void
2493 scsi_target_block(struct device *dev)
2494 {
2495 if (scsi_is_target_device(dev))
2496 starget_for_each_device(to_scsi_target(dev), NULL,
2497 device_block);
2498 else
2499 device_for_each_child(dev, NULL, target_block);
2500 }
2501 EXPORT_SYMBOL_GPL(scsi_target_block);
2502
2503 static void
2504 device_unblock(struct scsi_device *sdev, void *data)
2505 {
2506 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2507 }
2508
2509 static int
2510 target_unblock(struct device *dev, void *data)
2511 {
2512 if (scsi_is_target_device(dev))
2513 starget_for_each_device(to_scsi_target(dev), data,
2514 device_unblock);
2515 return 0;
2516 }
2517
2518 void
2519 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2520 {
2521 if (scsi_is_target_device(dev))
2522 starget_for_each_device(to_scsi_target(dev), &new_state,
2523 device_unblock);
2524 else
2525 device_for_each_child(dev, &new_state, target_unblock);
2526 }
2527 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2528
2529 /**
2530 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2531 * @sgl: scatter-gather list
2532 * @sg_count: number of segments in sg
2533 * @offset: offset in bytes into sg, on return offset into the mapped area
2534 * @len: bytes to map, on return number of bytes mapped
2535 *
2536 * Returns virtual address of the start of the mapped page
2537 */
2538 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2539 size_t *offset, size_t *len)
2540 {
2541 int i;
2542 size_t sg_len = 0, len_complete = 0;
2543 struct scatterlist *sg;
2544 struct page *page;
2545
2546 WARN_ON(!irqs_disabled());
2547
2548 for_each_sg(sgl, sg, sg_count, i) {
2549 len_complete = sg_len; /* Complete sg-entries */
2550 sg_len += sg->length;
2551 if (sg_len > *offset)
2552 break;
2553 }
2554
2555 if (unlikely(i == sg_count)) {
2556 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2557 "elements %d\n",
2558 __func__, sg_len, *offset, sg_count);
2559 WARN_ON(1);
2560 return NULL;
2561 }
2562
2563 /* Offset starting from the beginning of first page in this sg-entry */
2564 *offset = *offset - len_complete + sg->offset;
2565
2566 /* Assumption: contiguous pages can be accessed as "page + i" */
2567 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2568 *offset &= ~PAGE_MASK;
2569
2570 /* Bytes in this sg-entry from *offset to the end of the page */
2571 sg_len = PAGE_SIZE - *offset;
2572 if (*len > sg_len)
2573 *len = sg_len;
2574
2575 return kmap_atomic(page);
2576 }
2577 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2578
2579 /**
2580 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2581 * @virt: virtual address to be unmapped
2582 */
2583 void scsi_kunmap_atomic_sg(void *virt)
2584 {
2585 kunmap_atomic(virt);
2586 }
2587 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.0812 seconds and 6 git commands to generate.