Merge branch 'master'
[deliverable/linux.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
43
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50
51 /*
52 * Needed function prototypes.
53 */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir (struct sym_hcb *np);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62
63 /*
64 * Print a buffer in hexadecimal format with a ".\n" at end.
65 */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
71 }
72
73 /*
74 * Print out the content of a SCSI message.
75 */
76 static int sym_show_msg (u_char * msg)
77 {
78 u_char i;
79 printf ("%x",*msg);
80 if (*msg==M_EXTENDED) {
81 for (i=1;i<8;i++) {
82 if (i-1>msg[1]) break;
83 printf ("-%x",msg[i]);
84 }
85 return (i+1);
86 } else if ((*msg & 0xf0) == 0x20) {
87 printf ("-%x",msg[1]);
88 return (2);
89 }
90 return (1);
91 }
92
93 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
94 {
95 sym_print_addr(cp->cmd, "%s: ", label);
96
97 sym_show_msg(msg);
98 printf(".\n");
99 }
100
101 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
102 {
103 struct sym_tcb *tp = &np->target[target];
104 dev_info(&tp->starget->dev, "%s: ", label);
105
106 sym_show_msg(msg);
107 printf(".\n");
108 }
109
110 /*
111 * Print something that tells about extended errors.
112 */
113 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
114 {
115 if (x_status & XE_PARITY_ERR) {
116 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
117 }
118 if (x_status & XE_EXTRA_DATA) {
119 sym_print_addr(cmd, "extraneous data discarded.\n");
120 }
121 if (x_status & XE_BAD_PHASE) {
122 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
123 }
124 if (x_status & XE_SODL_UNRUN) {
125 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
126 }
127 if (x_status & XE_SWIDE_OVRUN) {
128 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
129 }
130 }
131
132 /*
133 * Return a string for SCSI BUS mode.
134 */
135 static char *sym_scsi_bus_mode(int mode)
136 {
137 switch(mode) {
138 case SMODE_HVD: return "HVD";
139 case SMODE_SE: return "SE";
140 case SMODE_LVD: return "LVD";
141 }
142 return "??";
143 }
144
145 /*
146 * Soft reset the chip.
147 *
148 * Raising SRST when the chip is running may cause
149 * problems on dual function chips (see below).
150 * On the other hand, LVD devices need some delay
151 * to settle and report actual BUS mode in STEST4.
152 */
153 static void sym_chip_reset (struct sym_hcb *np)
154 {
155 OUTB(np, nc_istat, SRST);
156 INB(np, nc_mbox1);
157 udelay(10);
158 OUTB(np, nc_istat, 0);
159 INB(np, nc_mbox1);
160 udelay(2000); /* For BUS MODE to settle */
161 }
162
163 /*
164 * Really soft reset the chip.:)
165 *
166 * Some 896 and 876 chip revisions may hang-up if we set
167 * the SRST (soft reset) bit at the wrong time when SCRIPTS
168 * are running.
169 * So, we need to abort the current operation prior to
170 * soft resetting the chip.
171 */
172 static void sym_soft_reset (struct sym_hcb *np)
173 {
174 u_char istat = 0;
175 int i;
176
177 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
178 goto do_chip_reset;
179
180 OUTB(np, nc_istat, CABRT);
181 for (i = 100000 ; i ; --i) {
182 istat = INB(np, nc_istat);
183 if (istat & SIP) {
184 INW(np, nc_sist);
185 }
186 else if (istat & DIP) {
187 if (INB(np, nc_dstat) & ABRT)
188 break;
189 }
190 udelay(5);
191 }
192 OUTB(np, nc_istat, 0);
193 if (!i)
194 printf("%s: unable to abort current chip operation, "
195 "ISTAT=0x%02x.\n", sym_name(np), istat);
196 do_chip_reset:
197 sym_chip_reset(np);
198 }
199
200 /*
201 * Start reset process.
202 *
203 * The interrupt handler will reinitialize the chip.
204 */
205 static void sym_start_reset(struct sym_hcb *np)
206 {
207 sym_reset_scsi_bus(np, 1);
208 }
209
210 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
211 {
212 u32 term;
213 int retv = 0;
214
215 sym_soft_reset(np); /* Soft reset the chip */
216 if (enab_int)
217 OUTW(np, nc_sien, RST);
218 /*
219 * Enable Tolerant, reset IRQD if present and
220 * properly set IRQ mode, prior to resetting the bus.
221 */
222 OUTB(np, nc_stest3, TE);
223 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
224 OUTB(np, nc_scntl1, CRST);
225 INB(np, nc_mbox1);
226 udelay(200);
227
228 if (!SYM_SETUP_SCSI_BUS_CHECK)
229 goto out;
230 /*
231 * Check for no terminators or SCSI bus shorts to ground.
232 * Read SCSI data bus, data parity bits and control signals.
233 * We are expecting RESET to be TRUE and other signals to be
234 * FALSE.
235 */
236 term = INB(np, nc_sstat0);
237 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
238 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
239 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
240 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
241 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
242
243 if (!np->maxwide)
244 term &= 0x3ffff;
245
246 if (term != (2<<7)) {
247 printf("%s: suspicious SCSI data while resetting the BUS.\n",
248 sym_name(np));
249 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
250 "0x%lx, expecting 0x%lx\n",
251 sym_name(np),
252 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
253 (u_long)term, (u_long)(2<<7));
254 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
255 retv = 1;
256 }
257 out:
258 OUTB(np, nc_scntl1, 0);
259 return retv;
260 }
261
262 /*
263 * Select SCSI clock frequency
264 */
265 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
266 {
267 /*
268 * If multiplier not present or not selected, leave here.
269 */
270 if (np->multiplier <= 1) {
271 OUTB(np, nc_scntl3, scntl3);
272 return;
273 }
274
275 if (sym_verbose >= 2)
276 printf ("%s: enabling clock multiplier\n", sym_name(np));
277
278 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
279 /*
280 * Wait for the LCKFRQ bit to be set if supported by the chip.
281 * Otherwise wait 50 micro-seconds (at least).
282 */
283 if (np->features & FE_LCKFRQ) {
284 int i = 20;
285 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
286 udelay(20);
287 if (!i)
288 printf("%s: the chip cannot lock the frequency\n",
289 sym_name(np));
290 } else {
291 INB(np, nc_mbox1);
292 udelay(50+10);
293 }
294 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
295 OUTB(np, nc_scntl3, scntl3);
296 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
297 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
298 }
299
300
301 /*
302 * Determine the chip's clock frequency.
303 *
304 * This is essential for the negotiation of the synchronous
305 * transfer rate.
306 *
307 * Note: we have to return the correct value.
308 * THERE IS NO SAFE DEFAULT VALUE.
309 *
310 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
311 * 53C860 and 53C875 rev. 1 support fast20 transfers but
312 * do not have a clock doubler and so are provided with a
313 * 80 MHz clock. All other fast20 boards incorporate a doubler
314 * and so should be delivered with a 40 MHz clock.
315 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
316 * clock and provide a clock quadrupler (160 Mhz).
317 */
318
319 /*
320 * calculate SCSI clock frequency (in KHz)
321 */
322 static unsigned getfreq (struct sym_hcb *np, int gen)
323 {
324 unsigned int ms = 0;
325 unsigned int f;
326
327 /*
328 * Measure GEN timer delay in order
329 * to calculate SCSI clock frequency
330 *
331 * This code will never execute too
332 * many loop iterations (if DELAY is
333 * reasonably correct). It could get
334 * too low a delay (too high a freq.)
335 * if the CPU is slow executing the
336 * loop for some reason (an NMI, for
337 * example). For this reason we will
338 * if multiple measurements are to be
339 * performed trust the higher delay
340 * (lower frequency returned).
341 */
342 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
343 INW(np, nc_sist); /* clear pending scsi interrupt */
344 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
345 INW(np, nc_sist); /* another one, just to be sure :) */
346 /*
347 * The C1010-33 core does not report GEN in SIST,
348 * if this interrupt is masked in SIEN.
349 * I don't know yet if the C1010-66 behaves the same way.
350 */
351 if (np->features & FE_C10) {
352 OUTW(np, nc_sien, GEN);
353 OUTB(np, nc_istat1, SIRQD);
354 }
355 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
356 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
357 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
358 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
359 udelay(1000/4); /* count in 1/4 of ms */
360 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
361 /*
362 * Undo C1010-33 specific settings.
363 */
364 if (np->features & FE_C10) {
365 OUTW(np, nc_sien, 0);
366 OUTB(np, nc_istat1, 0);
367 }
368 /*
369 * set prescaler to divide by whatever 0 means
370 * 0 ought to choose divide by 2, but appears
371 * to set divide by 3.5 mode in my 53c810 ...
372 */
373 OUTB(np, nc_scntl3, 0);
374
375 /*
376 * adjust for prescaler, and convert into KHz
377 */
378 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
379
380 /*
381 * The C1010-33 result is biased by a factor
382 * of 2/3 compared to earlier chips.
383 */
384 if (np->features & FE_C10)
385 f = (f * 2) / 3;
386
387 if (sym_verbose >= 2)
388 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
389 sym_name(np), gen, ms/4, f);
390
391 return f;
392 }
393
394 static unsigned sym_getfreq (struct sym_hcb *np)
395 {
396 u_int f1, f2;
397 int gen = 8;
398
399 getfreq (np, gen); /* throw away first result */
400 f1 = getfreq (np, gen);
401 f2 = getfreq (np, gen);
402 if (f1 > f2) f1 = f2; /* trust lower result */
403 return f1;
404 }
405
406 /*
407 * Get/probe chip SCSI clock frequency
408 */
409 static void sym_getclock (struct sym_hcb *np, int mult)
410 {
411 unsigned char scntl3 = np->sv_scntl3;
412 unsigned char stest1 = np->sv_stest1;
413 unsigned f1;
414
415 np->multiplier = 1;
416 f1 = 40000;
417 /*
418 * True with 875/895/896/895A with clock multiplier selected
419 */
420 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
421 if (sym_verbose >= 2)
422 printf ("%s: clock multiplier found\n", sym_name(np));
423 np->multiplier = mult;
424 }
425
426 /*
427 * If multiplier not found or scntl3 not 7,5,3,
428 * reset chip and get frequency from general purpose timer.
429 * Otherwise trust scntl3 BIOS setting.
430 */
431 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
432 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
433 f1 = sym_getfreq (np);
434
435 if (sym_verbose)
436 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
437
438 if (f1 < 45000) f1 = 40000;
439 else if (f1 < 55000) f1 = 50000;
440 else f1 = 80000;
441
442 if (f1 < 80000 && mult > 1) {
443 if (sym_verbose >= 2)
444 printf ("%s: clock multiplier assumed\n",
445 sym_name(np));
446 np->multiplier = mult;
447 }
448 } else {
449 if ((scntl3 & 7) == 3) f1 = 40000;
450 else if ((scntl3 & 7) == 5) f1 = 80000;
451 else f1 = 160000;
452
453 f1 /= np->multiplier;
454 }
455
456 /*
457 * Compute controller synchronous parameters.
458 */
459 f1 *= np->multiplier;
460 np->clock_khz = f1;
461 }
462
463 /*
464 * Get/probe PCI clock frequency
465 */
466 static int sym_getpciclock (struct sym_hcb *np)
467 {
468 int f = 0;
469
470 /*
471 * For now, we only need to know about the actual
472 * PCI BUS clock frequency for C1010-66 chips.
473 */
474 #if 1
475 if (np->features & FE_66MHZ) {
476 #else
477 if (1) {
478 #endif
479 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
480 f = sym_getfreq(np);
481 OUTB(np, nc_stest1, 0);
482 }
483 np->pciclk_khz = f;
484
485 return f;
486 }
487
488 /*
489 * SYMBIOS chip clock divisor table.
490 *
491 * Divisors are multiplied by 10,000,000 in order to make
492 * calculations more simple.
493 */
494 #define _5M 5000000
495 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
496
497 /*
498 * Get clock factor and sync divisor for a given
499 * synchronous factor period.
500 */
501 static int
502 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
503 {
504 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
505 int div = np->clock_divn; /* Number of divisors supported */
506 u32 fak; /* Sync factor in sxfer */
507 u32 per; /* Period in tenths of ns */
508 u32 kpc; /* (per * clk) */
509 int ret;
510
511 /*
512 * Compute the synchronous period in tenths of nano-seconds
513 */
514 if (dt && sfac <= 9) per = 125;
515 else if (sfac <= 10) per = 250;
516 else if (sfac == 11) per = 303;
517 else if (sfac == 12) per = 500;
518 else per = 40 * sfac;
519 ret = per;
520
521 kpc = per * clk;
522 if (dt)
523 kpc <<= 1;
524
525 /*
526 * For earliest C10 revision 0, we cannot use extra
527 * clocks for the setting of the SCSI clocking.
528 * Note that this limits the lowest sync data transfer
529 * to 5 Mega-transfers per second and may result in
530 * using higher clock divisors.
531 */
532 #if 1
533 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
534 /*
535 * Look for the lowest clock divisor that allows an
536 * output speed not faster than the period.
537 */
538 while (div > 0) {
539 --div;
540 if (kpc > (div_10M[div] << 2)) {
541 ++div;
542 break;
543 }
544 }
545 fak = 0; /* No extra clocks */
546 if (div == np->clock_divn) { /* Are we too fast ? */
547 ret = -1;
548 }
549 *divp = div;
550 *fakp = fak;
551 return ret;
552 }
553 #endif
554
555 /*
556 * Look for the greatest clock divisor that allows an
557 * input speed faster than the period.
558 */
559 while (div-- > 0)
560 if (kpc >= (div_10M[div] << 2)) break;
561
562 /*
563 * Calculate the lowest clock factor that allows an output
564 * speed not faster than the period, and the max output speed.
565 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
566 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
567 */
568 if (dt) {
569 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
570 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
571 } else {
572 fak = (kpc - 1) / div_10M[div] + 1 - 4;
573 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
574 }
575
576 /*
577 * Check against our hardware limits, or bugs :).
578 */
579 if (fak > 2) {
580 fak = 2;
581 ret = -1;
582 }
583
584 /*
585 * Compute and return sync parameters.
586 */
587 *divp = div;
588 *fakp = fak;
589
590 return ret;
591 }
592
593 /*
594 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
595 * 128 transfers. All chips support at least 16 transfers
596 * bursts. The 825A, 875 and 895 chips support bursts of up
597 * to 128 transfers and the 895A and 896 support bursts of up
598 * to 64 transfers. All other chips support up to 16
599 * transfers bursts.
600 *
601 * For PCI 32 bit data transfers each transfer is a DWORD.
602 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
603 *
604 * We use log base 2 (burst length) as internal code, with
605 * value 0 meaning "burst disabled".
606 */
607
608 /*
609 * Burst length from burst code.
610 */
611 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
612
613 /*
614 * Burst code from io register bits.
615 */
616 #define burst_code(dmode, ctest4, ctest5) \
617 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
618
619 /*
620 * Set initial io register bits from burst code.
621 */
622 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
623 {
624 np->rv_ctest4 &= ~0x80;
625 np->rv_dmode &= ~(0x3 << 6);
626 np->rv_ctest5 &= ~0x4;
627
628 if (!bc) {
629 np->rv_ctest4 |= 0x80;
630 }
631 else {
632 --bc;
633 np->rv_dmode |= ((bc & 0x3) << 6);
634 np->rv_ctest5 |= (bc & 0x4);
635 }
636 }
637
638
639 /*
640 * Print out the list of targets that have some flag disabled by user.
641 */
642 static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
643 {
644 int cnt;
645 int i;
646
647 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
648 if (i == np->myaddr)
649 continue;
650 if (np->target[i].usrflags & mask) {
651 if (!cnt++)
652 printf("%s: %s disabled for targets",
653 sym_name(np), msg);
654 printf(" %d", i);
655 }
656 }
657 if (cnt)
658 printf(".\n");
659 }
660
661 /*
662 * Save initial settings of some IO registers.
663 * Assumed to have been set by BIOS.
664 * We cannot reset the chip prior to reading the
665 * IO registers, since informations will be lost.
666 * Since the SCRIPTS processor may be running, this
667 * is not safe on paper, but it seems to work quite
668 * well. :)
669 */
670 static void sym_save_initial_setting (struct sym_hcb *np)
671 {
672 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
673 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
674 np->sv_dmode = INB(np, nc_dmode) & 0xce;
675 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
676 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
677 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
678 np->sv_gpcntl = INB(np, nc_gpcntl);
679 np->sv_stest1 = INB(np, nc_stest1);
680 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
681 np->sv_stest4 = INB(np, nc_stest4);
682 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
683 np->sv_scntl4 = INB(np, nc_scntl4);
684 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
685 }
686 else
687 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
688 }
689
690 /*
691 * Prepare io register values used by sym_start_up()
692 * according to selected and supported features.
693 */
694 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
695 {
696 u_char burst_max;
697 u32 period;
698 int i;
699
700 /*
701 * Wide ?
702 */
703 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
704
705 /*
706 * Guess the frequency of the chip's clock.
707 */
708 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
709 np->clock_khz = 160000;
710 else if (np->features & FE_ULTRA)
711 np->clock_khz = 80000;
712 else
713 np->clock_khz = 40000;
714
715 /*
716 * Get the clock multiplier factor.
717 */
718 if (np->features & FE_QUAD)
719 np->multiplier = 4;
720 else if (np->features & FE_DBLR)
721 np->multiplier = 2;
722 else
723 np->multiplier = 1;
724
725 /*
726 * Measure SCSI clock frequency for chips
727 * it may vary from assumed one.
728 */
729 if (np->features & FE_VARCLK)
730 sym_getclock(np, np->multiplier);
731
732 /*
733 * Divisor to be used for async (timer pre-scaler).
734 */
735 i = np->clock_divn - 1;
736 while (--i >= 0) {
737 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
738 ++i;
739 break;
740 }
741 }
742 np->rv_scntl3 = i+1;
743
744 /*
745 * The C1010 uses hardwired divisors for async.
746 * So, we just throw away, the async. divisor.:-)
747 */
748 if (np->features & FE_C10)
749 np->rv_scntl3 = 0;
750
751 /*
752 * Minimum synchronous period factor supported by the chip.
753 * Btw, 'period' is in tenths of nanoseconds.
754 */
755 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
756
757 if (period <= 250) np->minsync = 10;
758 else if (period <= 303) np->minsync = 11;
759 else if (period <= 500) np->minsync = 12;
760 else np->minsync = (period + 40 - 1) / 40;
761
762 /*
763 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
764 */
765 if (np->minsync < 25 &&
766 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
767 np->minsync = 25;
768 else if (np->minsync < 12 &&
769 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
770 np->minsync = 12;
771
772 /*
773 * Maximum synchronous period factor supported by the chip.
774 */
775 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
776 np->maxsync = period > 2540 ? 254 : period / 10;
777
778 /*
779 * If chip is a C1010, guess the sync limits in DT mode.
780 */
781 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
782 if (np->clock_khz == 160000) {
783 np->minsync_dt = 9;
784 np->maxsync_dt = 50;
785 np->maxoffs_dt = nvram->type ? 62 : 31;
786 }
787 }
788
789 /*
790 * 64 bit addressing (895A/896/1010) ?
791 */
792 if (np->features & FE_DAC) {
793 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
794 np->rv_ccntl1 |= (DDAC);
795 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
796 if (!np->use_dac)
797 np->rv_ccntl1 |= (DDAC);
798 else
799 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
800 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
801 if (!np->use_dac)
802 np->rv_ccntl1 |= (DDAC);
803 else
804 np->rv_ccntl1 |= (0 | EXTIBMV);
805 #endif
806 }
807
808 /*
809 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
810 */
811 if (np->features & FE_NOPM)
812 np->rv_ccntl0 |= (ENPMJ);
813
814 /*
815 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
816 * In dual channel mode, contention occurs if internal cycles
817 * are used. Disable internal cycles.
818 */
819 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
820 np->revision_id < 0x1)
821 np->rv_ccntl0 |= DILS;
822
823 /*
824 * Select burst length (dwords)
825 */
826 burst_max = SYM_SETUP_BURST_ORDER;
827 if (burst_max == 255)
828 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
829 np->sv_ctest5);
830 if (burst_max > 7)
831 burst_max = 7;
832 if (burst_max > np->maxburst)
833 burst_max = np->maxburst;
834
835 /*
836 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
837 * This chip and the 860 Rev 1 may wrongly use PCI cache line
838 * based transactions on LOAD/STORE instructions. So we have
839 * to prevent these chips from using such PCI transactions in
840 * this driver. The generic ncr driver that does not use
841 * LOAD/STORE instructions does not need this work-around.
842 */
843 if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
844 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
845 (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
846 np->revision_id <= 0x1))
847 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
848
849 /*
850 * Select all supported special features.
851 * If we are using on-board RAM for scripts, prefetch (PFEN)
852 * does not help, but burst op fetch (BOF) does.
853 * Disabling PFEN makes sure BOF will be used.
854 */
855 if (np->features & FE_ERL)
856 np->rv_dmode |= ERL; /* Enable Read Line */
857 if (np->features & FE_BOF)
858 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
859 if (np->features & FE_ERMP)
860 np->rv_dmode |= ERMP; /* Enable Read Multiple */
861 #if 1
862 if ((np->features & FE_PFEN) && !np->ram_ba)
863 #else
864 if (np->features & FE_PFEN)
865 #endif
866 np->rv_dcntl |= PFEN; /* Prefetch Enable */
867 if (np->features & FE_CLSE)
868 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
869 if (np->features & FE_WRIE)
870 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
871 if (np->features & FE_DFS)
872 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
873
874 /*
875 * Select some other
876 */
877 np->rv_ctest4 |= MPEE; /* Master parity checking */
878 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
879
880 /*
881 * Get parity checking, host ID and verbose mode from NVRAM
882 */
883 np->myaddr = 255;
884 sym_nvram_setup_host(shost, np, nvram);
885
886 /*
887 * Get SCSI addr of host adapter (set by bios?).
888 */
889 if (np->myaddr == 255) {
890 np->myaddr = INB(np, nc_scid) & 0x07;
891 if (!np->myaddr)
892 np->myaddr = SYM_SETUP_HOST_ID;
893 }
894
895 /*
896 * Prepare initial io register bits for burst length
897 */
898 sym_init_burst(np, burst_max);
899
900 /*
901 * Set SCSI BUS mode.
902 * - LVD capable chips (895/895A/896/1010) report the
903 * current BUS mode through the STEST4 IO register.
904 * - For previous generation chips (825/825A/875),
905 * user has to tell us how to check against HVD,
906 * since a 100% safe algorithm is not possible.
907 */
908 np->scsi_mode = SMODE_SE;
909 if (np->features & (FE_ULTRA2|FE_ULTRA3))
910 np->scsi_mode = (np->sv_stest4 & SMODE);
911 else if (np->features & FE_DIFF) {
912 if (SYM_SETUP_SCSI_DIFF == 1) {
913 if (np->sv_scntl3) {
914 if (np->sv_stest2 & 0x20)
915 np->scsi_mode = SMODE_HVD;
916 }
917 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
918 if (!(INB(np, nc_gpreg) & 0x08))
919 np->scsi_mode = SMODE_HVD;
920 }
921 }
922 else if (SYM_SETUP_SCSI_DIFF == 2)
923 np->scsi_mode = SMODE_HVD;
924 }
925 if (np->scsi_mode == SMODE_HVD)
926 np->rv_stest2 |= 0x20;
927
928 /*
929 * Set LED support from SCRIPTS.
930 * Ignore this feature for boards known to use a
931 * specific GPIO wiring and for the 895A, 896
932 * and 1010 that drive the LED directly.
933 */
934 if ((SYM_SETUP_SCSI_LED ||
935 (nvram->type == SYM_SYMBIOS_NVRAM ||
936 (nvram->type == SYM_TEKRAM_NVRAM &&
937 np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
938 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
939 np->features |= FE_LED0;
940
941 /*
942 * Set irq mode.
943 */
944 switch(SYM_SETUP_IRQ_MODE & 3) {
945 case 2:
946 np->rv_dcntl |= IRQM;
947 break;
948 case 1:
949 np->rv_dcntl |= (np->sv_dcntl & IRQM);
950 break;
951 default:
952 break;
953 }
954
955 /*
956 * Configure targets according to driver setup.
957 * If NVRAM present get targets setup from NVRAM.
958 */
959 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
960 struct sym_tcb *tp = &np->target[i];
961
962 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
963 tp->usrtags = SYM_SETUP_MAX_TAG;
964
965 sym_nvram_setup_target(np, i, nvram);
966
967 if (!tp->usrtags)
968 tp->usrflags &= ~SYM_TAGS_ENABLED;
969 }
970
971 /*
972 * Let user know about the settings.
973 */
974 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
975 sym_nvram_type(nvram), np->myaddr,
976 (np->features & FE_ULTRA3) ? 80 :
977 (np->features & FE_ULTRA2) ? 40 :
978 (np->features & FE_ULTRA) ? 20 : 10,
979 sym_scsi_bus_mode(np->scsi_mode),
980 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
981 /*
982 * Tell him more on demand.
983 */
984 if (sym_verbose) {
985 printf("%s: %s IRQ line driver%s\n",
986 sym_name(np),
987 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
988 np->ram_ba ? ", using on-chip SRAM" : "");
989 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
990 if (np->features & FE_NOPM)
991 printf("%s: handling phase mismatch from SCRIPTS.\n",
992 sym_name(np));
993 }
994 /*
995 * And still more.
996 */
997 if (sym_verbose >= 2) {
998 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
999 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1000 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
1001 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
1002
1003 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1004 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1005 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
1006 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1007 }
1008 /*
1009 * Let user be aware of targets that have some disable flags set.
1010 */
1011 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1012 if (sym_verbose)
1013 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1014 "SCAN FOR LUNS");
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * Test the pci bus snoop logic :-(
1021 *
1022 * Has to be called with interrupts disabled.
1023 */
1024 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1025 static int sym_regtest (struct sym_hcb *np)
1026 {
1027 register volatile u32 data;
1028 /*
1029 * chip registers may NOT be cached.
1030 * write 0xffffffff to a read only register area,
1031 * and try to read it back.
1032 */
1033 data = 0xffffffff;
1034 OUTL(np, nc_dstat, data);
1035 data = INL(np, nc_dstat);
1036 #if 1
1037 if (data == 0xffffffff) {
1038 #else
1039 if ((data & 0xe2f0fffd) != 0x02000080) {
1040 #endif
1041 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1042 (unsigned) data);
1043 return (0x10);
1044 }
1045 return (0);
1046 }
1047 #endif
1048
1049 static int sym_snooptest (struct sym_hcb *np)
1050 {
1051 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1052 int i, err=0;
1053 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1054 err |= sym_regtest (np);
1055 if (err) return (err);
1056 #endif
1057 restart_test:
1058 /*
1059 * Enable Master Parity Checking as we intend
1060 * to enable it for normal operations.
1061 */
1062 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1063 /*
1064 * init
1065 */
1066 pc = SCRIPTZ_BA(np, snooptest);
1067 host_wr = 1;
1068 sym_wr = 2;
1069 /*
1070 * Set memory and register.
1071 */
1072 np->scratch = cpu_to_scr(host_wr);
1073 OUTL(np, nc_temp, sym_wr);
1074 /*
1075 * Start script (exchange values)
1076 */
1077 OUTL(np, nc_dsa, np->hcb_ba);
1078 OUTL_DSP(np, pc);
1079 /*
1080 * Wait 'til done (with timeout)
1081 */
1082 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1083 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1084 break;
1085 if (i>=SYM_SNOOP_TIMEOUT) {
1086 printf ("CACHE TEST FAILED: timeout.\n");
1087 return (0x20);
1088 }
1089 /*
1090 * Check for fatal DMA errors.
1091 */
1092 dstat = INB(np, nc_dstat);
1093 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1094 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1095 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1096 "DISABLING MASTER DATA PARITY CHECKING.\n",
1097 sym_name(np));
1098 np->rv_ctest4 &= ~MPEE;
1099 goto restart_test;
1100 }
1101 #endif
1102 if (dstat & (MDPE|BF|IID)) {
1103 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1104 return (0x80);
1105 }
1106 /*
1107 * Save termination position.
1108 */
1109 pc = INL(np, nc_dsp);
1110 /*
1111 * Read memory and register.
1112 */
1113 host_rd = scr_to_cpu(np->scratch);
1114 sym_rd = INL(np, nc_scratcha);
1115 sym_bk = INL(np, nc_temp);
1116 /*
1117 * Check termination position.
1118 */
1119 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1120 printf ("CACHE TEST FAILED: script execution failed.\n");
1121 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1122 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1123 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1124 return (0x40);
1125 }
1126 /*
1127 * Show results.
1128 */
1129 if (host_wr != sym_rd) {
1130 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1131 (int) host_wr, (int) sym_rd);
1132 err |= 1;
1133 }
1134 if (host_rd != sym_wr) {
1135 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1136 (int) sym_wr, (int) host_rd);
1137 err |= 2;
1138 }
1139 if (sym_bk != sym_wr) {
1140 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1141 (int) sym_wr, (int) sym_bk);
1142 err |= 4;
1143 }
1144
1145 return (err);
1146 }
1147
1148 /*
1149 * log message for real hard errors
1150 *
1151 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1152 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1153 *
1154 * exception register:
1155 * ds: dstat
1156 * si: sist
1157 *
1158 * SCSI bus lines:
1159 * so: control lines as driven by chip.
1160 * si: control lines as seen by chip.
1161 * sd: scsi data lines as seen by chip.
1162 *
1163 * wide/fastmode:
1164 * sx: sxfer (see the manual)
1165 * s3: scntl3 (see the manual)
1166 * s4: scntl4 (see the manual)
1167 *
1168 * current script command:
1169 * dsp: script address (relative to start of script).
1170 * dbc: first word of script command.
1171 *
1172 * First 24 register of the chip:
1173 * r0..rf
1174 */
1175 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1176 {
1177 u32 dsp;
1178 int script_ofs;
1179 int script_size;
1180 char *script_name;
1181 u_char *script_base;
1182 int i;
1183
1184 dsp = INL(np, nc_dsp);
1185
1186 if (dsp > np->scripta_ba &&
1187 dsp <= np->scripta_ba + np->scripta_sz) {
1188 script_ofs = dsp - np->scripta_ba;
1189 script_size = np->scripta_sz;
1190 script_base = (u_char *) np->scripta0;
1191 script_name = "scripta";
1192 }
1193 else if (np->scriptb_ba < dsp &&
1194 dsp <= np->scriptb_ba + np->scriptb_sz) {
1195 script_ofs = dsp - np->scriptb_ba;
1196 script_size = np->scriptb_sz;
1197 script_base = (u_char *) np->scriptb0;
1198 script_name = "scriptb";
1199 } else {
1200 script_ofs = dsp;
1201 script_size = 0;
1202 script_base = NULL;
1203 script_name = "mem";
1204 }
1205
1206 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1207 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1208 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1209 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1210 (unsigned)INB(np, nc_scntl3),
1211 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1212 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1213
1214 if (((script_ofs & 3) == 0) &&
1215 (unsigned)script_ofs < script_size) {
1216 printf ("%s: script cmd = %08x\n", sym_name(np),
1217 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1218 }
1219
1220 printf ("%s: regdump:", sym_name(np));
1221 for (i=0; i<24;i++)
1222 printf (" %02x", (unsigned)INB_OFF(np, i));
1223 printf (".\n");
1224
1225 /*
1226 * PCI BUS error.
1227 */
1228 if (dstat & (MDPE|BF))
1229 sym_log_bus_error(np);
1230 }
1231
1232 static struct sym_chip sym_dev_table[] = {
1233 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1234 FE_ERL}
1235 ,
1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1237 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1238 FE_BOF}
1239 ,
1240 #else
1241 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1242 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1243 ,
1244 #endif
1245 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1246 FE_BOF|FE_ERL}
1247 ,
1248 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1249 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1250 ,
1251 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1252 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1253 ,
1254 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1255 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1256 ,
1257 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1258 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1259 FE_RAM|FE_DIFF|FE_VARCLK}
1260 ,
1261 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1262 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1263 FE_RAM|FE_DIFF|FE_VARCLK}
1264 ,
1265 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1266 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267 FE_RAM|FE_DIFF|FE_VARCLK}
1268 ,
1269 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1270 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1271 FE_RAM|FE_DIFF|FE_VARCLK}
1272 ,
1273 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1274 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1275 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1276 FE_RAM|FE_LCKFRQ}
1277 ,
1278 #else
1279 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1280 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1281 FE_RAM|FE_LCKFRQ}
1282 ,
1283 #endif
1284 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1285 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1286 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1287 ,
1288 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1289 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1290 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1291 ,
1292 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1293 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1294 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1295 ,
1296 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1297 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1298 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1299 FE_C10}
1300 ,
1301 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1302 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1303 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1304 FE_C10|FE_U3EN}
1305 ,
1306 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1307 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1308 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1309 FE_C10|FE_U3EN}
1310 ,
1311 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1312 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1313 FE_RAM|FE_IO256|FE_LEDC}
1314 };
1315
1316 #define sym_num_devs \
1317 (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1318
1319 /*
1320 * Look up the chip table.
1321 *
1322 * Return a pointer to the chip entry if found,
1323 * zero otherwise.
1324 */
1325 struct sym_chip *
1326 sym_lookup_chip_table (u_short device_id, u_char revision)
1327 {
1328 struct sym_chip *chip;
1329 int i;
1330
1331 for (i = 0; i < sym_num_devs; i++) {
1332 chip = &sym_dev_table[i];
1333 if (device_id != chip->device_id)
1334 continue;
1335 if (revision > chip->revision_id)
1336 continue;
1337 return chip;
1338 }
1339
1340 return NULL;
1341 }
1342
1343 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1344 /*
1345 * Lookup the 64 bit DMA segments map.
1346 * This is only used if the direct mapping
1347 * has been unsuccessful.
1348 */
1349 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1350 {
1351 int i;
1352
1353 if (!np->use_dac)
1354 goto weird;
1355
1356 /* Look up existing mappings */
1357 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1358 if (h == np->dmap_bah[i])
1359 return i;
1360 }
1361 /* If direct mapping is free, get it */
1362 if (!np->dmap_bah[s])
1363 goto new;
1364 /* Collision -> lookup free mappings */
1365 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1366 if (!np->dmap_bah[s])
1367 goto new;
1368 }
1369 weird:
1370 panic("sym: ran out of 64 bit DMA segment registers");
1371 return -1;
1372 new:
1373 np->dmap_bah[s] = h;
1374 np->dmap_dirty = 1;
1375 return s;
1376 }
1377
1378 /*
1379 * Update IO registers scratch C..R so they will be
1380 * in sync. with queued CCB expectations.
1381 */
1382 static void sym_update_dmap_regs(struct sym_hcb *np)
1383 {
1384 int o, i;
1385
1386 if (!np->dmap_dirty)
1387 return;
1388 o = offsetof(struct sym_reg, nc_scrx[0]);
1389 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1390 OUTL_OFF(np, o, np->dmap_bah[i]);
1391 o += 4;
1392 }
1393 np->dmap_dirty = 0;
1394 }
1395 #endif
1396
1397 /* Enforce all the fiddly SPI rules and the chip limitations */
1398 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1399 struct sym_trans *goal)
1400 {
1401 if (!spi_support_wide(starget))
1402 goal->width = 0;
1403
1404 if (!spi_support_sync(starget)) {
1405 goal->iu = 0;
1406 goal->dt = 0;
1407 goal->qas = 0;
1408 goal->period = 0;
1409 goal->offset = 0;
1410 return;
1411 }
1412
1413 if (spi_support_dt(starget)) {
1414 if (spi_support_dt_only(starget))
1415 goal->dt = 1;
1416
1417 if (goal->offset == 0)
1418 goal->dt = 0;
1419 } else {
1420 goal->dt = 0;
1421 }
1422
1423 /* Some targets fail to properly negotiate DT in SE mode */
1424 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1425 goal->dt = 0;
1426
1427 if (goal->dt) {
1428 /* all DT transfers must be wide */
1429 goal->width = 1;
1430 if (goal->offset > np->maxoffs_dt)
1431 goal->offset = np->maxoffs_dt;
1432 if (goal->period < np->minsync_dt)
1433 goal->period = np->minsync_dt;
1434 if (goal->period > np->maxsync_dt)
1435 goal->period = np->maxsync_dt;
1436 } else {
1437 goal->iu = goal->qas = 0;
1438 if (goal->offset > np->maxoffs)
1439 goal->offset = np->maxoffs;
1440 if (goal->period < np->minsync)
1441 goal->period = np->minsync;
1442 if (goal->period > np->maxsync)
1443 goal->period = np->maxsync;
1444 }
1445 }
1446
1447 /*
1448 * Prepare the next negotiation message if needed.
1449 *
1450 * Fill in the part of message buffer that contains the
1451 * negotiation and the nego_status field of the CCB.
1452 * Returns the size of the message in bytes.
1453 */
1454 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1455 {
1456 struct sym_tcb *tp = &np->target[cp->target];
1457 struct scsi_target *starget = tp->starget;
1458 struct sym_trans *goal = &tp->tgoal;
1459 int msglen = 0;
1460 int nego;
1461
1462 sym_check_goals(np, starget, goal);
1463
1464 /*
1465 * Many devices implement PPR in a buggy way, so only use it if we
1466 * really want to.
1467 */
1468 if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
1469 nego = NS_PPR;
1470 } else if (spi_width(starget) != goal->width) {
1471 nego = NS_WIDE;
1472 } else if (spi_period(starget) != goal->period ||
1473 spi_offset(starget) != goal->offset) {
1474 nego = NS_SYNC;
1475 } else {
1476 goal->check_nego = 0;
1477 nego = 0;
1478 }
1479
1480 switch (nego) {
1481 case NS_SYNC:
1482 msgptr[msglen++] = M_EXTENDED;
1483 msgptr[msglen++] = 3;
1484 msgptr[msglen++] = M_X_SYNC_REQ;
1485 msgptr[msglen++] = goal->period;
1486 msgptr[msglen++] = goal->offset;
1487 break;
1488 case NS_WIDE:
1489 msgptr[msglen++] = M_EXTENDED;
1490 msgptr[msglen++] = 2;
1491 msgptr[msglen++] = M_X_WIDE_REQ;
1492 msgptr[msglen++] = goal->width;
1493 break;
1494 case NS_PPR:
1495 msgptr[msglen++] = M_EXTENDED;
1496 msgptr[msglen++] = 6;
1497 msgptr[msglen++] = M_X_PPR_REQ;
1498 msgptr[msglen++] = goal->period;
1499 msgptr[msglen++] = 0;
1500 msgptr[msglen++] = goal->offset;
1501 msgptr[msglen++] = goal->width;
1502 msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1503 (goal->dt ? PPR_OPT_DT : 0) |
1504 (goal->qas ? PPR_OPT_QAS : 0);
1505 break;
1506 }
1507
1508 cp->nego_status = nego;
1509
1510 if (nego) {
1511 tp->nego_cp = cp; /* Keep track a nego will be performed */
1512 if (DEBUG_FLAGS & DEBUG_NEGO) {
1513 sym_print_nego_msg(np, cp->target,
1514 nego == NS_SYNC ? "sync msgout" :
1515 nego == NS_WIDE ? "wide msgout" :
1516 "ppr msgout", msgptr);
1517 }
1518 }
1519
1520 return msglen;
1521 }
1522
1523 /*
1524 * Insert a job into the start queue.
1525 */
1526 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1527 {
1528 u_short qidx;
1529
1530 #ifdef SYM_CONF_IARB_SUPPORT
1531 /*
1532 * If the previously queued CCB is not yet done,
1533 * set the IARB hint. The SCRIPTS will go with IARB
1534 * for this job when starting the previous one.
1535 * We leave devices a chance to win arbitration by
1536 * not using more than 'iarb_max' consecutive
1537 * immediate arbitrations.
1538 */
1539 if (np->last_cp && np->iarb_count < np->iarb_max) {
1540 np->last_cp->host_flags |= HF_HINT_IARB;
1541 ++np->iarb_count;
1542 }
1543 else
1544 np->iarb_count = 0;
1545 np->last_cp = cp;
1546 #endif
1547
1548 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1549 /*
1550 * Make SCRIPTS aware of the 64 bit DMA
1551 * segment registers not being up-to-date.
1552 */
1553 if (np->dmap_dirty)
1554 cp->host_xflags |= HX_DMAP_DIRTY;
1555 #endif
1556
1557 /*
1558 * Insert first the idle task and then our job.
1559 * The MBs should ensure proper ordering.
1560 */
1561 qidx = np->squeueput + 2;
1562 if (qidx >= MAX_QUEUE*2) qidx = 0;
1563
1564 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1565 MEMORY_WRITE_BARRIER();
1566 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1567
1568 np->squeueput = qidx;
1569
1570 if (DEBUG_FLAGS & DEBUG_QUEUE)
1571 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1572
1573 /*
1574 * Script processor may be waiting for reselect.
1575 * Wake it up.
1576 */
1577 MEMORY_WRITE_BARRIER();
1578 OUTB(np, nc_istat, SIGP|np->istat_sem);
1579 }
1580
1581 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1582 /*
1583 * Start next ready-to-start CCBs.
1584 */
1585 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1586 {
1587 SYM_QUEHEAD *qp;
1588 struct sym_ccb *cp;
1589
1590 /*
1591 * Paranoia, as usual. :-)
1592 */
1593 assert(!lp->started_tags || !lp->started_no_tag);
1594
1595 /*
1596 * Try to start as many commands as asked by caller.
1597 * Prevent from having both tagged and untagged
1598 * commands queued to the device at the same time.
1599 */
1600 while (maxn--) {
1601 qp = sym_remque_head(&lp->waiting_ccbq);
1602 if (!qp)
1603 break;
1604 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1605 if (cp->tag != NO_TAG) {
1606 if (lp->started_no_tag ||
1607 lp->started_tags >= lp->started_max) {
1608 sym_insque_head(qp, &lp->waiting_ccbq);
1609 break;
1610 }
1611 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1612 lp->head.resel_sa =
1613 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1614 ++lp->started_tags;
1615 } else {
1616 if (lp->started_no_tag || lp->started_tags) {
1617 sym_insque_head(qp, &lp->waiting_ccbq);
1618 break;
1619 }
1620 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1621 lp->head.resel_sa =
1622 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1623 ++lp->started_no_tag;
1624 }
1625 cp->started = 1;
1626 sym_insque_tail(qp, &lp->started_ccbq);
1627 sym_put_start_queue(np, cp);
1628 }
1629 }
1630 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1631
1632 /*
1633 * The chip may have completed jobs. Look at the DONE QUEUE.
1634 *
1635 * On paper, memory read barriers may be needed here to
1636 * prevent out of order LOADs by the CPU from having
1637 * prefetched stale data prior to DMA having occurred.
1638 */
1639 static int sym_wakeup_done (struct sym_hcb *np)
1640 {
1641 struct sym_ccb *cp;
1642 int i, n;
1643 u32 dsa;
1644
1645 n = 0;
1646 i = np->dqueueget;
1647
1648 /* MEMORY_READ_BARRIER(); */
1649 while (1) {
1650 dsa = scr_to_cpu(np->dqueue[i]);
1651 if (!dsa)
1652 break;
1653 np->dqueue[i] = 0;
1654 if ((i = i+2) >= MAX_QUEUE*2)
1655 i = 0;
1656
1657 cp = sym_ccb_from_dsa(np, dsa);
1658 if (cp) {
1659 MEMORY_READ_BARRIER();
1660 sym_complete_ok (np, cp);
1661 ++n;
1662 }
1663 else
1664 printf ("%s: bad DSA (%x) in done queue.\n",
1665 sym_name(np), (u_int) dsa);
1666 }
1667 np->dqueueget = i;
1668
1669 return n;
1670 }
1671
1672 /*
1673 * Complete all CCBs queued to the COMP queue.
1674 *
1675 * These CCBs are assumed:
1676 * - Not to be referenced either by devices or
1677 * SCRIPTS-related queues and datas.
1678 * - To have to be completed with an error condition
1679 * or requeued.
1680 *
1681 * The device queue freeze count is incremented
1682 * for each CCB that does not prevent this.
1683 * This function is called when all CCBs involved
1684 * in error handling/recovery have been reaped.
1685 */
1686 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1687 {
1688 SYM_QUEHEAD *qp;
1689 struct sym_ccb *cp;
1690
1691 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1692 struct scsi_cmnd *cmd;
1693 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1694 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1695 /* Leave quiet CCBs waiting for resources */
1696 if (cp->host_status == HS_WAIT)
1697 continue;
1698 cmd = cp->cmd;
1699 if (cam_status)
1700 sym_set_cam_status(cmd, cam_status);
1701 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1702 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1703 struct sym_tcb *tp = &np->target[cp->target];
1704 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1705 if (lp) {
1706 sym_remque(&cp->link2_ccbq);
1707 sym_insque_tail(&cp->link2_ccbq,
1708 &lp->waiting_ccbq);
1709 if (cp->started) {
1710 if (cp->tag != NO_TAG)
1711 --lp->started_tags;
1712 else
1713 --lp->started_no_tag;
1714 }
1715 }
1716 cp->started = 0;
1717 continue;
1718 }
1719 #endif
1720 sym_free_ccb(np, cp);
1721 sym_xpt_done(np, cmd);
1722 }
1723 }
1724
1725 /*
1726 * Complete all active CCBs with error.
1727 * Used on CHIP/SCSI RESET.
1728 */
1729 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1730 {
1731 /*
1732 * Move all active CCBs to the COMP queue
1733 * and flush this queue.
1734 */
1735 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1736 sym_que_init(&np->busy_ccbq);
1737 sym_flush_comp_queue(np, cam_status);
1738 }
1739
1740 /*
1741 * Start chip.
1742 *
1743 * 'reason' means:
1744 * 0: initialisation.
1745 * 1: SCSI BUS RESET delivered or received.
1746 * 2: SCSI BUS MODE changed.
1747 */
1748 void sym_start_up (struct sym_hcb *np, int reason)
1749 {
1750 int i;
1751 u32 phys;
1752
1753 /*
1754 * Reset chip if asked, otherwise just clear fifos.
1755 */
1756 if (reason == 1)
1757 sym_soft_reset(np);
1758 else {
1759 OUTB(np, nc_stest3, TE|CSF);
1760 OUTONB(np, nc_ctest3, CLF);
1761 }
1762
1763 /*
1764 * Clear Start Queue
1765 */
1766 phys = np->squeue_ba;
1767 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1768 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1769 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1770 }
1771 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1772
1773 /*
1774 * Start at first entry.
1775 */
1776 np->squeueput = 0;
1777
1778 /*
1779 * Clear Done Queue
1780 */
1781 phys = np->dqueue_ba;
1782 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1783 np->dqueue[i] = 0;
1784 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1785 }
1786 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1787
1788 /*
1789 * Start at first entry.
1790 */
1791 np->dqueueget = 0;
1792
1793 /*
1794 * Install patches in scripts.
1795 * This also let point to first position the start
1796 * and done queue pointers used from SCRIPTS.
1797 */
1798 np->fw_patch(np);
1799
1800 /*
1801 * Wakeup all pending jobs.
1802 */
1803 sym_flush_busy_queue(np, DID_RESET);
1804
1805 /*
1806 * Init chip.
1807 */
1808 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1809 INB(np, nc_mbox1);
1810 udelay(2000); /* The 895 needs time for the bus mode to settle */
1811
1812 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1813 /* full arb., ena parity, par->ATN */
1814 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1815
1816 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1817
1818 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1819 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1820 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1821 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1822 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1823
1824 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1825 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1826 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1827
1828 /* Extended Sreq/Sack filtering not supported on the C10 */
1829 if (np->features & FE_C10)
1830 OUTB(np, nc_stest2, np->rv_stest2);
1831 else
1832 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1833
1834 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1835 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1836
1837 /*
1838 * For now, disable AIP generation on C1010-66.
1839 */
1840 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1841 OUTB(np, nc_aipcntl1, DISAIP);
1842
1843 /*
1844 * C10101 rev. 0 errata.
1845 * Errant SGE's when in narrow. Write bits 4 & 5 of
1846 * STEST1 register to disable SGE. We probably should do
1847 * that from SCRIPTS for each selection/reselection, but
1848 * I just don't want. :)
1849 */
1850 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1851 np->revision_id < 1)
1852 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1853
1854 /*
1855 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1856 * Disable overlapped arbitration for some dual function devices,
1857 * regardless revision id (kind of post-chip-design feature. ;-))
1858 */
1859 if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1860 OUTB(np, nc_ctest0, (1<<5));
1861 else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1862 np->rv_ccntl0 |= DPR;
1863
1864 /*
1865 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1866 * and/or hardware phase mismatch, since only such chips
1867 * seem to support those IO registers.
1868 */
1869 if (np->features & (FE_DAC|FE_NOPM)) {
1870 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1871 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1872 }
1873
1874 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1875 /*
1876 * Set up scratch C and DRS IO registers to map the 32 bit
1877 * DMA address range our data structures are located in.
1878 */
1879 if (np->use_dac) {
1880 np->dmap_bah[0] = 0; /* ??? */
1881 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1882 OUTL(np, nc_drs, np->dmap_bah[0]);
1883 }
1884 #endif
1885
1886 /*
1887 * If phase mismatch handled by scripts (895A/896/1010),
1888 * set PM jump addresses.
1889 */
1890 if (np->features & FE_NOPM) {
1891 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1892 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1893 }
1894
1895 /*
1896 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1897 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1898 */
1899 if (np->features & FE_LED0)
1900 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1901 else if (np->features & FE_LEDC)
1902 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1903
1904 /*
1905 * enable ints
1906 */
1907 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1908 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1909
1910 /*
1911 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1912 * Try to eat the spurious SBMC interrupt that may occur when
1913 * we reset the chip but not the SCSI BUS (at initialization).
1914 */
1915 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1916 OUTONW(np, nc_sien, SBMC);
1917 if (reason == 0) {
1918 INB(np, nc_mbox1);
1919 mdelay(100);
1920 INW(np, nc_sist);
1921 }
1922 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1923 }
1924
1925 /*
1926 * Fill in target structure.
1927 * Reinitialize usrsync.
1928 * Reinitialize usrwide.
1929 * Prepare sync negotiation according to actual SCSI bus mode.
1930 */
1931 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1932 struct sym_tcb *tp = &np->target[i];
1933
1934 tp->to_reset = 0;
1935 tp->head.sval = 0;
1936 tp->head.wval = np->rv_scntl3;
1937 tp->head.uval = 0;
1938 }
1939
1940 /*
1941 * Download SCSI SCRIPTS to on-chip RAM if present,
1942 * and start script processor.
1943 * We do the download preferently from the CPU.
1944 * For platforms that may not support PCI memory mapping,
1945 * we use simple SCRIPTS that performs MEMORY MOVEs.
1946 */
1947 phys = SCRIPTA_BA(np, init);
1948 if (np->ram_ba) {
1949 if (sym_verbose >= 2)
1950 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1951 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1952 if (np->ram_ws == 8192) {
1953 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1954 phys = scr_to_cpu(np->scr_ram_seg);
1955 OUTL(np, nc_mmws, phys);
1956 OUTL(np, nc_mmrs, phys);
1957 OUTL(np, nc_sfs, phys);
1958 phys = SCRIPTB_BA(np, start64);
1959 }
1960 }
1961
1962 np->istat_sem = 0;
1963
1964 OUTL(np, nc_dsa, np->hcb_ba);
1965 OUTL_DSP(np, phys);
1966
1967 /*
1968 * Notify the XPT about the RESET condition.
1969 */
1970 if (reason != 0)
1971 sym_xpt_async_bus_reset(np);
1972 }
1973
1974 /*
1975 * Switch trans mode for current job and its target.
1976 */
1977 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1978 u_char per, u_char wide, u_char div, u_char fak)
1979 {
1980 SYM_QUEHEAD *qp;
1981 u_char sval, wval, uval;
1982 struct sym_tcb *tp = &np->target[target];
1983
1984 assert(target == (INB(np, nc_sdid) & 0x0f));
1985
1986 sval = tp->head.sval;
1987 wval = tp->head.wval;
1988 uval = tp->head.uval;
1989
1990 #if 0
1991 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1992 sval, wval, uval, np->rv_scntl3);
1993 #endif
1994 /*
1995 * Set the offset.
1996 */
1997 if (!(np->features & FE_C10))
1998 sval = (sval & ~0x1f) | ofs;
1999 else
2000 sval = (sval & ~0x3f) | ofs;
2001
2002 /*
2003 * Set the sync divisor and extra clock factor.
2004 */
2005 if (ofs != 0) {
2006 wval = (wval & ~0x70) | ((div+1) << 4);
2007 if (!(np->features & FE_C10))
2008 sval = (sval & ~0xe0) | (fak << 5);
2009 else {
2010 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2011 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2012 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2013 }
2014 }
2015
2016 /*
2017 * Set the bus width.
2018 */
2019 wval = wval & ~EWS;
2020 if (wide != 0)
2021 wval |= EWS;
2022
2023 /*
2024 * Set misc. ultra enable bits.
2025 */
2026 if (np->features & FE_C10) {
2027 uval = uval & ~(U3EN|AIPCKEN);
2028 if (opts) {
2029 assert(np->features & FE_U3EN);
2030 uval |= U3EN;
2031 }
2032 } else {
2033 wval = wval & ~ULTRA;
2034 if (per <= 12) wval |= ULTRA;
2035 }
2036
2037 /*
2038 * Stop there if sync parameters are unchanged.
2039 */
2040 if (tp->head.sval == sval &&
2041 tp->head.wval == wval &&
2042 tp->head.uval == uval)
2043 return;
2044 tp->head.sval = sval;
2045 tp->head.wval = wval;
2046 tp->head.uval = uval;
2047
2048 /*
2049 * Disable extended Sreq/Sack filtering if per < 50.
2050 * Not supported on the C1010.
2051 */
2052 if (per < 50 && !(np->features & FE_C10))
2053 OUTOFFB(np, nc_stest2, EXT);
2054
2055 /*
2056 * set actual value and sync_status
2057 */
2058 OUTB(np, nc_sxfer, tp->head.sval);
2059 OUTB(np, nc_scntl3, tp->head.wval);
2060
2061 if (np->features & FE_C10) {
2062 OUTB(np, nc_scntl4, tp->head.uval);
2063 }
2064
2065 /*
2066 * patch ALL busy ccbs of this target.
2067 */
2068 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2069 struct sym_ccb *cp;
2070 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2071 if (cp->target != target)
2072 continue;
2073 cp->phys.select.sel_scntl3 = tp->head.wval;
2074 cp->phys.select.sel_sxfer = tp->head.sval;
2075 if (np->features & FE_C10) {
2076 cp->phys.select.sel_scntl4 = tp->head.uval;
2077 }
2078 }
2079 }
2080
2081 /*
2082 * We received a WDTR.
2083 * Let everything be aware of the changes.
2084 */
2085 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2086 {
2087 struct sym_tcb *tp = &np->target[target];
2088 struct scsi_target *starget = tp->starget;
2089
2090 if (spi_width(starget) == wide)
2091 return;
2092
2093 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2094
2095 tp->tgoal.width = wide;
2096 spi_offset(starget) = 0;
2097 spi_period(starget) = 0;
2098 spi_width(starget) = wide;
2099 spi_iu(starget) = 0;
2100 spi_dt(starget) = 0;
2101 spi_qas(starget) = 0;
2102
2103 if (sym_verbose >= 3)
2104 spi_display_xfer_agreement(starget);
2105 }
2106
2107 /*
2108 * We received a SDTR.
2109 * Let everything be aware of the changes.
2110 */
2111 static void
2112 sym_setsync(struct sym_hcb *np, int target,
2113 u_char ofs, u_char per, u_char div, u_char fak)
2114 {
2115 struct sym_tcb *tp = &np->target[target];
2116 struct scsi_target *starget = tp->starget;
2117 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2118
2119 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2120
2121 spi_period(starget) = per;
2122 spi_offset(starget) = ofs;
2123 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2124
2125 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2126 tp->tgoal.period = per;
2127 tp->tgoal.offset = ofs;
2128 tp->tgoal.check_nego = 0;
2129 }
2130
2131 spi_display_xfer_agreement(starget);
2132 }
2133
2134 /*
2135 * We received a PPR.
2136 * Let everything be aware of the changes.
2137 */
2138 static void
2139 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2140 u_char per, u_char wide, u_char div, u_char fak)
2141 {
2142 struct sym_tcb *tp = &np->target[target];
2143 struct scsi_target *starget = tp->starget;
2144
2145 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2146
2147 spi_width(starget) = tp->tgoal.width = wide;
2148 spi_period(starget) = tp->tgoal.period = per;
2149 spi_offset(starget) = tp->tgoal.offset = ofs;
2150 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2151 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2152 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2153 tp->tgoal.check_nego = 0;
2154
2155 spi_display_xfer_agreement(starget);
2156 }
2157
2158 /*
2159 * generic recovery from scsi interrupt
2160 *
2161 * The doc says that when the chip gets an SCSI interrupt,
2162 * it tries to stop in an orderly fashion, by completing
2163 * an instruction fetch that had started or by flushing
2164 * the DMA fifo for a write to memory that was executing.
2165 * Such a fashion is not enough to know if the instruction
2166 * that was just before the current DSP value has been
2167 * executed or not.
2168 *
2169 * There are some small SCRIPTS sections that deal with
2170 * the start queue and the done queue that may break any
2171 * assomption from the C code if we are interrupted
2172 * inside, so we reset if this happens. Btw, since these
2173 * SCRIPTS sections are executed while the SCRIPTS hasn't
2174 * started SCSI operations, it is very unlikely to happen.
2175 *
2176 * All the driver data structures are supposed to be
2177 * allocated from the same 4 GB memory window, so there
2178 * is a 1 to 1 relationship between DSA and driver data
2179 * structures. Since we are careful :) to invalidate the
2180 * DSA when we complete a command or when the SCRIPTS
2181 * pushes a DSA into a queue, we can trust it when it
2182 * points to a CCB.
2183 */
2184 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2185 {
2186 u32 dsp = INL(np, nc_dsp);
2187 u32 dsa = INL(np, nc_dsa);
2188 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2189
2190 /*
2191 * If we haven't been interrupted inside the SCRIPTS
2192 * critical pathes, we can safely restart the SCRIPTS
2193 * and trust the DSA value if it matches a CCB.
2194 */
2195 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2196 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2197 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2198 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2199 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2200 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2201 (!(dsp > SCRIPTA_BA(np, done) &&
2202 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2203 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2204 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2205 /*
2206 * If we have a CCB, let the SCRIPTS call us back for
2207 * the handling of the error with SCRATCHA filled with
2208 * STARTPOS. This way, we will be able to freeze the
2209 * device queue and requeue awaiting IOs.
2210 */
2211 if (cp) {
2212 cp->host_status = hsts;
2213 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2214 }
2215 /*
2216 * Otherwise just restart the SCRIPTS.
2217 */
2218 else {
2219 OUTL(np, nc_dsa, 0xffffff);
2220 OUTL_DSP(np, SCRIPTA_BA(np, start));
2221 }
2222 }
2223 else
2224 goto reset_all;
2225
2226 return;
2227
2228 reset_all:
2229 sym_start_reset(np);
2230 }
2231
2232 /*
2233 * chip exception handler for selection timeout
2234 */
2235 static void sym_int_sto (struct sym_hcb *np)
2236 {
2237 u32 dsp = INL(np, nc_dsp);
2238
2239 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2240
2241 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2242 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2243 else
2244 sym_start_reset(np);
2245 }
2246
2247 /*
2248 * chip exception handler for unexpected disconnect
2249 */
2250 static void sym_int_udc (struct sym_hcb *np)
2251 {
2252 printf ("%s: unexpected disconnect\n", sym_name(np));
2253 sym_recover_scsi_int(np, HS_UNEXPECTED);
2254 }
2255
2256 /*
2257 * chip exception handler for SCSI bus mode change
2258 *
2259 * spi2-r12 11.2.3 says a transceiver mode change must
2260 * generate a reset event and a device that detects a reset
2261 * event shall initiate a hard reset. It says also that a
2262 * device that detects a mode change shall set data transfer
2263 * mode to eight bit asynchronous, etc...
2264 * So, just reinitializing all except chip should be enough.
2265 */
2266 static void sym_int_sbmc (struct sym_hcb *np)
2267 {
2268 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2269
2270 /*
2271 * Notify user.
2272 */
2273 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2274 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2275
2276 /*
2277 * Should suspend command processing for a few seconds and
2278 * reinitialize all except the chip.
2279 */
2280 sym_start_up (np, 2);
2281 }
2282
2283 /*
2284 * chip exception handler for SCSI parity error.
2285 *
2286 * When the chip detects a SCSI parity error and is
2287 * currently executing a (CH)MOV instruction, it does
2288 * not interrupt immediately, but tries to finish the
2289 * transfer of the current scatter entry before
2290 * interrupting. The following situations may occur:
2291 *
2292 * - The complete scatter entry has been transferred
2293 * without the device having changed phase.
2294 * The chip will then interrupt with the DSP pointing
2295 * to the instruction that follows the MOV.
2296 *
2297 * - A phase mismatch occurs before the MOV finished
2298 * and phase errors are to be handled by the C code.
2299 * The chip will then interrupt with both PAR and MA
2300 * conditions set.
2301 *
2302 * - A phase mismatch occurs before the MOV finished and
2303 * phase errors are to be handled by SCRIPTS.
2304 * The chip will load the DSP with the phase mismatch
2305 * JUMP address and interrupt the host processor.
2306 */
2307 static void sym_int_par (struct sym_hcb *np, u_short sist)
2308 {
2309 u_char hsts = INB(np, HS_PRT);
2310 u32 dsp = INL(np, nc_dsp);
2311 u32 dbc = INL(np, nc_dbc);
2312 u32 dsa = INL(np, nc_dsa);
2313 u_char sbcl = INB(np, nc_sbcl);
2314 u_char cmd = dbc >> 24;
2315 int phase = cmd & 7;
2316 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2317
2318 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2319 sym_name(np), hsts, dbc, sbcl);
2320
2321 /*
2322 * Check that the chip is connected to the SCSI BUS.
2323 */
2324 if (!(INB(np, nc_scntl1) & ISCON)) {
2325 sym_recover_scsi_int(np, HS_UNEXPECTED);
2326 return;
2327 }
2328
2329 /*
2330 * If the nexus is not clearly identified, reset the bus.
2331 * We will try to do better later.
2332 */
2333 if (!cp)
2334 goto reset_all;
2335
2336 /*
2337 * Check instruction was a MOV, direction was INPUT and
2338 * ATN is asserted.
2339 */
2340 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2341 goto reset_all;
2342
2343 /*
2344 * Keep track of the parity error.
2345 */
2346 OUTONB(np, HF_PRT, HF_EXT_ERR);
2347 cp->xerr_status |= XE_PARITY_ERR;
2348
2349 /*
2350 * Prepare the message to send to the device.
2351 */
2352 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2353
2354 /*
2355 * If the old phase was DATA IN phase, we have to deal with
2356 * the 3 situations described above.
2357 * For other input phases (MSG IN and STATUS), the device
2358 * must resend the whole thing that failed parity checking
2359 * or signal error. So, jumping to dispatcher should be OK.
2360 */
2361 if (phase == 1 || phase == 5) {
2362 /* Phase mismatch handled by SCRIPTS */
2363 if (dsp == SCRIPTB_BA(np, pm_handle))
2364 OUTL_DSP(np, dsp);
2365 /* Phase mismatch handled by the C code */
2366 else if (sist & MA)
2367 sym_int_ma (np);
2368 /* No phase mismatch occurred */
2369 else {
2370 sym_set_script_dp (np, cp, dsp);
2371 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2372 }
2373 }
2374 else if (phase == 7) /* We definitely cannot handle parity errors */
2375 #if 1 /* in message-in phase due to the relection */
2376 goto reset_all; /* path and various message anticipations. */
2377 #else
2378 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2379 #endif
2380 else
2381 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2382 return;
2383
2384 reset_all:
2385 sym_start_reset(np);
2386 return;
2387 }
2388
2389 /*
2390 * chip exception handler for phase errors.
2391 *
2392 * We have to construct a new transfer descriptor,
2393 * to transfer the rest of the current block.
2394 */
2395 static void sym_int_ma (struct sym_hcb *np)
2396 {
2397 u32 dbc;
2398 u32 rest;
2399 u32 dsp;
2400 u32 dsa;
2401 u32 nxtdsp;
2402 u32 *vdsp;
2403 u32 oadr, olen;
2404 u32 *tblp;
2405 u32 newcmd;
2406 u_int delta;
2407 u_char cmd;
2408 u_char hflags, hflags0;
2409 struct sym_pmc *pm;
2410 struct sym_ccb *cp;
2411
2412 dsp = INL(np, nc_dsp);
2413 dbc = INL(np, nc_dbc);
2414 dsa = INL(np, nc_dsa);
2415
2416 cmd = dbc >> 24;
2417 rest = dbc & 0xffffff;
2418 delta = 0;
2419
2420 /*
2421 * locate matching cp if any.
2422 */
2423 cp = sym_ccb_from_dsa(np, dsa);
2424
2425 /*
2426 * Donnot take into account dma fifo and various buffers in
2427 * INPUT phase since the chip flushes everything before
2428 * raising the MA interrupt for interrupted INPUT phases.
2429 * For DATA IN phase, we will check for the SWIDE later.
2430 */
2431 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2432 u_char ss0, ss2;
2433
2434 if (np->features & FE_DFBC)
2435 delta = INW(np, nc_dfbc);
2436 else {
2437 u32 dfifo;
2438
2439 /*
2440 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2441 */
2442 dfifo = INL(np, nc_dfifo);
2443
2444 /*
2445 * Calculate remaining bytes in DMA fifo.
2446 * (CTEST5 = dfifo >> 16)
2447 */
2448 if (dfifo & (DFS << 16))
2449 delta = ((((dfifo >> 8) & 0x300) |
2450 (dfifo & 0xff)) - rest) & 0x3ff;
2451 else
2452 delta = ((dfifo & 0xff) - rest) & 0x7f;
2453 }
2454
2455 /*
2456 * The data in the dma fifo has not been transfered to
2457 * the target -> add the amount to the rest
2458 * and clear the data.
2459 * Check the sstat2 register in case of wide transfer.
2460 */
2461 rest += delta;
2462 ss0 = INB(np, nc_sstat0);
2463 if (ss0 & OLF) rest++;
2464 if (!(np->features & FE_C10))
2465 if (ss0 & ORF) rest++;
2466 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2467 ss2 = INB(np, nc_sstat2);
2468 if (ss2 & OLF1) rest++;
2469 if (!(np->features & FE_C10))
2470 if (ss2 & ORF1) rest++;
2471 }
2472
2473 /*
2474 * Clear fifos.
2475 */
2476 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2477 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2478 }
2479
2480 /*
2481 * log the information
2482 */
2483 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2484 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2485 (unsigned) rest, (unsigned) delta);
2486
2487 /*
2488 * try to find the interrupted script command,
2489 * and the address at which to continue.
2490 */
2491 vdsp = NULL;
2492 nxtdsp = 0;
2493 if (dsp > np->scripta_ba &&
2494 dsp <= np->scripta_ba + np->scripta_sz) {
2495 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2496 nxtdsp = dsp;
2497 }
2498 else if (dsp > np->scriptb_ba &&
2499 dsp <= np->scriptb_ba + np->scriptb_sz) {
2500 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2501 nxtdsp = dsp;
2502 }
2503
2504 /*
2505 * log the information
2506 */
2507 if (DEBUG_FLAGS & DEBUG_PHASE) {
2508 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2509 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2510 }
2511
2512 if (!vdsp) {
2513 printf ("%s: interrupted SCRIPT address not found.\n",
2514 sym_name (np));
2515 goto reset_all;
2516 }
2517
2518 if (!cp) {
2519 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2520 sym_name (np));
2521 goto reset_all;
2522 }
2523
2524 /*
2525 * get old startaddress and old length.
2526 */
2527 oadr = scr_to_cpu(vdsp[1]);
2528
2529 if (cmd & 0x10) { /* Table indirect */
2530 tblp = (u32 *) ((char*) &cp->phys + oadr);
2531 olen = scr_to_cpu(tblp[0]);
2532 oadr = scr_to_cpu(tblp[1]);
2533 } else {
2534 tblp = (u32 *) 0;
2535 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2536 }
2537
2538 if (DEBUG_FLAGS & DEBUG_PHASE) {
2539 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2540 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2541 tblp,
2542 (unsigned) olen,
2543 (unsigned) oadr);
2544 }
2545
2546 /*
2547 * check cmd against assumed interrupted script command.
2548 * If dt data phase, the MOVE instruction hasn't bit 4 of
2549 * the phase.
2550 */
2551 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2552 sym_print_addr(cp->cmd,
2553 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2554 cmd, scr_to_cpu(vdsp[0]) >> 24);
2555
2556 goto reset_all;
2557 }
2558
2559 /*
2560 * if old phase not dataphase, leave here.
2561 */
2562 if (cmd & 2) {
2563 sym_print_addr(cp->cmd,
2564 "phase change %x-%x %d@%08x resid=%d.\n",
2565 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2566 (unsigned)oadr, (unsigned)rest);
2567 goto unexpected_phase;
2568 }
2569
2570 /*
2571 * Choose the correct PM save area.
2572 *
2573 * Look at the PM_SAVE SCRIPT if you want to understand
2574 * this stuff. The equivalent code is implemented in
2575 * SCRIPTS for the 895A, 896 and 1010 that are able to
2576 * handle PM from the SCRIPTS processor.
2577 */
2578 hflags0 = INB(np, HF_PRT);
2579 hflags = hflags0;
2580
2581 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2582 if (hflags & HF_IN_PM0)
2583 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2584 else if (hflags & HF_IN_PM1)
2585 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2586
2587 if (hflags & HF_DP_SAVED)
2588 hflags ^= HF_ACT_PM;
2589 }
2590
2591 if (!(hflags & HF_ACT_PM)) {
2592 pm = &cp->phys.pm0;
2593 newcmd = SCRIPTA_BA(np, pm0_data);
2594 }
2595 else {
2596 pm = &cp->phys.pm1;
2597 newcmd = SCRIPTA_BA(np, pm1_data);
2598 }
2599
2600 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2601 if (hflags != hflags0)
2602 OUTB(np, HF_PRT, hflags);
2603
2604 /*
2605 * fillin the phase mismatch context
2606 */
2607 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2608 pm->sg.size = cpu_to_scr(rest);
2609 pm->ret = cpu_to_scr(nxtdsp);
2610
2611 /*
2612 * If we have a SWIDE,
2613 * - prepare the address to write the SWIDE from SCRIPTS,
2614 * - compute the SCRIPTS address to restart from,
2615 * - move current data pointer context by one byte.
2616 */
2617 nxtdsp = SCRIPTA_BA(np, dispatch);
2618 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2619 (INB(np, nc_scntl2) & WSR)) {
2620 u32 tmp;
2621
2622 /*
2623 * Set up the table indirect for the MOVE
2624 * of the residual byte and adjust the data
2625 * pointer context.
2626 */
2627 tmp = scr_to_cpu(pm->sg.addr);
2628 cp->phys.wresid.addr = cpu_to_scr(tmp);
2629 pm->sg.addr = cpu_to_scr(tmp + 1);
2630 tmp = scr_to_cpu(pm->sg.size);
2631 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2632 pm->sg.size = cpu_to_scr(tmp - 1);
2633
2634 /*
2635 * If only the residual byte is to be moved,
2636 * no PM context is needed.
2637 */
2638 if ((tmp&0xffffff) == 1)
2639 newcmd = pm->ret;
2640
2641 /*
2642 * Prepare the address of SCRIPTS that will
2643 * move the residual byte to memory.
2644 */
2645 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2646 }
2647
2648 if (DEBUG_FLAGS & DEBUG_PHASE) {
2649 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2650 hflags0, hflags, newcmd,
2651 (unsigned)scr_to_cpu(pm->sg.addr),
2652 (unsigned)scr_to_cpu(pm->sg.size),
2653 (unsigned)scr_to_cpu(pm->ret));
2654 }
2655
2656 /*
2657 * Restart the SCRIPTS processor.
2658 */
2659 sym_set_script_dp (np, cp, newcmd);
2660 OUTL_DSP(np, nxtdsp);
2661 return;
2662
2663 /*
2664 * Unexpected phase changes that occurs when the current phase
2665 * is not a DATA IN or DATA OUT phase are due to error conditions.
2666 * Such event may only happen when the SCRIPTS is using a
2667 * multibyte SCSI MOVE.
2668 *
2669 * Phase change Some possible cause
2670 *
2671 * COMMAND --> MSG IN SCSI parity error detected by target.
2672 * COMMAND --> STATUS Bad command or refused by target.
2673 * MSG OUT --> MSG IN Message rejected by target.
2674 * MSG OUT --> COMMAND Bogus target that discards extended
2675 * negotiation messages.
2676 *
2677 * The code below does not care of the new phase and so
2678 * trusts the target. Why to annoy it ?
2679 * If the interrupted phase is COMMAND phase, we restart at
2680 * dispatcher.
2681 * If a target does not get all the messages after selection,
2682 * the code assumes blindly that the target discards extended
2683 * messages and clears the negotiation status.
2684 * If the target does not want all our response to negotiation,
2685 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2686 * bloat for such a should_not_happen situation).
2687 * In all other situation, we reset the BUS.
2688 * Are these assumptions reasonnable ? (Wait and see ...)
2689 */
2690 unexpected_phase:
2691 dsp -= 8;
2692 nxtdsp = 0;
2693
2694 switch (cmd & 7) {
2695 case 2: /* COMMAND phase */
2696 nxtdsp = SCRIPTA_BA(np, dispatch);
2697 break;
2698 #if 0
2699 case 3: /* STATUS phase */
2700 nxtdsp = SCRIPTA_BA(np, dispatch);
2701 break;
2702 #endif
2703 case 6: /* MSG OUT phase */
2704 /*
2705 * If the device may want to use untagged when we want
2706 * tagged, we prepare an IDENTIFY without disc. granted,
2707 * since we will not be able to handle reselect.
2708 * Otherwise, we just don't care.
2709 */
2710 if (dsp == SCRIPTA_BA(np, send_ident)) {
2711 if (cp->tag != NO_TAG && olen - rest <= 3) {
2712 cp->host_status = HS_BUSY;
2713 np->msgout[0] = IDENTIFY(0, cp->lun);
2714 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2715 }
2716 else
2717 nxtdsp = SCRIPTB_BA(np, ident_break);
2718 }
2719 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2720 dsp == SCRIPTB_BA(np, send_sdtr) ||
2721 dsp == SCRIPTB_BA(np, send_ppr)) {
2722 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2723 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2724 struct scsi_device *dev = cp->cmd->device;
2725 dev->ppr = 0;
2726 }
2727 }
2728 break;
2729 #if 0
2730 case 7: /* MSG IN phase */
2731 nxtdsp = SCRIPTA_BA(np, clrack);
2732 break;
2733 #endif
2734 }
2735
2736 if (nxtdsp) {
2737 OUTL_DSP(np, nxtdsp);
2738 return;
2739 }
2740
2741 reset_all:
2742 sym_start_reset(np);
2743 }
2744
2745 /*
2746 * chip interrupt handler
2747 *
2748 * In normal situations, interrupt conditions occur one at
2749 * a time. But when something bad happens on the SCSI BUS,
2750 * the chip may raise several interrupt flags before
2751 * stopping and interrupting the CPU. The additionnal
2752 * interrupt flags are stacked in some extra registers
2753 * after the SIP and/or DIP flag has been raised in the
2754 * ISTAT. After the CPU has read the interrupt condition
2755 * flag from SIST or DSTAT, the chip unstacks the other
2756 * interrupt flags and sets the corresponding bits in
2757 * SIST or DSTAT. Since the chip starts stacking once the
2758 * SIP or DIP flag is set, there is a small window of time
2759 * where the stacking does not occur.
2760 *
2761 * Typically, multiple interrupt conditions may happen in
2762 * the following situations:
2763 *
2764 * - SCSI parity error + Phase mismatch (PAR|MA)
2765 * When an parity error is detected in input phase
2766 * and the device switches to msg-in phase inside a
2767 * block MOV.
2768 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2769 * When a stupid device does not want to handle the
2770 * recovery of an SCSI parity error.
2771 * - Some combinations of STO, PAR, UDC, ...
2772 * When using non compliant SCSI stuff, when user is
2773 * doing non compliant hot tampering on the BUS, when
2774 * something really bad happens to a device, etc ...
2775 *
2776 * The heuristic suggested by SYMBIOS to handle
2777 * multiple interrupts is to try unstacking all
2778 * interrupts conditions and to handle them on some
2779 * priority based on error severity.
2780 * This will work when the unstacking has been
2781 * successful, but we cannot be 100 % sure of that,
2782 * since the CPU may have been faster to unstack than
2783 * the chip is able to stack. Hmmm ... But it seems that
2784 * such a situation is very unlikely to happen.
2785 *
2786 * If this happen, for example STO caught by the CPU
2787 * then UDC happenning before the CPU have restarted
2788 * the SCRIPTS, the driver may wrongly complete the
2789 * same command on UDC, since the SCRIPTS didn't restart
2790 * and the DSA still points to the same command.
2791 * We avoid this situation by setting the DSA to an
2792 * invalid value when the CCB is completed and before
2793 * restarting the SCRIPTS.
2794 *
2795 * Another issue is that we need some section of our
2796 * recovery procedures to be somehow uninterruptible but
2797 * the SCRIPTS processor does not provides such a
2798 * feature. For this reason, we handle recovery preferently
2799 * from the C code and check against some SCRIPTS critical
2800 * sections from the C code.
2801 *
2802 * Hopefully, the interrupt handling of the driver is now
2803 * able to resist to weird BUS error conditions, but donnot
2804 * ask me for any guarantee that it will never fail. :-)
2805 * Use at your own decision and risk.
2806 */
2807
2808 void sym_interrupt (struct sym_hcb *np)
2809 {
2810 u_char istat, istatc;
2811 u_char dstat;
2812 u_short sist;
2813
2814 /*
2815 * interrupt on the fly ?
2816 * (SCRIPTS may still be running)
2817 *
2818 * A `dummy read' is needed to ensure that the
2819 * clear of the INTF flag reaches the device
2820 * and that posted writes are flushed to memory
2821 * before the scanning of the DONE queue.
2822 * Note that SCRIPTS also (dummy) read to memory
2823 * prior to deliver the INTF interrupt condition.
2824 */
2825 istat = INB(np, nc_istat);
2826 if (istat & INTF) {
2827 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2828 istat = INB(np, nc_istat); /* DUMMY READ */
2829 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2830 sym_wakeup_done(np);
2831 }
2832
2833 if (!(istat & (SIP|DIP)))
2834 return;
2835
2836 #if 0 /* We should never get this one */
2837 if (istat & CABRT)
2838 OUTB(np, nc_istat, CABRT);
2839 #endif
2840
2841 /*
2842 * PAR and MA interrupts may occur at the same time,
2843 * and we need to know of both in order to handle
2844 * this situation properly. We try to unstack SCSI
2845 * interrupts for that reason. BTW, I dislike a LOT
2846 * such a loop inside the interrupt routine.
2847 * Even if DMA interrupt stacking is very unlikely to
2848 * happen, we also try unstacking these ones, since
2849 * this has no performance impact.
2850 */
2851 sist = 0;
2852 dstat = 0;
2853 istatc = istat;
2854 do {
2855 if (istatc & SIP)
2856 sist |= INW(np, nc_sist);
2857 if (istatc & DIP)
2858 dstat |= INB(np, nc_dstat);
2859 istatc = INB(np, nc_istat);
2860 istat |= istatc;
2861 } while (istatc & (SIP|DIP));
2862
2863 if (DEBUG_FLAGS & DEBUG_TINY)
2864 printf ("<%d|%x:%x|%x:%x>",
2865 (int)INB(np, nc_scr0),
2866 dstat,sist,
2867 (unsigned)INL(np, nc_dsp),
2868 (unsigned)INL(np, nc_dbc));
2869 /*
2870 * On paper, a memory read barrier may be needed here to
2871 * prevent out of order LOADs by the CPU from having
2872 * prefetched stale data prior to DMA having occurred.
2873 * And since we are paranoid ... :)
2874 */
2875 MEMORY_READ_BARRIER();
2876
2877 /*
2878 * First, interrupts we want to service cleanly.
2879 *
2880 * Phase mismatch (MA) is the most frequent interrupt
2881 * for chip earlier than the 896 and so we have to service
2882 * it as quickly as possible.
2883 * A SCSI parity error (PAR) may be combined with a phase
2884 * mismatch condition (MA).
2885 * Programmed interrupts (SIR) are used to call the C code
2886 * from SCRIPTS.
2887 * The single step interrupt (SSI) is not used in this
2888 * driver.
2889 */
2890 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2891 !(dstat & (MDPE|BF|ABRT|IID))) {
2892 if (sist & PAR) sym_int_par (np, sist);
2893 else if (sist & MA) sym_int_ma (np);
2894 else if (dstat & SIR) sym_int_sir (np);
2895 else if (dstat & SSI) OUTONB_STD();
2896 else goto unknown_int;
2897 return;
2898 }
2899
2900 /*
2901 * Now, interrupts that donnot happen in normal
2902 * situations and that we may need to recover from.
2903 *
2904 * On SCSI RESET (RST), we reset everything.
2905 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2906 * active CCBs with RESET status, prepare all devices
2907 * for negotiating again and restart the SCRIPTS.
2908 * On STO and UDC, we complete the CCB with the corres-
2909 * ponding status and restart the SCRIPTS.
2910 */
2911 if (sist & RST) {
2912 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2913 sym_start_up (np, 1);
2914 return;
2915 }
2916
2917 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2918 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2919
2920 if (!(sist & (GEN|HTH|SGE)) &&
2921 !(dstat & (MDPE|BF|ABRT|IID))) {
2922 if (sist & SBMC) sym_int_sbmc (np);
2923 else if (sist & STO) sym_int_sto (np);
2924 else if (sist & UDC) sym_int_udc (np);
2925 else goto unknown_int;
2926 return;
2927 }
2928
2929 /*
2930 * Now, interrupts we are not able to recover cleanly.
2931 *
2932 * Log message for hard errors.
2933 * Reset everything.
2934 */
2935
2936 sym_log_hard_error(np, sist, dstat);
2937
2938 if ((sist & (GEN|HTH|SGE)) ||
2939 (dstat & (MDPE|BF|ABRT|IID))) {
2940 sym_start_reset(np);
2941 return;
2942 }
2943
2944 unknown_int:
2945 /*
2946 * We just miss the cause of the interrupt. :(
2947 * Print a message. The timeout will do the real work.
2948 */
2949 printf( "%s: unknown interrupt(s) ignored, "
2950 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2951 sym_name(np), istat, dstat, sist);
2952 }
2953
2954 /*
2955 * Dequeue from the START queue all CCBs that match
2956 * a given target/lun/task condition (-1 means all),
2957 * and move them from the BUSY queue to the COMP queue
2958 * with DID_SOFT_ERROR status condition.
2959 * This function is used during error handling/recovery.
2960 * It is called with SCRIPTS not running.
2961 */
2962 static int
2963 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2964 {
2965 int j;
2966 struct sym_ccb *cp;
2967
2968 /*
2969 * Make sure the starting index is within range.
2970 */
2971 assert((i >= 0) && (i < 2*MAX_QUEUE));
2972
2973 /*
2974 * Walk until end of START queue and dequeue every job
2975 * that matches the target/lun/task condition.
2976 */
2977 j = i;
2978 while (i != np->squeueput) {
2979 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2980 assert(cp);
2981 #ifdef SYM_CONF_IARB_SUPPORT
2982 /* Forget hints for IARB, they may be no longer relevant */
2983 cp->host_flags &= ~HF_HINT_IARB;
2984 #endif
2985 if ((target == -1 || cp->target == target) &&
2986 (lun == -1 || cp->lun == lun) &&
2987 (task == -1 || cp->tag == task)) {
2988 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2989 sym_remque(&cp->link_ccbq);
2990 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2991 }
2992 else {
2993 if (i != j)
2994 np->squeue[j] = np->squeue[i];
2995 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2996 }
2997 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2998 }
2999 if (i != j) /* Copy back the idle task if needed */
3000 np->squeue[j] = np->squeue[i];
3001 np->squeueput = j; /* Update our current start queue pointer */
3002
3003 return (i - j) / 2;
3004 }
3005
3006 /*
3007 * chip handler for bad SCSI status condition
3008 *
3009 * In case of bad SCSI status, we unqueue all the tasks
3010 * currently queued to the controller but not yet started
3011 * and then restart the SCRIPTS processor immediately.
3012 *
3013 * QUEUE FULL and BUSY conditions are handled the same way.
3014 * Basically all the not yet started tasks are requeued in
3015 * device queue and the queue is frozen until a completion.
3016 *
3017 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3018 * the CCB of the failed command to prepare a REQUEST SENSE
3019 * SCSI command and queue it to the controller queue.
3020 *
3021 * SCRATCHA is assumed to have been loaded with STARTPOS
3022 * before the SCRIPTS called the C code.
3023 */
3024 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3025 {
3026 u32 startp;
3027 u_char s_status = cp->ssss_status;
3028 u_char h_flags = cp->host_flags;
3029 int msglen;
3030 int i;
3031
3032 /*
3033 * Compute the index of the next job to start from SCRIPTS.
3034 */
3035 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3036
3037 /*
3038 * The last CCB queued used for IARB hint may be
3039 * no longer relevant. Forget it.
3040 */
3041 #ifdef SYM_CONF_IARB_SUPPORT
3042 if (np->last_cp)
3043 np->last_cp = 0;
3044 #endif
3045
3046 /*
3047 * Now deal with the SCSI status.
3048 */
3049 switch(s_status) {
3050 case S_BUSY:
3051 case S_QUEUE_FULL:
3052 if (sym_verbose >= 2) {
3053 sym_print_addr(cp->cmd, "%s\n",
3054 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3055 }
3056 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3057 sym_complete_error (np, cp);
3058 break;
3059 case S_TERMINATED:
3060 case S_CHECK_COND:
3061 /*
3062 * If we get an SCSI error when requesting sense, give up.
3063 */
3064 if (h_flags & HF_SENSE) {
3065 sym_complete_error (np, cp);
3066 break;
3067 }
3068
3069 /*
3070 * Dequeue all queued CCBs for that device not yet started,
3071 * and restart the SCRIPTS processor immediately.
3072 */
3073 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3074 OUTL_DSP(np, SCRIPTA_BA(np, start));
3075
3076 /*
3077 * Save some info of the actual IO.
3078 * Compute the data residual.
3079 */
3080 cp->sv_scsi_status = cp->ssss_status;
3081 cp->sv_xerr_status = cp->xerr_status;
3082 cp->sv_resid = sym_compute_residual(np, cp);
3083
3084 /*
3085 * Prepare all needed data structures for
3086 * requesting sense data.
3087 */
3088
3089 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3090 msglen = 1;
3091
3092 /*
3093 * If we are currently using anything different from
3094 * async. 8 bit data transfers with that target,
3095 * start a negotiation, since the device may want
3096 * to report us a UNIT ATTENTION condition due to
3097 * a cause we currently ignore, and we donnot want
3098 * to be stuck with WIDE and/or SYNC data transfer.
3099 *
3100 * cp->nego_status is filled by sym_prepare_nego().
3101 */
3102 cp->nego_status = 0;
3103 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3104 /*
3105 * Message table indirect structure.
3106 */
3107 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3108 cp->phys.smsg.size = cpu_to_scr(msglen);
3109
3110 /*
3111 * sense command
3112 */
3113 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3114 cp->phys.cmd.size = cpu_to_scr(6);
3115
3116 /*
3117 * patch requested size into sense command
3118 */
3119 cp->sensecmd[0] = REQUEST_SENSE;
3120 cp->sensecmd[1] = 0;
3121 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3122 cp->sensecmd[1] = cp->lun << 5;
3123 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3124 cp->data_len = SYM_SNS_BBUF_LEN;
3125
3126 /*
3127 * sense data
3128 */
3129 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3130 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3131 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3132
3133 /*
3134 * requeue the command.
3135 */
3136 startp = SCRIPTB_BA(np, sdata_in);
3137
3138 cp->phys.head.savep = cpu_to_scr(startp);
3139 cp->phys.head.lastp = cpu_to_scr(startp);
3140 cp->startp = cpu_to_scr(startp);
3141 cp->goalp = cpu_to_scr(startp + 16);
3142
3143 cp->host_xflags = 0;
3144 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3145 cp->ssss_status = S_ILLEGAL;
3146 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3147 cp->xerr_status = 0;
3148 cp->extra_bytes = 0;
3149
3150 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3151
3152 /*
3153 * Requeue the command.
3154 */
3155 sym_put_start_queue(np, cp);
3156
3157 /*
3158 * Give back to upper layer everything we have dequeued.
3159 */
3160 sym_flush_comp_queue(np, 0);
3161 break;
3162 }
3163 }
3164
3165 /*
3166 * After a device has accepted some management message
3167 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3168 * a device signals a UNIT ATTENTION condition, some
3169 * tasks are thrown away by the device. We are required
3170 * to reflect that on our tasks list since the device
3171 * will never complete these tasks.
3172 *
3173 * This function move from the BUSY queue to the COMP
3174 * queue all disconnected CCBs for a given target that
3175 * match the following criteria:
3176 * - lun=-1 means any logical UNIT otherwise a given one.
3177 * - task=-1 means any task, otherwise a given one.
3178 */
3179 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3180 {
3181 SYM_QUEHEAD qtmp, *qp;
3182 int i = 0;
3183 struct sym_ccb *cp;
3184
3185 /*
3186 * Move the entire BUSY queue to our temporary queue.
3187 */
3188 sym_que_init(&qtmp);
3189 sym_que_splice(&np->busy_ccbq, &qtmp);
3190 sym_que_init(&np->busy_ccbq);
3191
3192 /*
3193 * Put all CCBs that matches our criteria into
3194 * the COMP queue and put back other ones into
3195 * the BUSY queue.
3196 */
3197 while ((qp = sym_remque_head(&qtmp)) != 0) {
3198 struct scsi_cmnd *cmd;
3199 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3200 cmd = cp->cmd;
3201 if (cp->host_status != HS_DISCONNECT ||
3202 cp->target != target ||
3203 (lun != -1 && cp->lun != lun) ||
3204 (task != -1 &&
3205 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3206 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3207 continue;
3208 }
3209 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3210
3211 /* Preserve the software timeout condition */
3212 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3213 sym_set_cam_status(cmd, cam_status);
3214 ++i;
3215 #if 0
3216 printf("XXXX TASK @%p CLEARED\n", cp);
3217 #endif
3218 }
3219 return i;
3220 }
3221
3222 /*
3223 * chip handler for TASKS recovery
3224 *
3225 * We cannot safely abort a command, while the SCRIPTS
3226 * processor is running, since we just would be in race
3227 * with it.
3228 *
3229 * As long as we have tasks to abort, we keep the SEM
3230 * bit set in the ISTAT. When this bit is set, the
3231 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3232 * each time it enters the scheduler.
3233 *
3234 * If we have to reset a target, clear tasks of a unit,
3235 * or to perform the abort of a disconnected job, we
3236 * restart the SCRIPTS for selecting the target. Once
3237 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3238 * If it loses arbitration, the SCRIPTS will interrupt again
3239 * the next time it will enter its scheduler, and so on ...
3240 *
3241 * On SIR_TARGET_SELECTED, we scan for the more
3242 * appropriate thing to do:
3243 *
3244 * - If nothing, we just sent a M_ABORT message to the
3245 * target to get rid of the useless SCSI bus ownership.
3246 * According to the specs, no tasks shall be affected.
3247 * - If the target is to be reset, we send it a M_RESET
3248 * message.
3249 * - If a logical UNIT is to be cleared , we send the
3250 * IDENTIFY(lun) + M_ABORT.
3251 * - If an untagged task is to be aborted, we send the
3252 * IDENTIFY(lun) + M_ABORT.
3253 * - If a tagged task is to be aborted, we send the
3254 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3255 *
3256 * Once our 'kiss of death' :) message has been accepted
3257 * by the target, the SCRIPTS interrupts again
3258 * (SIR_ABORT_SENT). On this interrupt, we complete
3259 * all the CCBs that should have been aborted by the
3260 * target according to our message.
3261 */
3262 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3263 {
3264 SYM_QUEHEAD *qp;
3265 struct sym_ccb *cp;
3266 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3267 struct scsi_target *starget;
3268 int target=-1, lun=-1, task;
3269 int i, k;
3270
3271 switch(num) {
3272 /*
3273 * The SCRIPTS processor stopped before starting
3274 * the next command in order to allow us to perform
3275 * some task recovery.
3276 */
3277 case SIR_SCRIPT_STOPPED:
3278 /*
3279 * Do we have any target to reset or unit to clear ?
3280 */
3281 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3282 tp = &np->target[i];
3283 if (tp->to_reset ||
3284 (tp->lun0p && tp->lun0p->to_clear)) {
3285 target = i;
3286 break;
3287 }
3288 if (!tp->lunmp)
3289 continue;
3290 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3291 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3292 target = i;
3293 break;
3294 }
3295 }
3296 if (target != -1)
3297 break;
3298 }
3299
3300 /*
3301 * If not, walk the busy queue for any
3302 * disconnected CCB to be aborted.
3303 */
3304 if (target == -1) {
3305 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3306 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3307 if (cp->host_status != HS_DISCONNECT)
3308 continue;
3309 if (cp->to_abort) {
3310 target = cp->target;
3311 break;
3312 }
3313 }
3314 }
3315
3316 /*
3317 * If some target is to be selected,
3318 * prepare and start the selection.
3319 */
3320 if (target != -1) {
3321 tp = &np->target[target];
3322 np->abrt_sel.sel_id = target;
3323 np->abrt_sel.sel_scntl3 = tp->head.wval;
3324 np->abrt_sel.sel_sxfer = tp->head.sval;
3325 OUTL(np, nc_dsa, np->hcb_ba);
3326 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3327 return;
3328 }
3329
3330 /*
3331 * Now look for a CCB to abort that haven't started yet.
3332 * Btw, the SCRIPTS processor is still stopped, so
3333 * we are not in race.
3334 */
3335 i = 0;
3336 cp = NULL;
3337 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3338 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3339 if (cp->host_status != HS_BUSY &&
3340 cp->host_status != HS_NEGOTIATE)
3341 continue;
3342 if (!cp->to_abort)
3343 continue;
3344 #ifdef SYM_CONF_IARB_SUPPORT
3345 /*
3346 * If we are using IMMEDIATE ARBITRATION, we donnot
3347 * want to cancel the last queued CCB, since the
3348 * SCRIPTS may have anticipated the selection.
3349 */
3350 if (cp == np->last_cp) {
3351 cp->to_abort = 0;
3352 continue;
3353 }
3354 #endif
3355 i = 1; /* Means we have found some */
3356 break;
3357 }
3358 if (!i) {
3359 /*
3360 * We are done, so we donnot need
3361 * to synchronize with the SCRIPTS anylonger.
3362 * Remove the SEM flag from the ISTAT.
3363 */
3364 np->istat_sem = 0;
3365 OUTB(np, nc_istat, SIGP);
3366 break;
3367 }
3368 /*
3369 * Compute index of next position in the start
3370 * queue the SCRIPTS intends to start and dequeue
3371 * all CCBs for that device that haven't been started.
3372 */
3373 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3374 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3375
3376 /*
3377 * Make sure at least our IO to abort has been dequeued.
3378 */
3379 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3380 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3381 #else
3382 sym_remque(&cp->link_ccbq);
3383 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3384 #endif
3385 /*
3386 * Keep track in cam status of the reason of the abort.
3387 */
3388 if (cp->to_abort == 2)
3389 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3390 else
3391 sym_set_cam_status(cp->cmd, DID_ABORT);
3392
3393 /*
3394 * Complete with error everything that we have dequeued.
3395 */
3396 sym_flush_comp_queue(np, 0);
3397 break;
3398 /*
3399 * The SCRIPTS processor has selected a target
3400 * we may have some manual recovery to perform for.
3401 */
3402 case SIR_TARGET_SELECTED:
3403 target = INB(np, nc_sdid) & 0xf;
3404 tp = &np->target[target];
3405
3406 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3407
3408 /*
3409 * If the target is to be reset, prepare a
3410 * M_RESET message and clear the to_reset flag
3411 * since we donnot expect this operation to fail.
3412 */
3413 if (tp->to_reset) {
3414 np->abrt_msg[0] = M_RESET;
3415 np->abrt_tbl.size = 1;
3416 tp->to_reset = 0;
3417 break;
3418 }
3419
3420 /*
3421 * Otherwise, look for some logical unit to be cleared.
3422 */
3423 if (tp->lun0p && tp->lun0p->to_clear)
3424 lun = 0;
3425 else if (tp->lunmp) {
3426 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3427 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3428 lun = k;
3429 break;
3430 }
3431 }
3432 }
3433
3434 /*
3435 * If a logical unit is to be cleared, prepare
3436 * an IDENTIFY(lun) + ABORT MESSAGE.
3437 */
3438 if (lun != -1) {
3439 struct sym_lcb *lp = sym_lp(tp, lun);
3440 lp->to_clear = 0; /* We don't expect to fail here */
3441 np->abrt_msg[0] = IDENTIFY(0, lun);
3442 np->abrt_msg[1] = M_ABORT;
3443 np->abrt_tbl.size = 2;
3444 break;
3445 }
3446
3447 /*
3448 * Otherwise, look for some disconnected job to
3449 * abort for this target.
3450 */
3451 i = 0;
3452 cp = NULL;
3453 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3454 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3455 if (cp->host_status != HS_DISCONNECT)
3456 continue;
3457 if (cp->target != target)
3458 continue;
3459 if (!cp->to_abort)
3460 continue;
3461 i = 1; /* Means we have some */
3462 break;
3463 }
3464
3465 /*
3466 * If we have none, probably since the device has
3467 * completed the command before we won abitration,
3468 * send a M_ABORT message without IDENTIFY.
3469 * According to the specs, the device must just
3470 * disconnect the BUS and not abort any task.
3471 */
3472 if (!i) {
3473 np->abrt_msg[0] = M_ABORT;
3474 np->abrt_tbl.size = 1;
3475 break;
3476 }
3477
3478 /*
3479 * We have some task to abort.
3480 * Set the IDENTIFY(lun)
3481 */
3482 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3483
3484 /*
3485 * If we want to abort an untagged command, we
3486 * will send a IDENTIFY + M_ABORT.
3487 * Otherwise (tagged command), we will send
3488 * a IDENTITFY + task attributes + ABORT TAG.
3489 */
3490 if (cp->tag == NO_TAG) {
3491 np->abrt_msg[1] = M_ABORT;
3492 np->abrt_tbl.size = 2;
3493 } else {
3494 np->abrt_msg[1] = cp->scsi_smsg[1];
3495 np->abrt_msg[2] = cp->scsi_smsg[2];
3496 np->abrt_msg[3] = M_ABORT_TAG;
3497 np->abrt_tbl.size = 4;
3498 }
3499 /*
3500 * Keep track of software timeout condition, since the
3501 * peripheral driver may not count retries on abort
3502 * conditions not due to timeout.
3503 */
3504 if (cp->to_abort == 2)
3505 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3506 cp->to_abort = 0; /* We donnot expect to fail here */
3507 break;
3508
3509 /*
3510 * The target has accepted our message and switched
3511 * to BUS FREE phase as we expected.
3512 */
3513 case SIR_ABORT_SENT:
3514 target = INB(np, nc_sdid) & 0xf;
3515 tp = &np->target[target];
3516 starget = tp->starget;
3517
3518 /*
3519 ** If we didn't abort anything, leave here.
3520 */
3521 if (np->abrt_msg[0] == M_ABORT)
3522 break;
3523
3524 /*
3525 * If we sent a M_RESET, then a hardware reset has
3526 * been performed by the target.
3527 * - Reset everything to async 8 bit
3528 * - Tell ourself to negotiate next time :-)
3529 * - Prepare to clear all disconnected CCBs for
3530 * this target from our task list (lun=task=-1)
3531 */
3532 lun = -1;
3533 task = -1;
3534 if (np->abrt_msg[0] == M_RESET) {
3535 tp->head.sval = 0;
3536 tp->head.wval = np->rv_scntl3;
3537 tp->head.uval = 0;
3538 spi_period(starget) = 0;
3539 spi_offset(starget) = 0;
3540 spi_width(starget) = 0;
3541 spi_iu(starget) = 0;
3542 spi_dt(starget) = 0;
3543 spi_qas(starget) = 0;
3544 tp->tgoal.check_nego = 1;
3545 }
3546
3547 /*
3548 * Otherwise, check for the LUN and TASK(s)
3549 * concerned by the cancelation.
3550 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3551 * or an ABORT message :-)
3552 */
3553 else {
3554 lun = np->abrt_msg[0] & 0x3f;
3555 if (np->abrt_msg[1] == M_ABORT_TAG)
3556 task = np->abrt_msg[2];
3557 }
3558
3559 /*
3560 * Complete all the CCBs the device should have
3561 * aborted due to our 'kiss of death' message.
3562 */
3563 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3564 sym_dequeue_from_squeue(np, i, target, lun, -1);
3565 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3566 sym_flush_comp_queue(np, 0);
3567
3568 /*
3569 * If we sent a BDR, make upper layer aware of that.
3570 */
3571 if (np->abrt_msg[0] == M_RESET)
3572 sym_xpt_async_sent_bdr(np, target);
3573 break;
3574 }
3575
3576 /*
3577 * Print to the log the message we intend to send.
3578 */
3579 if (num == SIR_TARGET_SELECTED) {
3580 dev_info(&tp->starget->dev, "control msgout:");
3581 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3582 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3583 }
3584
3585 /*
3586 * Let the SCRIPTS processor continue.
3587 */
3588 OUTONB_STD();
3589 }
3590
3591 /*
3592 * Gerard's alchemy:) that deals with with the data
3593 * pointer for both MDP and the residual calculation.
3594 *
3595 * I didn't want to bloat the code by more than 200
3596 * lines for the handling of both MDP and the residual.
3597 * This has been achieved by using a data pointer
3598 * representation consisting in an index in the data
3599 * array (dp_sg) and a negative offset (dp_ofs) that
3600 * have the following meaning:
3601 *
3602 * - dp_sg = SYM_CONF_MAX_SG
3603 * we are at the end of the data script.
3604 * - dp_sg < SYM_CONF_MAX_SG
3605 * dp_sg points to the next entry of the scatter array
3606 * we want to transfer.
3607 * - dp_ofs < 0
3608 * dp_ofs represents the residual of bytes of the
3609 * previous entry scatter entry we will send first.
3610 * - dp_ofs = 0
3611 * no residual to send first.
3612 *
3613 * The function sym_evaluate_dp() accepts an arbitray
3614 * offset (basically from the MDP message) and returns
3615 * the corresponding values of dp_sg and dp_ofs.
3616 */
3617
3618 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3619 {
3620 u32 dp_scr;
3621 int dp_ofs, dp_sg, dp_sgmin;
3622 int tmp;
3623 struct sym_pmc *pm;
3624
3625 /*
3626 * Compute the resulted data pointer in term of a script
3627 * address within some DATA script and a signed byte offset.
3628 */
3629 dp_scr = scr;
3630 dp_ofs = *ofs;
3631 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3632 pm = &cp->phys.pm0;
3633 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3634 pm = &cp->phys.pm1;
3635 else
3636 pm = NULL;
3637
3638 if (pm) {
3639 dp_scr = scr_to_cpu(pm->ret);
3640 dp_ofs -= scr_to_cpu(pm->sg.size);
3641 }
3642
3643 /*
3644 * If we are auto-sensing, then we are done.
3645 */
3646 if (cp->host_flags & HF_SENSE) {
3647 *ofs = dp_ofs;
3648 return 0;
3649 }
3650
3651 /*
3652 * Deduce the index of the sg entry.
3653 * Keep track of the index of the first valid entry.
3654 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3655 * end of the data.
3656 */
3657 tmp = scr_to_cpu(sym_goalp(cp));
3658 dp_sg = SYM_CONF_MAX_SG;
3659 if (dp_scr != tmp)
3660 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3661 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3662
3663 /*
3664 * Move to the sg entry the data pointer belongs to.
3665 *
3666 * If we are inside the data area, we expect result to be:
3667 *
3668 * Either,
3669 * dp_ofs = 0 and dp_sg is the index of the sg entry
3670 * the data pointer belongs to (or the end of the data)
3671 * Or,
3672 * dp_ofs < 0 and dp_sg is the index of the sg entry
3673 * the data pointer belongs to + 1.
3674 */
3675 if (dp_ofs < 0) {
3676 int n;
3677 while (dp_sg > dp_sgmin) {
3678 --dp_sg;
3679 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3680 n = dp_ofs + (tmp & 0xffffff);
3681 if (n > 0) {
3682 ++dp_sg;
3683 break;
3684 }
3685 dp_ofs = n;
3686 }
3687 }
3688 else if (dp_ofs > 0) {
3689 while (dp_sg < SYM_CONF_MAX_SG) {
3690 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3691 dp_ofs -= (tmp & 0xffffff);
3692 ++dp_sg;
3693 if (dp_ofs <= 0)
3694 break;
3695 }
3696 }
3697
3698 /*
3699 * Make sure the data pointer is inside the data area.
3700 * If not, return some error.
3701 */
3702 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3703 goto out_err;
3704 else if (dp_sg > SYM_CONF_MAX_SG ||
3705 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3706 goto out_err;
3707
3708 /*
3709 * Save the extreme pointer if needed.
3710 */
3711 if (dp_sg > cp->ext_sg ||
3712 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3713 cp->ext_sg = dp_sg;
3714 cp->ext_ofs = dp_ofs;
3715 }
3716
3717 /*
3718 * Return data.
3719 */
3720 *ofs = dp_ofs;
3721 return dp_sg;
3722
3723 out_err:
3724 return -1;
3725 }
3726
3727 /*
3728 * chip handler for MODIFY DATA POINTER MESSAGE
3729 *
3730 * We also call this function on IGNORE WIDE RESIDUE
3731 * messages that do not match a SWIDE full condition.
3732 * Btw, we assume in that situation that such a message
3733 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3734 */
3735
3736 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3737 {
3738 int dp_ofs = ofs;
3739 u32 dp_scr = sym_get_script_dp (np, cp);
3740 u32 dp_ret;
3741 u32 tmp;
3742 u_char hflags;
3743 int dp_sg;
3744 struct sym_pmc *pm;
3745
3746 /*
3747 * Not supported for auto-sense.
3748 */
3749 if (cp->host_flags & HF_SENSE)
3750 goto out_reject;
3751
3752 /*
3753 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3754 * to the resulted data pointer.
3755 */
3756 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3757 if (dp_sg < 0)
3758 goto out_reject;
3759
3760 /*
3761 * And our alchemy:) allows to easily calculate the data
3762 * script address we want to return for the next data phase.
3763 */
3764 dp_ret = cpu_to_scr(sym_goalp(cp));
3765 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3766
3767 /*
3768 * If offset / scatter entry is zero we donnot need
3769 * a context for the new current data pointer.
3770 */
3771 if (dp_ofs == 0) {
3772 dp_scr = dp_ret;
3773 goto out_ok;
3774 }
3775
3776 /*
3777 * Get a context for the new current data pointer.
3778 */
3779 hflags = INB(np, HF_PRT);
3780
3781 if (hflags & HF_DP_SAVED)
3782 hflags ^= HF_ACT_PM;
3783
3784 if (!(hflags & HF_ACT_PM)) {
3785 pm = &cp->phys.pm0;
3786 dp_scr = SCRIPTA_BA(np, pm0_data);
3787 }
3788 else {
3789 pm = &cp->phys.pm1;
3790 dp_scr = SCRIPTA_BA(np, pm1_data);
3791 }
3792
3793 hflags &= ~(HF_DP_SAVED);
3794
3795 OUTB(np, HF_PRT, hflags);
3796
3797 /*
3798 * Set up the new current data pointer.
3799 * ofs < 0 there, and for the next data phase, we
3800 * want to transfer part of the data of the sg entry
3801 * corresponding to index dp_sg-1 prior to returning
3802 * to the main data script.
3803 */
3804 pm->ret = cpu_to_scr(dp_ret);
3805 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3806 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3807 pm->sg.addr = cpu_to_scr(tmp);
3808 pm->sg.size = cpu_to_scr(-dp_ofs);
3809
3810 out_ok:
3811 sym_set_script_dp (np, cp, dp_scr);
3812 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3813 return;
3814
3815 out_reject:
3816 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3817 }
3818
3819
3820 /*
3821 * chip calculation of the data residual.
3822 *
3823 * As I used to say, the requirement of data residual
3824 * in SCSI is broken, useless and cannot be achieved
3825 * without huge complexity.
3826 * But most OSes and even the official CAM require it.
3827 * When stupidity happens to be so widely spread inside
3828 * a community, it gets hard to convince.
3829 *
3830 * Anyway, I don't care, since I am not going to use
3831 * any software that considers this data residual as
3832 * a relevant information. :)
3833 */
3834
3835 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3836 {
3837 int dp_sg, dp_sgmin, resid = 0;
3838 int dp_ofs = 0;
3839
3840 /*
3841 * Check for some data lost or just thrown away.
3842 * We are not required to be quite accurate in this
3843 * situation. Btw, if we are odd for output and the
3844 * device claims some more data, it may well happen
3845 * than our residual be zero. :-)
3846 */
3847 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3848 if (cp->xerr_status & XE_EXTRA_DATA)
3849 resid -= cp->extra_bytes;
3850 if (cp->xerr_status & XE_SODL_UNRUN)
3851 ++resid;
3852 if (cp->xerr_status & XE_SWIDE_OVRUN)
3853 --resid;
3854 }
3855
3856 /*
3857 * If all data has been transferred,
3858 * there is no residual.
3859 */
3860 if (cp->phys.head.lastp == sym_goalp(cp))
3861 return resid;
3862
3863 /*
3864 * If no data transfer occurs, or if the data
3865 * pointer is weird, return full residual.
3866 */
3867 if (cp->startp == cp->phys.head.lastp ||
3868 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3869 &dp_ofs) < 0) {
3870 return cp->data_len;
3871 }
3872
3873 /*
3874 * If we were auto-sensing, then we are done.
3875 */
3876 if (cp->host_flags & HF_SENSE) {
3877 return -dp_ofs;
3878 }
3879
3880 /*
3881 * We are now full comfortable in the computation
3882 * of the data residual (2's complement).
3883 */
3884 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3885 resid = -cp->ext_ofs;
3886 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3887 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3888 resid += (tmp & 0xffffff);
3889 }
3890
3891 resid -= cp->odd_byte_adjustment;
3892
3893 /*
3894 * Hopefully, the result is not too wrong.
3895 */
3896 return resid;
3897 }
3898
3899 /*
3900 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3901 *
3902 * When we try to negotiate, we append the negotiation message
3903 * to the identify and (maybe) simple tag message.
3904 * The host status field is set to HS_NEGOTIATE to mark this
3905 * situation.
3906 *
3907 * If the target doesn't answer this message immediately
3908 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3909 * will be raised eventually.
3910 * The handler removes the HS_NEGOTIATE status, and sets the
3911 * negotiated value to the default (async / nowide).
3912 *
3913 * If we receive a matching answer immediately, we check it
3914 * for validity, and set the values.
3915 *
3916 * If we receive a Reject message immediately, we assume the
3917 * negotiation has failed, and fall back to standard values.
3918 *
3919 * If we receive a negotiation message while not in HS_NEGOTIATE
3920 * state, it's a target initiated negotiation. We prepare a
3921 * (hopefully) valid answer, set our parameters, and send back
3922 * this answer to the target.
3923 *
3924 * If the target doesn't fetch the answer (no message out phase),
3925 * we assume the negotiation has failed, and fall back to default
3926 * settings (SIR_NEGO_PROTO interrupt).
3927 *
3928 * When we set the values, we adjust them in all ccbs belonging
3929 * to this target, in the controller's register, and in the "phys"
3930 * field of the controller's struct sym_hcb.
3931 */
3932
3933 /*
3934 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3935 */
3936 static int
3937 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3938 {
3939 int target = cp->target;
3940 u_char chg, ofs, per, fak, div;
3941
3942 if (DEBUG_FLAGS & DEBUG_NEGO) {
3943 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3944 }
3945
3946 /*
3947 * Get requested values.
3948 */
3949 chg = 0;
3950 per = np->msgin[3];
3951 ofs = np->msgin[4];
3952
3953 /*
3954 * Check values against our limits.
3955 */
3956 if (ofs) {
3957 if (ofs > np->maxoffs)
3958 {chg = 1; ofs = np->maxoffs;}
3959 }
3960
3961 if (ofs) {
3962 if (per < np->minsync)
3963 {chg = 1; per = np->minsync;}
3964 }
3965
3966 /*
3967 * Get new chip synchronous parameters value.
3968 */
3969 div = fak = 0;
3970 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3971 goto reject_it;
3972
3973 if (DEBUG_FLAGS & DEBUG_NEGO) {
3974 sym_print_addr(cp->cmd,
3975 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3976 ofs, per, div, fak, chg);
3977 }
3978
3979 /*
3980 * If it was an answer we want to change,
3981 * then it isn't acceptable. Reject it.
3982 */
3983 if (!req && chg)
3984 goto reject_it;
3985
3986 /*
3987 * Apply new values.
3988 */
3989 sym_setsync (np, target, ofs, per, div, fak);
3990
3991 /*
3992 * It was an answer. We are done.
3993 */
3994 if (!req)
3995 return 0;
3996
3997 /*
3998 * It was a request. Prepare an answer message.
3999 */
4000 np->msgout[0] = M_EXTENDED;
4001 np->msgout[1] = 3;
4002 np->msgout[2] = M_X_SYNC_REQ;
4003 np->msgout[3] = per;
4004 np->msgout[4] = ofs;
4005
4006 if (DEBUG_FLAGS & DEBUG_NEGO) {
4007 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4008 }
4009
4010 np->msgin [0] = M_NOOP;
4011
4012 return 0;
4013
4014 reject_it:
4015 sym_setsync (np, target, 0, 0, 0, 0);
4016 return -1;
4017 }
4018
4019 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4020 {
4021 int req = 1;
4022 int result;
4023
4024 /*
4025 * Request or answer ?
4026 */
4027 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4028 OUTB(np, HS_PRT, HS_BUSY);
4029 if (cp->nego_status && cp->nego_status != NS_SYNC)
4030 goto reject_it;
4031 req = 0;
4032 }
4033
4034 /*
4035 * Check and apply new values.
4036 */
4037 result = sym_sync_nego_check(np, req, cp);
4038 if (result) /* Not acceptable, reject it */
4039 goto reject_it;
4040 if (req) { /* Was a request, send response. */
4041 cp->nego_status = NS_SYNC;
4042 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4043 }
4044 else /* Was a response, we are done. */
4045 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4046 return;
4047
4048 reject_it:
4049 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4050 }
4051
4052 /*
4053 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4054 */
4055 static int
4056 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4057 {
4058 struct sym_tcb *tp = &np->target[target];
4059 unsigned char fak, div;
4060 int dt, chg = 0;
4061
4062 unsigned char per = np->msgin[3];
4063 unsigned char ofs = np->msgin[5];
4064 unsigned char wide = np->msgin[6];
4065 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4066
4067 if (DEBUG_FLAGS & DEBUG_NEGO) {
4068 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4069 }
4070
4071 /*
4072 * Check values against our limits.
4073 */
4074 if (wide > np->maxwide) {
4075 chg = 1;
4076 wide = np->maxwide;
4077 }
4078 if (!wide || !(np->features & FE_U3EN))
4079 opts = 0;
4080
4081 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4082 chg = 1;
4083
4084 dt = opts & PPR_OPT_DT;
4085
4086 if (ofs) {
4087 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4088 if (ofs > maxoffs) {
4089 chg = 1;
4090 ofs = maxoffs;
4091 }
4092 }
4093
4094 if (ofs) {
4095 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4096 if (per < minsync) {
4097 chg = 1;
4098 per = minsync;
4099 }
4100 }
4101
4102 /*
4103 * Get new chip synchronous parameters value.
4104 */
4105 div = fak = 0;
4106 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4107 goto reject_it;
4108
4109 /*
4110 * If it was an answer we want to change,
4111 * then it isn't acceptable. Reject it.
4112 */
4113 if (!req && chg)
4114 goto reject_it;
4115
4116 /*
4117 * Apply new values.
4118 */
4119 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4120
4121 /*
4122 * It was an answer. We are done.
4123 */
4124 if (!req)
4125 return 0;
4126
4127 /*
4128 * It was a request. Prepare an answer message.
4129 */
4130 np->msgout[0] = M_EXTENDED;
4131 np->msgout[1] = 6;
4132 np->msgout[2] = M_X_PPR_REQ;
4133 np->msgout[3] = per;
4134 np->msgout[4] = 0;
4135 np->msgout[5] = ofs;
4136 np->msgout[6] = wide;
4137 np->msgout[7] = opts;
4138
4139 if (DEBUG_FLAGS & DEBUG_NEGO) {
4140 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4141 }
4142
4143 np->msgin [0] = M_NOOP;
4144
4145 return 0;
4146
4147 reject_it:
4148 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4149 /*
4150 * If it is a device response that should result in
4151 * ST, we may want to try a legacy negotiation later.
4152 */
4153 if (!req && !opts) {
4154 tp->tgoal.period = per;
4155 tp->tgoal.offset = ofs;
4156 tp->tgoal.width = wide;
4157 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4158 tp->tgoal.check_nego = 1;
4159 }
4160 return -1;
4161 }
4162
4163 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4164 {
4165 int req = 1;
4166 int result;
4167
4168 /*
4169 * Request or answer ?
4170 */
4171 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4172 OUTB(np, HS_PRT, HS_BUSY);
4173 if (cp->nego_status && cp->nego_status != NS_PPR)
4174 goto reject_it;
4175 req = 0;
4176 }
4177
4178 /*
4179 * Check and apply new values.
4180 */
4181 result = sym_ppr_nego_check(np, req, cp->target);
4182 if (result) /* Not acceptable, reject it */
4183 goto reject_it;
4184 if (req) { /* Was a request, send response. */
4185 cp->nego_status = NS_PPR;
4186 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4187 }
4188 else /* Was a response, we are done. */
4189 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4190 return;
4191
4192 reject_it:
4193 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4194 }
4195
4196 /*
4197 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4198 */
4199 static int
4200 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4201 {
4202 int target = cp->target;
4203 u_char chg, wide;
4204
4205 if (DEBUG_FLAGS & DEBUG_NEGO) {
4206 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4207 }
4208
4209 /*
4210 * Get requested values.
4211 */
4212 chg = 0;
4213 wide = np->msgin[3];
4214
4215 /*
4216 * Check values against our limits.
4217 */
4218 if (wide > np->maxwide) {
4219 chg = 1;
4220 wide = np->maxwide;
4221 }
4222
4223 if (DEBUG_FLAGS & DEBUG_NEGO) {
4224 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4225 wide, chg);
4226 }
4227
4228 /*
4229 * If it was an answer we want to change,
4230 * then it isn't acceptable. Reject it.
4231 */
4232 if (!req && chg)
4233 goto reject_it;
4234
4235 /*
4236 * Apply new values.
4237 */
4238 sym_setwide (np, target, wide);
4239
4240 /*
4241 * It was an answer. We are done.
4242 */
4243 if (!req)
4244 return 0;
4245
4246 /*
4247 * It was a request. Prepare an answer message.
4248 */
4249 np->msgout[0] = M_EXTENDED;
4250 np->msgout[1] = 2;
4251 np->msgout[2] = M_X_WIDE_REQ;
4252 np->msgout[3] = wide;
4253
4254 np->msgin [0] = M_NOOP;
4255
4256 if (DEBUG_FLAGS & DEBUG_NEGO) {
4257 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4258 }
4259
4260 return 0;
4261
4262 reject_it:
4263 return -1;
4264 }
4265
4266 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4267 {
4268 int req = 1;
4269 int result;
4270
4271 /*
4272 * Request or answer ?
4273 */
4274 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4275 OUTB(np, HS_PRT, HS_BUSY);
4276 if (cp->nego_status && cp->nego_status != NS_WIDE)
4277 goto reject_it;
4278 req = 0;
4279 }
4280
4281 /*
4282 * Check and apply new values.
4283 */
4284 result = sym_wide_nego_check(np, req, cp);
4285 if (result) /* Not acceptable, reject it */
4286 goto reject_it;
4287 if (req) { /* Was a request, send response. */
4288 cp->nego_status = NS_WIDE;
4289 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4290 } else { /* Was a response. */
4291 /*
4292 * Negotiate for SYNC immediately after WIDE response.
4293 * This allows to negotiate for both WIDE and SYNC on
4294 * a single SCSI command (Suggested by Justin Gibbs).
4295 */
4296 if (tp->tgoal.offset) {
4297 np->msgout[0] = M_EXTENDED;
4298 np->msgout[1] = 3;
4299 np->msgout[2] = M_X_SYNC_REQ;
4300 np->msgout[3] = tp->tgoal.period;
4301 np->msgout[4] = tp->tgoal.offset;
4302
4303 if (DEBUG_FLAGS & DEBUG_NEGO) {
4304 sym_print_nego_msg(np, cp->target,
4305 "sync msgout", np->msgout);
4306 }
4307
4308 cp->nego_status = NS_SYNC;
4309 OUTB(np, HS_PRT, HS_NEGOTIATE);
4310 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4311 return;
4312 } else
4313 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4314 }
4315
4316 return;
4317
4318 reject_it:
4319 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4320 }
4321
4322 /*
4323 * Reset DT, SYNC or WIDE to default settings.
4324 *
4325 * Called when a negotiation does not succeed either
4326 * on rejection or on protocol error.
4327 *
4328 * A target that understands a PPR message should never
4329 * reject it, and messing with it is very unlikely.
4330 * So, if a PPR makes problems, we may just want to
4331 * try a legacy negotiation later.
4332 */
4333 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4334 {
4335 switch (cp->nego_status) {
4336 case NS_PPR:
4337 #if 0
4338 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4339 #else
4340 if (tp->tgoal.period < np->minsync)
4341 tp->tgoal.period = np->minsync;
4342 if (tp->tgoal.offset > np->maxoffs)
4343 tp->tgoal.offset = np->maxoffs;
4344 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4345 tp->tgoal.check_nego = 1;
4346 #endif
4347 break;
4348 case NS_SYNC:
4349 sym_setsync (np, cp->target, 0, 0, 0, 0);
4350 break;
4351 case NS_WIDE:
4352 sym_setwide (np, cp->target, 0);
4353 break;
4354 }
4355 np->msgin [0] = M_NOOP;
4356 np->msgout[0] = M_NOOP;
4357 cp->nego_status = 0;
4358 }
4359
4360 /*
4361 * chip handler for MESSAGE REJECT received in response to
4362 * PPR, WIDE or SYNCHRONOUS negotiation.
4363 */
4364 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4365 {
4366 sym_nego_default(np, tp, cp);
4367 OUTB(np, HS_PRT, HS_BUSY);
4368 }
4369
4370 /*
4371 * chip exception handler for programmed interrupts.
4372 */
4373 static void sym_int_sir (struct sym_hcb *np)
4374 {
4375 u_char num = INB(np, nc_dsps);
4376 u32 dsa = INL(np, nc_dsa);
4377 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4378 u_char target = INB(np, nc_sdid) & 0x0f;
4379 struct sym_tcb *tp = &np->target[target];
4380 int tmp;
4381
4382 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4383
4384 switch (num) {
4385 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4386 /*
4387 * SCRIPTS tell us that we may have to update
4388 * 64 bit DMA segment registers.
4389 */
4390 case SIR_DMAP_DIRTY:
4391 sym_update_dmap_regs(np);
4392 goto out;
4393 #endif
4394 /*
4395 * Command has been completed with error condition
4396 * or has been auto-sensed.
4397 */
4398 case SIR_COMPLETE_ERROR:
4399 sym_complete_error(np, cp);
4400 return;
4401 /*
4402 * The C code is currently trying to recover from something.
4403 * Typically, user want to abort some command.
4404 */
4405 case SIR_SCRIPT_STOPPED:
4406 case SIR_TARGET_SELECTED:
4407 case SIR_ABORT_SENT:
4408 sym_sir_task_recovery(np, num);
4409 return;
4410 /*
4411 * The device didn't go to MSG OUT phase after having
4412 * been selected with ATN. We donnot want to handle
4413 * that.
4414 */
4415 case SIR_SEL_ATN_NO_MSG_OUT:
4416 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4417 sym_name (np), target);
4418 goto out_stuck;
4419 /*
4420 * The device didn't switch to MSG IN phase after
4421 * having reseleted the initiator.
4422 */
4423 case SIR_RESEL_NO_MSG_IN:
4424 printf ("%s:%d: No MSG IN phase after reselection.\n",
4425 sym_name (np), target);
4426 goto out_stuck;
4427 /*
4428 * After reselection, the device sent a message that wasn't
4429 * an IDENTIFY.
4430 */
4431 case SIR_RESEL_NO_IDENTIFY:
4432 printf ("%s:%d: No IDENTIFY after reselection.\n",
4433 sym_name (np), target);
4434 goto out_stuck;
4435 /*
4436 * The device reselected a LUN we donnot know about.
4437 */
4438 case SIR_RESEL_BAD_LUN:
4439 np->msgout[0] = M_RESET;
4440 goto out;
4441 /*
4442 * The device reselected for an untagged nexus and we
4443 * haven't any.
4444 */
4445 case SIR_RESEL_BAD_I_T_L:
4446 np->msgout[0] = M_ABORT;
4447 goto out;
4448 /*
4449 * The device reselected for a tagged nexus that we donnot
4450 * have.
4451 */
4452 case SIR_RESEL_BAD_I_T_L_Q:
4453 np->msgout[0] = M_ABORT_TAG;
4454 goto out;
4455 /*
4456 * The SCRIPTS let us know that the device has grabbed
4457 * our message and will abort the job.
4458 */
4459 case SIR_RESEL_ABORTED:
4460 np->lastmsg = np->msgout[0];
4461 np->msgout[0] = M_NOOP;
4462 printf ("%s:%d: message %x sent on bad reselection.\n",
4463 sym_name (np), target, np->lastmsg);
4464 goto out;
4465 /*
4466 * The SCRIPTS let us know that a message has been
4467 * successfully sent to the device.
4468 */
4469 case SIR_MSG_OUT_DONE:
4470 np->lastmsg = np->msgout[0];
4471 np->msgout[0] = M_NOOP;
4472 /* Should we really care of that */
4473 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4474 if (cp) {
4475 cp->xerr_status &= ~XE_PARITY_ERR;
4476 if (!cp->xerr_status)
4477 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4478 }
4479 }
4480 goto out;
4481 /*
4482 * The device didn't send a GOOD SCSI status.
4483 * We may have some work to do prior to allow
4484 * the SCRIPTS processor to continue.
4485 */
4486 case SIR_BAD_SCSI_STATUS:
4487 if (!cp)
4488 goto out;
4489 sym_sir_bad_scsi_status(np, num, cp);
4490 return;
4491 /*
4492 * We are asked by the SCRIPTS to prepare a
4493 * REJECT message.
4494 */
4495 case SIR_REJECT_TO_SEND:
4496 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4497 np->msgout[0] = M_REJECT;
4498 goto out;
4499 /*
4500 * We have been ODD at the end of a DATA IN
4501 * transfer and the device didn't send a
4502 * IGNORE WIDE RESIDUE message.
4503 * It is a data overrun condition.
4504 */
4505 case SIR_SWIDE_OVERRUN:
4506 if (cp) {
4507 OUTONB(np, HF_PRT, HF_EXT_ERR);
4508 cp->xerr_status |= XE_SWIDE_OVRUN;
4509 }
4510 goto out;
4511 /*
4512 * We have been ODD at the end of a DATA OUT
4513 * transfer.
4514 * It is a data underrun condition.
4515 */
4516 case SIR_SODL_UNDERRUN:
4517 if (cp) {
4518 OUTONB(np, HF_PRT, HF_EXT_ERR);
4519 cp->xerr_status |= XE_SODL_UNRUN;
4520 }
4521 goto out;
4522 /*
4523 * The device wants us to tranfer more data than
4524 * expected or in the wrong direction.
4525 * The number of extra bytes is in scratcha.
4526 * It is a data overrun condition.
4527 */
4528 case SIR_DATA_OVERRUN:
4529 if (cp) {
4530 OUTONB(np, HF_PRT, HF_EXT_ERR);
4531 cp->xerr_status |= XE_EXTRA_DATA;
4532 cp->extra_bytes += INL(np, nc_scratcha);
4533 }
4534 goto out;
4535 /*
4536 * The device switched to an illegal phase (4/5).
4537 */
4538 case SIR_BAD_PHASE:
4539 if (cp) {
4540 OUTONB(np, HF_PRT, HF_EXT_ERR);
4541 cp->xerr_status |= XE_BAD_PHASE;
4542 }
4543 goto out;
4544 /*
4545 * We received a message.
4546 */
4547 case SIR_MSG_RECEIVED:
4548 if (!cp)
4549 goto out_stuck;
4550 switch (np->msgin [0]) {
4551 /*
4552 * We received an extended message.
4553 * We handle MODIFY DATA POINTER, SDTR, WDTR
4554 * and reject all other extended messages.
4555 */
4556 case M_EXTENDED:
4557 switch (np->msgin [2]) {
4558 case M_X_MODIFY_DP:
4559 if (DEBUG_FLAGS & DEBUG_POINTER)
4560 sym_print_msg(cp,"modify DP",np->msgin);
4561 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4562 (np->msgin[5]<<8) + (np->msgin[6]);
4563 sym_modify_dp(np, tp, cp, tmp);
4564 return;
4565 case M_X_SYNC_REQ:
4566 sym_sync_nego(np, tp, cp);
4567 return;
4568 case M_X_PPR_REQ:
4569 sym_ppr_nego(np, tp, cp);
4570 return;
4571 case M_X_WIDE_REQ:
4572 sym_wide_nego(np, tp, cp);
4573 return;
4574 default:
4575 goto out_reject;
4576 }
4577 break;
4578 /*
4579 * We received a 1/2 byte message not handled from SCRIPTS.
4580 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4581 * RESIDUE messages that haven't been anticipated by
4582 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4583 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4584 */
4585 case M_IGN_RESIDUE:
4586 if (DEBUG_FLAGS & DEBUG_POINTER)
4587 sym_print_msg(cp,"ign wide residue", np->msgin);
4588 if (cp->host_flags & HF_SENSE)
4589 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4590 else
4591 sym_modify_dp(np, tp, cp, -1);
4592 return;
4593 case M_REJECT:
4594 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4595 sym_nego_rejected(np, tp, cp);
4596 else {
4597 sym_print_addr(cp->cmd,
4598 "M_REJECT received (%x:%x).\n",
4599 scr_to_cpu(np->lastmsg), np->msgout[0]);
4600 }
4601 goto out_clrack;
4602 break;
4603 default:
4604 goto out_reject;
4605 }
4606 break;
4607 /*
4608 * We received an unknown message.
4609 * Ignore all MSG IN phases and reject it.
4610 */
4611 case SIR_MSG_WEIRD:
4612 sym_print_msg(cp, "WEIRD message received", np->msgin);
4613 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4614 return;
4615 /*
4616 * Negotiation failed.
4617 * Target does not send us the reply.
4618 * Remove the HS_NEGOTIATE status.
4619 */
4620 case SIR_NEGO_FAILED:
4621 OUTB(np, HS_PRT, HS_BUSY);
4622 /*
4623 * Negotiation failed.
4624 * Target does not want answer message.
4625 */
4626 case SIR_NEGO_PROTO:
4627 sym_nego_default(np, tp, cp);
4628 goto out;
4629 }
4630
4631 out:
4632 OUTONB_STD();
4633 return;
4634 out_reject:
4635 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4636 return;
4637 out_clrack:
4638 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4639 return;
4640 out_stuck:
4641 return;
4642 }
4643
4644 /*
4645 * Acquire a control block
4646 */
4647 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4648 {
4649 u_char tn = cmd->device->id;
4650 u_char ln = cmd->device->lun;
4651 struct sym_tcb *tp = &np->target[tn];
4652 struct sym_lcb *lp = sym_lp(tp, ln);
4653 u_short tag = NO_TAG;
4654 SYM_QUEHEAD *qp;
4655 struct sym_ccb *cp = NULL;
4656
4657 /*
4658 * Look for a free CCB
4659 */
4660 if (sym_que_empty(&np->free_ccbq))
4661 sym_alloc_ccb(np);
4662 qp = sym_remque_head(&np->free_ccbq);
4663 if (!qp)
4664 goto out;
4665 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4666
4667 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4668 /*
4669 * If the LCB is not yet available and the LUN
4670 * has been probed ok, try to allocate the LCB.
4671 */
4672 if (!lp && sym_is_bit(tp->lun_map, ln)) {
4673 lp = sym_alloc_lcb(np, tn, ln);
4674 if (!lp)
4675 goto out_free;
4676 }
4677 #endif
4678
4679 /*
4680 * If the LCB is not available here, then the
4681 * logical unit is not yet discovered. For those
4682 * ones only accept 1 SCSI IO per logical unit,
4683 * since we cannot allow disconnections.
4684 */
4685 if (!lp) {
4686 if (!sym_is_bit(tp->busy0_map, ln))
4687 sym_set_bit(tp->busy0_map, ln);
4688 else
4689 goto out_free;
4690 } else {
4691 /*
4692 * If we have been asked for a tagged command.
4693 */
4694 if (tag_order) {
4695 /*
4696 * Debugging purpose.
4697 */
4698 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4699 assert(lp->busy_itl == 0);
4700 #endif
4701 /*
4702 * Allocate resources for tags if not yet.
4703 */
4704 if (!lp->cb_tags) {
4705 sym_alloc_lcb_tags(np, tn, ln);
4706 if (!lp->cb_tags)
4707 goto out_free;
4708 }
4709 /*
4710 * Get a tag for this SCSI IO and set up
4711 * the CCB bus address for reselection,
4712 * and count it for this LUN.
4713 * Toggle reselect path to tagged.
4714 */
4715 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4716 tag = lp->cb_tags[lp->ia_tag];
4717 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4718 lp->ia_tag = 0;
4719 ++lp->busy_itlq;
4720 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4721 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4722 lp->head.resel_sa =
4723 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4724 #endif
4725 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4726 cp->tags_si = lp->tags_si;
4727 ++lp->tags_sum[cp->tags_si];
4728 ++lp->tags_since;
4729 #endif
4730 }
4731 else
4732 goto out_free;
4733 }
4734 /*
4735 * This command will not be tagged.
4736 * If we already have either a tagged or untagged
4737 * one, refuse to overlap this untagged one.
4738 */
4739 else {
4740 /*
4741 * Debugging purpose.
4742 */
4743 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4744 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4745 #endif
4746 /*
4747 * Count this nexus for this LUN.
4748 * Set up the CCB bus address for reselection.
4749 * Toggle reselect path to untagged.
4750 */
4751 ++lp->busy_itl;
4752 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4753 if (lp->busy_itl == 1) {
4754 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4755 lp->head.resel_sa =
4756 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4757 }
4758 else
4759 goto out_free;
4760 #endif
4761 }
4762 }
4763 /*
4764 * Put the CCB into the busy queue.
4765 */
4766 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4767 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4768 if (lp) {
4769 sym_remque(&cp->link2_ccbq);
4770 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4771 }
4772
4773 #endif
4774 cp->to_abort = 0;
4775 cp->odd_byte_adjustment = 0;
4776 cp->tag = tag;
4777 cp->order = tag_order;
4778 cp->target = tn;
4779 cp->lun = ln;
4780
4781 if (DEBUG_FLAGS & DEBUG_TAGS) {
4782 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4783 }
4784
4785 out:
4786 return cp;
4787 out_free:
4788 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4789 return NULL;
4790 }
4791
4792 /*
4793 * Release one control block
4794 */
4795 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4796 {
4797 struct sym_tcb *tp = &np->target[cp->target];
4798 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4799
4800 if (DEBUG_FLAGS & DEBUG_TAGS) {
4801 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4802 cp, cp->tag);
4803 }
4804
4805 /*
4806 * If LCB available,
4807 */
4808 if (lp) {
4809 /*
4810 * If tagged, release the tag, set the relect path
4811 */
4812 if (cp->tag != NO_TAG) {
4813 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4814 --lp->tags_sum[cp->tags_si];
4815 #endif
4816 /*
4817 * Free the tag value.
4818 */
4819 lp->cb_tags[lp->if_tag] = cp->tag;
4820 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4821 lp->if_tag = 0;
4822 /*
4823 * Make the reselect path invalid,
4824 * and uncount this CCB.
4825 */
4826 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4827 --lp->busy_itlq;
4828 } else { /* Untagged */
4829 /*
4830 * Make the reselect path invalid,
4831 * and uncount this CCB.
4832 */
4833 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4834 --lp->busy_itl;
4835 }
4836 /*
4837 * If no JOB active, make the LUN reselect path invalid.
4838 */
4839 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4840 lp->head.resel_sa =
4841 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4842 }
4843 /*
4844 * Otherwise, we only accept 1 IO per LUN.
4845 * Clear the bit that keeps track of this IO.
4846 */
4847 else
4848 sym_clr_bit(tp->busy0_map, cp->lun);
4849
4850 /*
4851 * We donnot queue more than 1 ccb per target
4852 * with negotiation at any time. If this ccb was
4853 * used for negotiation, clear this info in the tcb.
4854 */
4855 if (cp == tp->nego_cp)
4856 tp->nego_cp = NULL;
4857
4858 #ifdef SYM_CONF_IARB_SUPPORT
4859 /*
4860 * If we just complete the last queued CCB,
4861 * clear this info that is no longer relevant.
4862 */
4863 if (cp == np->last_cp)
4864 np->last_cp = 0;
4865 #endif
4866
4867 /*
4868 * Make this CCB available.
4869 */
4870 cp->cmd = NULL;
4871 cp->host_status = HS_IDLE;
4872 sym_remque(&cp->link_ccbq);
4873 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4874
4875 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4876 if (lp) {
4877 sym_remque(&cp->link2_ccbq);
4878 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4879 if (cp->started) {
4880 if (cp->tag != NO_TAG)
4881 --lp->started_tags;
4882 else
4883 --lp->started_no_tag;
4884 }
4885 }
4886 cp->started = 0;
4887 #endif
4888 }
4889
4890 /*
4891 * Allocate a CCB from memory and initialize its fixed part.
4892 */
4893 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4894 {
4895 struct sym_ccb *cp = NULL;
4896 int hcode;
4897
4898 /*
4899 * Prevent from allocating more CCBs than we can
4900 * queue to the controller.
4901 */
4902 if (np->actccbs >= SYM_CONF_MAX_START)
4903 return NULL;
4904
4905 /*
4906 * Allocate memory for this CCB.
4907 */
4908 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4909 if (!cp)
4910 goto out_free;
4911
4912 /*
4913 * Count it.
4914 */
4915 np->actccbs++;
4916
4917 /*
4918 * Compute the bus address of this ccb.
4919 */
4920 cp->ccb_ba = vtobus(cp);
4921
4922 /*
4923 * Insert this ccb into the hashed list.
4924 */
4925 hcode = CCB_HASH_CODE(cp->ccb_ba);
4926 cp->link_ccbh = np->ccbh[hcode];
4927 np->ccbh[hcode] = cp;
4928
4929 /*
4930 * Initialyze the start and restart actions.
4931 */
4932 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4933 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4934
4935 /*
4936 * Initilialyze some other fields.
4937 */
4938 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4939
4940 /*
4941 * Chain into free ccb queue.
4942 */
4943 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4944
4945 /*
4946 * Chain into optionnal lists.
4947 */
4948 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4949 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4950 #endif
4951 return cp;
4952 out_free:
4953 if (cp)
4954 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4955 return NULL;
4956 }
4957
4958 /*
4959 * Look up a CCB from a DSA value.
4960 */
4961 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4962 {
4963 int hcode;
4964 struct sym_ccb *cp;
4965
4966 hcode = CCB_HASH_CODE(dsa);
4967 cp = np->ccbh[hcode];
4968 while (cp) {
4969 if (cp->ccb_ba == dsa)
4970 break;
4971 cp = cp->link_ccbh;
4972 }
4973
4974 return cp;
4975 }
4976
4977 /*
4978 * Target control block initialisation.
4979 * Nothing important to do at the moment.
4980 */
4981 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4982 {
4983 #if 0 /* Hmmm... this checking looks paranoid. */
4984 /*
4985 * Check some alignments required by the chip.
4986 */
4987 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4988 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4989 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4990 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4991 #endif
4992 }
4993
4994 /*
4995 * Lun control block allocation and initialization.
4996 */
4997 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4998 {
4999 struct sym_tcb *tp = &np->target[tn];
5000 struct sym_lcb *lp = sym_lp(tp, ln);
5001
5002 /*
5003 * Already done, just return.
5004 */
5005 if (lp)
5006 return lp;
5007
5008 /*
5009 * Donnot allow LUN control block
5010 * allocation for not probed LUNs.
5011 */
5012 if (!sym_is_bit(tp->lun_map, ln))
5013 return NULL;
5014
5015 /*
5016 * Initialize the target control block if not yet.
5017 */
5018 sym_init_tcb (np, tn);
5019
5020 /*
5021 * Allocate the LCB bus address array.
5022 * Compute the bus address of this table.
5023 */
5024 if (ln && !tp->luntbl) {
5025 int i;
5026
5027 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5028 if (!tp->luntbl)
5029 goto fail;
5030 for (i = 0 ; i < 64 ; i++)
5031 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5032 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5033 }
5034
5035 /*
5036 * Allocate the table of pointers for LUN(s) > 0, if needed.
5037 */
5038 if (ln && !tp->lunmp) {
5039 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5040 GFP_KERNEL);
5041 if (!tp->lunmp)
5042 goto fail;
5043 }
5044
5045 /*
5046 * Allocate the lcb.
5047 * Make it available to the chip.
5048 */
5049 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5050 if (!lp)
5051 goto fail;
5052 if (ln) {
5053 tp->lunmp[ln] = lp;
5054 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5055 }
5056 else {
5057 tp->lun0p = lp;
5058 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5059 }
5060
5061 /*
5062 * Let the itl task point to error handling.
5063 */
5064 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5065
5066 /*
5067 * Set the reselect pattern to our default. :)
5068 */
5069 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5070
5071 /*
5072 * Set user capabilities.
5073 */
5074 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5075
5076 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5077 /*
5078 * Initialize device queueing.
5079 */
5080 sym_que_init(&lp->waiting_ccbq);
5081 sym_que_init(&lp->started_ccbq);
5082 lp->started_max = SYM_CONF_MAX_TASK;
5083 lp->started_limit = SYM_CONF_MAX_TASK;
5084 #endif
5085 /*
5086 * If we are busy, count the IO.
5087 */
5088 if (sym_is_bit(tp->busy0_map, ln)) {
5089 lp->busy_itl = 1;
5090 sym_clr_bit(tp->busy0_map, ln);
5091 }
5092 fail:
5093 return lp;
5094 }
5095
5096 /*
5097 * Allocate LCB resources for tagged command queuing.
5098 */
5099 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5100 {
5101 struct sym_tcb *tp = &np->target[tn];
5102 struct sym_lcb *lp = sym_lp(tp, ln);
5103 int i;
5104
5105 /*
5106 * If LCB not available, try to allocate it.
5107 */
5108 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5109 goto fail;
5110
5111 /*
5112 * Allocate the task table and and the tag allocation
5113 * circular buffer. We want both or none.
5114 */
5115 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5116 if (!lp->itlq_tbl)
5117 goto fail;
5118 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5119 if (!lp->cb_tags) {
5120 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5121 lp->itlq_tbl = NULL;
5122 goto fail;
5123 }
5124
5125 /*
5126 * Initialize the task table with invalid entries.
5127 */
5128 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5129 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5130
5131 /*
5132 * Fill up the tag buffer with tag numbers.
5133 */
5134 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5135 lp->cb_tags[i] = i;
5136
5137 /*
5138 * Make the task table available to SCRIPTS,
5139 * And accept tagged commands now.
5140 */
5141 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5142
5143 return;
5144 fail:
5145 return;
5146 }
5147
5148 /*
5149 * Queue a SCSI IO to the controller.
5150 */
5151 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5152 {
5153 struct scsi_device *sdev = cmd->device;
5154 struct sym_tcb *tp;
5155 struct sym_lcb *lp;
5156 u_char *msgptr;
5157 u_int msglen;
5158 int can_disconnect;
5159
5160 /*
5161 * Keep track of the IO in our CCB.
5162 */
5163 cp->cmd = cmd;
5164
5165 /*
5166 * Retrieve the target descriptor.
5167 */
5168 tp = &np->target[cp->target];
5169
5170 /*
5171 * Retrieve the lun descriptor.
5172 */
5173 lp = sym_lp(tp, sdev->lun);
5174
5175 can_disconnect = (cp->tag != NO_TAG) ||
5176 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5177
5178 msgptr = cp->scsi_smsg;
5179 msglen = 0;
5180 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5181
5182 /*
5183 * Build the tag message if present.
5184 */
5185 if (cp->tag != NO_TAG) {
5186 u_char order = cp->order;
5187
5188 switch(order) {
5189 case M_ORDERED_TAG:
5190 break;
5191 case M_HEAD_TAG:
5192 break;
5193 default:
5194 order = M_SIMPLE_TAG;
5195 }
5196 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5197 /*
5198 * Avoid too much reordering of SCSI commands.
5199 * The algorithm tries to prevent completion of any
5200 * tagged command from being delayed against more
5201 * than 3 times the max number of queued commands.
5202 */
5203 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5204 lp->tags_si = !(lp->tags_si);
5205 if (lp->tags_sum[lp->tags_si]) {
5206 order = M_ORDERED_TAG;
5207 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5208 sym_print_addr(cmd,
5209 "ordered tag forced.\n");
5210 }
5211 }
5212 lp->tags_since = 0;
5213 }
5214 #endif
5215 msgptr[msglen++] = order;
5216
5217 /*
5218 * For less than 128 tags, actual tags are numbered
5219 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5220 * with devices that have problems with #TAG 0 or too
5221 * great #TAG numbers. For more tags (up to 256),
5222 * we use directly our tag number.
5223 */
5224 #if SYM_CONF_MAX_TASK > (512/4)
5225 msgptr[msglen++] = cp->tag;
5226 #else
5227 msgptr[msglen++] = (cp->tag << 1) + 1;
5228 #endif
5229 }
5230
5231 /*
5232 * Build a negotiation message if needed.
5233 * (nego_status is filled by sym_prepare_nego())
5234 */
5235 cp->nego_status = 0;
5236 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5237 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5238 }
5239
5240 /*
5241 * Startqueue
5242 */
5243 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5244 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5245
5246 /*
5247 * select
5248 */
5249 cp->phys.select.sel_id = cp->target;
5250 cp->phys.select.sel_scntl3 = tp->head.wval;
5251 cp->phys.select.sel_sxfer = tp->head.sval;
5252 cp->phys.select.sel_scntl4 = tp->head.uval;
5253
5254 /*
5255 * message
5256 */
5257 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5258 cp->phys.smsg.size = cpu_to_scr(msglen);
5259
5260 /*
5261 * status
5262 */
5263 cp->host_xflags = 0;
5264 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5265 cp->ssss_status = S_ILLEGAL;
5266 cp->xerr_status = 0;
5267 cp->host_flags = 0;
5268 cp->extra_bytes = 0;
5269
5270 /*
5271 * extreme data pointer.
5272 * shall be positive, so -1 is lower than lowest.:)
5273 */
5274 cp->ext_sg = -1;
5275 cp->ext_ofs = 0;
5276
5277 /*
5278 * Build the CDB and DATA descriptor block
5279 * and start the IO.
5280 */
5281 return sym_setup_data_and_start(np, cmd, cp);
5282 }
5283
5284 /*
5285 * Reset a SCSI target (all LUNs of this target).
5286 */
5287 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5288 {
5289 struct sym_tcb *tp;
5290
5291 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5292 return -1;
5293
5294 tp = &np->target[target];
5295 tp->to_reset = 1;
5296
5297 np->istat_sem = SEM;
5298 OUTB(np, nc_istat, SIGP|SEM);
5299
5300 return 0;
5301 }
5302
5303 /*
5304 * Abort a SCSI IO.
5305 */
5306 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5307 {
5308 /*
5309 * Check that the IO is active.
5310 */
5311 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5312 return -1;
5313
5314 /*
5315 * If a previous abort didn't succeed in time,
5316 * perform a BUS reset.
5317 */
5318 if (cp->to_abort) {
5319 sym_reset_scsi_bus(np, 1);
5320 return 0;
5321 }
5322
5323 /*
5324 * Mark the CCB for abort and allow time for.
5325 */
5326 cp->to_abort = timed_out ? 2 : 1;
5327
5328 /*
5329 * Tell the SCRIPTS processor to stop and synchronize with us.
5330 */
5331 np->istat_sem = SEM;
5332 OUTB(np, nc_istat, SIGP|SEM);
5333 return 0;
5334 }
5335
5336 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5337 {
5338 struct sym_ccb *cp;
5339 SYM_QUEHEAD *qp;
5340
5341 /*
5342 * Look up our CCB control block.
5343 */
5344 cp = NULL;
5345 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5346 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5347 if (cp2->cmd == cmd) {
5348 cp = cp2;
5349 break;
5350 }
5351 }
5352
5353 return sym_abort_ccb(np, cp, timed_out);
5354 }
5355
5356 /*
5357 * Complete execution of a SCSI command with extended
5358 * error, SCSI status error, or having been auto-sensed.
5359 *
5360 * The SCRIPTS processor is not running there, so we
5361 * can safely access IO registers and remove JOBs from
5362 * the START queue.
5363 * SCRATCHA is assumed to have been loaded with STARTPOS
5364 * before the SCRIPTS called the C code.
5365 */
5366 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5367 {
5368 struct scsi_device *sdev;
5369 struct scsi_cmnd *cmd;
5370 struct sym_tcb *tp;
5371 struct sym_lcb *lp;
5372 int resid;
5373 int i;
5374
5375 /*
5376 * Paranoid check. :)
5377 */
5378 if (!cp || !cp->cmd)
5379 return;
5380
5381 cmd = cp->cmd;
5382 sdev = cmd->device;
5383 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5384 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5385 cp->host_status, cp->ssss_status, cp->host_flags);
5386 }
5387
5388 /*
5389 * Get target and lun pointers.
5390 */
5391 tp = &np->target[cp->target];
5392 lp = sym_lp(tp, sdev->lun);
5393
5394 /*
5395 * Check for extended errors.
5396 */
5397 if (cp->xerr_status) {
5398 if (sym_verbose)
5399 sym_print_xerr(cmd, cp->xerr_status);
5400 if (cp->host_status == HS_COMPLETE)
5401 cp->host_status = HS_COMP_ERR;
5402 }
5403
5404 /*
5405 * Calculate the residual.
5406 */
5407 resid = sym_compute_residual(np, cp);
5408
5409 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5410 resid = 0; /* throw them away. :) */
5411 cp->sv_resid = 0;
5412 }
5413 #ifdef DEBUG_2_0_X
5414 if (resid)
5415 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5416 #endif
5417
5418 /*
5419 * Dequeue all queued CCBs for that device
5420 * not yet started by SCRIPTS.
5421 */
5422 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5423 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5424
5425 /*
5426 * Restart the SCRIPTS processor.
5427 */
5428 OUTL_DSP(np, SCRIPTA_BA(np, start));
5429
5430 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5431 if (cp->host_status == HS_COMPLETE &&
5432 cp->ssss_status == S_QUEUE_FULL) {
5433 if (!lp || lp->started_tags - i < 2)
5434 goto weirdness;
5435 /*
5436 * Decrease queue depth as needed.
5437 */
5438 lp->started_max = lp->started_tags - i - 1;
5439 lp->num_sgood = 0;
5440
5441 if (sym_verbose >= 2) {
5442 sym_print_addr(cmd, " queue depth is now %d\n",
5443 lp->started_max);
5444 }
5445
5446 /*
5447 * Repair the CCB.
5448 */
5449 cp->host_status = HS_BUSY;
5450 cp->ssss_status = S_ILLEGAL;
5451
5452 /*
5453 * Let's requeue it to device.
5454 */
5455 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5456 goto finish;
5457 }
5458 weirdness:
5459 #endif
5460 /*
5461 * Build result in CAM ccb.
5462 */
5463 sym_set_cam_result_error(np, cp, resid);
5464
5465 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5466 finish:
5467 #endif
5468 /*
5469 * Add this one to the COMP queue.
5470 */
5471 sym_remque(&cp->link_ccbq);
5472 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5473
5474 /*
5475 * Complete all those commands with either error
5476 * or requeue condition.
5477 */
5478 sym_flush_comp_queue(np, 0);
5479
5480 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5481 /*
5482 * Donnot start more than 1 command after an error.
5483 */
5484 if (lp)
5485 sym_start_next_ccbs(np, lp, 1);
5486 #endif
5487 }
5488
5489 /*
5490 * Complete execution of a successful SCSI command.
5491 *
5492 * Only successful commands go to the DONE queue,
5493 * since we need to have the SCRIPTS processor
5494 * stopped on any error condition.
5495 * The SCRIPTS processor is running while we are
5496 * completing successful commands.
5497 */
5498 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5499 {
5500 struct sym_tcb *tp;
5501 struct sym_lcb *lp;
5502 struct scsi_cmnd *cmd;
5503 int resid;
5504
5505 /*
5506 * Paranoid check. :)
5507 */
5508 if (!cp || !cp->cmd)
5509 return;
5510 assert (cp->host_status == HS_COMPLETE);
5511
5512 /*
5513 * Get user command.
5514 */
5515 cmd = cp->cmd;
5516
5517 /*
5518 * Get target and lun pointers.
5519 */
5520 tp = &np->target[cp->target];
5521 lp = sym_lp(tp, cp->lun);
5522
5523 /*
5524 * Assume device discovered on first success.
5525 */
5526 if (!lp)
5527 sym_set_bit(tp->lun_map, cp->lun);
5528
5529 /*
5530 * If all data have been transferred, given than no
5531 * extended error did occur, there is no residual.
5532 */
5533 resid = 0;
5534 if (cp->phys.head.lastp != sym_goalp(cp))
5535 resid = sym_compute_residual(np, cp);
5536
5537 /*
5538 * Wrong transfer residuals may be worse than just always
5539 * returning zero. User can disable this feature in
5540 * sym53c8xx.h. Residual support is enabled by default.
5541 */
5542 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5543 resid = 0;
5544 #ifdef DEBUG_2_0_X
5545 if (resid)
5546 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5547 #endif
5548
5549 /*
5550 * Build result in CAM ccb.
5551 */
5552 sym_set_cam_result_ok(cp, cmd, resid);
5553
5554 #ifdef SYM_OPT_SNIFF_INQUIRY
5555 /*
5556 * On standard INQUIRY response (EVPD and CmDt
5557 * not set), sniff out device capabilities.
5558 */
5559 if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5560 sym_sniff_inquiry(np, cmd, resid);
5561 #endif
5562
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 /*
5565 * If max number of started ccbs had been reduced,
5566 * increase it if 200 good status received.
5567 */
5568 if (lp && lp->started_max < lp->started_limit) {
5569 ++lp->num_sgood;
5570 if (lp->num_sgood >= 200) {
5571 lp->num_sgood = 0;
5572 ++lp->started_max;
5573 if (sym_verbose >= 2) {
5574 sym_print_addr(cmd, " queue depth is now %d\n",
5575 lp->started_max);
5576 }
5577 }
5578 }
5579 #endif
5580
5581 /*
5582 * Free our CCB.
5583 */
5584 sym_free_ccb (np, cp);
5585
5586 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5587 /*
5588 * Requeue a couple of awaiting scsi commands.
5589 */
5590 if (lp && !sym_que_empty(&lp->waiting_ccbq))
5591 sym_start_next_ccbs(np, lp, 2);
5592 #endif
5593 /*
5594 * Complete the command.
5595 */
5596 sym_xpt_done(np, cmd);
5597 }
5598
5599 /*
5600 * Soft-attach the controller.
5601 */
5602 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5603 {
5604 struct sym_hcb *np = sym_get_hcb(shost);
5605 int i;
5606
5607 /*
5608 * Get some info about the firmware.
5609 */
5610 np->scripta_sz = fw->a_size;
5611 np->scriptb_sz = fw->b_size;
5612 np->scriptz_sz = fw->z_size;
5613 np->fw_setup = fw->setup;
5614 np->fw_patch = fw->patch;
5615 np->fw_name = fw->name;
5616
5617 /*
5618 * Save setting of some IO registers, so we will
5619 * be able to probe specific implementations.
5620 */
5621 sym_save_initial_setting (np);
5622
5623 /*
5624 * Reset the chip now, since it has been reported
5625 * that SCSI clock calibration may not work properly
5626 * if the chip is currently active.
5627 */
5628 sym_chip_reset(np);
5629
5630 /*
5631 * Prepare controller and devices settings, according
5632 * to chip features, user set-up and driver set-up.
5633 */
5634 sym_prepare_setting(shost, np, nvram);
5635
5636 /*
5637 * Check the PCI clock frequency.
5638 * Must be performed after prepare_setting since it destroys
5639 * STEST1 that is used to probe for the clock doubler.
5640 */
5641 i = sym_getpciclock(np);
5642 if (i > 37000 && !(np->features & FE_66MHZ))
5643 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5644 sym_name(np), i);
5645
5646 /*
5647 * Allocate the start queue.
5648 */
5649 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5650 if (!np->squeue)
5651 goto attach_failed;
5652 np->squeue_ba = vtobus(np->squeue);
5653
5654 /*
5655 * Allocate the done queue.
5656 */
5657 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5658 if (!np->dqueue)
5659 goto attach_failed;
5660 np->dqueue_ba = vtobus(np->dqueue);
5661
5662 /*
5663 * Allocate the target bus address array.
5664 */
5665 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5666 if (!np->targtbl)
5667 goto attach_failed;
5668 np->targtbl_ba = vtobus(np->targtbl);
5669
5670 /*
5671 * Allocate SCRIPTS areas.
5672 */
5673 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5674 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5675 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5676 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5677 goto attach_failed;
5678
5679 /*
5680 * Allocate the array of lists of CCBs hashed by DSA.
5681 */
5682 np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5683 if (!np->ccbh)
5684 goto attach_failed;
5685
5686 /*
5687 * Initialyze the CCB free and busy queues.
5688 */
5689 sym_que_init(&np->free_ccbq);
5690 sym_que_init(&np->busy_ccbq);
5691 sym_que_init(&np->comp_ccbq);
5692
5693 /*
5694 * Initialization for optional handling
5695 * of device queueing.
5696 */
5697 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5698 sym_que_init(&np->dummy_ccbq);
5699 #endif
5700 /*
5701 * Allocate some CCB. We need at least ONE.
5702 */
5703 if (!sym_alloc_ccb(np))
5704 goto attach_failed;
5705
5706 /*
5707 * Calculate BUS addresses where we are going
5708 * to load the SCRIPTS.
5709 */
5710 np->scripta_ba = vtobus(np->scripta0);
5711 np->scriptb_ba = vtobus(np->scriptb0);
5712 np->scriptz_ba = vtobus(np->scriptz0);
5713
5714 if (np->ram_ba) {
5715 np->scripta_ba = np->ram_ba;
5716 if (np->features & FE_RAM8K) {
5717 np->ram_ws = 8192;
5718 np->scriptb_ba = np->scripta_ba + 4096;
5719 #if 0 /* May get useful for 64 BIT PCI addressing */
5720 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5721 #endif
5722 }
5723 else
5724 np->ram_ws = 4096;
5725 }
5726
5727 /*
5728 * Copy scripts to controller instance.
5729 */
5730 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5731 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5732 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5733
5734 /*
5735 * Setup variable parts in scripts and compute
5736 * scripts bus addresses used from the C code.
5737 */
5738 np->fw_setup(np, fw);
5739
5740 /*
5741 * Bind SCRIPTS with physical addresses usable by the
5742 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5743 */
5744 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5745 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5746 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5747
5748 #ifdef SYM_CONF_IARB_SUPPORT
5749 /*
5750 * If user wants IARB to be set when we win arbitration
5751 * and have other jobs, compute the max number of consecutive
5752 * settings of IARB hints before we leave devices a chance to
5753 * arbitrate for reselection.
5754 */
5755 #ifdef SYM_SETUP_IARB_MAX
5756 np->iarb_max = SYM_SETUP_IARB_MAX;
5757 #else
5758 np->iarb_max = 4;
5759 #endif
5760 #endif
5761
5762 /*
5763 * Prepare the idle and invalid task actions.
5764 */
5765 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5766 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5767 np->idletask_ba = vtobus(&np->idletask);
5768
5769 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5770 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5771 np->notask_ba = vtobus(&np->notask);
5772
5773 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5774 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5775 np->bad_itl_ba = vtobus(&np->bad_itl);
5776
5777 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5778 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5779 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5780
5781 /*
5782 * Allocate and prepare the lun JUMP table that is used
5783 * for a target prior the probing of devices (bad lun table).
5784 * A private table will be allocated for the target on the
5785 * first INQUIRY response received.
5786 */
5787 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5788 if (!np->badluntbl)
5789 goto attach_failed;
5790
5791 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5792 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5793 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5794
5795 /*
5796 * Prepare the bus address array that contains the bus
5797 * address of each target control block.
5798 * For now, assume all logical units are wrong. :)
5799 */
5800 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5801 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5802 np->target[i].head.luntbl_sa =
5803 cpu_to_scr(vtobus(np->badluntbl));
5804 np->target[i].head.lun0_sa =
5805 cpu_to_scr(vtobus(&np->badlun_sa));
5806 }
5807
5808 /*
5809 * Now check the cache handling of the pci chipset.
5810 */
5811 if (sym_snooptest (np)) {
5812 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5813 goto attach_failed;
5814 }
5815
5816 /*
5817 * Sigh! we are done.
5818 */
5819 return 0;
5820
5821 attach_failed:
5822 return -ENXIO;
5823 }
5824
5825 /*
5826 * Free everything that has been allocated for this device.
5827 */
5828 void sym_hcb_free(struct sym_hcb *np)
5829 {
5830 SYM_QUEHEAD *qp;
5831 struct sym_ccb *cp;
5832 struct sym_tcb *tp;
5833 struct sym_lcb *lp;
5834 int target, lun;
5835
5836 if (np->scriptz0)
5837 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5838 if (np->scriptb0)
5839 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5840 if (np->scripta0)
5841 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5842 if (np->squeue)
5843 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5844 if (np->dqueue)
5845 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5846
5847 if (np->actccbs) {
5848 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5849 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5850 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5851 }
5852 }
5853 kfree(np->ccbh);
5854
5855 if (np->badluntbl)
5856 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5857
5858 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5859 tp = &np->target[target];
5860 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
5861 lp = sym_lp(tp, lun);
5862 if (!lp)
5863 continue;
5864 if (lp->itlq_tbl)
5865 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
5866 "ITLQ_TBL");
5867 kfree(lp->cb_tags);
5868 sym_mfree_dma(lp, sizeof(*lp), "LCB");
5869 }
5870 #if SYM_CONF_MAX_LUN > 1
5871 kfree(tp->lunmp);
5872 #endif
5873 }
5874 if (np->targtbl)
5875 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5876 }
This page took 0.22639 seconds and 5 git commands to generate.