Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / spi / spi-atmel.c
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR 0x0000
33 #define SPI_MR 0x0004
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
36 #define SPI_SR 0x0010
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_VERSION 0x00fc
45 #define SPI_RPR 0x0100
46 #define SPI_RCR 0x0104
47 #define SPI_TPR 0x0108
48 #define SPI_TCR 0x010c
49 #define SPI_RNPR 0x0110
50 #define SPI_RNCR 0x0114
51 #define SPI_TNPR 0x0118
52 #define SPI_TNCR 0x011c
53 #define SPI_PTCR 0x0120
54 #define SPI_PTSR 0x0124
55
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET 0
58 #define SPI_SPIEN_SIZE 1
59 #define SPI_SPIDIS_OFFSET 1
60 #define SPI_SPIDIS_SIZE 1
61 #define SPI_SWRST_OFFSET 7
62 #define SPI_SWRST_SIZE 1
63 #define SPI_LASTXFER_OFFSET 24
64 #define SPI_LASTXFER_SIZE 1
65
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET 0
68 #define SPI_MSTR_SIZE 1
69 #define SPI_PS_OFFSET 1
70 #define SPI_PS_SIZE 1
71 #define SPI_PCSDEC_OFFSET 2
72 #define SPI_PCSDEC_SIZE 1
73 #define SPI_FDIV_OFFSET 3
74 #define SPI_FDIV_SIZE 1
75 #define SPI_MODFDIS_OFFSET 4
76 #define SPI_MODFDIS_SIZE 1
77 #define SPI_WDRBT_OFFSET 5
78 #define SPI_WDRBT_SIZE 1
79 #define SPI_LLB_OFFSET 7
80 #define SPI_LLB_SIZE 1
81 #define SPI_PCS_OFFSET 16
82 #define SPI_PCS_SIZE 4
83 #define SPI_DLYBCS_OFFSET 24
84 #define SPI_DLYBCS_SIZE 8
85
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET 0
88 #define SPI_RD_SIZE 16
89
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET 0
92 #define SPI_TD_SIZE 16
93
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET 0
96 #define SPI_RDRF_SIZE 1
97 #define SPI_TDRE_OFFSET 1
98 #define SPI_TDRE_SIZE 1
99 #define SPI_MODF_OFFSET 2
100 #define SPI_MODF_SIZE 1
101 #define SPI_OVRES_OFFSET 3
102 #define SPI_OVRES_SIZE 1
103 #define SPI_ENDRX_OFFSET 4
104 #define SPI_ENDRX_SIZE 1
105 #define SPI_ENDTX_OFFSET 5
106 #define SPI_ENDTX_SIZE 1
107 #define SPI_RXBUFF_OFFSET 6
108 #define SPI_RXBUFF_SIZE 1
109 #define SPI_TXBUFE_OFFSET 7
110 #define SPI_TXBUFE_SIZE 1
111 #define SPI_NSSR_OFFSET 8
112 #define SPI_NSSR_SIZE 1
113 #define SPI_TXEMPTY_OFFSET 9
114 #define SPI_TXEMPTY_SIZE 1
115 #define SPI_SPIENS_OFFSET 16
116 #define SPI_SPIENS_SIZE 1
117
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET 0
120 #define SPI_CPOL_SIZE 1
121 #define SPI_NCPHA_OFFSET 1
122 #define SPI_NCPHA_SIZE 1
123 #define SPI_CSAAT_OFFSET 3
124 #define SPI_CSAAT_SIZE 1
125 #define SPI_BITS_OFFSET 4
126 #define SPI_BITS_SIZE 4
127 #define SPI_SCBR_OFFSET 8
128 #define SPI_SCBR_SIZE 8
129 #define SPI_DLYBS_OFFSET 16
130 #define SPI_DLYBS_SIZE 8
131 #define SPI_DLYBCT_OFFSET 24
132 #define SPI_DLYBCT_SIZE 8
133
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET 0
136 #define SPI_RXCTR_SIZE 16
137
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET 0
140 #define SPI_TXCTR_SIZE 16
141
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET 0
144 #define SPI_RXNCR_SIZE 16
145
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET 0
148 #define SPI_TXNCR_SIZE 16
149
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET 0
152 #define SPI_RXTEN_SIZE 1
153 #define SPI_RXTDIS_OFFSET 1
154 #define SPI_RXTDIS_SIZE 1
155 #define SPI_TXTEN_OFFSET 8
156 #define SPI_TXTEN_SIZE 1
157 #define SPI_TXTDIS_OFFSET 9
158 #define SPI_TXTDIS_SIZE 1
159
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT 0
162 #define SPI_BITS_9_BPT 1
163 #define SPI_BITS_10_BPT 2
164 #define SPI_BITS_11_BPT 3
165 #define SPI_BITS_12_BPT 4
166 #define SPI_BITS_13_BPT 5
167 #define SPI_BITS_14_BPT 6
168 #define SPI_BITS_15_BPT 7
169 #define SPI_BITS_16_BPT 8
170
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 | SPI_BF(name, value))
181
182 /* Register access macros */
183 #define spi_readl(port, reg) \
184 __raw_readl((port)->regs + SPI_##reg)
185 #define spi_writel(port, reg, value) \
186 __raw_writel((value), (port)->regs + SPI_##reg)
187
188 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
189 * cache operations; better heuristics consider wordsize and bitrate.
190 */
191 #define DMA_MIN_BYTES 16
192
193 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
194
195 #define AUTOSUSPEND_TIMEOUT 2000
196
197 struct atmel_spi_dma {
198 struct dma_chan *chan_rx;
199 struct dma_chan *chan_tx;
200 struct scatterlist sgrx;
201 struct scatterlist sgtx;
202 struct dma_async_tx_descriptor *data_desc_rx;
203 struct dma_async_tx_descriptor *data_desc_tx;
204
205 struct at_dma_slave dma_slave;
206 };
207
208 struct atmel_spi_caps {
209 bool is_spi2;
210 bool has_wdrbt;
211 bool has_dma_support;
212 };
213
214 /*
215 * The core SPI transfer engine just talks to a register bank to set up
216 * DMA transfers; transfer queue progress is driven by IRQs. The clock
217 * framework provides the base clock, subdivided for each spi_device.
218 */
219 struct atmel_spi {
220 spinlock_t lock;
221 unsigned long flags;
222
223 phys_addr_t phybase;
224 void __iomem *regs;
225 int irq;
226 struct clk *clk;
227 struct platform_device *pdev;
228
229 struct spi_transfer *current_transfer;
230 int current_remaining_bytes;
231 int done_status;
232
233 struct completion xfer_completion;
234
235 /* scratch buffer */
236 void *buffer;
237 dma_addr_t buffer_dma;
238
239 struct atmel_spi_caps caps;
240
241 bool use_dma;
242 bool use_pdc;
243 /* dmaengine data */
244 struct atmel_spi_dma dma;
245
246 bool keep_cs;
247 bool cs_active;
248 };
249
250 /* Controller-specific per-slave state */
251 struct atmel_spi_device {
252 unsigned int npcs_pin;
253 u32 csr;
254 };
255
256 #define BUFFER_SIZE PAGE_SIZE
257 #define INVALID_DMA_ADDRESS 0xffffffff
258
259 /*
260 * Version 2 of the SPI controller has
261 * - CR.LASTXFER
262 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
263 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
264 * - SPI_CSRx.CSAAT
265 * - SPI_CSRx.SBCR allows faster clocking
266 */
267 static bool atmel_spi_is_v2(struct atmel_spi *as)
268 {
269 return as->caps.is_spi2;
270 }
271
272 /*
273 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
274 * they assume that spi slave device state will not change on deselect, so
275 * that automagic deselection is OK. ("NPCSx rises if no data is to be
276 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
277 * controllers have CSAAT and friends.
278 *
279 * Since the CSAAT functionality is a bit weird on newer controllers as
280 * well, we use GPIO to control nCSx pins on all controllers, updating
281 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
282 * support active-high chipselects despite the controller's belief that
283 * only active-low devices/systems exists.
284 *
285 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
286 * right when driven with GPIO. ("Mode Fault does not allow more than one
287 * Master on Chip Select 0.") No workaround exists for that ... so for
288 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
289 * and (c) will trigger that first erratum in some cases.
290 */
291
292 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
293 {
294 struct atmel_spi_device *asd = spi->controller_state;
295 unsigned active = spi->mode & SPI_CS_HIGH;
296 u32 mr;
297
298 if (atmel_spi_is_v2(as)) {
299 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
300 /* For the low SPI version, there is a issue that PDC transfer
301 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
302 */
303 spi_writel(as, CSR0, asd->csr);
304 if (as->caps.has_wdrbt) {
305 spi_writel(as, MR,
306 SPI_BF(PCS, ~(0x01 << spi->chip_select))
307 | SPI_BIT(WDRBT)
308 | SPI_BIT(MODFDIS)
309 | SPI_BIT(MSTR));
310 } else {
311 spi_writel(as, MR,
312 SPI_BF(PCS, ~(0x01 << spi->chip_select))
313 | SPI_BIT(MODFDIS)
314 | SPI_BIT(MSTR));
315 }
316
317 mr = spi_readl(as, MR);
318 gpio_set_value(asd->npcs_pin, active);
319 } else {
320 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
321 int i;
322 u32 csr;
323
324 /* Make sure clock polarity is correct */
325 for (i = 0; i < spi->master->num_chipselect; i++) {
326 csr = spi_readl(as, CSR0 + 4 * i);
327 if ((csr ^ cpol) & SPI_BIT(CPOL))
328 spi_writel(as, CSR0 + 4 * i,
329 csr ^ SPI_BIT(CPOL));
330 }
331
332 mr = spi_readl(as, MR);
333 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
334 if (spi->chip_select != 0)
335 gpio_set_value(asd->npcs_pin, active);
336 spi_writel(as, MR, mr);
337 }
338
339 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
340 asd->npcs_pin, active ? " (high)" : "",
341 mr);
342 }
343
344 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
345 {
346 struct atmel_spi_device *asd = spi->controller_state;
347 unsigned active = spi->mode & SPI_CS_HIGH;
348 u32 mr;
349
350 /* only deactivate *this* device; sometimes transfers to
351 * another device may be active when this routine is called.
352 */
353 mr = spi_readl(as, MR);
354 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
355 mr = SPI_BFINS(PCS, 0xf, mr);
356 spi_writel(as, MR, mr);
357 }
358
359 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
360 asd->npcs_pin, active ? " (low)" : "",
361 mr);
362
363 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
364 gpio_set_value(asd->npcs_pin, !active);
365 }
366
367 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
368 {
369 spin_lock_irqsave(&as->lock, as->flags);
370 }
371
372 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
373 {
374 spin_unlock_irqrestore(&as->lock, as->flags);
375 }
376
377 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
378 struct spi_transfer *xfer)
379 {
380 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
381 }
382
383 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
384 struct dma_slave_config *slave_config,
385 u8 bits_per_word)
386 {
387 int err = 0;
388
389 if (bits_per_word > 8) {
390 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
391 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
392 } else {
393 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
394 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
395 }
396
397 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
398 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
399 slave_config->src_maxburst = 1;
400 slave_config->dst_maxburst = 1;
401 slave_config->device_fc = false;
402
403 slave_config->direction = DMA_MEM_TO_DEV;
404 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
405 dev_err(&as->pdev->dev,
406 "failed to configure tx dma channel\n");
407 err = -EINVAL;
408 }
409
410 slave_config->direction = DMA_DEV_TO_MEM;
411 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
412 dev_err(&as->pdev->dev,
413 "failed to configure rx dma channel\n");
414 err = -EINVAL;
415 }
416
417 return err;
418 }
419
420 static int atmel_spi_configure_dma(struct atmel_spi *as)
421 {
422 struct dma_slave_config slave_config;
423 struct device *dev = &as->pdev->dev;
424 int err;
425
426 dma_cap_mask_t mask;
427 dma_cap_zero(mask);
428 dma_cap_set(DMA_SLAVE, mask);
429
430 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
431 if (IS_ERR(as->dma.chan_tx)) {
432 err = PTR_ERR(as->dma.chan_tx);
433 if (err == -EPROBE_DEFER) {
434 dev_warn(dev, "no DMA channel available at the moment\n");
435 return err;
436 }
437 dev_err(dev,
438 "DMA TX channel not available, SPI unable to use DMA\n");
439 err = -EBUSY;
440 goto error;
441 }
442
443 /*
444 * No reason to check EPROBE_DEFER here since we have already requested
445 * tx channel. If it fails here, it's for another reason.
446 */
447 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
448
449 if (!as->dma.chan_rx) {
450 dev_err(dev,
451 "DMA RX channel not available, SPI unable to use DMA\n");
452 err = -EBUSY;
453 goto error;
454 }
455
456 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
457 if (err)
458 goto error;
459
460 dev_info(&as->pdev->dev,
461 "Using %s (tx) and %s (rx) for DMA transfers\n",
462 dma_chan_name(as->dma.chan_tx),
463 dma_chan_name(as->dma.chan_rx));
464 return 0;
465 error:
466 if (as->dma.chan_rx)
467 dma_release_channel(as->dma.chan_rx);
468 if (!IS_ERR(as->dma.chan_tx))
469 dma_release_channel(as->dma.chan_tx);
470 return err;
471 }
472
473 static void atmel_spi_stop_dma(struct atmel_spi *as)
474 {
475 if (as->dma.chan_rx)
476 dmaengine_terminate_all(as->dma.chan_rx);
477 if (as->dma.chan_tx)
478 dmaengine_terminate_all(as->dma.chan_tx);
479 }
480
481 static void atmel_spi_release_dma(struct atmel_spi *as)
482 {
483 if (as->dma.chan_rx)
484 dma_release_channel(as->dma.chan_rx);
485 if (as->dma.chan_tx)
486 dma_release_channel(as->dma.chan_tx);
487 }
488
489 /* This function is called by the DMA driver from tasklet context */
490 static void dma_callback(void *data)
491 {
492 struct spi_master *master = data;
493 struct atmel_spi *as = spi_master_get_devdata(master);
494
495 complete(&as->xfer_completion);
496 }
497
498 /*
499 * Next transfer using PIO.
500 */
501 static void atmel_spi_next_xfer_pio(struct spi_master *master,
502 struct spi_transfer *xfer)
503 {
504 struct atmel_spi *as = spi_master_get_devdata(master);
505 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
506
507 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
508
509 /* Make sure data is not remaining in RDR */
510 spi_readl(as, RDR);
511 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
512 spi_readl(as, RDR);
513 cpu_relax();
514 }
515
516 if (xfer->tx_buf) {
517 if (xfer->bits_per_word > 8)
518 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
519 else
520 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
521 } else {
522 spi_writel(as, TDR, 0);
523 }
524
525 dev_dbg(master->dev.parent,
526 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
527 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
528 xfer->bits_per_word);
529
530 /* Enable relevant interrupts */
531 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
532 }
533
534 /*
535 * Submit next transfer for DMA.
536 */
537 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
538 struct spi_transfer *xfer,
539 u32 *plen)
540 {
541 struct atmel_spi *as = spi_master_get_devdata(master);
542 struct dma_chan *rxchan = as->dma.chan_rx;
543 struct dma_chan *txchan = as->dma.chan_tx;
544 struct dma_async_tx_descriptor *rxdesc;
545 struct dma_async_tx_descriptor *txdesc;
546 struct dma_slave_config slave_config;
547 dma_cookie_t cookie;
548 u32 len = *plen;
549
550 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
551
552 /* Check that the channels are available */
553 if (!rxchan || !txchan)
554 return -ENODEV;
555
556 /* release lock for DMA operations */
557 atmel_spi_unlock(as);
558
559 /* prepare the RX dma transfer */
560 sg_init_table(&as->dma.sgrx, 1);
561 if (xfer->rx_buf) {
562 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
563 } else {
564 as->dma.sgrx.dma_address = as->buffer_dma;
565 if (len > BUFFER_SIZE)
566 len = BUFFER_SIZE;
567 }
568
569 /* prepare the TX dma transfer */
570 sg_init_table(&as->dma.sgtx, 1);
571 if (xfer->tx_buf) {
572 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
573 } else {
574 as->dma.sgtx.dma_address = as->buffer_dma;
575 if (len > BUFFER_SIZE)
576 len = BUFFER_SIZE;
577 memset(as->buffer, 0, len);
578 }
579
580 sg_dma_len(&as->dma.sgtx) = len;
581 sg_dma_len(&as->dma.sgrx) = len;
582
583 *plen = len;
584
585 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
586 goto err_exit;
587
588 /* Send both scatterlists */
589 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
590 DMA_FROM_DEVICE,
591 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
592 if (!rxdesc)
593 goto err_dma;
594
595 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
596 DMA_TO_DEVICE,
597 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
598 if (!txdesc)
599 goto err_dma;
600
601 dev_dbg(master->dev.parent,
602 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
603 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
604 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
605
606 /* Enable relevant interrupts */
607 spi_writel(as, IER, SPI_BIT(OVRES));
608
609 /* Put the callback on the RX transfer only, that should finish last */
610 rxdesc->callback = dma_callback;
611 rxdesc->callback_param = master;
612
613 /* Submit and fire RX and TX with TX last so we're ready to read! */
614 cookie = rxdesc->tx_submit(rxdesc);
615 if (dma_submit_error(cookie))
616 goto err_dma;
617 cookie = txdesc->tx_submit(txdesc);
618 if (dma_submit_error(cookie))
619 goto err_dma;
620 rxchan->device->device_issue_pending(rxchan);
621 txchan->device->device_issue_pending(txchan);
622
623 /* take back lock */
624 atmel_spi_lock(as);
625 return 0;
626
627 err_dma:
628 spi_writel(as, IDR, SPI_BIT(OVRES));
629 atmel_spi_stop_dma(as);
630 err_exit:
631 atmel_spi_lock(as);
632 return -ENOMEM;
633 }
634
635 static void atmel_spi_next_xfer_data(struct spi_master *master,
636 struct spi_transfer *xfer,
637 dma_addr_t *tx_dma,
638 dma_addr_t *rx_dma,
639 u32 *plen)
640 {
641 struct atmel_spi *as = spi_master_get_devdata(master);
642 u32 len = *plen;
643
644 /* use scratch buffer only when rx or tx data is unspecified */
645 if (xfer->rx_buf)
646 *rx_dma = xfer->rx_dma + xfer->len - *plen;
647 else {
648 *rx_dma = as->buffer_dma;
649 if (len > BUFFER_SIZE)
650 len = BUFFER_SIZE;
651 }
652
653 if (xfer->tx_buf)
654 *tx_dma = xfer->tx_dma + xfer->len - *plen;
655 else {
656 *tx_dma = as->buffer_dma;
657 if (len > BUFFER_SIZE)
658 len = BUFFER_SIZE;
659 memset(as->buffer, 0, len);
660 dma_sync_single_for_device(&as->pdev->dev,
661 as->buffer_dma, len, DMA_TO_DEVICE);
662 }
663
664 *plen = len;
665 }
666
667 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
668 struct spi_device *spi,
669 struct spi_transfer *xfer)
670 {
671 u32 scbr, csr;
672 unsigned long bus_hz;
673
674 /* v1 chips start out at half the peripheral bus speed. */
675 bus_hz = clk_get_rate(as->clk);
676 if (!atmel_spi_is_v2(as))
677 bus_hz /= 2;
678
679 /*
680 * Calculate the lowest divider that satisfies the
681 * constraint, assuming div32/fdiv/mbz == 0.
682 */
683 if (xfer->speed_hz)
684 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
685 else
686 /*
687 * This can happend if max_speed is null.
688 * In this case, we set the lowest possible speed
689 */
690 scbr = 0xff;
691
692 /*
693 * If the resulting divider doesn't fit into the
694 * register bitfield, we can't satisfy the constraint.
695 */
696 if (scbr >= (1 << SPI_SCBR_SIZE)) {
697 dev_err(&spi->dev,
698 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
699 xfer->speed_hz, scbr, bus_hz/255);
700 return -EINVAL;
701 }
702 if (scbr == 0) {
703 dev_err(&spi->dev,
704 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
705 xfer->speed_hz, scbr, bus_hz);
706 return -EINVAL;
707 }
708 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
709 csr = SPI_BFINS(SCBR, scbr, csr);
710 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
711
712 return 0;
713 }
714
715 /*
716 * Submit next transfer for PDC.
717 * lock is held, spi irq is blocked
718 */
719 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
720 struct spi_message *msg,
721 struct spi_transfer *xfer)
722 {
723 struct atmel_spi *as = spi_master_get_devdata(master);
724 u32 len;
725 dma_addr_t tx_dma, rx_dma;
726
727 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
728
729 len = as->current_remaining_bytes;
730 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
731 as->current_remaining_bytes -= len;
732
733 spi_writel(as, RPR, rx_dma);
734 spi_writel(as, TPR, tx_dma);
735
736 if (msg->spi->bits_per_word > 8)
737 len >>= 1;
738 spi_writel(as, RCR, len);
739 spi_writel(as, TCR, len);
740
741 dev_dbg(&msg->spi->dev,
742 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
743 xfer, xfer->len, xfer->tx_buf,
744 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
745 (unsigned long long)xfer->rx_dma);
746
747 if (as->current_remaining_bytes) {
748 len = as->current_remaining_bytes;
749 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
750 as->current_remaining_bytes -= len;
751
752 spi_writel(as, RNPR, rx_dma);
753 spi_writel(as, TNPR, tx_dma);
754
755 if (msg->spi->bits_per_word > 8)
756 len >>= 1;
757 spi_writel(as, RNCR, len);
758 spi_writel(as, TNCR, len);
759
760 dev_dbg(&msg->spi->dev,
761 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
762 xfer, xfer->len, xfer->tx_buf,
763 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
764 (unsigned long long)xfer->rx_dma);
765 }
766
767 /* REVISIT: We're waiting for RXBUFF before we start the next
768 * transfer because we need to handle some difficult timing
769 * issues otherwise. If we wait for TXBUFE in one transfer and
770 * then starts waiting for RXBUFF in the next, it's difficult
771 * to tell the difference between the RXBUFF interrupt we're
772 * actually waiting for and the RXBUFF interrupt of the
773 * previous transfer.
774 *
775 * It should be doable, though. Just not now...
776 */
777 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
778 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
779 }
780
781 /*
782 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
783 * - The buffer is either valid for CPU access, else NULL
784 * - If the buffer is valid, so is its DMA address
785 *
786 * This driver manages the dma address unless message->is_dma_mapped.
787 */
788 static int
789 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
790 {
791 struct device *dev = &as->pdev->dev;
792
793 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
794 if (xfer->tx_buf) {
795 /* tx_buf is a const void* where we need a void * for the dma
796 * mapping */
797 void *nonconst_tx = (void *)xfer->tx_buf;
798
799 xfer->tx_dma = dma_map_single(dev,
800 nonconst_tx, xfer->len,
801 DMA_TO_DEVICE);
802 if (dma_mapping_error(dev, xfer->tx_dma))
803 return -ENOMEM;
804 }
805 if (xfer->rx_buf) {
806 xfer->rx_dma = dma_map_single(dev,
807 xfer->rx_buf, xfer->len,
808 DMA_FROM_DEVICE);
809 if (dma_mapping_error(dev, xfer->rx_dma)) {
810 if (xfer->tx_buf)
811 dma_unmap_single(dev,
812 xfer->tx_dma, xfer->len,
813 DMA_TO_DEVICE);
814 return -ENOMEM;
815 }
816 }
817 return 0;
818 }
819
820 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
821 struct spi_transfer *xfer)
822 {
823 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
824 dma_unmap_single(master->dev.parent, xfer->tx_dma,
825 xfer->len, DMA_TO_DEVICE);
826 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
827 dma_unmap_single(master->dev.parent, xfer->rx_dma,
828 xfer->len, DMA_FROM_DEVICE);
829 }
830
831 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
832 {
833 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
834 }
835
836 /* Called from IRQ
837 *
838 * Must update "current_remaining_bytes" to keep track of data
839 * to transfer.
840 */
841 static void
842 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
843 {
844 u8 *rxp;
845 u16 *rxp16;
846 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
847
848 if (xfer->rx_buf) {
849 if (xfer->bits_per_word > 8) {
850 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
851 *rxp16 = spi_readl(as, RDR);
852 } else {
853 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
854 *rxp = spi_readl(as, RDR);
855 }
856 } else {
857 spi_readl(as, RDR);
858 }
859 if (xfer->bits_per_word > 8) {
860 if (as->current_remaining_bytes > 2)
861 as->current_remaining_bytes -= 2;
862 else
863 as->current_remaining_bytes = 0;
864 } else {
865 as->current_remaining_bytes--;
866 }
867 }
868
869 /* Interrupt
870 *
871 * No need for locking in this Interrupt handler: done_status is the
872 * only information modified.
873 */
874 static irqreturn_t
875 atmel_spi_pio_interrupt(int irq, void *dev_id)
876 {
877 struct spi_master *master = dev_id;
878 struct atmel_spi *as = spi_master_get_devdata(master);
879 u32 status, pending, imr;
880 struct spi_transfer *xfer;
881 int ret = IRQ_NONE;
882
883 imr = spi_readl(as, IMR);
884 status = spi_readl(as, SR);
885 pending = status & imr;
886
887 if (pending & SPI_BIT(OVRES)) {
888 ret = IRQ_HANDLED;
889 spi_writel(as, IDR, SPI_BIT(OVRES));
890 dev_warn(master->dev.parent, "overrun\n");
891
892 /*
893 * When we get an overrun, we disregard the current
894 * transfer. Data will not be copied back from any
895 * bounce buffer and msg->actual_len will not be
896 * updated with the last xfer.
897 *
898 * We will also not process any remaning transfers in
899 * the message.
900 */
901 as->done_status = -EIO;
902 smp_wmb();
903
904 /* Clear any overrun happening while cleaning up */
905 spi_readl(as, SR);
906
907 complete(&as->xfer_completion);
908
909 } else if (pending & SPI_BIT(RDRF)) {
910 atmel_spi_lock(as);
911
912 if (as->current_remaining_bytes) {
913 ret = IRQ_HANDLED;
914 xfer = as->current_transfer;
915 atmel_spi_pump_pio_data(as, xfer);
916 if (!as->current_remaining_bytes)
917 spi_writel(as, IDR, pending);
918
919 complete(&as->xfer_completion);
920 }
921
922 atmel_spi_unlock(as);
923 } else {
924 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
925 ret = IRQ_HANDLED;
926 spi_writel(as, IDR, pending);
927 }
928
929 return ret;
930 }
931
932 static irqreturn_t
933 atmel_spi_pdc_interrupt(int irq, void *dev_id)
934 {
935 struct spi_master *master = dev_id;
936 struct atmel_spi *as = spi_master_get_devdata(master);
937 u32 status, pending, imr;
938 int ret = IRQ_NONE;
939
940 imr = spi_readl(as, IMR);
941 status = spi_readl(as, SR);
942 pending = status & imr;
943
944 if (pending & SPI_BIT(OVRES)) {
945
946 ret = IRQ_HANDLED;
947
948 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
949 | SPI_BIT(OVRES)));
950
951 /* Clear any overrun happening while cleaning up */
952 spi_readl(as, SR);
953
954 as->done_status = -EIO;
955
956 complete(&as->xfer_completion);
957
958 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
959 ret = IRQ_HANDLED;
960
961 spi_writel(as, IDR, pending);
962
963 complete(&as->xfer_completion);
964 }
965
966 return ret;
967 }
968
969 static int atmel_spi_setup(struct spi_device *spi)
970 {
971 struct atmel_spi *as;
972 struct atmel_spi_device *asd;
973 u32 csr;
974 unsigned int bits = spi->bits_per_word;
975 unsigned int npcs_pin;
976 int ret;
977
978 as = spi_master_get_devdata(spi->master);
979
980 /* see notes above re chipselect */
981 if (!atmel_spi_is_v2(as)
982 && spi->chip_select == 0
983 && (spi->mode & SPI_CS_HIGH)) {
984 dev_dbg(&spi->dev, "setup: can't be active-high\n");
985 return -EINVAL;
986 }
987
988 csr = SPI_BF(BITS, bits - 8);
989 if (spi->mode & SPI_CPOL)
990 csr |= SPI_BIT(CPOL);
991 if (!(spi->mode & SPI_CPHA))
992 csr |= SPI_BIT(NCPHA);
993
994 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
995 *
996 * DLYBCT would add delays between words, slowing down transfers.
997 * It could potentially be useful to cope with DMA bottlenecks, but
998 * in those cases it's probably best to just use a lower bitrate.
999 */
1000 csr |= SPI_BF(DLYBS, 0);
1001 csr |= SPI_BF(DLYBCT, 0);
1002
1003 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1004 npcs_pin = (unsigned long)spi->controller_data;
1005
1006 if (gpio_is_valid(spi->cs_gpio))
1007 npcs_pin = spi->cs_gpio;
1008
1009 asd = spi->controller_state;
1010 if (!asd) {
1011 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1012 if (!asd)
1013 return -ENOMEM;
1014
1015 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1016 if (ret) {
1017 kfree(asd);
1018 return ret;
1019 }
1020
1021 asd->npcs_pin = npcs_pin;
1022 spi->controller_state = asd;
1023 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1024 }
1025
1026 asd->csr = csr;
1027
1028 dev_dbg(&spi->dev,
1029 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1030 bits, spi->mode, spi->chip_select, csr);
1031
1032 if (!atmel_spi_is_v2(as))
1033 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1034
1035 return 0;
1036 }
1037
1038 static int atmel_spi_one_transfer(struct spi_master *master,
1039 struct spi_message *msg,
1040 struct spi_transfer *xfer)
1041 {
1042 struct atmel_spi *as;
1043 struct spi_device *spi = msg->spi;
1044 u8 bits;
1045 u32 len;
1046 struct atmel_spi_device *asd;
1047 int timeout;
1048 int ret;
1049 unsigned long dma_timeout;
1050
1051 as = spi_master_get_devdata(master);
1052
1053 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1054 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1055 return -EINVAL;
1056 }
1057
1058 if (xfer->bits_per_word) {
1059 asd = spi->controller_state;
1060 bits = (asd->csr >> 4) & 0xf;
1061 if (bits != xfer->bits_per_word - 8) {
1062 dev_dbg(&spi->dev,
1063 "you can't yet change bits_per_word in transfers\n");
1064 return -ENOPROTOOPT;
1065 }
1066 }
1067
1068 /*
1069 * DMA map early, for performance (empties dcache ASAP) and
1070 * better fault reporting.
1071 */
1072 if ((!msg->is_dma_mapped)
1073 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1074 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1075 return -ENOMEM;
1076 }
1077
1078 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1079
1080 as->done_status = 0;
1081 as->current_transfer = xfer;
1082 as->current_remaining_bytes = xfer->len;
1083 while (as->current_remaining_bytes) {
1084 reinit_completion(&as->xfer_completion);
1085
1086 if (as->use_pdc) {
1087 atmel_spi_pdc_next_xfer(master, msg, xfer);
1088 } else if (atmel_spi_use_dma(as, xfer)) {
1089 len = as->current_remaining_bytes;
1090 ret = atmel_spi_next_xfer_dma_submit(master,
1091 xfer, &len);
1092 if (ret) {
1093 dev_err(&spi->dev,
1094 "unable to use DMA, fallback to PIO\n");
1095 atmel_spi_next_xfer_pio(master, xfer);
1096 } else {
1097 as->current_remaining_bytes -= len;
1098 if (as->current_remaining_bytes < 0)
1099 as->current_remaining_bytes = 0;
1100 }
1101 } else {
1102 atmel_spi_next_xfer_pio(master, xfer);
1103 }
1104
1105 /* interrupts are disabled, so free the lock for schedule */
1106 atmel_spi_unlock(as);
1107 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1108 SPI_DMA_TIMEOUT);
1109 atmel_spi_lock(as);
1110 if (WARN_ON(dma_timeout == 0)) {
1111 dev_err(&spi->dev, "spi transfer timeout\n");
1112 as->done_status = -EIO;
1113 }
1114
1115 if (as->done_status)
1116 break;
1117 }
1118
1119 if (as->done_status) {
1120 if (as->use_pdc) {
1121 dev_warn(master->dev.parent,
1122 "overrun (%u/%u remaining)\n",
1123 spi_readl(as, TCR), spi_readl(as, RCR));
1124
1125 /*
1126 * Clean up DMA registers and make sure the data
1127 * registers are empty.
1128 */
1129 spi_writel(as, RNCR, 0);
1130 spi_writel(as, TNCR, 0);
1131 spi_writel(as, RCR, 0);
1132 spi_writel(as, TCR, 0);
1133 for (timeout = 1000; timeout; timeout--)
1134 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1135 break;
1136 if (!timeout)
1137 dev_warn(master->dev.parent,
1138 "timeout waiting for TXEMPTY");
1139 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1140 spi_readl(as, RDR);
1141
1142 /* Clear any overrun happening while cleaning up */
1143 spi_readl(as, SR);
1144
1145 } else if (atmel_spi_use_dma(as, xfer)) {
1146 atmel_spi_stop_dma(as);
1147 }
1148
1149 if (!msg->is_dma_mapped
1150 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1151 atmel_spi_dma_unmap_xfer(master, xfer);
1152
1153 return 0;
1154
1155 } else {
1156 /* only update length if no error */
1157 msg->actual_length += xfer->len;
1158 }
1159
1160 if (!msg->is_dma_mapped
1161 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1162 atmel_spi_dma_unmap_xfer(master, xfer);
1163
1164 if (xfer->delay_usecs)
1165 udelay(xfer->delay_usecs);
1166
1167 if (xfer->cs_change) {
1168 if (list_is_last(&xfer->transfer_list,
1169 &msg->transfers)) {
1170 as->keep_cs = true;
1171 } else {
1172 as->cs_active = !as->cs_active;
1173 if (as->cs_active)
1174 cs_activate(as, msg->spi);
1175 else
1176 cs_deactivate(as, msg->spi);
1177 }
1178 }
1179
1180 return 0;
1181 }
1182
1183 static int atmel_spi_transfer_one_message(struct spi_master *master,
1184 struct spi_message *msg)
1185 {
1186 struct atmel_spi *as;
1187 struct spi_transfer *xfer;
1188 struct spi_device *spi = msg->spi;
1189 int ret = 0;
1190
1191 as = spi_master_get_devdata(master);
1192
1193 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1194 msg, dev_name(&spi->dev));
1195
1196 atmel_spi_lock(as);
1197 cs_activate(as, spi);
1198
1199 as->cs_active = true;
1200 as->keep_cs = false;
1201
1202 msg->status = 0;
1203 msg->actual_length = 0;
1204
1205 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1206 ret = atmel_spi_one_transfer(master, msg, xfer);
1207 if (ret)
1208 goto msg_done;
1209 }
1210
1211 if (as->use_pdc)
1212 atmel_spi_disable_pdc_transfer(as);
1213
1214 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1215 dev_dbg(&spi->dev,
1216 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1217 xfer, xfer->len,
1218 xfer->tx_buf, &xfer->tx_dma,
1219 xfer->rx_buf, &xfer->rx_dma);
1220 }
1221
1222 msg_done:
1223 if (!as->keep_cs)
1224 cs_deactivate(as, msg->spi);
1225
1226 atmel_spi_unlock(as);
1227
1228 msg->status = as->done_status;
1229 spi_finalize_current_message(spi->master);
1230
1231 return ret;
1232 }
1233
1234 static void atmel_spi_cleanup(struct spi_device *spi)
1235 {
1236 struct atmel_spi_device *asd = spi->controller_state;
1237 unsigned gpio = (unsigned long) spi->controller_data;
1238
1239 if (!asd)
1240 return;
1241
1242 spi->controller_state = NULL;
1243 gpio_free(gpio);
1244 kfree(asd);
1245 }
1246
1247 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1248 {
1249 return spi_readl(as, VERSION) & 0x00000fff;
1250 }
1251
1252 static void atmel_get_caps(struct atmel_spi *as)
1253 {
1254 unsigned int version;
1255
1256 version = atmel_get_version(as);
1257 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1258
1259 as->caps.is_spi2 = version > 0x121;
1260 as->caps.has_wdrbt = version >= 0x210;
1261 as->caps.has_dma_support = version >= 0x212;
1262 }
1263
1264 /*-------------------------------------------------------------------------*/
1265
1266 static int atmel_spi_probe(struct platform_device *pdev)
1267 {
1268 struct resource *regs;
1269 int irq;
1270 struct clk *clk;
1271 int ret;
1272 struct spi_master *master;
1273 struct atmel_spi *as;
1274
1275 /* Select default pin state */
1276 pinctrl_pm_select_default_state(&pdev->dev);
1277
1278 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1279 if (!regs)
1280 return -ENXIO;
1281
1282 irq = platform_get_irq(pdev, 0);
1283 if (irq < 0)
1284 return irq;
1285
1286 clk = devm_clk_get(&pdev->dev, "spi_clk");
1287 if (IS_ERR(clk))
1288 return PTR_ERR(clk);
1289
1290 /* setup spi core then atmel-specific driver state */
1291 ret = -ENOMEM;
1292 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1293 if (!master)
1294 goto out_free;
1295
1296 /* the spi->mode bits understood by this driver: */
1297 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1298 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1299 master->dev.of_node = pdev->dev.of_node;
1300 master->bus_num = pdev->id;
1301 master->num_chipselect = master->dev.of_node ? 0 : 4;
1302 master->setup = atmel_spi_setup;
1303 master->transfer_one_message = atmel_spi_transfer_one_message;
1304 master->cleanup = atmel_spi_cleanup;
1305 master->auto_runtime_pm = true;
1306 platform_set_drvdata(pdev, master);
1307
1308 as = spi_master_get_devdata(master);
1309
1310 /*
1311 * Scratch buffer is used for throwaway rx and tx data.
1312 * It's coherent to minimize dcache pollution.
1313 */
1314 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1315 &as->buffer_dma, GFP_KERNEL);
1316 if (!as->buffer)
1317 goto out_free;
1318
1319 spin_lock_init(&as->lock);
1320
1321 as->pdev = pdev;
1322 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1323 if (IS_ERR(as->regs)) {
1324 ret = PTR_ERR(as->regs);
1325 goto out_free_buffer;
1326 }
1327 as->phybase = regs->start;
1328 as->irq = irq;
1329 as->clk = clk;
1330
1331 init_completion(&as->xfer_completion);
1332
1333 atmel_get_caps(as);
1334
1335 as->use_dma = false;
1336 as->use_pdc = false;
1337 if (as->caps.has_dma_support) {
1338 ret = atmel_spi_configure_dma(as);
1339 if (ret == 0)
1340 as->use_dma = true;
1341 else if (ret == -EPROBE_DEFER)
1342 return ret;
1343 } else {
1344 as->use_pdc = true;
1345 }
1346
1347 if (as->caps.has_dma_support && !as->use_dma)
1348 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1349
1350 if (as->use_pdc) {
1351 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1352 0, dev_name(&pdev->dev), master);
1353 } else {
1354 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1355 0, dev_name(&pdev->dev), master);
1356 }
1357 if (ret)
1358 goto out_unmap_regs;
1359
1360 /* Initialize the hardware */
1361 ret = clk_prepare_enable(clk);
1362 if (ret)
1363 goto out_free_irq;
1364 spi_writel(as, CR, SPI_BIT(SWRST));
1365 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1366 if (as->caps.has_wdrbt) {
1367 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1368 | SPI_BIT(MSTR));
1369 } else {
1370 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1371 }
1372
1373 if (as->use_pdc)
1374 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1375 spi_writel(as, CR, SPI_BIT(SPIEN));
1376
1377 /* go! */
1378 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1379 (unsigned long)regs->start, irq);
1380
1381 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1382 pm_runtime_use_autosuspend(&pdev->dev);
1383 pm_runtime_set_active(&pdev->dev);
1384 pm_runtime_enable(&pdev->dev);
1385
1386 ret = devm_spi_register_master(&pdev->dev, master);
1387 if (ret)
1388 goto out_free_dma;
1389
1390 return 0;
1391
1392 out_free_dma:
1393 pm_runtime_disable(&pdev->dev);
1394 pm_runtime_set_suspended(&pdev->dev);
1395
1396 if (as->use_dma)
1397 atmel_spi_release_dma(as);
1398
1399 spi_writel(as, CR, SPI_BIT(SWRST));
1400 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1401 clk_disable_unprepare(clk);
1402 out_free_irq:
1403 out_unmap_regs:
1404 out_free_buffer:
1405 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1406 as->buffer_dma);
1407 out_free:
1408 spi_master_put(master);
1409 return ret;
1410 }
1411
1412 static int atmel_spi_remove(struct platform_device *pdev)
1413 {
1414 struct spi_master *master = platform_get_drvdata(pdev);
1415 struct atmel_spi *as = spi_master_get_devdata(master);
1416
1417 pm_runtime_get_sync(&pdev->dev);
1418
1419 /* reset the hardware and block queue progress */
1420 spin_lock_irq(&as->lock);
1421 if (as->use_dma) {
1422 atmel_spi_stop_dma(as);
1423 atmel_spi_release_dma(as);
1424 }
1425
1426 spi_writel(as, CR, SPI_BIT(SWRST));
1427 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1428 spi_readl(as, SR);
1429 spin_unlock_irq(&as->lock);
1430
1431 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1432 as->buffer_dma);
1433
1434 clk_disable_unprepare(as->clk);
1435
1436 pm_runtime_put_noidle(&pdev->dev);
1437 pm_runtime_disable(&pdev->dev);
1438
1439 return 0;
1440 }
1441
1442 #ifdef CONFIG_PM
1443 static int atmel_spi_runtime_suspend(struct device *dev)
1444 {
1445 struct spi_master *master = dev_get_drvdata(dev);
1446 struct atmel_spi *as = spi_master_get_devdata(master);
1447
1448 clk_disable_unprepare(as->clk);
1449 pinctrl_pm_select_sleep_state(dev);
1450
1451 return 0;
1452 }
1453
1454 static int atmel_spi_runtime_resume(struct device *dev)
1455 {
1456 struct spi_master *master = dev_get_drvdata(dev);
1457 struct atmel_spi *as = spi_master_get_devdata(master);
1458
1459 pinctrl_pm_select_default_state(dev);
1460
1461 return clk_prepare_enable(as->clk);
1462 }
1463
1464 static int atmel_spi_suspend(struct device *dev)
1465 {
1466 struct spi_master *master = dev_get_drvdata(dev);
1467 int ret;
1468
1469 /* Stop the queue running */
1470 ret = spi_master_suspend(master);
1471 if (ret) {
1472 dev_warn(dev, "cannot suspend master\n");
1473 return ret;
1474 }
1475
1476 if (!pm_runtime_suspended(dev))
1477 atmel_spi_runtime_suspend(dev);
1478
1479 return 0;
1480 }
1481
1482 static int atmel_spi_resume(struct device *dev)
1483 {
1484 struct spi_master *master = dev_get_drvdata(dev);
1485 int ret;
1486
1487 if (!pm_runtime_suspended(dev)) {
1488 ret = atmel_spi_runtime_resume(dev);
1489 if (ret)
1490 return ret;
1491 }
1492
1493 /* Start the queue running */
1494 ret = spi_master_resume(master);
1495 if (ret)
1496 dev_err(dev, "problem starting queue (%d)\n", ret);
1497
1498 return ret;
1499 }
1500
1501 static const struct dev_pm_ops atmel_spi_pm_ops = {
1502 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1503 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1504 atmel_spi_runtime_resume, NULL)
1505 };
1506 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1507 #else
1508 #define ATMEL_SPI_PM_OPS NULL
1509 #endif
1510
1511 #if defined(CONFIG_OF)
1512 static const struct of_device_id atmel_spi_dt_ids[] = {
1513 { .compatible = "atmel,at91rm9200-spi" },
1514 { /* sentinel */ }
1515 };
1516
1517 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1518 #endif
1519
1520 static struct platform_driver atmel_spi_driver = {
1521 .driver = {
1522 .name = "atmel_spi",
1523 .pm = ATMEL_SPI_PM_OPS,
1524 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1525 },
1526 .probe = atmel_spi_probe,
1527 .remove = atmel_spi_remove,
1528 };
1529 module_platform_driver(atmel_spi_driver);
1530
1531 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1532 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1533 MODULE_LICENSE("GPL");
1534 MODULE_ALIAS("platform:atmel_spi");
This page took 0.063692 seconds and 5 git commands to generate.