drm/i915: constify harder
[deliverable/linux.git] / drivers / spi / spi-atmel.c
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29
30 /* SPI register offsets */
31 #define SPI_CR 0x0000
32 #define SPI_MR 0x0004
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
35 #define SPI_SR 0x0010
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET 0
67 #define SPI_MSTR_SIZE 1
68 #define SPI_PS_OFFSET 1
69 #define SPI_PS_SIZE 1
70 #define SPI_PCSDEC_OFFSET 2
71 #define SPI_PCSDEC_SIZE 1
72 #define SPI_FDIV_OFFSET 3
73 #define SPI_FDIV_SIZE 1
74 #define SPI_MODFDIS_OFFSET 4
75 #define SPI_MODFDIS_SIZE 1
76 #define SPI_WDRBT_OFFSET 5
77 #define SPI_WDRBT_SIZE 1
78 #define SPI_LLB_OFFSET 7
79 #define SPI_LLB_SIZE 1
80 #define SPI_PCS_OFFSET 16
81 #define SPI_PCS_SIZE 4
82 #define SPI_DLYBCS_OFFSET 24
83 #define SPI_DLYBCS_SIZE 8
84
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET 0
87 #define SPI_RD_SIZE 16
88
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET 0
91 #define SPI_TD_SIZE 16
92
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET 0
95 #define SPI_RDRF_SIZE 1
96 #define SPI_TDRE_OFFSET 1
97 #define SPI_TDRE_SIZE 1
98 #define SPI_MODF_OFFSET 2
99 #define SPI_MODF_SIZE 1
100 #define SPI_OVRES_OFFSET 3
101 #define SPI_OVRES_SIZE 1
102 #define SPI_ENDRX_OFFSET 4
103 #define SPI_ENDRX_SIZE 1
104 #define SPI_ENDTX_OFFSET 5
105 #define SPI_ENDTX_SIZE 1
106 #define SPI_RXBUFF_OFFSET 6
107 #define SPI_RXBUFF_SIZE 1
108 #define SPI_TXBUFE_OFFSET 7
109 #define SPI_TXBUFE_SIZE 1
110 #define SPI_NSSR_OFFSET 8
111 #define SPI_NSSR_SIZE 1
112 #define SPI_TXEMPTY_OFFSET 9
113 #define SPI_TXEMPTY_SIZE 1
114 #define SPI_SPIENS_OFFSET 16
115 #define SPI_SPIENS_SIZE 1
116
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET 0
119 #define SPI_CPOL_SIZE 1
120 #define SPI_NCPHA_OFFSET 1
121 #define SPI_NCPHA_SIZE 1
122 #define SPI_CSAAT_OFFSET 3
123 #define SPI_CSAAT_SIZE 1
124 #define SPI_BITS_OFFSET 4
125 #define SPI_BITS_SIZE 4
126 #define SPI_SCBR_OFFSET 8
127 #define SPI_SCBR_SIZE 8
128 #define SPI_DLYBS_OFFSET 16
129 #define SPI_DLYBS_SIZE 8
130 #define SPI_DLYBCT_OFFSET 24
131 #define SPI_DLYBCT_SIZE 8
132
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET 0
135 #define SPI_RXCTR_SIZE 16
136
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET 0
139 #define SPI_TXCTR_SIZE 16
140
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET 0
143 #define SPI_RXNCR_SIZE 16
144
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET 0
147 #define SPI_TXNCR_SIZE 16
148
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET 0
151 #define SPI_RXTEN_SIZE 1
152 #define SPI_RXTDIS_OFFSET 1
153 #define SPI_RXTDIS_SIZE 1
154 #define SPI_TXTEN_OFFSET 8
155 #define SPI_TXTEN_SIZE 1
156 #define SPI_TXTDIS_OFFSET 9
157 #define SPI_TXTDIS_SIZE 1
158
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT 0
161 #define SPI_BITS_9_BPT 1
162 #define SPI_BITS_10_BPT 2
163 #define SPI_BITS_11_BPT 3
164 #define SPI_BITS_12_BPT 4
165 #define SPI_BITS_13_BPT 5
166 #define SPI_BITS_14_BPT 6
167 #define SPI_BITS_15_BPT 7
168 #define SPI_BITS_16_BPT 8
169
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 (1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 | SPI_BF(name,value))
180
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183 __raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185 __raw_writel((value), (port)->regs + SPI_##reg)
186
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190 #define DMA_MIN_BYTES 16
191
192 struct atmel_spi_dma {
193 struct dma_chan *chan_rx;
194 struct dma_chan *chan_tx;
195 struct scatterlist sgrx;
196 struct scatterlist sgtx;
197 struct dma_async_tx_descriptor *data_desc_rx;
198 struct dma_async_tx_descriptor *data_desc_tx;
199
200 struct at_dma_slave dma_slave;
201 };
202
203 struct atmel_spi_caps {
204 bool is_spi2;
205 bool has_wdrbt;
206 bool has_dma_support;
207 };
208
209 /*
210 * The core SPI transfer engine just talks to a register bank to set up
211 * DMA transfers; transfer queue progress is driven by IRQs. The clock
212 * framework provides the base clock, subdivided for each spi_device.
213 */
214 struct atmel_spi {
215 spinlock_t lock;
216 unsigned long flags;
217
218 phys_addr_t phybase;
219 void __iomem *regs;
220 int irq;
221 struct clk *clk;
222 struct platform_device *pdev;
223 struct spi_device *stay;
224
225 u8 stopping;
226 struct list_head queue;
227 struct tasklet_struct tasklet;
228 struct spi_transfer *current_transfer;
229 unsigned long current_remaining_bytes;
230 struct spi_transfer *next_transfer;
231 unsigned long next_remaining_bytes;
232 int done_status;
233
234 /* scratch buffer */
235 void *buffer;
236 dma_addr_t buffer_dma;
237
238 struct atmel_spi_caps caps;
239
240 bool use_dma;
241 bool use_pdc;
242 /* dmaengine data */
243 struct atmel_spi_dma dma;
244 };
245
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248 unsigned int npcs_pin;
249 u32 csr;
250 };
251
252 #define BUFFER_SIZE PAGE_SIZE
253 #define INVALID_DMA_ADDRESS 0xffffffff
254
255 /*
256 * Version 2 of the SPI controller has
257 * - CR.LASTXFER
258 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260 * - SPI_CSRx.CSAAT
261 * - SPI_CSRx.SBCR allows faster clocking
262 */
263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265 return as->caps.is_spi2;
266 }
267
268 /*
269 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270 * they assume that spi slave device state will not change on deselect, so
271 * that automagic deselection is OK. ("NPCSx rises if no data is to be
272 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
273 * controllers have CSAAT and friends.
274 *
275 * Since the CSAAT functionality is a bit weird on newer controllers as
276 * well, we use GPIO to control nCSx pins on all controllers, updating
277 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
278 * support active-high chipselects despite the controller's belief that
279 * only active-low devices/systems exists.
280 *
281 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282 * right when driven with GPIO. ("Mode Fault does not allow more than one
283 * Master on Chip Select 0.") No workaround exists for that ... so for
284 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285 * and (c) will trigger that first erratum in some cases.
286 */
287
288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290 struct atmel_spi_device *asd = spi->controller_state;
291 unsigned active = spi->mode & SPI_CS_HIGH;
292 u32 mr;
293
294 if (atmel_spi_is_v2(as)) {
295 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296 /* For the low SPI version, there is a issue that PDC transfer
297 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298 */
299 spi_writel(as, CSR0, asd->csr);
300 if (as->caps.has_wdrbt) {
301 spi_writel(as, MR,
302 SPI_BF(PCS, ~(0x01 << spi->chip_select))
303 | SPI_BIT(WDRBT)
304 | SPI_BIT(MODFDIS)
305 | SPI_BIT(MSTR));
306 } else {
307 spi_writel(as, MR,
308 SPI_BF(PCS, ~(0x01 << spi->chip_select))
309 | SPI_BIT(MODFDIS)
310 | SPI_BIT(MSTR));
311 }
312
313 mr = spi_readl(as, MR);
314 gpio_set_value(asd->npcs_pin, active);
315 } else {
316 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317 int i;
318 u32 csr;
319
320 /* Make sure clock polarity is correct */
321 for (i = 0; i < spi->master->num_chipselect; i++) {
322 csr = spi_readl(as, CSR0 + 4 * i);
323 if ((csr ^ cpol) & SPI_BIT(CPOL))
324 spi_writel(as, CSR0 + 4 * i,
325 csr ^ SPI_BIT(CPOL));
326 }
327
328 mr = spi_readl(as, MR);
329 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330 if (spi->chip_select != 0)
331 gpio_set_value(asd->npcs_pin, active);
332 spi_writel(as, MR, mr);
333 }
334
335 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336 asd->npcs_pin, active ? " (high)" : "",
337 mr);
338 }
339
340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342 struct atmel_spi_device *asd = spi->controller_state;
343 unsigned active = spi->mode & SPI_CS_HIGH;
344 u32 mr;
345
346 /* only deactivate *this* device; sometimes transfers to
347 * another device may be active when this routine is called.
348 */
349 mr = spi_readl(as, MR);
350 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351 mr = SPI_BFINS(PCS, 0xf, mr);
352 spi_writel(as, MR, mr);
353 }
354
355 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356 asd->npcs_pin, active ? " (low)" : "",
357 mr);
358
359 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360 gpio_set_value(asd->npcs_pin, !active);
361 }
362
363 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
364 {
365 spin_lock_irqsave(&as->lock, as->flags);
366 }
367
368 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
369 {
370 spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372
373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374 struct spi_transfer *xfer)
375 {
376 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378
379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380 struct spi_transfer *xfer)
381 {
382 return msg->transfers.prev == &xfer->transfer_list;
383 }
384
385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387 return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389
390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391 struct dma_slave_config *slave_config,
392 u8 bits_per_word)
393 {
394 int err = 0;
395
396 if (bits_per_word > 8) {
397 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399 } else {
400 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402 }
403
404 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406 slave_config->src_maxburst = 1;
407 slave_config->dst_maxburst = 1;
408 slave_config->device_fc = false;
409
410 slave_config->direction = DMA_MEM_TO_DEV;
411 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412 dev_err(&as->pdev->dev,
413 "failed to configure tx dma channel\n");
414 err = -EINVAL;
415 }
416
417 slave_config->direction = DMA_DEV_TO_MEM;
418 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419 dev_err(&as->pdev->dev,
420 "failed to configure rx dma channel\n");
421 err = -EINVAL;
422 }
423
424 return err;
425 }
426
427 static bool filter(struct dma_chan *chan, void *pdata)
428 {
429 struct atmel_spi_dma *sl_pdata = pdata;
430 struct at_dma_slave *sl;
431
432 if (!sl_pdata)
433 return false;
434
435 sl = &sl_pdata->dma_slave;
436 if (sl->dma_dev == chan->device->dev) {
437 chan->private = sl;
438 return true;
439 } else {
440 return false;
441 }
442 }
443
444 static int atmel_spi_configure_dma(struct atmel_spi *as)
445 {
446 struct dma_slave_config slave_config;
447 struct device *dev = &as->pdev->dev;
448 int err;
449
450 dma_cap_mask_t mask;
451 dma_cap_zero(mask);
452 dma_cap_set(DMA_SLAVE, mask);
453
454 as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
455 &as->dma,
456 dev, "tx");
457 if (!as->dma.chan_tx) {
458 dev_err(dev,
459 "DMA TX channel not available, SPI unable to use DMA\n");
460 err = -EBUSY;
461 goto error;
462 }
463
464 as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
465 &as->dma,
466 dev, "rx");
467
468 if (!as->dma.chan_rx) {
469 dev_err(dev,
470 "DMA RX channel not available, SPI unable to use DMA\n");
471 err = -EBUSY;
472 goto error;
473 }
474
475 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
476 if (err)
477 goto error;
478
479 dev_info(&as->pdev->dev,
480 "Using %s (tx) and %s (rx) for DMA transfers\n",
481 dma_chan_name(as->dma.chan_tx),
482 dma_chan_name(as->dma.chan_rx));
483 return 0;
484 error:
485 if (as->dma.chan_rx)
486 dma_release_channel(as->dma.chan_rx);
487 if (as->dma.chan_tx)
488 dma_release_channel(as->dma.chan_tx);
489 return err;
490 }
491
492 static void atmel_spi_stop_dma(struct atmel_spi *as)
493 {
494 if (as->dma.chan_rx)
495 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
496 DMA_TERMINATE_ALL, 0);
497 if (as->dma.chan_tx)
498 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
499 DMA_TERMINATE_ALL, 0);
500 }
501
502 static void atmel_spi_release_dma(struct atmel_spi *as)
503 {
504 if (as->dma.chan_rx)
505 dma_release_channel(as->dma.chan_rx);
506 if (as->dma.chan_tx)
507 dma_release_channel(as->dma.chan_tx);
508 }
509
510 /* This function is called by the DMA driver from tasklet context */
511 static void dma_callback(void *data)
512 {
513 struct spi_master *master = data;
514 struct atmel_spi *as = spi_master_get_devdata(master);
515
516 /* trigger SPI tasklet */
517 tasklet_schedule(&as->tasklet);
518 }
519
520 /*
521 * Next transfer using PIO.
522 * lock is held, spi tasklet is blocked
523 */
524 static void atmel_spi_next_xfer_pio(struct spi_master *master,
525 struct spi_transfer *xfer)
526 {
527 struct atmel_spi *as = spi_master_get_devdata(master);
528
529 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
530
531 as->current_remaining_bytes = xfer->len;
532
533 /* Make sure data is not remaining in RDR */
534 spi_readl(as, RDR);
535 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
536 spi_readl(as, RDR);
537 cpu_relax();
538 }
539
540 if (xfer->tx_buf)
541 if (xfer->bits_per_word > 8)
542 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
543 else
544 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
545 else
546 spi_writel(as, TDR, 0);
547
548 dev_dbg(master->dev.parent,
549 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
550 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
551 xfer->bits_per_word);
552
553 /* Enable relevant interrupts */
554 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
555 }
556
557 /*
558 * Submit next transfer for DMA.
559 * lock is held, spi tasklet is blocked
560 */
561 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
562 struct spi_transfer *xfer,
563 u32 *plen)
564 {
565 struct atmel_spi *as = spi_master_get_devdata(master);
566 struct dma_chan *rxchan = as->dma.chan_rx;
567 struct dma_chan *txchan = as->dma.chan_tx;
568 struct dma_async_tx_descriptor *rxdesc;
569 struct dma_async_tx_descriptor *txdesc;
570 struct dma_slave_config slave_config;
571 dma_cookie_t cookie;
572 u32 len = *plen;
573
574 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
575
576 /* Check that the channels are available */
577 if (!rxchan || !txchan)
578 return -ENODEV;
579
580 /* release lock for DMA operations */
581 atmel_spi_unlock(as);
582
583 /* prepare the RX dma transfer */
584 sg_init_table(&as->dma.sgrx, 1);
585 if (xfer->rx_buf) {
586 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
587 } else {
588 as->dma.sgrx.dma_address = as->buffer_dma;
589 if (len > BUFFER_SIZE)
590 len = BUFFER_SIZE;
591 }
592
593 /* prepare the TX dma transfer */
594 sg_init_table(&as->dma.sgtx, 1);
595 if (xfer->tx_buf) {
596 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
597 } else {
598 as->dma.sgtx.dma_address = as->buffer_dma;
599 if (len > BUFFER_SIZE)
600 len = BUFFER_SIZE;
601 memset(as->buffer, 0, len);
602 }
603
604 sg_dma_len(&as->dma.sgtx) = len;
605 sg_dma_len(&as->dma.sgrx) = len;
606
607 *plen = len;
608
609 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
610 goto err_exit;
611
612 /* Send both scatterlists */
613 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
614 &as->dma.sgrx,
615 1,
616 DMA_FROM_DEVICE,
617 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
618 NULL);
619 if (!rxdesc)
620 goto err_dma;
621
622 txdesc = txchan->device->device_prep_slave_sg(txchan,
623 &as->dma.sgtx,
624 1,
625 DMA_TO_DEVICE,
626 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
627 NULL);
628 if (!txdesc)
629 goto err_dma;
630
631 dev_dbg(master->dev.parent,
632 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
633 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
634 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
635
636 /* Enable relevant interrupts */
637 spi_writel(as, IER, SPI_BIT(OVRES));
638
639 /* Put the callback on the RX transfer only, that should finish last */
640 rxdesc->callback = dma_callback;
641 rxdesc->callback_param = master;
642
643 /* Submit and fire RX and TX with TX last so we're ready to read! */
644 cookie = rxdesc->tx_submit(rxdesc);
645 if (dma_submit_error(cookie))
646 goto err_dma;
647 cookie = txdesc->tx_submit(txdesc);
648 if (dma_submit_error(cookie))
649 goto err_dma;
650 rxchan->device->device_issue_pending(rxchan);
651 txchan->device->device_issue_pending(txchan);
652
653 /* take back lock */
654 atmel_spi_lock(as);
655 return 0;
656
657 err_dma:
658 spi_writel(as, IDR, SPI_BIT(OVRES));
659 atmel_spi_stop_dma(as);
660 err_exit:
661 atmel_spi_lock(as);
662 return -ENOMEM;
663 }
664
665 static void atmel_spi_next_xfer_data(struct spi_master *master,
666 struct spi_transfer *xfer,
667 dma_addr_t *tx_dma,
668 dma_addr_t *rx_dma,
669 u32 *plen)
670 {
671 struct atmel_spi *as = spi_master_get_devdata(master);
672 u32 len = *plen;
673
674 /* use scratch buffer only when rx or tx data is unspecified */
675 if (xfer->rx_buf)
676 *rx_dma = xfer->rx_dma + xfer->len - *plen;
677 else {
678 *rx_dma = as->buffer_dma;
679 if (len > BUFFER_SIZE)
680 len = BUFFER_SIZE;
681 }
682
683 if (xfer->tx_buf)
684 *tx_dma = xfer->tx_dma + xfer->len - *plen;
685 else {
686 *tx_dma = as->buffer_dma;
687 if (len > BUFFER_SIZE)
688 len = BUFFER_SIZE;
689 memset(as->buffer, 0, len);
690 dma_sync_single_for_device(&as->pdev->dev,
691 as->buffer_dma, len, DMA_TO_DEVICE);
692 }
693
694 *plen = len;
695 }
696
697 /*
698 * Submit next transfer for PDC.
699 * lock is held, spi irq is blocked
700 */
701 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
702 struct spi_message *msg)
703 {
704 struct atmel_spi *as = spi_master_get_devdata(master);
705 struct spi_transfer *xfer;
706 u32 len, remaining;
707 u32 ieval;
708 dma_addr_t tx_dma, rx_dma;
709
710 if (!as->current_transfer)
711 xfer = list_entry(msg->transfers.next,
712 struct spi_transfer, transfer_list);
713 else if (!as->next_transfer)
714 xfer = list_entry(as->current_transfer->transfer_list.next,
715 struct spi_transfer, transfer_list);
716 else
717 xfer = NULL;
718
719 if (xfer) {
720 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
721
722 len = xfer->len;
723 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
724 remaining = xfer->len - len;
725
726 spi_writel(as, RPR, rx_dma);
727 spi_writel(as, TPR, tx_dma);
728
729 if (msg->spi->bits_per_word > 8)
730 len >>= 1;
731 spi_writel(as, RCR, len);
732 spi_writel(as, TCR, len);
733
734 dev_dbg(&msg->spi->dev,
735 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
736 xfer, xfer->len, xfer->tx_buf,
737 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
738 (unsigned long long)xfer->rx_dma);
739 } else {
740 xfer = as->next_transfer;
741 remaining = as->next_remaining_bytes;
742 }
743
744 as->current_transfer = xfer;
745 as->current_remaining_bytes = remaining;
746
747 if (remaining > 0)
748 len = remaining;
749 else if (!atmel_spi_xfer_is_last(msg, xfer)
750 && atmel_spi_xfer_can_be_chained(xfer)) {
751 xfer = list_entry(xfer->transfer_list.next,
752 struct spi_transfer, transfer_list);
753 len = xfer->len;
754 } else
755 xfer = NULL;
756
757 as->next_transfer = xfer;
758
759 if (xfer) {
760 u32 total;
761
762 total = len;
763 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
764 as->next_remaining_bytes = total - len;
765
766 spi_writel(as, RNPR, rx_dma);
767 spi_writel(as, TNPR, tx_dma);
768
769 if (msg->spi->bits_per_word > 8)
770 len >>= 1;
771 spi_writel(as, RNCR, len);
772 spi_writel(as, TNCR, len);
773
774 dev_dbg(&msg->spi->dev,
775 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
776 xfer, xfer->len, xfer->tx_buf,
777 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
778 (unsigned long long)xfer->rx_dma);
779 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
780 } else {
781 spi_writel(as, RNCR, 0);
782 spi_writel(as, TNCR, 0);
783 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
784 }
785
786 /* REVISIT: We're waiting for ENDRX before we start the next
787 * transfer because we need to handle some difficult timing
788 * issues otherwise. If we wait for ENDTX in one transfer and
789 * then starts waiting for ENDRX in the next, it's difficult
790 * to tell the difference between the ENDRX interrupt we're
791 * actually waiting for and the ENDRX interrupt of the
792 * previous transfer.
793 *
794 * It should be doable, though. Just not now...
795 */
796 spi_writel(as, IER, ieval);
797 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
798 }
799
800 /*
801 * Choose way to submit next transfer and start it.
802 * lock is held, spi tasklet is blocked
803 */
804 static void atmel_spi_dma_next_xfer(struct spi_master *master,
805 struct spi_message *msg)
806 {
807 struct atmel_spi *as = spi_master_get_devdata(master);
808 struct spi_transfer *xfer;
809 u32 remaining, len;
810
811 remaining = as->current_remaining_bytes;
812 if (remaining) {
813 xfer = as->current_transfer;
814 len = remaining;
815 } else {
816 if (!as->current_transfer)
817 xfer = list_entry(msg->transfers.next,
818 struct spi_transfer, transfer_list);
819 else
820 xfer = list_entry(
821 as->current_transfer->transfer_list.next,
822 struct spi_transfer, transfer_list);
823
824 as->current_transfer = xfer;
825 len = xfer->len;
826 }
827
828 if (atmel_spi_use_dma(as, xfer)) {
829 u32 total = len;
830 if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
831 as->current_remaining_bytes = total - len;
832 return;
833 } else {
834 dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
835 }
836 }
837
838 /* use PIO if error appened using DMA */
839 atmel_spi_next_xfer_pio(master, xfer);
840 }
841
842 static void atmel_spi_next_message(struct spi_master *master)
843 {
844 struct atmel_spi *as = spi_master_get_devdata(master);
845 struct spi_message *msg;
846 struct spi_device *spi;
847
848 BUG_ON(as->current_transfer);
849
850 msg = list_entry(as->queue.next, struct spi_message, queue);
851 spi = msg->spi;
852
853 dev_dbg(master->dev.parent, "start message %p for %s\n",
854 msg, dev_name(&spi->dev));
855
856 /* select chip if it's not still active */
857 if (as->stay) {
858 if (as->stay != spi) {
859 cs_deactivate(as, as->stay);
860 cs_activate(as, spi);
861 }
862 as->stay = NULL;
863 } else
864 cs_activate(as, spi);
865
866 if (as->use_pdc)
867 atmel_spi_pdc_next_xfer(master, msg);
868 else
869 atmel_spi_dma_next_xfer(master, msg);
870 }
871
872 /*
873 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
874 * - The buffer is either valid for CPU access, else NULL
875 * - If the buffer is valid, so is its DMA address
876 *
877 * This driver manages the dma address unless message->is_dma_mapped.
878 */
879 static int
880 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
881 {
882 struct device *dev = &as->pdev->dev;
883
884 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
885 if (xfer->tx_buf) {
886 /* tx_buf is a const void* where we need a void * for the dma
887 * mapping */
888 void *nonconst_tx = (void *)xfer->tx_buf;
889
890 xfer->tx_dma = dma_map_single(dev,
891 nonconst_tx, xfer->len,
892 DMA_TO_DEVICE);
893 if (dma_mapping_error(dev, xfer->tx_dma))
894 return -ENOMEM;
895 }
896 if (xfer->rx_buf) {
897 xfer->rx_dma = dma_map_single(dev,
898 xfer->rx_buf, xfer->len,
899 DMA_FROM_DEVICE);
900 if (dma_mapping_error(dev, xfer->rx_dma)) {
901 if (xfer->tx_buf)
902 dma_unmap_single(dev,
903 xfer->tx_dma, xfer->len,
904 DMA_TO_DEVICE);
905 return -ENOMEM;
906 }
907 }
908 return 0;
909 }
910
911 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
912 struct spi_transfer *xfer)
913 {
914 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
915 dma_unmap_single(master->dev.parent, xfer->tx_dma,
916 xfer->len, DMA_TO_DEVICE);
917 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
918 dma_unmap_single(master->dev.parent, xfer->rx_dma,
919 xfer->len, DMA_FROM_DEVICE);
920 }
921
922 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
923 {
924 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
925 }
926
927 static void
928 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
929 struct spi_message *msg, int stay)
930 {
931 if (!stay || as->done_status < 0)
932 cs_deactivate(as, msg->spi);
933 else
934 as->stay = msg->spi;
935
936 list_del(&msg->queue);
937 msg->status = as->done_status;
938
939 dev_dbg(master->dev.parent,
940 "xfer complete: %u bytes transferred\n",
941 msg->actual_length);
942
943 atmel_spi_unlock(as);
944 msg->complete(msg->context);
945 atmel_spi_lock(as);
946
947 as->current_transfer = NULL;
948 as->next_transfer = NULL;
949 as->done_status = 0;
950
951 /* continue if needed */
952 if (list_empty(&as->queue) || as->stopping) {
953 if (as->use_pdc)
954 atmel_spi_disable_pdc_transfer(as);
955 } else {
956 atmel_spi_next_message(master);
957 }
958 }
959
960 /* Called from IRQ
961 * lock is held
962 *
963 * Must update "current_remaining_bytes" to keep track of data
964 * to transfer.
965 */
966 static void
967 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
968 {
969 u8 *txp;
970 u8 *rxp;
971 u16 *txp16;
972 u16 *rxp16;
973 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
974
975 if (xfer->rx_buf) {
976 if (xfer->bits_per_word > 8) {
977 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978 *rxp16 = spi_readl(as, RDR);
979 } else {
980 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981 *rxp = spi_readl(as, RDR);
982 }
983 } else {
984 spi_readl(as, RDR);
985 }
986 if (xfer->bits_per_word > 8) {
987 as->current_remaining_bytes -= 2;
988 if (as->current_remaining_bytes < 0)
989 as->current_remaining_bytes = 0;
990 } else {
991 as->current_remaining_bytes--;
992 }
993
994 if (as->current_remaining_bytes) {
995 if (xfer->tx_buf) {
996 if (xfer->bits_per_word > 8) {
997 txp16 = (u16 *)(((u8 *)xfer->tx_buf)
998 + xfer_pos + 2);
999 spi_writel(as, TDR, *txp16);
1000 } else {
1001 txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
1002 spi_writel(as, TDR, *txp);
1003 }
1004 } else {
1005 spi_writel(as, TDR, 0);
1006 }
1007 }
1008 }
1009
1010 /* Tasklet
1011 * Called from DMA callback + pio transfer and overrun IRQ.
1012 */
1013 static void atmel_spi_tasklet_func(unsigned long data)
1014 {
1015 struct spi_master *master = (struct spi_master *)data;
1016 struct atmel_spi *as = spi_master_get_devdata(master);
1017 struct spi_message *msg;
1018 struct spi_transfer *xfer;
1019
1020 dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
1021
1022 atmel_spi_lock(as);
1023
1024 xfer = as->current_transfer;
1025
1026 if (xfer == NULL)
1027 /* already been there */
1028 goto tasklet_out;
1029
1030 msg = list_entry(as->queue.next, struct spi_message, queue);
1031
1032 if (as->current_remaining_bytes == 0) {
1033 if (as->done_status < 0) {
1034 /* error happened (overrun) */
1035 if (atmel_spi_use_dma(as, xfer))
1036 atmel_spi_stop_dma(as);
1037 } else {
1038 /* only update length if no error */
1039 msg->actual_length += xfer->len;
1040 }
1041
1042 if (atmel_spi_use_dma(as, xfer))
1043 if (!msg->is_dma_mapped)
1044 atmel_spi_dma_unmap_xfer(master, xfer);
1045
1046 if (xfer->delay_usecs)
1047 udelay(xfer->delay_usecs);
1048
1049 if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1050 /* report completed (or erroneous) message */
1051 atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1052 } else {
1053 if (xfer->cs_change) {
1054 cs_deactivate(as, msg->spi);
1055 udelay(1);
1056 cs_activate(as, msg->spi);
1057 }
1058
1059 /*
1060 * Not done yet. Submit the next transfer.
1061 *
1062 * FIXME handle protocol options for xfer
1063 */
1064 atmel_spi_dma_next_xfer(master, msg);
1065 }
1066 } else {
1067 /*
1068 * Keep going, we still have data to send in
1069 * the current transfer.
1070 */
1071 atmel_spi_dma_next_xfer(master, msg);
1072 }
1073
1074 tasklet_out:
1075 atmel_spi_unlock(as);
1076 }
1077
1078 /* Interrupt
1079 *
1080 * No need for locking in this Interrupt handler: done_status is the
1081 * only information modified. What we need is the update of this field
1082 * before tasklet runs. This is ensured by using barrier.
1083 */
1084 static irqreturn_t
1085 atmel_spi_pio_interrupt(int irq, void *dev_id)
1086 {
1087 struct spi_master *master = dev_id;
1088 struct atmel_spi *as = spi_master_get_devdata(master);
1089 u32 status, pending, imr;
1090 struct spi_transfer *xfer;
1091 int ret = IRQ_NONE;
1092
1093 imr = spi_readl(as, IMR);
1094 status = spi_readl(as, SR);
1095 pending = status & imr;
1096
1097 if (pending & SPI_BIT(OVRES)) {
1098 ret = IRQ_HANDLED;
1099 spi_writel(as, IDR, SPI_BIT(OVRES));
1100 dev_warn(master->dev.parent, "overrun\n");
1101
1102 /*
1103 * When we get an overrun, we disregard the current
1104 * transfer. Data will not be copied back from any
1105 * bounce buffer and msg->actual_len will not be
1106 * updated with the last xfer.
1107 *
1108 * We will also not process any remaning transfers in
1109 * the message.
1110 *
1111 * All actions are done in tasklet with done_status indication
1112 */
1113 as->done_status = -EIO;
1114 smp_wmb();
1115
1116 /* Clear any overrun happening while cleaning up */
1117 spi_readl(as, SR);
1118
1119 tasklet_schedule(&as->tasklet);
1120
1121 } else if (pending & SPI_BIT(RDRF)) {
1122 atmel_spi_lock(as);
1123
1124 if (as->current_remaining_bytes) {
1125 ret = IRQ_HANDLED;
1126 xfer = as->current_transfer;
1127 atmel_spi_pump_pio_data(as, xfer);
1128 if (!as->current_remaining_bytes) {
1129 /* no more data to xfer, kick tasklet */
1130 spi_writel(as, IDR, pending);
1131 tasklet_schedule(&as->tasklet);
1132 }
1133 }
1134
1135 atmel_spi_unlock(as);
1136 } else {
1137 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1138 ret = IRQ_HANDLED;
1139 spi_writel(as, IDR, pending);
1140 }
1141
1142 return ret;
1143 }
1144
1145 static irqreturn_t
1146 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1147 {
1148 struct spi_master *master = dev_id;
1149 struct atmel_spi *as = spi_master_get_devdata(master);
1150 struct spi_message *msg;
1151 struct spi_transfer *xfer;
1152 u32 status, pending, imr;
1153 int ret = IRQ_NONE;
1154
1155 atmel_spi_lock(as);
1156
1157 xfer = as->current_transfer;
1158 msg = list_entry(as->queue.next, struct spi_message, queue);
1159
1160 imr = spi_readl(as, IMR);
1161 status = spi_readl(as, SR);
1162 pending = status & imr;
1163
1164 if (pending & SPI_BIT(OVRES)) {
1165 int timeout;
1166
1167 ret = IRQ_HANDLED;
1168
1169 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1170 | SPI_BIT(OVRES)));
1171
1172 /*
1173 * When we get an overrun, we disregard the current
1174 * transfer. Data will not be copied back from any
1175 * bounce buffer and msg->actual_len will not be
1176 * updated with the last xfer.
1177 *
1178 * We will also not process any remaning transfers in
1179 * the message.
1180 *
1181 * First, stop the transfer and unmap the DMA buffers.
1182 */
1183 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1184 if (!msg->is_dma_mapped)
1185 atmel_spi_dma_unmap_xfer(master, xfer);
1186
1187 /* REVISIT: udelay in irq is unfriendly */
1188 if (xfer->delay_usecs)
1189 udelay(xfer->delay_usecs);
1190
1191 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1192 spi_readl(as, TCR), spi_readl(as, RCR));
1193
1194 /*
1195 * Clean up DMA registers and make sure the data
1196 * registers are empty.
1197 */
1198 spi_writel(as, RNCR, 0);
1199 spi_writel(as, TNCR, 0);
1200 spi_writel(as, RCR, 0);
1201 spi_writel(as, TCR, 0);
1202 for (timeout = 1000; timeout; timeout--)
1203 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1204 break;
1205 if (!timeout)
1206 dev_warn(master->dev.parent,
1207 "timeout waiting for TXEMPTY");
1208 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1209 spi_readl(as, RDR);
1210
1211 /* Clear any overrun happening while cleaning up */
1212 spi_readl(as, SR);
1213
1214 as->done_status = -EIO;
1215 atmel_spi_msg_done(master, as, msg, 0);
1216 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1217 ret = IRQ_HANDLED;
1218
1219 spi_writel(as, IDR, pending);
1220
1221 if (as->current_remaining_bytes == 0) {
1222 msg->actual_length += xfer->len;
1223
1224 if (!msg->is_dma_mapped)
1225 atmel_spi_dma_unmap_xfer(master, xfer);
1226
1227 /* REVISIT: udelay in irq is unfriendly */
1228 if (xfer->delay_usecs)
1229 udelay(xfer->delay_usecs);
1230
1231 if (atmel_spi_xfer_is_last(msg, xfer)) {
1232 /* report completed message */
1233 atmel_spi_msg_done(master, as, msg,
1234 xfer->cs_change);
1235 } else {
1236 if (xfer->cs_change) {
1237 cs_deactivate(as, msg->spi);
1238 udelay(1);
1239 cs_activate(as, msg->spi);
1240 }
1241
1242 /*
1243 * Not done yet. Submit the next transfer.
1244 *
1245 * FIXME handle protocol options for xfer
1246 */
1247 atmel_spi_pdc_next_xfer(master, msg);
1248 }
1249 } else {
1250 /*
1251 * Keep going, we still have data to send in
1252 * the current transfer.
1253 */
1254 atmel_spi_pdc_next_xfer(master, msg);
1255 }
1256 }
1257
1258 atmel_spi_unlock(as);
1259
1260 return ret;
1261 }
1262
1263 static int atmel_spi_setup(struct spi_device *spi)
1264 {
1265 struct atmel_spi *as;
1266 struct atmel_spi_device *asd;
1267 u32 scbr, csr;
1268 unsigned int bits = spi->bits_per_word;
1269 unsigned long bus_hz;
1270 unsigned int npcs_pin;
1271 int ret;
1272
1273 as = spi_master_get_devdata(spi->master);
1274
1275 if (as->stopping)
1276 return -ESHUTDOWN;
1277
1278 if (spi->chip_select > spi->master->num_chipselect) {
1279 dev_dbg(&spi->dev,
1280 "setup: invalid chipselect %u (%u defined)\n",
1281 spi->chip_select, spi->master->num_chipselect);
1282 return -EINVAL;
1283 }
1284
1285 /* see notes above re chipselect */
1286 if (!atmel_spi_is_v2(as)
1287 && spi->chip_select == 0
1288 && (spi->mode & SPI_CS_HIGH)) {
1289 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1290 return -EINVAL;
1291 }
1292
1293 /* v1 chips start out at half the peripheral bus speed. */
1294 bus_hz = clk_get_rate(as->clk);
1295 if (!atmel_spi_is_v2(as))
1296 bus_hz /= 2;
1297
1298 if (spi->max_speed_hz) {
1299 /*
1300 * Calculate the lowest divider that satisfies the
1301 * constraint, assuming div32/fdiv/mbz == 0.
1302 */
1303 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1304
1305 /*
1306 * If the resulting divider doesn't fit into the
1307 * register bitfield, we can't satisfy the constraint.
1308 */
1309 if (scbr >= (1 << SPI_SCBR_SIZE)) {
1310 dev_dbg(&spi->dev,
1311 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1312 spi->max_speed_hz, scbr, bus_hz/255);
1313 return -EINVAL;
1314 }
1315 } else
1316 /* speed zero means "as slow as possible" */
1317 scbr = 0xff;
1318
1319 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1320 if (spi->mode & SPI_CPOL)
1321 csr |= SPI_BIT(CPOL);
1322 if (!(spi->mode & SPI_CPHA))
1323 csr |= SPI_BIT(NCPHA);
1324
1325 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1326 *
1327 * DLYBCT would add delays between words, slowing down transfers.
1328 * It could potentially be useful to cope with DMA bottlenecks, but
1329 * in those cases it's probably best to just use a lower bitrate.
1330 */
1331 csr |= SPI_BF(DLYBS, 0);
1332 csr |= SPI_BF(DLYBCT, 0);
1333
1334 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1335 npcs_pin = (unsigned int)spi->controller_data;
1336
1337 if (gpio_is_valid(spi->cs_gpio))
1338 npcs_pin = spi->cs_gpio;
1339
1340 asd = spi->controller_state;
1341 if (!asd) {
1342 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1343 if (!asd)
1344 return -ENOMEM;
1345
1346 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1347 if (ret) {
1348 kfree(asd);
1349 return ret;
1350 }
1351
1352 asd->npcs_pin = npcs_pin;
1353 spi->controller_state = asd;
1354 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1355 } else {
1356 atmel_spi_lock(as);
1357 if (as->stay == spi)
1358 as->stay = NULL;
1359 cs_deactivate(as, spi);
1360 atmel_spi_unlock(as);
1361 }
1362
1363 asd->csr = csr;
1364
1365 dev_dbg(&spi->dev,
1366 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1367 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1368
1369 if (!atmel_spi_is_v2(as))
1370 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1371
1372 return 0;
1373 }
1374
1375 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1376 {
1377 struct atmel_spi *as;
1378 struct spi_transfer *xfer;
1379 struct device *controller = spi->master->dev.parent;
1380 u8 bits;
1381 struct atmel_spi_device *asd;
1382
1383 as = spi_master_get_devdata(spi->master);
1384
1385 dev_dbg(controller, "new message %p submitted for %s\n",
1386 msg, dev_name(&spi->dev));
1387
1388 if (unlikely(list_empty(&msg->transfers)))
1389 return -EINVAL;
1390
1391 if (as->stopping)
1392 return -ESHUTDOWN;
1393
1394 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1395 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1396 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1397 return -EINVAL;
1398 }
1399
1400 if (xfer->bits_per_word) {
1401 asd = spi->controller_state;
1402 bits = (asd->csr >> 4) & 0xf;
1403 if (bits != xfer->bits_per_word - 8) {
1404 dev_dbg(&spi->dev, "you can't yet change "
1405 "bits_per_word in transfers\n");
1406 return -ENOPROTOOPT;
1407 }
1408 }
1409
1410 if (xfer->bits_per_word > 8) {
1411 if (xfer->len % 2) {
1412 dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
1413 return -EINVAL;
1414 }
1415 }
1416
1417 /* FIXME implement these protocol options!! */
1418 if (xfer->speed_hz < spi->max_speed_hz) {
1419 dev_dbg(&spi->dev, "can't change speed in transfer\n");
1420 return -ENOPROTOOPT;
1421 }
1422
1423 /*
1424 * DMA map early, for performance (empties dcache ASAP) and
1425 * better fault reporting.
1426 */
1427 if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1428 || as->use_pdc)) {
1429 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1430 return -ENOMEM;
1431 }
1432 }
1433
1434 #ifdef VERBOSE
1435 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1436 dev_dbg(controller,
1437 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1438 xfer, xfer->len,
1439 xfer->tx_buf, xfer->tx_dma,
1440 xfer->rx_buf, xfer->rx_dma);
1441 }
1442 #endif
1443
1444 msg->status = -EINPROGRESS;
1445 msg->actual_length = 0;
1446
1447 atmel_spi_lock(as);
1448 list_add_tail(&msg->queue, &as->queue);
1449 if (!as->current_transfer)
1450 atmel_spi_next_message(spi->master);
1451 atmel_spi_unlock(as);
1452
1453 return 0;
1454 }
1455
1456 static void atmel_spi_cleanup(struct spi_device *spi)
1457 {
1458 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1459 struct atmel_spi_device *asd = spi->controller_state;
1460 unsigned gpio = (unsigned) spi->controller_data;
1461
1462 if (!asd)
1463 return;
1464
1465 atmel_spi_lock(as);
1466 if (as->stay == spi) {
1467 as->stay = NULL;
1468 cs_deactivate(as, spi);
1469 }
1470 atmel_spi_unlock(as);
1471
1472 spi->controller_state = NULL;
1473 gpio_free(gpio);
1474 kfree(asd);
1475 }
1476
1477 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1478 {
1479 return spi_readl(as, VERSION) & 0x00000fff;
1480 }
1481
1482 static void atmel_get_caps(struct atmel_spi *as)
1483 {
1484 unsigned int version;
1485
1486 version = atmel_get_version(as);
1487 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1488
1489 as->caps.is_spi2 = version > 0x121;
1490 as->caps.has_wdrbt = version >= 0x210;
1491 as->caps.has_dma_support = version >= 0x212;
1492 }
1493
1494 /*-------------------------------------------------------------------------*/
1495
1496 static int atmel_spi_probe(struct platform_device *pdev)
1497 {
1498 struct resource *regs;
1499 int irq;
1500 struct clk *clk;
1501 int ret;
1502 struct spi_master *master;
1503 struct atmel_spi *as;
1504
1505 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1506 if (!regs)
1507 return -ENXIO;
1508
1509 irq = platform_get_irq(pdev, 0);
1510 if (irq < 0)
1511 return irq;
1512
1513 clk = clk_get(&pdev->dev, "spi_clk");
1514 if (IS_ERR(clk))
1515 return PTR_ERR(clk);
1516
1517 /* setup spi core then atmel-specific driver state */
1518 ret = -ENOMEM;
1519 master = spi_alloc_master(&pdev->dev, sizeof *as);
1520 if (!master)
1521 goto out_free;
1522
1523 /* the spi->mode bits understood by this driver: */
1524 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1525 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1526 master->dev.of_node = pdev->dev.of_node;
1527 master->bus_num = pdev->id;
1528 master->num_chipselect = master->dev.of_node ? 0 : 4;
1529 master->setup = atmel_spi_setup;
1530 master->transfer = atmel_spi_transfer;
1531 master->cleanup = atmel_spi_cleanup;
1532 platform_set_drvdata(pdev, master);
1533
1534 as = spi_master_get_devdata(master);
1535
1536 /*
1537 * Scratch buffer is used for throwaway rx and tx data.
1538 * It's coherent to minimize dcache pollution.
1539 */
1540 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1541 &as->buffer_dma, GFP_KERNEL);
1542 if (!as->buffer)
1543 goto out_free;
1544
1545 spin_lock_init(&as->lock);
1546 INIT_LIST_HEAD(&as->queue);
1547
1548 as->pdev = pdev;
1549 as->regs = ioremap(regs->start, resource_size(regs));
1550 if (!as->regs)
1551 goto out_free_buffer;
1552 as->phybase = regs->start;
1553 as->irq = irq;
1554 as->clk = clk;
1555
1556 atmel_get_caps(as);
1557
1558 as->use_dma = false;
1559 as->use_pdc = false;
1560 if (as->caps.has_dma_support) {
1561 if (atmel_spi_configure_dma(as) == 0)
1562 as->use_dma = true;
1563 } else {
1564 as->use_pdc = true;
1565 }
1566
1567 if (as->caps.has_dma_support && !as->use_dma)
1568 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1569
1570 if (as->use_pdc) {
1571 ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1572 dev_name(&pdev->dev), master);
1573 } else {
1574 tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1575 (unsigned long)master);
1576
1577 ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1578 dev_name(&pdev->dev), master);
1579 }
1580 if (ret)
1581 goto out_unmap_regs;
1582
1583 /* Initialize the hardware */
1584 ret = clk_prepare_enable(clk);
1585 if (ret)
1586 goto out_unmap_regs;
1587 spi_writel(as, CR, SPI_BIT(SWRST));
1588 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1589 if (as->caps.has_wdrbt) {
1590 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1591 | SPI_BIT(MSTR));
1592 } else {
1593 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1594 }
1595
1596 if (as->use_pdc)
1597 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1598 spi_writel(as, CR, SPI_BIT(SPIEN));
1599
1600 /* go! */
1601 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1602 (unsigned long)regs->start, irq);
1603
1604 ret = spi_register_master(master);
1605 if (ret)
1606 goto out_free_dma;
1607
1608 return 0;
1609
1610 out_free_dma:
1611 if (as->use_dma)
1612 atmel_spi_release_dma(as);
1613
1614 spi_writel(as, CR, SPI_BIT(SWRST));
1615 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1616 clk_disable_unprepare(clk);
1617 free_irq(irq, master);
1618 out_unmap_regs:
1619 iounmap(as->regs);
1620 out_free_buffer:
1621 if (!as->use_pdc)
1622 tasklet_kill(&as->tasklet);
1623 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1624 as->buffer_dma);
1625 out_free:
1626 clk_put(clk);
1627 spi_master_put(master);
1628 return ret;
1629 }
1630
1631 static int atmel_spi_remove(struct platform_device *pdev)
1632 {
1633 struct spi_master *master = platform_get_drvdata(pdev);
1634 struct atmel_spi *as = spi_master_get_devdata(master);
1635 struct spi_message *msg;
1636 struct spi_transfer *xfer;
1637
1638 /* reset the hardware and block queue progress */
1639 spin_lock_irq(&as->lock);
1640 as->stopping = 1;
1641 if (as->use_dma) {
1642 atmel_spi_stop_dma(as);
1643 atmel_spi_release_dma(as);
1644 }
1645
1646 spi_writel(as, CR, SPI_BIT(SWRST));
1647 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1648 spi_readl(as, SR);
1649 spin_unlock_irq(&as->lock);
1650
1651 /* Terminate remaining queued transfers */
1652 list_for_each_entry(msg, &as->queue, queue) {
1653 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1654 if (!msg->is_dma_mapped
1655 && (atmel_spi_use_dma(as, xfer)
1656 || as->use_pdc))
1657 atmel_spi_dma_unmap_xfer(master, xfer);
1658 }
1659 msg->status = -ESHUTDOWN;
1660 msg->complete(msg->context);
1661 }
1662
1663 if (!as->use_pdc)
1664 tasklet_kill(&as->tasklet);
1665 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1666 as->buffer_dma);
1667
1668 clk_disable_unprepare(as->clk);
1669 clk_put(as->clk);
1670 free_irq(as->irq, master);
1671 iounmap(as->regs);
1672
1673 spi_unregister_master(master);
1674
1675 return 0;
1676 }
1677
1678 #ifdef CONFIG_PM
1679
1680 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1681 {
1682 struct spi_master *master = platform_get_drvdata(pdev);
1683 struct atmel_spi *as = spi_master_get_devdata(master);
1684
1685 clk_disable_unprepare(as->clk);
1686 return 0;
1687 }
1688
1689 static int atmel_spi_resume(struct platform_device *pdev)
1690 {
1691 struct spi_master *master = platform_get_drvdata(pdev);
1692 struct atmel_spi *as = spi_master_get_devdata(master);
1693
1694 return clk_prepare_enable(as->clk);
1695 return 0;
1696 }
1697
1698 #else
1699 #define atmel_spi_suspend NULL
1700 #define atmel_spi_resume NULL
1701 #endif
1702
1703 #if defined(CONFIG_OF)
1704 static const struct of_device_id atmel_spi_dt_ids[] = {
1705 { .compatible = "atmel,at91rm9200-spi" },
1706 { /* sentinel */ }
1707 };
1708
1709 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1710 #endif
1711
1712 static struct platform_driver atmel_spi_driver = {
1713 .driver = {
1714 .name = "atmel_spi",
1715 .owner = THIS_MODULE,
1716 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1717 },
1718 .suspend = atmel_spi_suspend,
1719 .resume = atmel_spi_resume,
1720 .probe = atmel_spi_probe,
1721 .remove = atmel_spi_remove,
1722 };
1723 module_platform_driver(atmel_spi_driver);
1724
1725 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1726 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1727 MODULE_LICENSE("GPL");
1728 MODULE_ALIAS("platform:atmel_spi");
This page took 0.068742 seconds and 5 git commands to generate.