Merge branch 'next' into for-linus
[deliverable/linux.git] / drivers / spi / spi-ep93xx.c
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35
36 #define SSPCR0 0x0000
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
39
40 #define SSPCR1 0x0004
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
48
49 #define SSPDR 0x0008
50
51 #define SSPSR 0x000c
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
58
59 #define SSPIIR 0x0014
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
63 #define SSPICR SSPIIR
64
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT 5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
69
70 /**
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @pdev: pointer to platform device
73 * @clk: clock for the controller
74 * @regs_base: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @wait: wait here until given transfer is completed
77 * @current_msg: message that is currently processed (or %NULL if none)
78 * @tx: current byte in transfer to transmit
79 * @rx: current byte in transfer to receive
80 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
81 * frame decreases this level and sending one frame increases it.
82 * @dma_rx: RX DMA channel
83 * @dma_tx: TX DMA channel
84 * @dma_rx_data: RX parameters passed to the DMA engine
85 * @dma_tx_data: TX parameters passed to the DMA engine
86 * @rx_sgt: sg table for RX transfers
87 * @tx_sgt: sg table for TX transfers
88 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
89 * the client
90 */
91 struct ep93xx_spi {
92 const struct platform_device *pdev;
93 struct clk *clk;
94 void __iomem *regs_base;
95 unsigned long sspdr_phys;
96 struct completion wait;
97 struct spi_message *current_msg;
98 size_t tx;
99 size_t rx;
100 size_t fifo_level;
101 struct dma_chan *dma_rx;
102 struct dma_chan *dma_tx;
103 struct ep93xx_dma_data dma_rx_data;
104 struct ep93xx_dma_data dma_tx_data;
105 struct sg_table rx_sgt;
106 struct sg_table tx_sgt;
107 void *zeropage;
108 };
109
110 /**
111 * struct ep93xx_spi_chip - SPI device hardware settings
112 * @spi: back pointer to the SPI device
113 * @ops: private chip operations
114 */
115 struct ep93xx_spi_chip {
116 const struct spi_device *spi;
117 struct ep93xx_spi_chip_ops *ops;
118 };
119
120 /* converts bits per word to CR0.DSS value */
121 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
122
123 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
124 u16 reg, u8 value)
125 {
126 writeb(value, espi->regs_base + reg);
127 }
128
129 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
130 {
131 return readb(spi->regs_base + reg);
132 }
133
134 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
135 u16 reg, u16 value)
136 {
137 writew(value, espi->regs_base + reg);
138 }
139
140 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
141 {
142 return readw(spi->regs_base + reg);
143 }
144
145 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
146 {
147 u8 regval;
148 int err;
149
150 err = clk_enable(espi->clk);
151 if (err)
152 return err;
153
154 regval = ep93xx_spi_read_u8(espi, SSPCR1);
155 regval |= SSPCR1_SSE;
156 ep93xx_spi_write_u8(espi, SSPCR1, regval);
157
158 return 0;
159 }
160
161 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
162 {
163 u8 regval;
164
165 regval = ep93xx_spi_read_u8(espi, SSPCR1);
166 regval &= ~SSPCR1_SSE;
167 ep93xx_spi_write_u8(espi, SSPCR1, regval);
168
169 clk_disable(espi->clk);
170 }
171
172 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
173 {
174 u8 regval;
175
176 regval = ep93xx_spi_read_u8(espi, SSPCR1);
177 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178 ep93xx_spi_write_u8(espi, SSPCR1, regval);
179 }
180
181 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
182 {
183 u8 regval;
184
185 regval = ep93xx_spi_read_u8(espi, SSPCR1);
186 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
187 ep93xx_spi_write_u8(espi, SSPCR1, regval);
188 }
189
190 /**
191 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192 * @espi: ep93xx SPI controller struct
193 * @rate: desired SPI output clock rate
194 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195 * @div_scr: pointer to return the scr divider
196 */
197 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
198 u32 rate, u8 *div_cpsr, u8 *div_scr)
199 {
200 struct spi_master *master = platform_get_drvdata(espi->pdev);
201 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
202 int cpsr, scr;
203
204 /*
205 * Make sure that max value is between values supported by the
206 * controller. Note that minimum value is already checked in
207 * ep93xx_spi_transfer_one_message().
208 */
209 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
210
211 /*
212 * Calculate divisors so that we can get speed according the
213 * following formula:
214 * rate = spi_clock_rate / (cpsr * (1 + scr))
215 *
216 * cpsr must be even number and starts from 2, scr can be any number
217 * between 0 and 255.
218 */
219 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
220 for (scr = 0; scr <= 255; scr++) {
221 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
222 *div_scr = (u8)scr;
223 *div_cpsr = (u8)cpsr;
224 return 0;
225 }
226 }
227 }
228
229 return -EINVAL;
230 }
231
232 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
233 {
234 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
235 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
236
237 if (chip->ops && chip->ops->cs_control)
238 chip->ops->cs_control(spi, value);
239 }
240
241 /**
242 * ep93xx_spi_setup() - setup an SPI device
243 * @spi: SPI device to setup
244 *
245 * This function sets up SPI device mode, speed etc. Can be called multiple
246 * times for a single device. Returns %0 in case of success, negative error in
247 * case of failure. When this function returns success, the device is
248 * deselected.
249 */
250 static int ep93xx_spi_setup(struct spi_device *spi)
251 {
252 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
253 struct ep93xx_spi_chip *chip;
254
255 chip = spi_get_ctldata(spi);
256 if (!chip) {
257 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
258 spi->modalias);
259
260 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
261 if (!chip)
262 return -ENOMEM;
263
264 chip->spi = spi;
265 chip->ops = spi->controller_data;
266
267 if (chip->ops && chip->ops->setup) {
268 int ret = chip->ops->setup(spi);
269 if (ret) {
270 kfree(chip);
271 return ret;
272 }
273 }
274
275 spi_set_ctldata(spi, chip);
276 }
277
278 ep93xx_spi_cs_control(spi, false);
279 return 0;
280 }
281
282 /**
283 * ep93xx_spi_cleanup() - cleans up master controller specific state
284 * @spi: SPI device to cleanup
285 *
286 * This function releases master controller specific state for given @spi
287 * device.
288 */
289 static void ep93xx_spi_cleanup(struct spi_device *spi)
290 {
291 struct ep93xx_spi_chip *chip;
292
293 chip = spi_get_ctldata(spi);
294 if (chip) {
295 if (chip->ops && chip->ops->cleanup)
296 chip->ops->cleanup(spi);
297 spi_set_ctldata(spi, NULL);
298 kfree(chip);
299 }
300 }
301
302 /**
303 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
304 * @espi: ep93xx SPI controller struct
305 * @chip: chip specific settings
306 * @speed_hz: transfer speed
307 * @bits_per_word: transfer bits_per_word
308 */
309 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
310 const struct ep93xx_spi_chip *chip,
311 u32 speed_hz, u8 bits_per_word)
312 {
313 u8 dss = bits_per_word_to_dss(bits_per_word);
314 u8 div_cpsr = 0;
315 u8 div_scr = 0;
316 u16 cr0;
317 int err;
318
319 err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
320 if (err)
321 return err;
322
323 cr0 = div_scr << SSPCR0_SCR_SHIFT;
324 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
325 cr0 |= dss;
326
327 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
328 chip->spi->mode, div_cpsr, div_scr, dss);
329 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
330
331 ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
332 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
333
334 return 0;
335 }
336
337 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
338 {
339 if (t->bits_per_word > 8) {
340 u16 tx_val = 0;
341
342 if (t->tx_buf)
343 tx_val = ((u16 *)t->tx_buf)[espi->tx];
344 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
345 espi->tx += sizeof(tx_val);
346 } else {
347 u8 tx_val = 0;
348
349 if (t->tx_buf)
350 tx_val = ((u8 *)t->tx_buf)[espi->tx];
351 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
352 espi->tx += sizeof(tx_val);
353 }
354 }
355
356 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
357 {
358 if (t->bits_per_word > 8) {
359 u16 rx_val;
360
361 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
362 if (t->rx_buf)
363 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
364 espi->rx += sizeof(rx_val);
365 } else {
366 u8 rx_val;
367
368 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
369 if (t->rx_buf)
370 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
371 espi->rx += sizeof(rx_val);
372 }
373 }
374
375 /**
376 * ep93xx_spi_read_write() - perform next RX/TX transfer
377 * @espi: ep93xx SPI controller struct
378 *
379 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
380 * called several times, the whole transfer will be completed. Returns
381 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
382 *
383 * When this function is finished, RX FIFO should be empty and TX FIFO should be
384 * full.
385 */
386 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
387 {
388 struct spi_message *msg = espi->current_msg;
389 struct spi_transfer *t = msg->state;
390
391 /* read as long as RX FIFO has frames in it */
392 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
393 ep93xx_do_read(espi, t);
394 espi->fifo_level--;
395 }
396
397 /* write as long as TX FIFO has room */
398 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
399 ep93xx_do_write(espi, t);
400 espi->fifo_level++;
401 }
402
403 if (espi->rx == t->len)
404 return 0;
405
406 return -EINPROGRESS;
407 }
408
409 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
410 {
411 /*
412 * Now everything is set up for the current transfer. We prime the TX
413 * FIFO, enable interrupts, and wait for the transfer to complete.
414 */
415 if (ep93xx_spi_read_write(espi)) {
416 ep93xx_spi_enable_interrupts(espi);
417 wait_for_completion(&espi->wait);
418 }
419 }
420
421 /**
422 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
423 * @espi: ep93xx SPI controller struct
424 * @dir: DMA transfer direction
425 *
426 * Function configures the DMA, maps the buffer and prepares the DMA
427 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
428 * in case of failure.
429 */
430 static struct dma_async_tx_descriptor *
431 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
432 {
433 struct spi_transfer *t = espi->current_msg->state;
434 struct dma_async_tx_descriptor *txd;
435 enum dma_slave_buswidth buswidth;
436 struct dma_slave_config conf;
437 struct scatterlist *sg;
438 struct sg_table *sgt;
439 struct dma_chan *chan;
440 const void *buf, *pbuf;
441 size_t len = t->len;
442 int i, ret, nents;
443
444 if (t->bits_per_word > 8)
445 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 else
447 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
448
449 memset(&conf, 0, sizeof(conf));
450 conf.direction = dir;
451
452 if (dir == DMA_DEV_TO_MEM) {
453 chan = espi->dma_rx;
454 buf = t->rx_buf;
455 sgt = &espi->rx_sgt;
456
457 conf.src_addr = espi->sspdr_phys;
458 conf.src_addr_width = buswidth;
459 } else {
460 chan = espi->dma_tx;
461 buf = t->tx_buf;
462 sgt = &espi->tx_sgt;
463
464 conf.dst_addr = espi->sspdr_phys;
465 conf.dst_addr_width = buswidth;
466 }
467
468 ret = dmaengine_slave_config(chan, &conf);
469 if (ret)
470 return ERR_PTR(ret);
471
472 /*
473 * We need to split the transfer into PAGE_SIZE'd chunks. This is
474 * because we are using @espi->zeropage to provide a zero RX buffer
475 * for the TX transfers and we have only allocated one page for that.
476 *
477 * For performance reasons we allocate a new sg_table only when
478 * needed. Otherwise we will re-use the current one. Eventually the
479 * last sg_table is released in ep93xx_spi_release_dma().
480 */
481
482 nents = DIV_ROUND_UP(len, PAGE_SIZE);
483 if (nents != sgt->nents) {
484 sg_free_table(sgt);
485
486 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
487 if (ret)
488 return ERR_PTR(ret);
489 }
490
491 pbuf = buf;
492 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
493 size_t bytes = min_t(size_t, len, PAGE_SIZE);
494
495 if (buf) {
496 sg_set_page(sg, virt_to_page(pbuf), bytes,
497 offset_in_page(pbuf));
498 } else {
499 sg_set_page(sg, virt_to_page(espi->zeropage),
500 bytes, 0);
501 }
502
503 pbuf += bytes;
504 len -= bytes;
505 }
506
507 if (WARN_ON(len)) {
508 dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
509 return ERR_PTR(-EINVAL);
510 }
511
512 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
513 if (!nents)
514 return ERR_PTR(-ENOMEM);
515
516 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
517 if (!txd) {
518 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
519 return ERR_PTR(-ENOMEM);
520 }
521 return txd;
522 }
523
524 /**
525 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
526 * @espi: ep93xx SPI controller struct
527 * @dir: DMA transfer direction
528 *
529 * Function finishes with the DMA transfer. After this, the DMA buffer is
530 * unmapped.
531 */
532 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
533 enum dma_transfer_direction dir)
534 {
535 struct dma_chan *chan;
536 struct sg_table *sgt;
537
538 if (dir == DMA_DEV_TO_MEM) {
539 chan = espi->dma_rx;
540 sgt = &espi->rx_sgt;
541 } else {
542 chan = espi->dma_tx;
543 sgt = &espi->tx_sgt;
544 }
545
546 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
547 }
548
549 static void ep93xx_spi_dma_callback(void *callback_param)
550 {
551 complete(callback_param);
552 }
553
554 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
555 {
556 struct spi_message *msg = espi->current_msg;
557 struct dma_async_tx_descriptor *rxd, *txd;
558
559 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
560 if (IS_ERR(rxd)) {
561 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
562 msg->status = PTR_ERR(rxd);
563 return;
564 }
565
566 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
567 if (IS_ERR(txd)) {
568 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
569 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
570 msg->status = PTR_ERR(txd);
571 return;
572 }
573
574 /* We are ready when RX is done */
575 rxd->callback = ep93xx_spi_dma_callback;
576 rxd->callback_param = &espi->wait;
577
578 /* Now submit both descriptors and wait while they finish */
579 dmaengine_submit(rxd);
580 dmaengine_submit(txd);
581
582 dma_async_issue_pending(espi->dma_rx);
583 dma_async_issue_pending(espi->dma_tx);
584
585 wait_for_completion(&espi->wait);
586
587 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
588 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
589 }
590
591 /**
592 * ep93xx_spi_process_transfer() - processes one SPI transfer
593 * @espi: ep93xx SPI controller struct
594 * @msg: current message
595 * @t: transfer to process
596 *
597 * This function processes one SPI transfer given in @t. Function waits until
598 * transfer is complete (may sleep) and updates @msg->status based on whether
599 * transfer was successfully processed or not.
600 */
601 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
602 struct spi_message *msg,
603 struct spi_transfer *t)
604 {
605 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
606 int err;
607
608 msg->state = t;
609
610 err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
611 if (err) {
612 dev_err(&espi->pdev->dev,
613 "failed to setup chip for transfer\n");
614 msg->status = err;
615 return;
616 }
617
618 espi->rx = 0;
619 espi->tx = 0;
620
621 /*
622 * There is no point of setting up DMA for the transfers which will
623 * fit into the FIFO and can be transferred with a single interrupt.
624 * So in these cases we will be using PIO and don't bother for DMA.
625 */
626 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
627 ep93xx_spi_dma_transfer(espi);
628 else
629 ep93xx_spi_pio_transfer(espi);
630
631 /*
632 * In case of error during transmit, we bail out from processing
633 * the message.
634 */
635 if (msg->status)
636 return;
637
638 msg->actual_length += t->len;
639
640 /*
641 * After this transfer is finished, perform any possible
642 * post-transfer actions requested by the protocol driver.
643 */
644 if (t->delay_usecs) {
645 set_current_state(TASK_UNINTERRUPTIBLE);
646 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
647 }
648 if (t->cs_change) {
649 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
650 /*
651 * In case protocol driver is asking us to drop the
652 * chipselect briefly, we let the scheduler to handle
653 * any "delay" here.
654 */
655 ep93xx_spi_cs_control(msg->spi, false);
656 cond_resched();
657 ep93xx_spi_cs_control(msg->spi, true);
658 }
659 }
660 }
661
662 /*
663 * ep93xx_spi_process_message() - process one SPI message
664 * @espi: ep93xx SPI controller struct
665 * @msg: message to process
666 *
667 * This function processes a single SPI message. We go through all transfers in
668 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
669 * asserted during the whole message (unless per transfer cs_change is set).
670 *
671 * @msg->status contains %0 in case of success or negative error code in case of
672 * failure.
673 */
674 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
675 struct spi_message *msg)
676 {
677 unsigned long timeout;
678 struct spi_transfer *t;
679 int err;
680
681 /*
682 * Enable the SPI controller and its clock.
683 */
684 err = ep93xx_spi_enable(espi);
685 if (err) {
686 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
687 msg->status = err;
688 return;
689 }
690
691 /*
692 * Just to be sure: flush any data from RX FIFO.
693 */
694 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
695 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
696 if (time_after(jiffies, timeout)) {
697 dev_warn(&espi->pdev->dev,
698 "timeout while flushing RX FIFO\n");
699 msg->status = -ETIMEDOUT;
700 return;
701 }
702 ep93xx_spi_read_u16(espi, SSPDR);
703 }
704
705 /*
706 * We explicitly handle FIFO level. This way we don't have to check TX
707 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
708 */
709 espi->fifo_level = 0;
710
711 /*
712 * Assert the chipselect.
713 */
714 ep93xx_spi_cs_control(msg->spi, true);
715
716 list_for_each_entry(t, &msg->transfers, transfer_list) {
717 ep93xx_spi_process_transfer(espi, msg, t);
718 if (msg->status)
719 break;
720 }
721
722 /*
723 * Now the whole message is transferred (or failed for some reason). We
724 * deselect the device and disable the SPI controller.
725 */
726 ep93xx_spi_cs_control(msg->spi, false);
727 ep93xx_spi_disable(espi);
728 }
729
730 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
731 struct spi_message *msg)
732 {
733 struct ep93xx_spi *espi = spi_master_get_devdata(master);
734
735 msg->state = NULL;
736 msg->status = 0;
737 msg->actual_length = 0;
738
739 espi->current_msg = msg;
740 ep93xx_spi_process_message(espi, msg);
741 espi->current_msg = NULL;
742
743 spi_finalize_current_message(master);
744
745 return 0;
746 }
747
748 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
749 {
750 struct ep93xx_spi *espi = dev_id;
751 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
752
753 /*
754 * If we got ROR (receive overrun) interrupt we know that something is
755 * wrong. Just abort the message.
756 */
757 if (unlikely(irq_status & SSPIIR_RORIS)) {
758 /* clear the overrun interrupt */
759 ep93xx_spi_write_u8(espi, SSPICR, 0);
760 dev_warn(&espi->pdev->dev,
761 "receive overrun, aborting the message\n");
762 espi->current_msg->status = -EIO;
763 } else {
764 /*
765 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
766 * simply execute next data transfer.
767 */
768 if (ep93xx_spi_read_write(espi)) {
769 /*
770 * In normal case, there still is some processing left
771 * for current transfer. Let's wait for the next
772 * interrupt then.
773 */
774 return IRQ_HANDLED;
775 }
776 }
777
778 /*
779 * Current transfer is finished, either with error or with success. In
780 * any case we disable interrupts and notify the worker to handle
781 * any post-processing of the message.
782 */
783 ep93xx_spi_disable_interrupts(espi);
784 complete(&espi->wait);
785 return IRQ_HANDLED;
786 }
787
788 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
789 {
790 if (ep93xx_dma_chan_is_m2p(chan))
791 return false;
792
793 chan->private = filter_param;
794 return true;
795 }
796
797 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
798 {
799 dma_cap_mask_t mask;
800 int ret;
801
802 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
803 if (!espi->zeropage)
804 return -ENOMEM;
805
806 dma_cap_zero(mask);
807 dma_cap_set(DMA_SLAVE, mask);
808
809 espi->dma_rx_data.port = EP93XX_DMA_SSP;
810 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
811 espi->dma_rx_data.name = "ep93xx-spi-rx";
812
813 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
814 &espi->dma_rx_data);
815 if (!espi->dma_rx) {
816 ret = -ENODEV;
817 goto fail_free_page;
818 }
819
820 espi->dma_tx_data.port = EP93XX_DMA_SSP;
821 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
822 espi->dma_tx_data.name = "ep93xx-spi-tx";
823
824 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
825 &espi->dma_tx_data);
826 if (!espi->dma_tx) {
827 ret = -ENODEV;
828 goto fail_release_rx;
829 }
830
831 return 0;
832
833 fail_release_rx:
834 dma_release_channel(espi->dma_rx);
835 espi->dma_rx = NULL;
836 fail_free_page:
837 free_page((unsigned long)espi->zeropage);
838
839 return ret;
840 }
841
842 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
843 {
844 if (espi->dma_rx) {
845 dma_release_channel(espi->dma_rx);
846 sg_free_table(&espi->rx_sgt);
847 }
848 if (espi->dma_tx) {
849 dma_release_channel(espi->dma_tx);
850 sg_free_table(&espi->tx_sgt);
851 }
852
853 if (espi->zeropage)
854 free_page((unsigned long)espi->zeropage);
855 }
856
857 static int ep93xx_spi_probe(struct platform_device *pdev)
858 {
859 struct spi_master *master;
860 struct ep93xx_spi_info *info;
861 struct ep93xx_spi *espi;
862 struct resource *res;
863 int irq;
864 int error;
865
866 info = dev_get_platdata(&pdev->dev);
867
868 irq = platform_get_irq(pdev, 0);
869 if (irq < 0) {
870 dev_err(&pdev->dev, "failed to get irq resources\n");
871 return -EBUSY;
872 }
873
874 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
875 if (!res) {
876 dev_err(&pdev->dev, "unable to get iomem resource\n");
877 return -ENODEV;
878 }
879
880 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
881 if (!master)
882 return -ENOMEM;
883
884 master->setup = ep93xx_spi_setup;
885 master->transfer_one_message = ep93xx_spi_transfer_one_message;
886 master->cleanup = ep93xx_spi_cleanup;
887 master->bus_num = pdev->id;
888 master->num_chipselect = info->num_chipselect;
889 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
890 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
891
892 platform_set_drvdata(pdev, master);
893
894 espi = spi_master_get_devdata(master);
895
896 espi->clk = devm_clk_get(&pdev->dev, NULL);
897 if (IS_ERR(espi->clk)) {
898 dev_err(&pdev->dev, "unable to get spi clock\n");
899 error = PTR_ERR(espi->clk);
900 goto fail_release_master;
901 }
902
903 init_completion(&espi->wait);
904
905 /*
906 * Calculate maximum and minimum supported clock rates
907 * for the controller.
908 */
909 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
910 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
911 espi->pdev = pdev;
912
913 espi->sspdr_phys = res->start + SSPDR;
914
915 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
916 if (IS_ERR(espi->regs_base)) {
917 error = PTR_ERR(espi->regs_base);
918 goto fail_release_master;
919 }
920
921 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
922 0, "ep93xx-spi", espi);
923 if (error) {
924 dev_err(&pdev->dev, "failed to request irq\n");
925 goto fail_release_master;
926 }
927
928 if (info->use_dma && ep93xx_spi_setup_dma(espi))
929 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
930
931 /* make sure that the hardware is disabled */
932 ep93xx_spi_write_u8(espi, SSPCR1, 0);
933
934 error = devm_spi_register_master(&pdev->dev, master);
935 if (error) {
936 dev_err(&pdev->dev, "failed to register SPI master\n");
937 goto fail_free_dma;
938 }
939
940 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
941 (unsigned long)res->start, irq);
942
943 return 0;
944
945 fail_free_dma:
946 ep93xx_spi_release_dma(espi);
947 fail_release_master:
948 spi_master_put(master);
949
950 return error;
951 }
952
953 static int ep93xx_spi_remove(struct platform_device *pdev)
954 {
955 struct spi_master *master = platform_get_drvdata(pdev);
956 struct ep93xx_spi *espi = spi_master_get_devdata(master);
957
958 ep93xx_spi_release_dma(espi);
959
960 return 0;
961 }
962
963 static struct platform_driver ep93xx_spi_driver = {
964 .driver = {
965 .name = "ep93xx-spi",
966 .owner = THIS_MODULE,
967 },
968 .probe = ep93xx_spi_probe,
969 .remove = ep93xx_spi_remove,
970 };
971 module_platform_driver(ep93xx_spi_driver);
972
973 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975 MODULE_LICENSE("GPL");
976 MODULE_ALIAS("platform:ep93xx-spi");
This page took 0.062002 seconds and 5 git commands to generate.