Merge branch 'next' into for-linus
[deliverable/linux.git] / drivers / spi / spi-omap2-mcspi.c
1 /*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmaengine.h>
31 #include <linux/omap-dma.h>
32 #include <linux/platform_device.h>
33 #include <linux/err.h>
34 #include <linux/clk.h>
35 #include <linux/io.h>
36 #include <linux/slab.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/gcd.h>
41
42 #include <linux/spi/spi.h>
43
44 #include <linux/platform_data/spi-omap2-mcspi.h>
45
46 #define OMAP2_MCSPI_MAX_FREQ 48000000
47 #define OMAP2_MCSPI_MAX_DIVIDER 4096
48 #define OMAP2_MCSPI_MAX_FIFODEPTH 64
49 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
50 #define SPI_AUTOSUSPEND_TIMEOUT 2000
51
52 #define OMAP2_MCSPI_REVISION 0x00
53 #define OMAP2_MCSPI_SYSSTATUS 0x14
54 #define OMAP2_MCSPI_IRQSTATUS 0x18
55 #define OMAP2_MCSPI_IRQENABLE 0x1c
56 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
57 #define OMAP2_MCSPI_SYST 0x24
58 #define OMAP2_MCSPI_MODULCTRL 0x28
59 #define OMAP2_MCSPI_XFERLEVEL 0x7c
60
61 /* per-channel banks, 0x14 bytes each, first is: */
62 #define OMAP2_MCSPI_CHCONF0 0x2c
63 #define OMAP2_MCSPI_CHSTAT0 0x30
64 #define OMAP2_MCSPI_CHCTRL0 0x34
65 #define OMAP2_MCSPI_TX0 0x38
66 #define OMAP2_MCSPI_RX0 0x3c
67
68 /* per-register bitmasks: */
69 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
70
71 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
72 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
73 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
74
75 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
76 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
77 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
78 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
79 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
80 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
81 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
82 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
83 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
84 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
85 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
86 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
87 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
88 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
89 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
90 #define OMAP2_MCSPI_CHCONF_FFET BIT(27)
91 #define OMAP2_MCSPI_CHCONF_FFER BIT(28)
92 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
93
94 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
95 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
96 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
97 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
98
99 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
100 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
101
102 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
103
104 /* We have 2 DMA channels per CS, one for RX and one for TX */
105 struct omap2_mcspi_dma {
106 struct dma_chan *dma_tx;
107 struct dma_chan *dma_rx;
108
109 int dma_tx_sync_dev;
110 int dma_rx_sync_dev;
111
112 struct completion dma_tx_completion;
113 struct completion dma_rx_completion;
114
115 char dma_rx_ch_name[14];
116 char dma_tx_ch_name[14];
117 };
118
119 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
120 * cache operations; better heuristics consider wordsize and bitrate.
121 */
122 #define DMA_MIN_BYTES 160
123
124
125 /*
126 * Used for context save and restore, structure members to be updated whenever
127 * corresponding registers are modified.
128 */
129 struct omap2_mcspi_regs {
130 u32 modulctrl;
131 u32 wakeupenable;
132 struct list_head cs;
133 };
134
135 struct omap2_mcspi {
136 struct spi_master *master;
137 /* Virtual base address of the controller */
138 void __iomem *base;
139 unsigned long phys;
140 /* SPI1 has 4 channels, while SPI2 has 2 */
141 struct omap2_mcspi_dma *dma_channels;
142 struct device *dev;
143 struct omap2_mcspi_regs ctx;
144 int fifo_depth;
145 unsigned int pin_dir:1;
146 };
147
148 struct omap2_mcspi_cs {
149 void __iomem *base;
150 unsigned long phys;
151 int word_len;
152 struct list_head node;
153 /* Context save and restore shadow register */
154 u32 chconf0, chctrl0;
155 };
156
157 static inline void mcspi_write_reg(struct spi_master *master,
158 int idx, u32 val)
159 {
160 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
161
162 writel_relaxed(val, mcspi->base + idx);
163 }
164
165 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
166 {
167 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
168
169 return readl_relaxed(mcspi->base + idx);
170 }
171
172 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
173 int idx, u32 val)
174 {
175 struct omap2_mcspi_cs *cs = spi->controller_state;
176
177 writel_relaxed(val, cs->base + idx);
178 }
179
180 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
181 {
182 struct omap2_mcspi_cs *cs = spi->controller_state;
183
184 return readl_relaxed(cs->base + idx);
185 }
186
187 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
188 {
189 struct omap2_mcspi_cs *cs = spi->controller_state;
190
191 return cs->chconf0;
192 }
193
194 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
195 {
196 struct omap2_mcspi_cs *cs = spi->controller_state;
197
198 cs->chconf0 = val;
199 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
200 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
201 }
202
203 static inline int mcspi_bytes_per_word(int word_len)
204 {
205 if (word_len <= 8)
206 return 1;
207 else if (word_len <= 16)
208 return 2;
209 else /* word_len <= 32 */
210 return 4;
211 }
212
213 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
214 int is_read, int enable)
215 {
216 u32 l, rw;
217
218 l = mcspi_cached_chconf0(spi);
219
220 if (is_read) /* 1 is read, 0 write */
221 rw = OMAP2_MCSPI_CHCONF_DMAR;
222 else
223 rw = OMAP2_MCSPI_CHCONF_DMAW;
224
225 if (enable)
226 l |= rw;
227 else
228 l &= ~rw;
229
230 mcspi_write_chconf0(spi, l);
231 }
232
233 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
234 {
235 struct omap2_mcspi_cs *cs = spi->controller_state;
236 u32 l;
237
238 l = cs->chctrl0;
239 if (enable)
240 l |= OMAP2_MCSPI_CHCTRL_EN;
241 else
242 l &= ~OMAP2_MCSPI_CHCTRL_EN;
243 cs->chctrl0 = l;
244 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
245 /* Flash post-writes */
246 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
247 }
248
249 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
250 {
251 u32 l;
252
253 l = mcspi_cached_chconf0(spi);
254 if (cs_active)
255 l |= OMAP2_MCSPI_CHCONF_FORCE;
256 else
257 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
258
259 mcspi_write_chconf0(spi, l);
260 }
261
262 static void omap2_mcspi_set_master_mode(struct spi_master *master)
263 {
264 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
265 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
266 u32 l;
267
268 /*
269 * Setup when switching from (reset default) slave mode
270 * to single-channel master mode
271 */
272 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
273 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
274 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
275 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
276
277 ctx->modulctrl = l;
278 }
279
280 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
281 struct spi_transfer *t, int enable)
282 {
283 struct spi_master *master = spi->master;
284 struct omap2_mcspi_cs *cs = spi->controller_state;
285 struct omap2_mcspi *mcspi;
286 unsigned int wcnt;
287 int max_fifo_depth, fifo_depth, bytes_per_word;
288 u32 chconf, xferlevel;
289
290 mcspi = spi_master_get_devdata(master);
291
292 chconf = mcspi_cached_chconf0(spi);
293 if (enable) {
294 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
295 if (t->len % bytes_per_word != 0)
296 goto disable_fifo;
297
298 if (t->rx_buf != NULL && t->tx_buf != NULL)
299 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
300 else
301 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
302
303 fifo_depth = gcd(t->len, max_fifo_depth);
304 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
305 goto disable_fifo;
306
307 wcnt = t->len / bytes_per_word;
308 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
309 goto disable_fifo;
310
311 xferlevel = wcnt << 16;
312 if (t->rx_buf != NULL) {
313 chconf |= OMAP2_MCSPI_CHCONF_FFER;
314 xferlevel |= (fifo_depth - 1) << 8;
315 }
316 if (t->tx_buf != NULL) {
317 chconf |= OMAP2_MCSPI_CHCONF_FFET;
318 xferlevel |= fifo_depth - 1;
319 }
320
321 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
322 mcspi_write_chconf0(spi, chconf);
323 mcspi->fifo_depth = fifo_depth;
324
325 return;
326 }
327
328 disable_fifo:
329 if (t->rx_buf != NULL)
330 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
331 else
332 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
333
334 mcspi_write_chconf0(spi, chconf);
335 mcspi->fifo_depth = 0;
336 }
337
338 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
339 {
340 struct spi_master *spi_cntrl = mcspi->master;
341 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
342 struct omap2_mcspi_cs *cs;
343
344 /* McSPI: context restore */
345 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
346 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
347
348 list_for_each_entry(cs, &ctx->cs, node)
349 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
350 }
351
352 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
353 {
354 unsigned long timeout;
355
356 timeout = jiffies + msecs_to_jiffies(1000);
357 while (!(readl_relaxed(reg) & bit)) {
358 if (time_after(jiffies, timeout)) {
359 if (!(readl_relaxed(reg) & bit))
360 return -ETIMEDOUT;
361 else
362 return 0;
363 }
364 cpu_relax();
365 }
366 return 0;
367 }
368
369 static void omap2_mcspi_rx_callback(void *data)
370 {
371 struct spi_device *spi = data;
372 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
373 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
374
375 /* We must disable the DMA RX request */
376 omap2_mcspi_set_dma_req(spi, 1, 0);
377
378 complete(&mcspi_dma->dma_rx_completion);
379 }
380
381 static void omap2_mcspi_tx_callback(void *data)
382 {
383 struct spi_device *spi = data;
384 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
385 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
386
387 /* We must disable the DMA TX request */
388 omap2_mcspi_set_dma_req(spi, 0, 0);
389
390 complete(&mcspi_dma->dma_tx_completion);
391 }
392
393 static void omap2_mcspi_tx_dma(struct spi_device *spi,
394 struct spi_transfer *xfer,
395 struct dma_slave_config cfg)
396 {
397 struct omap2_mcspi *mcspi;
398 struct omap2_mcspi_dma *mcspi_dma;
399 unsigned int count;
400
401 mcspi = spi_master_get_devdata(spi->master);
402 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
403 count = xfer->len;
404
405 if (mcspi_dma->dma_tx) {
406 struct dma_async_tx_descriptor *tx;
407 struct scatterlist sg;
408
409 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
410
411 sg_init_table(&sg, 1);
412 sg_dma_address(&sg) = xfer->tx_dma;
413 sg_dma_len(&sg) = xfer->len;
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 if (tx) {
418 tx->callback = omap2_mcspi_tx_callback;
419 tx->callback_param = spi;
420 dmaengine_submit(tx);
421 } else {
422 /* FIXME: fall back to PIO? */
423 }
424 }
425 dma_async_issue_pending(mcspi_dma->dma_tx);
426 omap2_mcspi_set_dma_req(spi, 0, 1);
427
428 }
429
430 static unsigned
431 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434 {
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, dma_count;
438 u32 l;
439 int elements = 0;
440 int word_len, element_count;
441 struct omap2_mcspi_cs *cs = spi->controller_state;
442 mcspi = spi_master_get_devdata(spi->master);
443 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
444 count = xfer->len;
445 dma_count = xfer->len;
446
447 if (mcspi->fifo_depth == 0)
448 dma_count -= es;
449
450 word_len = cs->word_len;
451 l = mcspi_cached_chconf0(spi);
452
453 if (word_len <= 8)
454 element_count = count;
455 else if (word_len <= 16)
456 element_count = count >> 1;
457 else /* word_len <= 32 */
458 element_count = count >> 2;
459
460 if (mcspi_dma->dma_rx) {
461 struct dma_async_tx_descriptor *tx;
462 struct scatterlist sg;
463
464 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
465
466 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
467 dma_count -= es;
468
469 sg_init_table(&sg, 1);
470 sg_dma_address(&sg) = xfer->rx_dma;
471 sg_dma_len(&sg) = dma_count;
472
473 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
474 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
475 DMA_CTRL_ACK);
476 if (tx) {
477 tx->callback = omap2_mcspi_rx_callback;
478 tx->callback_param = spi;
479 dmaengine_submit(tx);
480 } else {
481 /* FIXME: fall back to PIO? */
482 }
483 }
484
485 dma_async_issue_pending(mcspi_dma->dma_rx);
486 omap2_mcspi_set_dma_req(spi, 1, 1);
487
488 wait_for_completion(&mcspi_dma->dma_rx_completion);
489 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
490 DMA_FROM_DEVICE);
491
492 if (mcspi->fifo_depth > 0)
493 return count;
494
495 omap2_mcspi_set_enable(spi, 0);
496
497 elements = element_count - 1;
498
499 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
500 elements--;
501
502 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
503 & OMAP2_MCSPI_CHSTAT_RXS)) {
504 u32 w;
505
506 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
507 if (word_len <= 8)
508 ((u8 *)xfer->rx_buf)[elements++] = w;
509 else if (word_len <= 16)
510 ((u16 *)xfer->rx_buf)[elements++] = w;
511 else /* word_len <= 32 */
512 ((u32 *)xfer->rx_buf)[elements++] = w;
513 } else {
514 int bytes_per_word = mcspi_bytes_per_word(word_len);
515 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
516 count -= (bytes_per_word << 1);
517 omap2_mcspi_set_enable(spi, 1);
518 return count;
519 }
520 }
521 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
522 & OMAP2_MCSPI_CHSTAT_RXS)) {
523 u32 w;
524
525 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
526 if (word_len <= 8)
527 ((u8 *)xfer->rx_buf)[elements] = w;
528 else if (word_len <= 16)
529 ((u16 *)xfer->rx_buf)[elements] = w;
530 else /* word_len <= 32 */
531 ((u32 *)xfer->rx_buf)[elements] = w;
532 } else {
533 dev_err(&spi->dev, "DMA RX last word empty\n");
534 count -= mcspi_bytes_per_word(word_len);
535 }
536 omap2_mcspi_set_enable(spi, 1);
537 return count;
538 }
539
540 static unsigned
541 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
542 {
543 struct omap2_mcspi *mcspi;
544 struct omap2_mcspi_cs *cs = spi->controller_state;
545 struct omap2_mcspi_dma *mcspi_dma;
546 unsigned int count;
547 u32 l;
548 u8 *rx;
549 const u8 *tx;
550 struct dma_slave_config cfg;
551 enum dma_slave_buswidth width;
552 unsigned es;
553 u32 burst;
554 void __iomem *chstat_reg;
555 void __iomem *irqstat_reg;
556 int wait_res;
557
558 mcspi = spi_master_get_devdata(spi->master);
559 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
560 l = mcspi_cached_chconf0(spi);
561
562
563 if (cs->word_len <= 8) {
564 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 es = 1;
566 } else if (cs->word_len <= 16) {
567 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
568 es = 2;
569 } else {
570 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
571 es = 4;
572 }
573
574 count = xfer->len;
575 burst = 1;
576
577 if (mcspi->fifo_depth > 0) {
578 if (count > mcspi->fifo_depth)
579 burst = mcspi->fifo_depth / es;
580 else
581 burst = count / es;
582 }
583
584 memset(&cfg, 0, sizeof(cfg));
585 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
586 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
587 cfg.src_addr_width = width;
588 cfg.dst_addr_width = width;
589 cfg.src_maxburst = burst;
590 cfg.dst_maxburst = burst;
591
592 rx = xfer->rx_buf;
593 tx = xfer->tx_buf;
594
595 if (tx != NULL)
596 omap2_mcspi_tx_dma(spi, xfer, cfg);
597
598 if (rx != NULL)
599 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
600
601 if (tx != NULL) {
602 wait_for_completion(&mcspi_dma->dma_tx_completion);
603 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
604 DMA_TO_DEVICE);
605
606 if (mcspi->fifo_depth > 0) {
607 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
608
609 if (mcspi_wait_for_reg_bit(irqstat_reg,
610 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
611 dev_err(&spi->dev, "EOW timed out\n");
612
613 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
614 OMAP2_MCSPI_IRQSTATUS_EOW);
615 }
616
617 /* for TX_ONLY mode, be sure all words have shifted out */
618 if (rx == NULL) {
619 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
620 if (mcspi->fifo_depth > 0) {
621 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
622 OMAP2_MCSPI_CHSTAT_TXFFE);
623 if (wait_res < 0)
624 dev_err(&spi->dev, "TXFFE timed out\n");
625 } else {
626 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
627 OMAP2_MCSPI_CHSTAT_TXS);
628 if (wait_res < 0)
629 dev_err(&spi->dev, "TXS timed out\n");
630 }
631 if (wait_res >= 0 &&
632 (mcspi_wait_for_reg_bit(chstat_reg,
633 OMAP2_MCSPI_CHSTAT_EOT) < 0))
634 dev_err(&spi->dev, "EOT timed out\n");
635 }
636 }
637 return count;
638 }
639
640 static unsigned
641 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
642 {
643 struct omap2_mcspi *mcspi;
644 struct omap2_mcspi_cs *cs = spi->controller_state;
645 unsigned int count, c;
646 u32 l;
647 void __iomem *base = cs->base;
648 void __iomem *tx_reg;
649 void __iomem *rx_reg;
650 void __iomem *chstat_reg;
651 int word_len;
652
653 mcspi = spi_master_get_devdata(spi->master);
654 count = xfer->len;
655 c = count;
656 word_len = cs->word_len;
657
658 l = mcspi_cached_chconf0(spi);
659
660 /* We store the pre-calculated register addresses on stack to speed
661 * up the transfer loop. */
662 tx_reg = base + OMAP2_MCSPI_TX0;
663 rx_reg = base + OMAP2_MCSPI_RX0;
664 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
665
666 if (c < (word_len>>3))
667 return 0;
668
669 if (word_len <= 8) {
670 u8 *rx;
671 const u8 *tx;
672
673 rx = xfer->rx_buf;
674 tx = xfer->tx_buf;
675
676 do {
677 c -= 1;
678 if (tx != NULL) {
679 if (mcspi_wait_for_reg_bit(chstat_reg,
680 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
681 dev_err(&spi->dev, "TXS timed out\n");
682 goto out;
683 }
684 dev_vdbg(&spi->dev, "write-%d %02x\n",
685 word_len, *tx);
686 writel_relaxed(*tx++, tx_reg);
687 }
688 if (rx != NULL) {
689 if (mcspi_wait_for_reg_bit(chstat_reg,
690 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
691 dev_err(&spi->dev, "RXS timed out\n");
692 goto out;
693 }
694
695 if (c == 1 && tx == NULL &&
696 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
697 omap2_mcspi_set_enable(spi, 0);
698 *rx++ = readl_relaxed(rx_reg);
699 dev_vdbg(&spi->dev, "read-%d %02x\n",
700 word_len, *(rx - 1));
701 if (mcspi_wait_for_reg_bit(chstat_reg,
702 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
703 dev_err(&spi->dev,
704 "RXS timed out\n");
705 goto out;
706 }
707 c = 0;
708 } else if (c == 0 && tx == NULL) {
709 omap2_mcspi_set_enable(spi, 0);
710 }
711
712 *rx++ = readl_relaxed(rx_reg);
713 dev_vdbg(&spi->dev, "read-%d %02x\n",
714 word_len, *(rx - 1));
715 }
716 } while (c);
717 } else if (word_len <= 16) {
718 u16 *rx;
719 const u16 *tx;
720
721 rx = xfer->rx_buf;
722 tx = xfer->tx_buf;
723 do {
724 c -= 2;
725 if (tx != NULL) {
726 if (mcspi_wait_for_reg_bit(chstat_reg,
727 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
728 dev_err(&spi->dev, "TXS timed out\n");
729 goto out;
730 }
731 dev_vdbg(&spi->dev, "write-%d %04x\n",
732 word_len, *tx);
733 writel_relaxed(*tx++, tx_reg);
734 }
735 if (rx != NULL) {
736 if (mcspi_wait_for_reg_bit(chstat_reg,
737 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
738 dev_err(&spi->dev, "RXS timed out\n");
739 goto out;
740 }
741
742 if (c == 2 && tx == NULL &&
743 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
744 omap2_mcspi_set_enable(spi, 0);
745 *rx++ = readl_relaxed(rx_reg);
746 dev_vdbg(&spi->dev, "read-%d %04x\n",
747 word_len, *(rx - 1));
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev,
751 "RXS timed out\n");
752 goto out;
753 }
754 c = 0;
755 } else if (c == 0 && tx == NULL) {
756 omap2_mcspi_set_enable(spi, 0);
757 }
758
759 *rx++ = readl_relaxed(rx_reg);
760 dev_vdbg(&spi->dev, "read-%d %04x\n",
761 word_len, *(rx - 1));
762 }
763 } while (c >= 2);
764 } else if (word_len <= 32) {
765 u32 *rx;
766 const u32 *tx;
767
768 rx = xfer->rx_buf;
769 tx = xfer->tx_buf;
770 do {
771 c -= 4;
772 if (tx != NULL) {
773 if (mcspi_wait_for_reg_bit(chstat_reg,
774 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
775 dev_err(&spi->dev, "TXS timed out\n");
776 goto out;
777 }
778 dev_vdbg(&spi->dev, "write-%d %08x\n",
779 word_len, *tx);
780 writel_relaxed(*tx++, tx_reg);
781 }
782 if (rx != NULL) {
783 if (mcspi_wait_for_reg_bit(chstat_reg,
784 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
785 dev_err(&spi->dev, "RXS timed out\n");
786 goto out;
787 }
788
789 if (c == 4 && tx == NULL &&
790 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
791 omap2_mcspi_set_enable(spi, 0);
792 *rx++ = readl_relaxed(rx_reg);
793 dev_vdbg(&spi->dev, "read-%d %08x\n",
794 word_len, *(rx - 1));
795 if (mcspi_wait_for_reg_bit(chstat_reg,
796 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
797 dev_err(&spi->dev,
798 "RXS timed out\n");
799 goto out;
800 }
801 c = 0;
802 } else if (c == 0 && tx == NULL) {
803 omap2_mcspi_set_enable(spi, 0);
804 }
805
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %08x\n",
808 word_len, *(rx - 1));
809 }
810 } while (c >= 4);
811 }
812
813 /* for TX_ONLY mode, be sure all words have shifted out */
814 if (xfer->rx_buf == NULL) {
815 if (mcspi_wait_for_reg_bit(chstat_reg,
816 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
817 dev_err(&spi->dev, "TXS timed out\n");
818 } else if (mcspi_wait_for_reg_bit(chstat_reg,
819 OMAP2_MCSPI_CHSTAT_EOT) < 0)
820 dev_err(&spi->dev, "EOT timed out\n");
821
822 /* disable chan to purge rx datas received in TX_ONLY transfer,
823 * otherwise these rx datas will affect the direct following
824 * RX_ONLY transfer.
825 */
826 omap2_mcspi_set_enable(spi, 0);
827 }
828 out:
829 omap2_mcspi_set_enable(spi, 1);
830 return count - c;
831 }
832
833 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
834 {
835 u32 div;
836
837 for (div = 0; div < 15; div++)
838 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
839 return div;
840
841 return 15;
842 }
843
844 /* called only when no transfer is active to this device */
845 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
846 struct spi_transfer *t)
847 {
848 struct omap2_mcspi_cs *cs = spi->controller_state;
849 struct omap2_mcspi *mcspi;
850 struct spi_master *spi_cntrl;
851 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
852 u8 word_len = spi->bits_per_word;
853 u32 speed_hz = spi->max_speed_hz;
854
855 mcspi = spi_master_get_devdata(spi->master);
856 spi_cntrl = mcspi->master;
857
858 if (t != NULL && t->bits_per_word)
859 word_len = t->bits_per_word;
860
861 cs->word_len = word_len;
862
863 if (t && t->speed_hz)
864 speed_hz = t->speed_hz;
865
866 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
867 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
868 clkd = omap2_mcspi_calc_divisor(speed_hz);
869 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
870 clkg = 0;
871 } else {
872 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
873 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
874 clkd = (div - 1) & 0xf;
875 extclk = (div - 1) >> 4;
876 clkg = OMAP2_MCSPI_CHCONF_CLKG;
877 }
878
879 l = mcspi_cached_chconf0(spi);
880
881 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
882 * REVISIT: this controller could support SPI_3WIRE mode.
883 */
884 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
885 l &= ~OMAP2_MCSPI_CHCONF_IS;
886 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
887 l |= OMAP2_MCSPI_CHCONF_DPE0;
888 } else {
889 l |= OMAP2_MCSPI_CHCONF_IS;
890 l |= OMAP2_MCSPI_CHCONF_DPE1;
891 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
892 }
893
894 /* wordlength */
895 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
896 l |= (word_len - 1) << 7;
897
898 /* set chipselect polarity; manage with FORCE */
899 if (!(spi->mode & SPI_CS_HIGH))
900 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
901 else
902 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
903
904 /* set clock divisor */
905 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
906 l |= clkd << 2;
907
908 /* set clock granularity */
909 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
910 l |= clkg;
911 if (clkg) {
912 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
913 cs->chctrl0 |= extclk << 8;
914 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
915 }
916
917 /* set SPI mode 0..3 */
918 if (spi->mode & SPI_CPOL)
919 l |= OMAP2_MCSPI_CHCONF_POL;
920 else
921 l &= ~OMAP2_MCSPI_CHCONF_POL;
922 if (spi->mode & SPI_CPHA)
923 l |= OMAP2_MCSPI_CHCONF_PHA;
924 else
925 l &= ~OMAP2_MCSPI_CHCONF_PHA;
926
927 mcspi_write_chconf0(spi, l);
928
929 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
930 speed_hz,
931 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
932 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
933
934 return 0;
935 }
936
937 /*
938 * Note that we currently allow DMA only if we get a channel
939 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
940 */
941 static int omap2_mcspi_request_dma(struct spi_device *spi)
942 {
943 struct spi_master *master = spi->master;
944 struct omap2_mcspi *mcspi;
945 struct omap2_mcspi_dma *mcspi_dma;
946 dma_cap_mask_t mask;
947 unsigned sig;
948
949 mcspi = spi_master_get_devdata(master);
950 mcspi_dma = mcspi->dma_channels + spi->chip_select;
951
952 init_completion(&mcspi_dma->dma_rx_completion);
953 init_completion(&mcspi_dma->dma_tx_completion);
954
955 dma_cap_zero(mask);
956 dma_cap_set(DMA_SLAVE, mask);
957 sig = mcspi_dma->dma_rx_sync_dev;
958
959 mcspi_dma->dma_rx =
960 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
961 &sig, &master->dev,
962 mcspi_dma->dma_rx_ch_name);
963 if (!mcspi_dma->dma_rx)
964 goto no_dma;
965
966 sig = mcspi_dma->dma_tx_sync_dev;
967 mcspi_dma->dma_tx =
968 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
969 &sig, &master->dev,
970 mcspi_dma->dma_tx_ch_name);
971
972 if (!mcspi_dma->dma_tx) {
973 dma_release_channel(mcspi_dma->dma_rx);
974 mcspi_dma->dma_rx = NULL;
975 goto no_dma;
976 }
977
978 return 0;
979
980 no_dma:
981 dev_warn(&spi->dev, "not using DMA for McSPI\n");
982 return -EAGAIN;
983 }
984
985 static int omap2_mcspi_setup(struct spi_device *spi)
986 {
987 int ret;
988 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
989 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
990 struct omap2_mcspi_dma *mcspi_dma;
991 struct omap2_mcspi_cs *cs = spi->controller_state;
992
993 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
994
995 if (!cs) {
996 cs = kzalloc(sizeof *cs, GFP_KERNEL);
997 if (!cs)
998 return -ENOMEM;
999 cs->base = mcspi->base + spi->chip_select * 0x14;
1000 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1001 cs->chconf0 = 0;
1002 cs->chctrl0 = 0;
1003 spi->controller_state = cs;
1004 /* Link this to context save list */
1005 list_add_tail(&cs->node, &ctx->cs);
1006 }
1007
1008 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1009 ret = omap2_mcspi_request_dma(spi);
1010 if (ret < 0 && ret != -EAGAIN)
1011 return ret;
1012 }
1013
1014 ret = pm_runtime_get_sync(mcspi->dev);
1015 if (ret < 0)
1016 return ret;
1017
1018 ret = omap2_mcspi_setup_transfer(spi, NULL);
1019 pm_runtime_mark_last_busy(mcspi->dev);
1020 pm_runtime_put_autosuspend(mcspi->dev);
1021
1022 return ret;
1023 }
1024
1025 static void omap2_mcspi_cleanup(struct spi_device *spi)
1026 {
1027 struct omap2_mcspi *mcspi;
1028 struct omap2_mcspi_dma *mcspi_dma;
1029 struct omap2_mcspi_cs *cs;
1030
1031 mcspi = spi_master_get_devdata(spi->master);
1032
1033 if (spi->controller_state) {
1034 /* Unlink controller state from context save list */
1035 cs = spi->controller_state;
1036 list_del(&cs->node);
1037
1038 kfree(cs);
1039 }
1040
1041 if (spi->chip_select < spi->master->num_chipselect) {
1042 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1043
1044 if (mcspi_dma->dma_rx) {
1045 dma_release_channel(mcspi_dma->dma_rx);
1046 mcspi_dma->dma_rx = NULL;
1047 }
1048 if (mcspi_dma->dma_tx) {
1049 dma_release_channel(mcspi_dma->dma_tx);
1050 mcspi_dma->dma_tx = NULL;
1051 }
1052 }
1053 }
1054
1055 static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
1056 {
1057
1058 /* We only enable one channel at a time -- the one whose message is
1059 * -- although this controller would gladly
1060 * arbitrate among multiple channels. This corresponds to "single
1061 * channel" master mode. As a side effect, we need to manage the
1062 * chipselect with the FORCE bit ... CS != channel enable.
1063 */
1064
1065 struct spi_device *spi;
1066 struct spi_transfer *t = NULL;
1067 struct spi_master *master;
1068 struct omap2_mcspi_dma *mcspi_dma;
1069 int cs_active = 0;
1070 struct omap2_mcspi_cs *cs;
1071 struct omap2_mcspi_device_config *cd;
1072 int par_override = 0;
1073 int status = 0;
1074 u32 chconf;
1075
1076 spi = m->spi;
1077 master = spi->master;
1078 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1079 cs = spi->controller_state;
1080 cd = spi->controller_data;
1081
1082 omap2_mcspi_set_enable(spi, 0);
1083 list_for_each_entry(t, &m->transfers, transfer_list) {
1084 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
1085 status = -EINVAL;
1086 break;
1087 }
1088 if (par_override ||
1089 (t->speed_hz != spi->max_speed_hz) ||
1090 (t->bits_per_word != spi->bits_per_word)) {
1091 par_override = 1;
1092 status = omap2_mcspi_setup_transfer(spi, t);
1093 if (status < 0)
1094 break;
1095 if (t->speed_hz == spi->max_speed_hz &&
1096 t->bits_per_word == spi->bits_per_word)
1097 par_override = 0;
1098 }
1099 if (cd && cd->cs_per_word) {
1100 chconf = mcspi->ctx.modulctrl;
1101 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1102 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1103 mcspi->ctx.modulctrl =
1104 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1105 }
1106
1107
1108 if (!cs_active) {
1109 omap2_mcspi_force_cs(spi, 1);
1110 cs_active = 1;
1111 }
1112
1113 chconf = mcspi_cached_chconf0(spi);
1114 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1115 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1116
1117 if (t->tx_buf == NULL)
1118 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1119 else if (t->rx_buf == NULL)
1120 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1121
1122 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1123 /* Turbo mode is for more than one word */
1124 if (t->len > ((cs->word_len + 7) >> 3))
1125 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1126 }
1127
1128 mcspi_write_chconf0(spi, chconf);
1129
1130 if (t->len) {
1131 unsigned count;
1132
1133 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1134 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1135 omap2_mcspi_set_fifo(spi, t, 1);
1136
1137 omap2_mcspi_set_enable(spi, 1);
1138
1139 /* RX_ONLY mode needs dummy data in TX reg */
1140 if (t->tx_buf == NULL)
1141 writel_relaxed(0, cs->base
1142 + OMAP2_MCSPI_TX0);
1143
1144 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1145 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1146 count = omap2_mcspi_txrx_dma(spi, t);
1147 else
1148 count = omap2_mcspi_txrx_pio(spi, t);
1149 m->actual_length += count;
1150
1151 if (count != t->len) {
1152 status = -EIO;
1153 break;
1154 }
1155 }
1156
1157 if (t->delay_usecs)
1158 udelay(t->delay_usecs);
1159
1160 /* ignore the "leave it on after last xfer" hint */
1161 if (t->cs_change) {
1162 omap2_mcspi_force_cs(spi, 0);
1163 cs_active = 0;
1164 }
1165
1166 omap2_mcspi_set_enable(spi, 0);
1167
1168 if (mcspi->fifo_depth > 0)
1169 omap2_mcspi_set_fifo(spi, t, 0);
1170 }
1171 /* Restore defaults if they were overriden */
1172 if (par_override) {
1173 par_override = 0;
1174 status = omap2_mcspi_setup_transfer(spi, NULL);
1175 }
1176
1177 if (cs_active)
1178 omap2_mcspi_force_cs(spi, 0);
1179
1180 if (cd && cd->cs_per_word) {
1181 chconf = mcspi->ctx.modulctrl;
1182 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1183 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1184 mcspi->ctx.modulctrl =
1185 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1186 }
1187
1188 omap2_mcspi_set_enable(spi, 0);
1189
1190 if (mcspi->fifo_depth > 0 && t)
1191 omap2_mcspi_set_fifo(spi, t, 0);
1192
1193 m->status = status;
1194 }
1195
1196 static int omap2_mcspi_transfer_one_message(struct spi_master *master,
1197 struct spi_message *m)
1198 {
1199 struct spi_device *spi;
1200 struct omap2_mcspi *mcspi;
1201 struct omap2_mcspi_dma *mcspi_dma;
1202 struct spi_transfer *t;
1203
1204 spi = m->spi;
1205 mcspi = spi_master_get_devdata(master);
1206 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1207 m->actual_length = 0;
1208 m->status = 0;
1209
1210 list_for_each_entry(t, &m->transfers, transfer_list) {
1211 const void *tx_buf = t->tx_buf;
1212 void *rx_buf = t->rx_buf;
1213 unsigned len = t->len;
1214
1215 if ((len && !(rx_buf || tx_buf))) {
1216 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1217 t->speed_hz,
1218 len,
1219 tx_buf ? "tx" : "",
1220 rx_buf ? "rx" : "",
1221 t->bits_per_word);
1222 return -EINVAL;
1223 }
1224
1225 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1226 continue;
1227
1228 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1229 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1230 len, DMA_TO_DEVICE);
1231 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1232 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1233 'T', len);
1234 return -EINVAL;
1235 }
1236 }
1237 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1238 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1239 DMA_FROM_DEVICE);
1240 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1241 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1242 'R', len);
1243 if (tx_buf != NULL)
1244 dma_unmap_single(mcspi->dev, t->tx_dma,
1245 len, DMA_TO_DEVICE);
1246 return -EINVAL;
1247 }
1248 }
1249 }
1250
1251 omap2_mcspi_work(mcspi, m);
1252 spi_finalize_current_message(master);
1253 return 0;
1254 }
1255
1256 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1257 {
1258 struct spi_master *master = mcspi->master;
1259 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1260 int ret = 0;
1261
1262 ret = pm_runtime_get_sync(mcspi->dev);
1263 if (ret < 0)
1264 return ret;
1265
1266 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1267 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1268 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1269
1270 omap2_mcspi_set_master_mode(master);
1271 pm_runtime_mark_last_busy(mcspi->dev);
1272 pm_runtime_put_autosuspend(mcspi->dev);
1273 return 0;
1274 }
1275
1276 static int omap_mcspi_runtime_resume(struct device *dev)
1277 {
1278 struct omap2_mcspi *mcspi;
1279 struct spi_master *master;
1280
1281 master = dev_get_drvdata(dev);
1282 mcspi = spi_master_get_devdata(master);
1283 omap2_mcspi_restore_ctx(mcspi);
1284
1285 return 0;
1286 }
1287
1288 static struct omap2_mcspi_platform_config omap2_pdata = {
1289 .regs_offset = 0,
1290 };
1291
1292 static struct omap2_mcspi_platform_config omap4_pdata = {
1293 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1294 };
1295
1296 static const struct of_device_id omap_mcspi_of_match[] = {
1297 {
1298 .compatible = "ti,omap2-mcspi",
1299 .data = &omap2_pdata,
1300 },
1301 {
1302 .compatible = "ti,omap4-mcspi",
1303 .data = &omap4_pdata,
1304 },
1305 { },
1306 };
1307 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1308
1309 static int omap2_mcspi_probe(struct platform_device *pdev)
1310 {
1311 struct spi_master *master;
1312 const struct omap2_mcspi_platform_config *pdata;
1313 struct omap2_mcspi *mcspi;
1314 struct resource *r;
1315 int status = 0, i;
1316 u32 regs_offset = 0;
1317 static int bus_num = 1;
1318 struct device_node *node = pdev->dev.of_node;
1319 const struct of_device_id *match;
1320
1321 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1322 if (master == NULL) {
1323 dev_dbg(&pdev->dev, "master allocation failed\n");
1324 return -ENOMEM;
1325 }
1326
1327 /* the spi->mode bits understood by this driver: */
1328 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1329 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1330 master->setup = omap2_mcspi_setup;
1331 master->auto_runtime_pm = true;
1332 master->transfer_one_message = omap2_mcspi_transfer_one_message;
1333 master->cleanup = omap2_mcspi_cleanup;
1334 master->dev.of_node = node;
1335 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1336 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1337
1338 platform_set_drvdata(pdev, master);
1339
1340 mcspi = spi_master_get_devdata(master);
1341 mcspi->master = master;
1342
1343 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1344 if (match) {
1345 u32 num_cs = 1; /* default number of chipselect */
1346 pdata = match->data;
1347
1348 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1349 master->num_chipselect = num_cs;
1350 master->bus_num = bus_num++;
1351 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1352 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1353 } else {
1354 pdata = dev_get_platdata(&pdev->dev);
1355 master->num_chipselect = pdata->num_cs;
1356 if (pdev->id != -1)
1357 master->bus_num = pdev->id;
1358 mcspi->pin_dir = pdata->pin_dir;
1359 }
1360 regs_offset = pdata->regs_offset;
1361
1362 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1363 if (r == NULL) {
1364 status = -ENODEV;
1365 goto free_master;
1366 }
1367
1368 r->start += regs_offset;
1369 r->end += regs_offset;
1370 mcspi->phys = r->start;
1371
1372 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1373 if (IS_ERR(mcspi->base)) {
1374 status = PTR_ERR(mcspi->base);
1375 goto free_master;
1376 }
1377
1378 mcspi->dev = &pdev->dev;
1379
1380 INIT_LIST_HEAD(&mcspi->ctx.cs);
1381
1382 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1383 sizeof(struct omap2_mcspi_dma),
1384 GFP_KERNEL);
1385 if (mcspi->dma_channels == NULL) {
1386 status = -ENOMEM;
1387 goto free_master;
1388 }
1389
1390 for (i = 0; i < master->num_chipselect; i++) {
1391 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1392 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1393 struct resource *dma_res;
1394
1395 sprintf(dma_rx_ch_name, "rx%d", i);
1396 if (!pdev->dev.of_node) {
1397 dma_res =
1398 platform_get_resource_byname(pdev,
1399 IORESOURCE_DMA,
1400 dma_rx_ch_name);
1401 if (!dma_res) {
1402 dev_dbg(&pdev->dev,
1403 "cannot get DMA RX channel\n");
1404 status = -ENODEV;
1405 break;
1406 }
1407
1408 mcspi->dma_channels[i].dma_rx_sync_dev =
1409 dma_res->start;
1410 }
1411 sprintf(dma_tx_ch_name, "tx%d", i);
1412 if (!pdev->dev.of_node) {
1413 dma_res =
1414 platform_get_resource_byname(pdev,
1415 IORESOURCE_DMA,
1416 dma_tx_ch_name);
1417 if (!dma_res) {
1418 dev_dbg(&pdev->dev,
1419 "cannot get DMA TX channel\n");
1420 status = -ENODEV;
1421 break;
1422 }
1423
1424 mcspi->dma_channels[i].dma_tx_sync_dev =
1425 dma_res->start;
1426 }
1427 }
1428
1429 if (status < 0)
1430 goto free_master;
1431
1432 pm_runtime_use_autosuspend(&pdev->dev);
1433 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1434 pm_runtime_enable(&pdev->dev);
1435
1436 status = omap2_mcspi_master_setup(mcspi);
1437 if (status < 0)
1438 goto disable_pm;
1439
1440 status = devm_spi_register_master(&pdev->dev, master);
1441 if (status < 0)
1442 goto disable_pm;
1443
1444 return status;
1445
1446 disable_pm:
1447 pm_runtime_disable(&pdev->dev);
1448 free_master:
1449 spi_master_put(master);
1450 return status;
1451 }
1452
1453 static int omap2_mcspi_remove(struct platform_device *pdev)
1454 {
1455 struct spi_master *master = platform_get_drvdata(pdev);
1456 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1457
1458 pm_runtime_put_sync(mcspi->dev);
1459 pm_runtime_disable(&pdev->dev);
1460
1461 return 0;
1462 }
1463
1464 /* work with hotplug and coldplug */
1465 MODULE_ALIAS("platform:omap2_mcspi");
1466
1467 #ifdef CONFIG_SUSPEND
1468 /*
1469 * When SPI wake up from off-mode, CS is in activate state. If it was in
1470 * unactive state when driver was suspend, then force it to unactive state at
1471 * wake up.
1472 */
1473 static int omap2_mcspi_resume(struct device *dev)
1474 {
1475 struct spi_master *master = dev_get_drvdata(dev);
1476 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1477 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1478 struct omap2_mcspi_cs *cs;
1479
1480 pm_runtime_get_sync(mcspi->dev);
1481 list_for_each_entry(cs, &ctx->cs, node) {
1482 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1483 /*
1484 * We need to toggle CS state for OMAP take this
1485 * change in account.
1486 */
1487 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1488 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1489 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1490 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1491 }
1492 }
1493 pm_runtime_mark_last_busy(mcspi->dev);
1494 pm_runtime_put_autosuspend(mcspi->dev);
1495 return 0;
1496 }
1497 #else
1498 #define omap2_mcspi_resume NULL
1499 #endif
1500
1501 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1502 .resume = omap2_mcspi_resume,
1503 .runtime_resume = omap_mcspi_runtime_resume,
1504 };
1505
1506 static struct platform_driver omap2_mcspi_driver = {
1507 .driver = {
1508 .name = "omap2_mcspi",
1509 .owner = THIS_MODULE,
1510 .pm = &omap2_mcspi_pm_ops,
1511 .of_match_table = omap_mcspi_of_match,
1512 },
1513 .probe = omap2_mcspi_probe,
1514 .remove = omap2_mcspi_remove,
1515 };
1516
1517 module_platform_driver(omap2_mcspi_driver);
1518 MODULE_LICENSE("GPL");
This page took 0.066014 seconds and 5 git commands to generate.