Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / spi / spi-omap2-mcspi.c
1 /*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/omap-dma.h>
27 #include <linux/platform_device.h>
28 #include <linux/err.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/gcd.h>
36
37 #include <linux/spi/spi.h>
38
39 #include <linux/platform_data/spi-omap2-mcspi.h>
40
41 #define OMAP2_MCSPI_MAX_FREQ 48000000
42 #define OMAP2_MCSPI_MAX_DIVIDER 4096
43 #define OMAP2_MCSPI_MAX_FIFODEPTH 64
44 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
45 #define SPI_AUTOSUSPEND_TIMEOUT 2000
46
47 #define OMAP2_MCSPI_REVISION 0x00
48 #define OMAP2_MCSPI_SYSSTATUS 0x14
49 #define OMAP2_MCSPI_IRQSTATUS 0x18
50 #define OMAP2_MCSPI_IRQENABLE 0x1c
51 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
52 #define OMAP2_MCSPI_SYST 0x24
53 #define OMAP2_MCSPI_MODULCTRL 0x28
54 #define OMAP2_MCSPI_XFERLEVEL 0x7c
55
56 /* per-channel banks, 0x14 bytes each, first is: */
57 #define OMAP2_MCSPI_CHCONF0 0x2c
58 #define OMAP2_MCSPI_CHSTAT0 0x30
59 #define OMAP2_MCSPI_CHCTRL0 0x34
60 #define OMAP2_MCSPI_TX0 0x38
61 #define OMAP2_MCSPI_RX0 0x3c
62
63 /* per-register bitmasks: */
64 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
65
66 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
67 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
68 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
69
70 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
71 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
72 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
73 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
74 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
75 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
76 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
77 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
78 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
79 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
80 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
81 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
82 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
83 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
84 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
85 #define OMAP2_MCSPI_CHCONF_FFET BIT(27)
86 #define OMAP2_MCSPI_CHCONF_FFER BIT(28)
87 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
88
89 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
90 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
91 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
92 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
93
94 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
95 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
96
97 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
98
99 /* We have 2 DMA channels per CS, one for RX and one for TX */
100 struct omap2_mcspi_dma {
101 struct dma_chan *dma_tx;
102 struct dma_chan *dma_rx;
103
104 int dma_tx_sync_dev;
105 int dma_rx_sync_dev;
106
107 struct completion dma_tx_completion;
108 struct completion dma_rx_completion;
109
110 char dma_rx_ch_name[14];
111 char dma_tx_ch_name[14];
112 };
113
114 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
115 * cache operations; better heuristics consider wordsize and bitrate.
116 */
117 #define DMA_MIN_BYTES 160
118
119
120 /*
121 * Used for context save and restore, structure members to be updated whenever
122 * corresponding registers are modified.
123 */
124 struct omap2_mcspi_regs {
125 u32 modulctrl;
126 u32 wakeupenable;
127 struct list_head cs;
128 };
129
130 struct omap2_mcspi {
131 struct spi_master *master;
132 /* Virtual base address of the controller */
133 void __iomem *base;
134 unsigned long phys;
135 /* SPI1 has 4 channels, while SPI2 has 2 */
136 struct omap2_mcspi_dma *dma_channels;
137 struct device *dev;
138 struct omap2_mcspi_regs ctx;
139 int fifo_depth;
140 unsigned int pin_dir:1;
141 };
142
143 struct omap2_mcspi_cs {
144 void __iomem *base;
145 unsigned long phys;
146 int word_len;
147 u16 mode;
148 struct list_head node;
149 /* Context save and restore shadow register */
150 u32 chconf0, chctrl0;
151 };
152
153 static inline void mcspi_write_reg(struct spi_master *master,
154 int idx, u32 val)
155 {
156 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
157
158 writel_relaxed(val, mcspi->base + idx);
159 }
160
161 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
162 {
163 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
164
165 return readl_relaxed(mcspi->base + idx);
166 }
167
168 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
169 int idx, u32 val)
170 {
171 struct omap2_mcspi_cs *cs = spi->controller_state;
172
173 writel_relaxed(val, cs->base + idx);
174 }
175
176 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
177 {
178 struct omap2_mcspi_cs *cs = spi->controller_state;
179
180 return readl_relaxed(cs->base + idx);
181 }
182
183 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
184 {
185 struct omap2_mcspi_cs *cs = spi->controller_state;
186
187 return cs->chconf0;
188 }
189
190 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
191 {
192 struct omap2_mcspi_cs *cs = spi->controller_state;
193
194 cs->chconf0 = val;
195 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
196 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
197 }
198
199 static inline int mcspi_bytes_per_word(int word_len)
200 {
201 if (word_len <= 8)
202 return 1;
203 else if (word_len <= 16)
204 return 2;
205 else /* word_len <= 32 */
206 return 4;
207 }
208
209 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
210 int is_read, int enable)
211 {
212 u32 l, rw;
213
214 l = mcspi_cached_chconf0(spi);
215
216 if (is_read) /* 1 is read, 0 write */
217 rw = OMAP2_MCSPI_CHCONF_DMAR;
218 else
219 rw = OMAP2_MCSPI_CHCONF_DMAW;
220
221 if (enable)
222 l |= rw;
223 else
224 l &= ~rw;
225
226 mcspi_write_chconf0(spi, l);
227 }
228
229 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
230 {
231 struct omap2_mcspi_cs *cs = spi->controller_state;
232 u32 l;
233
234 l = cs->chctrl0;
235 if (enable)
236 l |= OMAP2_MCSPI_CHCTRL_EN;
237 else
238 l &= ~OMAP2_MCSPI_CHCTRL_EN;
239 cs->chctrl0 = l;
240 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
241 /* Flash post-writes */
242 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
243 }
244
245 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
246 {
247 u32 l;
248
249 l = mcspi_cached_chconf0(spi);
250 if (cs_active)
251 l |= OMAP2_MCSPI_CHCONF_FORCE;
252 else
253 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
254
255 mcspi_write_chconf0(spi, l);
256 }
257
258 static void omap2_mcspi_set_master_mode(struct spi_master *master)
259 {
260 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
261 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
262 u32 l;
263
264 /*
265 * Setup when switching from (reset default) slave mode
266 * to single-channel master mode
267 */
268 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
269 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
270 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
271 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
272
273 ctx->modulctrl = l;
274 }
275
276 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
277 struct spi_transfer *t, int enable)
278 {
279 struct spi_master *master = spi->master;
280 struct omap2_mcspi_cs *cs = spi->controller_state;
281 struct omap2_mcspi *mcspi;
282 unsigned int wcnt;
283 int max_fifo_depth, fifo_depth, bytes_per_word;
284 u32 chconf, xferlevel;
285
286 mcspi = spi_master_get_devdata(master);
287
288 chconf = mcspi_cached_chconf0(spi);
289 if (enable) {
290 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
291 if (t->len % bytes_per_word != 0)
292 goto disable_fifo;
293
294 if (t->rx_buf != NULL && t->tx_buf != NULL)
295 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
296 else
297 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
298
299 fifo_depth = gcd(t->len, max_fifo_depth);
300 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
301 goto disable_fifo;
302
303 wcnt = t->len / bytes_per_word;
304 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
305 goto disable_fifo;
306
307 xferlevel = wcnt << 16;
308 if (t->rx_buf != NULL) {
309 chconf |= OMAP2_MCSPI_CHCONF_FFER;
310 xferlevel |= (fifo_depth - 1) << 8;
311 }
312 if (t->tx_buf != NULL) {
313 chconf |= OMAP2_MCSPI_CHCONF_FFET;
314 xferlevel |= fifo_depth - 1;
315 }
316
317 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
318 mcspi_write_chconf0(spi, chconf);
319 mcspi->fifo_depth = fifo_depth;
320
321 return;
322 }
323
324 disable_fifo:
325 if (t->rx_buf != NULL)
326 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
327
328 if (t->tx_buf != NULL)
329 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
330
331 mcspi_write_chconf0(spi, chconf);
332 mcspi->fifo_depth = 0;
333 }
334
335 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
336 {
337 struct spi_master *spi_cntrl = mcspi->master;
338 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
339 struct omap2_mcspi_cs *cs;
340
341 /* McSPI: context restore */
342 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
343 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
344
345 list_for_each_entry(cs, &ctx->cs, node)
346 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
347 }
348
349 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
350 {
351 unsigned long timeout;
352
353 timeout = jiffies + msecs_to_jiffies(1000);
354 while (!(readl_relaxed(reg) & bit)) {
355 if (time_after(jiffies, timeout)) {
356 if (!(readl_relaxed(reg) & bit))
357 return -ETIMEDOUT;
358 else
359 return 0;
360 }
361 cpu_relax();
362 }
363 return 0;
364 }
365
366 static void omap2_mcspi_rx_callback(void *data)
367 {
368 struct spi_device *spi = data;
369 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
370 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
371
372 /* We must disable the DMA RX request */
373 omap2_mcspi_set_dma_req(spi, 1, 0);
374
375 complete(&mcspi_dma->dma_rx_completion);
376 }
377
378 static void omap2_mcspi_tx_callback(void *data)
379 {
380 struct spi_device *spi = data;
381 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
382 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
383
384 /* We must disable the DMA TX request */
385 omap2_mcspi_set_dma_req(spi, 0, 0);
386
387 complete(&mcspi_dma->dma_tx_completion);
388 }
389
390 static void omap2_mcspi_tx_dma(struct spi_device *spi,
391 struct spi_transfer *xfer,
392 struct dma_slave_config cfg)
393 {
394 struct omap2_mcspi *mcspi;
395 struct omap2_mcspi_dma *mcspi_dma;
396 unsigned int count;
397
398 mcspi = spi_master_get_devdata(spi->master);
399 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
400 count = xfer->len;
401
402 if (mcspi_dma->dma_tx) {
403 struct dma_async_tx_descriptor *tx;
404 struct scatterlist sg;
405
406 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
407
408 sg_init_table(&sg, 1);
409 sg_dma_address(&sg) = xfer->tx_dma;
410 sg_dma_len(&sg) = xfer->len;
411
412 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
413 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
414 if (tx) {
415 tx->callback = omap2_mcspi_tx_callback;
416 tx->callback_param = spi;
417 dmaengine_submit(tx);
418 } else {
419 /* FIXME: fall back to PIO? */
420 }
421 }
422 dma_async_issue_pending(mcspi_dma->dma_tx);
423 omap2_mcspi_set_dma_req(spi, 0, 1);
424
425 }
426
427 static unsigned
428 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
429 struct dma_slave_config cfg,
430 unsigned es)
431 {
432 struct omap2_mcspi *mcspi;
433 struct omap2_mcspi_dma *mcspi_dma;
434 unsigned int count, dma_count;
435 u32 l;
436 int elements = 0;
437 int word_len, element_count;
438 struct omap2_mcspi_cs *cs = spi->controller_state;
439 mcspi = spi_master_get_devdata(spi->master);
440 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
441 count = xfer->len;
442 dma_count = xfer->len;
443
444 if (mcspi->fifo_depth == 0)
445 dma_count -= es;
446
447 word_len = cs->word_len;
448 l = mcspi_cached_chconf0(spi);
449
450 if (word_len <= 8)
451 element_count = count;
452 else if (word_len <= 16)
453 element_count = count >> 1;
454 else /* word_len <= 32 */
455 element_count = count >> 2;
456
457 if (mcspi_dma->dma_rx) {
458 struct dma_async_tx_descriptor *tx;
459 struct scatterlist sg;
460
461 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
462
463 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
464 dma_count -= es;
465
466 sg_init_table(&sg, 1);
467 sg_dma_address(&sg) = xfer->rx_dma;
468 sg_dma_len(&sg) = dma_count;
469
470 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
471 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
472 DMA_CTRL_ACK);
473 if (tx) {
474 tx->callback = omap2_mcspi_rx_callback;
475 tx->callback_param = spi;
476 dmaengine_submit(tx);
477 } else {
478 /* FIXME: fall back to PIO? */
479 }
480 }
481
482 dma_async_issue_pending(mcspi_dma->dma_rx);
483 omap2_mcspi_set_dma_req(spi, 1, 1);
484
485 wait_for_completion(&mcspi_dma->dma_rx_completion);
486 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
487 DMA_FROM_DEVICE);
488
489 if (mcspi->fifo_depth > 0)
490 return count;
491
492 omap2_mcspi_set_enable(spi, 0);
493
494 elements = element_count - 1;
495
496 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
497 elements--;
498
499 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
500 & OMAP2_MCSPI_CHSTAT_RXS)) {
501 u32 w;
502
503 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
504 if (word_len <= 8)
505 ((u8 *)xfer->rx_buf)[elements++] = w;
506 else if (word_len <= 16)
507 ((u16 *)xfer->rx_buf)[elements++] = w;
508 else /* word_len <= 32 */
509 ((u32 *)xfer->rx_buf)[elements++] = w;
510 } else {
511 int bytes_per_word = mcspi_bytes_per_word(word_len);
512 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
513 count -= (bytes_per_word << 1);
514 omap2_mcspi_set_enable(spi, 1);
515 return count;
516 }
517 }
518 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
519 & OMAP2_MCSPI_CHSTAT_RXS)) {
520 u32 w;
521
522 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
523 if (word_len <= 8)
524 ((u8 *)xfer->rx_buf)[elements] = w;
525 else if (word_len <= 16)
526 ((u16 *)xfer->rx_buf)[elements] = w;
527 else /* word_len <= 32 */
528 ((u32 *)xfer->rx_buf)[elements] = w;
529 } else {
530 dev_err(&spi->dev, "DMA RX last word empty\n");
531 count -= mcspi_bytes_per_word(word_len);
532 }
533 omap2_mcspi_set_enable(spi, 1);
534 return count;
535 }
536
537 static unsigned
538 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
539 {
540 struct omap2_mcspi *mcspi;
541 struct omap2_mcspi_cs *cs = spi->controller_state;
542 struct omap2_mcspi_dma *mcspi_dma;
543 unsigned int count;
544 u32 l;
545 u8 *rx;
546 const u8 *tx;
547 struct dma_slave_config cfg;
548 enum dma_slave_buswidth width;
549 unsigned es;
550 u32 burst;
551 void __iomem *chstat_reg;
552 void __iomem *irqstat_reg;
553 int wait_res;
554
555 mcspi = spi_master_get_devdata(spi->master);
556 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
557 l = mcspi_cached_chconf0(spi);
558
559
560 if (cs->word_len <= 8) {
561 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
562 es = 1;
563 } else if (cs->word_len <= 16) {
564 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
565 es = 2;
566 } else {
567 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
568 es = 4;
569 }
570
571 count = xfer->len;
572 burst = 1;
573
574 if (mcspi->fifo_depth > 0) {
575 if (count > mcspi->fifo_depth)
576 burst = mcspi->fifo_depth / es;
577 else
578 burst = count / es;
579 }
580
581 memset(&cfg, 0, sizeof(cfg));
582 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
583 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
584 cfg.src_addr_width = width;
585 cfg.dst_addr_width = width;
586 cfg.src_maxburst = burst;
587 cfg.dst_maxburst = burst;
588
589 rx = xfer->rx_buf;
590 tx = xfer->tx_buf;
591
592 if (tx != NULL)
593 omap2_mcspi_tx_dma(spi, xfer, cfg);
594
595 if (rx != NULL)
596 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
597
598 if (tx != NULL) {
599 wait_for_completion(&mcspi_dma->dma_tx_completion);
600 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
601 DMA_TO_DEVICE);
602
603 if (mcspi->fifo_depth > 0) {
604 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
605
606 if (mcspi_wait_for_reg_bit(irqstat_reg,
607 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
608 dev_err(&spi->dev, "EOW timed out\n");
609
610 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
611 OMAP2_MCSPI_IRQSTATUS_EOW);
612 }
613
614 /* for TX_ONLY mode, be sure all words have shifted out */
615 if (rx == NULL) {
616 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
617 if (mcspi->fifo_depth > 0) {
618 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
619 OMAP2_MCSPI_CHSTAT_TXFFE);
620 if (wait_res < 0)
621 dev_err(&spi->dev, "TXFFE timed out\n");
622 } else {
623 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
624 OMAP2_MCSPI_CHSTAT_TXS);
625 if (wait_res < 0)
626 dev_err(&spi->dev, "TXS timed out\n");
627 }
628 if (wait_res >= 0 &&
629 (mcspi_wait_for_reg_bit(chstat_reg,
630 OMAP2_MCSPI_CHSTAT_EOT) < 0))
631 dev_err(&spi->dev, "EOT timed out\n");
632 }
633 }
634 return count;
635 }
636
637 static unsigned
638 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
639 {
640 struct omap2_mcspi *mcspi;
641 struct omap2_mcspi_cs *cs = spi->controller_state;
642 unsigned int count, c;
643 u32 l;
644 void __iomem *base = cs->base;
645 void __iomem *tx_reg;
646 void __iomem *rx_reg;
647 void __iomem *chstat_reg;
648 int word_len;
649
650 mcspi = spi_master_get_devdata(spi->master);
651 count = xfer->len;
652 c = count;
653 word_len = cs->word_len;
654
655 l = mcspi_cached_chconf0(spi);
656
657 /* We store the pre-calculated register addresses on stack to speed
658 * up the transfer loop. */
659 tx_reg = base + OMAP2_MCSPI_TX0;
660 rx_reg = base + OMAP2_MCSPI_RX0;
661 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
662
663 if (c < (word_len>>3))
664 return 0;
665
666 if (word_len <= 8) {
667 u8 *rx;
668 const u8 *tx;
669
670 rx = xfer->rx_buf;
671 tx = xfer->tx_buf;
672
673 do {
674 c -= 1;
675 if (tx != NULL) {
676 if (mcspi_wait_for_reg_bit(chstat_reg,
677 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
678 dev_err(&spi->dev, "TXS timed out\n");
679 goto out;
680 }
681 dev_vdbg(&spi->dev, "write-%d %02x\n",
682 word_len, *tx);
683 writel_relaxed(*tx++, tx_reg);
684 }
685 if (rx != NULL) {
686 if (mcspi_wait_for_reg_bit(chstat_reg,
687 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
688 dev_err(&spi->dev, "RXS timed out\n");
689 goto out;
690 }
691
692 if (c == 1 && tx == NULL &&
693 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
694 omap2_mcspi_set_enable(spi, 0);
695 *rx++ = readl_relaxed(rx_reg);
696 dev_vdbg(&spi->dev, "read-%d %02x\n",
697 word_len, *(rx - 1));
698 if (mcspi_wait_for_reg_bit(chstat_reg,
699 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
700 dev_err(&spi->dev,
701 "RXS timed out\n");
702 goto out;
703 }
704 c = 0;
705 } else if (c == 0 && tx == NULL) {
706 omap2_mcspi_set_enable(spi, 0);
707 }
708
709 *rx++ = readl_relaxed(rx_reg);
710 dev_vdbg(&spi->dev, "read-%d %02x\n",
711 word_len, *(rx - 1));
712 }
713 } while (c);
714 } else if (word_len <= 16) {
715 u16 *rx;
716 const u16 *tx;
717
718 rx = xfer->rx_buf;
719 tx = xfer->tx_buf;
720 do {
721 c -= 2;
722 if (tx != NULL) {
723 if (mcspi_wait_for_reg_bit(chstat_reg,
724 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
725 dev_err(&spi->dev, "TXS timed out\n");
726 goto out;
727 }
728 dev_vdbg(&spi->dev, "write-%d %04x\n",
729 word_len, *tx);
730 writel_relaxed(*tx++, tx_reg);
731 }
732 if (rx != NULL) {
733 if (mcspi_wait_for_reg_bit(chstat_reg,
734 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
735 dev_err(&spi->dev, "RXS timed out\n");
736 goto out;
737 }
738
739 if (c == 2 && tx == NULL &&
740 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
741 omap2_mcspi_set_enable(spi, 0);
742 *rx++ = readl_relaxed(rx_reg);
743 dev_vdbg(&spi->dev, "read-%d %04x\n",
744 word_len, *(rx - 1));
745 if (mcspi_wait_for_reg_bit(chstat_reg,
746 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
747 dev_err(&spi->dev,
748 "RXS timed out\n");
749 goto out;
750 }
751 c = 0;
752 } else if (c == 0 && tx == NULL) {
753 omap2_mcspi_set_enable(spi, 0);
754 }
755
756 *rx++ = readl_relaxed(rx_reg);
757 dev_vdbg(&spi->dev, "read-%d %04x\n",
758 word_len, *(rx - 1));
759 }
760 } while (c >= 2);
761 } else if (word_len <= 32) {
762 u32 *rx;
763 const u32 *tx;
764
765 rx = xfer->rx_buf;
766 tx = xfer->tx_buf;
767 do {
768 c -= 4;
769 if (tx != NULL) {
770 if (mcspi_wait_for_reg_bit(chstat_reg,
771 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
772 dev_err(&spi->dev, "TXS timed out\n");
773 goto out;
774 }
775 dev_vdbg(&spi->dev, "write-%d %08x\n",
776 word_len, *tx);
777 writel_relaxed(*tx++, tx_reg);
778 }
779 if (rx != NULL) {
780 if (mcspi_wait_for_reg_bit(chstat_reg,
781 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
782 dev_err(&spi->dev, "RXS timed out\n");
783 goto out;
784 }
785
786 if (c == 4 && tx == NULL &&
787 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
788 omap2_mcspi_set_enable(spi, 0);
789 *rx++ = readl_relaxed(rx_reg);
790 dev_vdbg(&spi->dev, "read-%d %08x\n",
791 word_len, *(rx - 1));
792 if (mcspi_wait_for_reg_bit(chstat_reg,
793 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
794 dev_err(&spi->dev,
795 "RXS timed out\n");
796 goto out;
797 }
798 c = 0;
799 } else if (c == 0 && tx == NULL) {
800 omap2_mcspi_set_enable(spi, 0);
801 }
802
803 *rx++ = readl_relaxed(rx_reg);
804 dev_vdbg(&spi->dev, "read-%d %08x\n",
805 word_len, *(rx - 1));
806 }
807 } while (c >= 4);
808 }
809
810 /* for TX_ONLY mode, be sure all words have shifted out */
811 if (xfer->rx_buf == NULL) {
812 if (mcspi_wait_for_reg_bit(chstat_reg,
813 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
814 dev_err(&spi->dev, "TXS timed out\n");
815 } else if (mcspi_wait_for_reg_bit(chstat_reg,
816 OMAP2_MCSPI_CHSTAT_EOT) < 0)
817 dev_err(&spi->dev, "EOT timed out\n");
818
819 /* disable chan to purge rx datas received in TX_ONLY transfer,
820 * otherwise these rx datas will affect the direct following
821 * RX_ONLY transfer.
822 */
823 omap2_mcspi_set_enable(spi, 0);
824 }
825 out:
826 omap2_mcspi_set_enable(spi, 1);
827 return count - c;
828 }
829
830 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
831 {
832 u32 div;
833
834 for (div = 0; div < 15; div++)
835 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
836 return div;
837
838 return 15;
839 }
840
841 /* called only when no transfer is active to this device */
842 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
843 struct spi_transfer *t)
844 {
845 struct omap2_mcspi_cs *cs = spi->controller_state;
846 struct omap2_mcspi *mcspi;
847 struct spi_master *spi_cntrl;
848 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
849 u8 word_len = spi->bits_per_word;
850 u32 speed_hz = spi->max_speed_hz;
851
852 mcspi = spi_master_get_devdata(spi->master);
853 spi_cntrl = mcspi->master;
854
855 if (t != NULL && t->bits_per_word)
856 word_len = t->bits_per_word;
857
858 cs->word_len = word_len;
859
860 if (t && t->speed_hz)
861 speed_hz = t->speed_hz;
862
863 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
864 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
865 clkd = omap2_mcspi_calc_divisor(speed_hz);
866 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
867 clkg = 0;
868 } else {
869 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
870 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
871 clkd = (div - 1) & 0xf;
872 extclk = (div - 1) >> 4;
873 clkg = OMAP2_MCSPI_CHCONF_CLKG;
874 }
875
876 l = mcspi_cached_chconf0(spi);
877
878 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
879 * REVISIT: this controller could support SPI_3WIRE mode.
880 */
881 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
882 l &= ~OMAP2_MCSPI_CHCONF_IS;
883 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
884 l |= OMAP2_MCSPI_CHCONF_DPE0;
885 } else {
886 l |= OMAP2_MCSPI_CHCONF_IS;
887 l |= OMAP2_MCSPI_CHCONF_DPE1;
888 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
889 }
890
891 /* wordlength */
892 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
893 l |= (word_len - 1) << 7;
894
895 /* set chipselect polarity; manage with FORCE */
896 if (!(spi->mode & SPI_CS_HIGH))
897 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
898 else
899 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
900
901 /* set clock divisor */
902 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
903 l |= clkd << 2;
904
905 /* set clock granularity */
906 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
907 l |= clkg;
908 if (clkg) {
909 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
910 cs->chctrl0 |= extclk << 8;
911 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
912 }
913
914 /* set SPI mode 0..3 */
915 if (spi->mode & SPI_CPOL)
916 l |= OMAP2_MCSPI_CHCONF_POL;
917 else
918 l &= ~OMAP2_MCSPI_CHCONF_POL;
919 if (spi->mode & SPI_CPHA)
920 l |= OMAP2_MCSPI_CHCONF_PHA;
921 else
922 l &= ~OMAP2_MCSPI_CHCONF_PHA;
923
924 mcspi_write_chconf0(spi, l);
925
926 cs->mode = spi->mode;
927
928 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
929 speed_hz,
930 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
931 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
932
933 return 0;
934 }
935
936 /*
937 * Note that we currently allow DMA only if we get a channel
938 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
939 */
940 static int omap2_mcspi_request_dma(struct spi_device *spi)
941 {
942 struct spi_master *master = spi->master;
943 struct omap2_mcspi *mcspi;
944 struct omap2_mcspi_dma *mcspi_dma;
945 dma_cap_mask_t mask;
946 unsigned sig;
947
948 mcspi = spi_master_get_devdata(master);
949 mcspi_dma = mcspi->dma_channels + spi->chip_select;
950
951 init_completion(&mcspi_dma->dma_rx_completion);
952 init_completion(&mcspi_dma->dma_tx_completion);
953
954 dma_cap_zero(mask);
955 dma_cap_set(DMA_SLAVE, mask);
956 sig = mcspi_dma->dma_rx_sync_dev;
957
958 mcspi_dma->dma_rx =
959 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
960 &sig, &master->dev,
961 mcspi_dma->dma_rx_ch_name);
962 if (!mcspi_dma->dma_rx)
963 goto no_dma;
964
965 sig = mcspi_dma->dma_tx_sync_dev;
966 mcspi_dma->dma_tx =
967 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
968 &sig, &master->dev,
969 mcspi_dma->dma_tx_ch_name);
970
971 if (!mcspi_dma->dma_tx) {
972 dma_release_channel(mcspi_dma->dma_rx);
973 mcspi_dma->dma_rx = NULL;
974 goto no_dma;
975 }
976
977 return 0;
978
979 no_dma:
980 dev_warn(&spi->dev, "not using DMA for McSPI\n");
981 return -EAGAIN;
982 }
983
984 static int omap2_mcspi_setup(struct spi_device *spi)
985 {
986 int ret;
987 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
988 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
989 struct omap2_mcspi_dma *mcspi_dma;
990 struct omap2_mcspi_cs *cs = spi->controller_state;
991
992 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
993
994 if (!cs) {
995 cs = kzalloc(sizeof *cs, GFP_KERNEL);
996 if (!cs)
997 return -ENOMEM;
998 cs->base = mcspi->base + spi->chip_select * 0x14;
999 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1000 cs->mode = 0;
1001 cs->chconf0 = 0;
1002 cs->chctrl0 = 0;
1003 spi->controller_state = cs;
1004 /* Link this to context save list */
1005 list_add_tail(&cs->node, &ctx->cs);
1006 }
1007
1008 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1009 ret = omap2_mcspi_request_dma(spi);
1010 if (ret < 0 && ret != -EAGAIN)
1011 return ret;
1012 }
1013
1014 ret = pm_runtime_get_sync(mcspi->dev);
1015 if (ret < 0)
1016 return ret;
1017
1018 ret = omap2_mcspi_setup_transfer(spi, NULL);
1019 pm_runtime_mark_last_busy(mcspi->dev);
1020 pm_runtime_put_autosuspend(mcspi->dev);
1021
1022 return ret;
1023 }
1024
1025 static void omap2_mcspi_cleanup(struct spi_device *spi)
1026 {
1027 struct omap2_mcspi *mcspi;
1028 struct omap2_mcspi_dma *mcspi_dma;
1029 struct omap2_mcspi_cs *cs;
1030
1031 mcspi = spi_master_get_devdata(spi->master);
1032
1033 if (spi->controller_state) {
1034 /* Unlink controller state from context save list */
1035 cs = spi->controller_state;
1036 list_del(&cs->node);
1037
1038 kfree(cs);
1039 }
1040
1041 if (spi->chip_select < spi->master->num_chipselect) {
1042 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1043
1044 if (mcspi_dma->dma_rx) {
1045 dma_release_channel(mcspi_dma->dma_rx);
1046 mcspi_dma->dma_rx = NULL;
1047 }
1048 if (mcspi_dma->dma_tx) {
1049 dma_release_channel(mcspi_dma->dma_tx);
1050 mcspi_dma->dma_tx = NULL;
1051 }
1052 }
1053 }
1054
1055 static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
1056 {
1057
1058 /* We only enable one channel at a time -- the one whose message is
1059 * -- although this controller would gladly
1060 * arbitrate among multiple channels. This corresponds to "single
1061 * channel" master mode. As a side effect, we need to manage the
1062 * chipselect with the FORCE bit ... CS != channel enable.
1063 */
1064
1065 struct spi_device *spi;
1066 struct spi_transfer *t = NULL;
1067 struct spi_master *master;
1068 struct omap2_mcspi_dma *mcspi_dma;
1069 int cs_active = 0;
1070 struct omap2_mcspi_cs *cs;
1071 struct omap2_mcspi_device_config *cd;
1072 int par_override = 0;
1073 int status = 0;
1074 u32 chconf;
1075
1076 spi = m->spi;
1077 master = spi->master;
1078 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1079 cs = spi->controller_state;
1080 cd = spi->controller_data;
1081
1082 /*
1083 * The slave driver could have changed spi->mode in which case
1084 * it will be different from cs->mode (the current hardware setup).
1085 * If so, set par_override (even though its not a parity issue) so
1086 * omap2_mcspi_setup_transfer will be called to configure the hardware
1087 * with the correct mode on the first iteration of the loop below.
1088 */
1089 if (spi->mode != cs->mode)
1090 par_override = 1;
1091
1092 omap2_mcspi_set_enable(spi, 0);
1093 list_for_each_entry(t, &m->transfers, transfer_list) {
1094 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
1095 status = -EINVAL;
1096 break;
1097 }
1098 if (par_override ||
1099 (t->speed_hz != spi->max_speed_hz) ||
1100 (t->bits_per_word != spi->bits_per_word)) {
1101 par_override = 1;
1102 status = omap2_mcspi_setup_transfer(spi, t);
1103 if (status < 0)
1104 break;
1105 if (t->speed_hz == spi->max_speed_hz &&
1106 t->bits_per_word == spi->bits_per_word)
1107 par_override = 0;
1108 }
1109 if (cd && cd->cs_per_word) {
1110 chconf = mcspi->ctx.modulctrl;
1111 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1112 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1113 mcspi->ctx.modulctrl =
1114 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1115 }
1116
1117
1118 if (!cs_active) {
1119 omap2_mcspi_force_cs(spi, 1);
1120 cs_active = 1;
1121 }
1122
1123 chconf = mcspi_cached_chconf0(spi);
1124 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1125 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1126
1127 if (t->tx_buf == NULL)
1128 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1129 else if (t->rx_buf == NULL)
1130 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1131
1132 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1133 /* Turbo mode is for more than one word */
1134 if (t->len > ((cs->word_len + 7) >> 3))
1135 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1136 }
1137
1138 mcspi_write_chconf0(spi, chconf);
1139
1140 if (t->len) {
1141 unsigned count;
1142
1143 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1144 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1145 omap2_mcspi_set_fifo(spi, t, 1);
1146
1147 omap2_mcspi_set_enable(spi, 1);
1148
1149 /* RX_ONLY mode needs dummy data in TX reg */
1150 if (t->tx_buf == NULL)
1151 writel_relaxed(0, cs->base
1152 + OMAP2_MCSPI_TX0);
1153
1154 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1155 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1156 count = omap2_mcspi_txrx_dma(spi, t);
1157 else
1158 count = omap2_mcspi_txrx_pio(spi, t);
1159 m->actual_length += count;
1160
1161 if (count != t->len) {
1162 status = -EIO;
1163 break;
1164 }
1165 }
1166
1167 if (t->delay_usecs)
1168 udelay(t->delay_usecs);
1169
1170 /* ignore the "leave it on after last xfer" hint */
1171 if (t->cs_change) {
1172 omap2_mcspi_force_cs(spi, 0);
1173 cs_active = 0;
1174 }
1175
1176 omap2_mcspi_set_enable(spi, 0);
1177
1178 if (mcspi->fifo_depth > 0)
1179 omap2_mcspi_set_fifo(spi, t, 0);
1180 }
1181 /* Restore defaults if they were overriden */
1182 if (par_override) {
1183 par_override = 0;
1184 status = omap2_mcspi_setup_transfer(spi, NULL);
1185 }
1186
1187 if (cs_active)
1188 omap2_mcspi_force_cs(spi, 0);
1189
1190 if (cd && cd->cs_per_word) {
1191 chconf = mcspi->ctx.modulctrl;
1192 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1193 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1194 mcspi->ctx.modulctrl =
1195 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1196 }
1197
1198 omap2_mcspi_set_enable(spi, 0);
1199
1200 if (mcspi->fifo_depth > 0 && t)
1201 omap2_mcspi_set_fifo(spi, t, 0);
1202
1203 m->status = status;
1204 }
1205
1206 static int omap2_mcspi_transfer_one_message(struct spi_master *master,
1207 struct spi_message *m)
1208 {
1209 struct spi_device *spi;
1210 struct omap2_mcspi *mcspi;
1211 struct omap2_mcspi_dma *mcspi_dma;
1212 struct spi_transfer *t;
1213
1214 spi = m->spi;
1215 mcspi = spi_master_get_devdata(master);
1216 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1217 m->actual_length = 0;
1218 m->status = 0;
1219
1220 list_for_each_entry(t, &m->transfers, transfer_list) {
1221 const void *tx_buf = t->tx_buf;
1222 void *rx_buf = t->rx_buf;
1223 unsigned len = t->len;
1224
1225 if ((len && !(rx_buf || tx_buf))) {
1226 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1227 t->speed_hz,
1228 len,
1229 tx_buf ? "tx" : "",
1230 rx_buf ? "rx" : "",
1231 t->bits_per_word);
1232 return -EINVAL;
1233 }
1234
1235 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1236 continue;
1237
1238 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1239 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1240 len, DMA_TO_DEVICE);
1241 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1242 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1243 'T', len);
1244 return -EINVAL;
1245 }
1246 }
1247 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1248 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1249 DMA_FROM_DEVICE);
1250 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1251 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1252 'R', len);
1253 if (tx_buf != NULL)
1254 dma_unmap_single(mcspi->dev, t->tx_dma,
1255 len, DMA_TO_DEVICE);
1256 return -EINVAL;
1257 }
1258 }
1259 }
1260
1261 omap2_mcspi_work(mcspi, m);
1262 spi_finalize_current_message(master);
1263 return 0;
1264 }
1265
1266 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1267 {
1268 struct spi_master *master = mcspi->master;
1269 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1270 int ret = 0;
1271
1272 ret = pm_runtime_get_sync(mcspi->dev);
1273 if (ret < 0)
1274 return ret;
1275
1276 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1277 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1278 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1279
1280 omap2_mcspi_set_master_mode(master);
1281 pm_runtime_mark_last_busy(mcspi->dev);
1282 pm_runtime_put_autosuspend(mcspi->dev);
1283 return 0;
1284 }
1285
1286 static int omap_mcspi_runtime_resume(struct device *dev)
1287 {
1288 struct omap2_mcspi *mcspi;
1289 struct spi_master *master;
1290
1291 master = dev_get_drvdata(dev);
1292 mcspi = spi_master_get_devdata(master);
1293 omap2_mcspi_restore_ctx(mcspi);
1294
1295 return 0;
1296 }
1297
1298 static struct omap2_mcspi_platform_config omap2_pdata = {
1299 .regs_offset = 0,
1300 };
1301
1302 static struct omap2_mcspi_platform_config omap4_pdata = {
1303 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1304 };
1305
1306 static const struct of_device_id omap_mcspi_of_match[] = {
1307 {
1308 .compatible = "ti,omap2-mcspi",
1309 .data = &omap2_pdata,
1310 },
1311 {
1312 .compatible = "ti,omap4-mcspi",
1313 .data = &omap4_pdata,
1314 },
1315 { },
1316 };
1317 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1318
1319 static int omap2_mcspi_probe(struct platform_device *pdev)
1320 {
1321 struct spi_master *master;
1322 const struct omap2_mcspi_platform_config *pdata;
1323 struct omap2_mcspi *mcspi;
1324 struct resource *r;
1325 int status = 0, i;
1326 u32 regs_offset = 0;
1327 static int bus_num = 1;
1328 struct device_node *node = pdev->dev.of_node;
1329 const struct of_device_id *match;
1330
1331 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1332 if (master == NULL) {
1333 dev_dbg(&pdev->dev, "master allocation failed\n");
1334 return -ENOMEM;
1335 }
1336
1337 /* the spi->mode bits understood by this driver: */
1338 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1339 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1340 master->setup = omap2_mcspi_setup;
1341 master->auto_runtime_pm = true;
1342 master->transfer_one_message = omap2_mcspi_transfer_one_message;
1343 master->cleanup = omap2_mcspi_cleanup;
1344 master->dev.of_node = node;
1345 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1346 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1347
1348 platform_set_drvdata(pdev, master);
1349
1350 mcspi = spi_master_get_devdata(master);
1351 mcspi->master = master;
1352
1353 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1354 if (match) {
1355 u32 num_cs = 1; /* default number of chipselect */
1356 pdata = match->data;
1357
1358 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1359 master->num_chipselect = num_cs;
1360 master->bus_num = bus_num++;
1361 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1362 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1363 } else {
1364 pdata = dev_get_platdata(&pdev->dev);
1365 master->num_chipselect = pdata->num_cs;
1366 if (pdev->id != -1)
1367 master->bus_num = pdev->id;
1368 mcspi->pin_dir = pdata->pin_dir;
1369 }
1370 regs_offset = pdata->regs_offset;
1371
1372 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1373 if (r == NULL) {
1374 status = -ENODEV;
1375 goto free_master;
1376 }
1377
1378 r->start += regs_offset;
1379 r->end += regs_offset;
1380 mcspi->phys = r->start;
1381
1382 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1383 if (IS_ERR(mcspi->base)) {
1384 status = PTR_ERR(mcspi->base);
1385 goto free_master;
1386 }
1387
1388 mcspi->dev = &pdev->dev;
1389
1390 INIT_LIST_HEAD(&mcspi->ctx.cs);
1391
1392 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1393 sizeof(struct omap2_mcspi_dma),
1394 GFP_KERNEL);
1395 if (mcspi->dma_channels == NULL) {
1396 status = -ENOMEM;
1397 goto free_master;
1398 }
1399
1400 for (i = 0; i < master->num_chipselect; i++) {
1401 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1402 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1403 struct resource *dma_res;
1404
1405 sprintf(dma_rx_ch_name, "rx%d", i);
1406 if (!pdev->dev.of_node) {
1407 dma_res =
1408 platform_get_resource_byname(pdev,
1409 IORESOURCE_DMA,
1410 dma_rx_ch_name);
1411 if (!dma_res) {
1412 dev_dbg(&pdev->dev,
1413 "cannot get DMA RX channel\n");
1414 status = -ENODEV;
1415 break;
1416 }
1417
1418 mcspi->dma_channels[i].dma_rx_sync_dev =
1419 dma_res->start;
1420 }
1421 sprintf(dma_tx_ch_name, "tx%d", i);
1422 if (!pdev->dev.of_node) {
1423 dma_res =
1424 platform_get_resource_byname(pdev,
1425 IORESOURCE_DMA,
1426 dma_tx_ch_name);
1427 if (!dma_res) {
1428 dev_dbg(&pdev->dev,
1429 "cannot get DMA TX channel\n");
1430 status = -ENODEV;
1431 break;
1432 }
1433
1434 mcspi->dma_channels[i].dma_tx_sync_dev =
1435 dma_res->start;
1436 }
1437 }
1438
1439 if (status < 0)
1440 goto free_master;
1441
1442 pm_runtime_use_autosuspend(&pdev->dev);
1443 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1444 pm_runtime_enable(&pdev->dev);
1445
1446 status = omap2_mcspi_master_setup(mcspi);
1447 if (status < 0)
1448 goto disable_pm;
1449
1450 status = devm_spi_register_master(&pdev->dev, master);
1451 if (status < 0)
1452 goto disable_pm;
1453
1454 return status;
1455
1456 disable_pm:
1457 pm_runtime_disable(&pdev->dev);
1458 free_master:
1459 spi_master_put(master);
1460 return status;
1461 }
1462
1463 static int omap2_mcspi_remove(struct platform_device *pdev)
1464 {
1465 struct spi_master *master = platform_get_drvdata(pdev);
1466 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1467
1468 pm_runtime_put_sync(mcspi->dev);
1469 pm_runtime_disable(&pdev->dev);
1470
1471 return 0;
1472 }
1473
1474 /* work with hotplug and coldplug */
1475 MODULE_ALIAS("platform:omap2_mcspi");
1476
1477 #ifdef CONFIG_SUSPEND
1478 /*
1479 * When SPI wake up from off-mode, CS is in activate state. If it was in
1480 * unactive state when driver was suspend, then force it to unactive state at
1481 * wake up.
1482 */
1483 static int omap2_mcspi_resume(struct device *dev)
1484 {
1485 struct spi_master *master = dev_get_drvdata(dev);
1486 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1487 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1488 struct omap2_mcspi_cs *cs;
1489
1490 pm_runtime_get_sync(mcspi->dev);
1491 list_for_each_entry(cs, &ctx->cs, node) {
1492 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1493 /*
1494 * We need to toggle CS state for OMAP take this
1495 * change in account.
1496 */
1497 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1498 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1499 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1500 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1501 }
1502 }
1503 pm_runtime_mark_last_busy(mcspi->dev);
1504 pm_runtime_put_autosuspend(mcspi->dev);
1505 return 0;
1506 }
1507 #else
1508 #define omap2_mcspi_resume NULL
1509 #endif
1510
1511 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1512 .resume = omap2_mcspi_resume,
1513 .runtime_resume = omap_mcspi_runtime_resume,
1514 };
1515
1516 static struct platform_driver omap2_mcspi_driver = {
1517 .driver = {
1518 .name = "omap2_mcspi",
1519 .pm = &omap2_mcspi_pm_ops,
1520 .of_match_table = omap_mcspi_of_match,
1521 },
1522 .probe = omap2_mcspi_probe,
1523 .remove = omap2_mcspi_remove,
1524 };
1525
1526 module_platform_driver(omap2_mcspi_driver);
1527 MODULE_LICENSE("GPL");
This page took 0.071089 seconds and 5 git commands to generate.