spi: pl022: Remove incorrect TxFIFO full reporting
[deliverable/linux.git] / drivers / spi / spi-pl022.c
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46
47 /*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55 /*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
65
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
68
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
71
72 /*
73 * Macros to access SSP Registers with their offsets
74 */
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r) (r + 0x080)
87 #define SSP_ITIP(r) (r + 0x084)
88 #define SSP_ITOP(r) (r + 0x088)
89 #define SSP_TDR(r) (r + 0x08C)
90
91 #define SSP_PID0(r) (r + 0xFE0)
92 #define SSP_PID1(r) (r + 0xFE4)
93 #define SSP_PID2(r) (r + 0xFE8)
94 #define SSP_PID3(r) (r + 0xFEC)
95
96 #define SSP_CID0(r) (r + 0xFF0)
97 #define SSP_CID1(r) (r + 0xFF4)
98 #define SSP_CID2(r) (r + 0xFF8)
99 #define SSP_CID3(r) (r + 0xFFC)
100
101 /*
102 * SSP Control Register 0 - SSP_CR0
103 */
104 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF (0x3UL << 4)
106 #define SSP_CR0_MASK_SPO (0x1UL << 6)
107 #define SSP_CR0_MASK_SPH (0x1UL << 7)
108 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
109
110 /*
111 * The ST version of this block moves som bits
112 * in SSP_CR0 and extends it to 32 bits
113 */
114 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
118
119 /*
120 * SSP Control Register 0 - SSP_CR1
121 */
122 #define SSP_CR1_MASK_LBM (0x1UL << 0)
123 #define SSP_CR1_MASK_SSE (0x1UL << 1)
124 #define SSP_CR1_MASK_MS (0x1UL << 2)
125 #define SSP_CR1_MASK_SOD (0x1UL << 3)
126
127 /*
128 * The ST version of this block adds some bits
129 * in SSP_CR1
130 */
131 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138
139 /*
140 * SSP Status Register - SSP_SR
141 */
142 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
147
148 /*
149 * SSP Clock Prescale Register - SSP_CPSR
150 */
151 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
152
153 /*
154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 */
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160
161 /*
162 * SSP Raw Interrupt Status Register - SSP_RIS
163 */
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
172
173 /*
174 * SSP Masked Interrupt Status Register - SSP_MIS
175 */
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
184
185 /*
186 * SSP Interrupt Clear Register - SSP_ICR
187 */
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
192
193 /*
194 * SSP DMA Control Register - SSP_DMACR
195 */
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
200
201 /*
202 * SSP Chip Select Control Register - SSP_CSR
203 * (vendor extension)
204 */
205 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
206
207 /*
208 * SSP Integration Test control Register - SSP_ITCR
209 */
210 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
212
213 /*
214 * SSP Integration Test Input Register - SSP_ITIP
215 */
216 #define ITIP_MASK_SSPRXD (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
222
223 /*
224 * SSP Integration Test output Register - SSP_ITOP
225 */
226 #define ITOP_MASK_SSPTXD (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
231 #define ITOP_MASK_RORINTR (0x1UL << 5)
232 #define ITOP_MASK_RTINTR (0x1UL << 6)
233 #define ITOP_MASK_RXINTR (0x1UL << 7)
234 #define ITOP_MASK_TXINTR (0x1UL << 8)
235 #define ITOP_MASK_INTR (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
240
241 /*
242 * SSP Test Data Register - SSP_TDR
243 */
244 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
245
246 /*
247 * Message State
248 * we use the spi_message.state (void *) pointer to
249 * hold a single state value, that's why all this
250 * (void *) casting is done here.
251 */
252 #define STATE_START ((void *) 0)
253 #define STATE_RUNNING ((void *) 1)
254 #define STATE_DONE ((void *) 2)
255 #define STATE_ERROR ((void *) -1)
256
257 /*
258 * SSP State - Whether Enabled or Disabled
259 */
260 #define SSP_DISABLED (0)
261 #define SSP_ENABLED (1)
262
263 /*
264 * SSP DMA State - Whether DMA Enabled or Disabled
265 */
266 #define SSP_DMA_DISABLED (0)
267 #define SSP_DMA_ENABLED (1)
268
269 /*
270 * SSP Clock Defaults
271 */
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
274
275 /*
276 * SSP Clock Parameter ranges
277 */
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
280 #define SCR_MIN 0x00
281 #define SCR_MAX 0xFF
282
283 /*
284 * SSP Interrupt related Macros
285 */
286 #define DEFAULT_SSP_REG_IMSC 0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
289
290 #define CLEAR_ALL_INTERRUPTS 0x3
291
292 #define SPI_POLLING_TIMEOUT 1000
293
294 /*
295 * The type of reading going on on this chip
296 */
297 enum ssp_reading {
298 READING_NULL,
299 READING_U8,
300 READING_U16,
301 READING_U32
302 };
303
304 /**
305 * The type of writing going on on this chip
306 */
307 enum ssp_writing {
308 WRITING_NULL,
309 WRITING_U8,
310 WRITING_U16,
311 WRITING_U32
312 };
313
314 /**
315 * struct vendor_data - vendor-specific config parameters
316 * for PL022 derivates
317 * @fifodepth: depth of FIFOs (both)
318 * @max_bpw: maximum number of bits per word
319 * @unidir: supports unidirection transfers
320 * @extended_cr: 32 bit wide control register 0 with extra
321 * features and extra features in CR1 as found in the ST variants
322 * @pl023: supports a subset of the ST extensions called "PL023"
323 * @internal_cs_ctrl: supports chip select control register
324 */
325 struct vendor_data {
326 int fifodepth;
327 int max_bpw;
328 bool unidir;
329 bool extended_cr;
330 bool pl023;
331 bool loopback;
332 bool internal_cs_ctrl;
333 };
334
335 /**
336 * struct pl022 - This is the private SSP driver data structure
337 * @adev: AMBA device model hookup
338 * @vendor: vendor data for the IP block
339 * @phybase: the physical memory where the SSP device resides
340 * @virtbase: the virtual memory where the SSP is mapped
341 * @clk: outgoing clock "SPICLK" for the SPI bus
342 * @master: SPI framework hookup
343 * @master_info: controller-specific data from machine setup
344 * @kworker: thread struct for message pump
345 * @kworker_task: pointer to task for message pump kworker thread
346 * @pump_messages: work struct for scheduling work to the message pump
347 * @queue_lock: spinlock to syncronise access to message queue
348 * @queue: message queue
349 * @busy: message pump is busy
350 * @running: message pump is running
351 * @pump_transfers: Tasklet used in Interrupt Transfer mode
352 * @cur_msg: Pointer to current spi_message being processed
353 * @cur_transfer: Pointer to current spi_transfer
354 * @cur_chip: pointer to current clients chip(assigned from controller_state)
355 * @next_msg_cs_active: the next message in the queue has been examined
356 * and it was found that it uses the same chip select as the previous
357 * message, so we left it active after the previous transfer, and it's
358 * active already.
359 * @tx: current position in TX buffer to be read
360 * @tx_end: end position in TX buffer to be read
361 * @rx: current position in RX buffer to be written
362 * @rx_end: end position in RX buffer to be written
363 * @read: the type of read currently going on
364 * @write: the type of write currently going on
365 * @exp_fifo_level: expected FIFO level
366 * @dma_rx_channel: optional channel for RX DMA
367 * @dma_tx_channel: optional channel for TX DMA
368 * @sgt_rx: scattertable for the RX transfer
369 * @sgt_tx: scattertable for the TX transfer
370 * @dummypage: a dummy page used for driving data on the bus with DMA
371 * @cur_cs: current chip select (gpio)
372 * @chipselects: list of chipselects (gpios)
373 */
374 struct pl022 {
375 struct amba_device *adev;
376 struct vendor_data *vendor;
377 resource_size_t phybase;
378 void __iomem *virtbase;
379 struct clk *clk;
380 struct spi_master *master;
381 struct pl022_ssp_controller *master_info;
382 /* Message per-transfer pump */
383 struct tasklet_struct pump_transfers;
384 struct spi_message *cur_msg;
385 struct spi_transfer *cur_transfer;
386 struct chip_data *cur_chip;
387 bool next_msg_cs_active;
388 void *tx;
389 void *tx_end;
390 void *rx;
391 void *rx_end;
392 enum ssp_reading read;
393 enum ssp_writing write;
394 u32 exp_fifo_level;
395 enum ssp_rx_level_trig rx_lev_trig;
396 enum ssp_tx_level_trig tx_lev_trig;
397 /* DMA settings */
398 #ifdef CONFIG_DMA_ENGINE
399 struct dma_chan *dma_rx_channel;
400 struct dma_chan *dma_tx_channel;
401 struct sg_table sgt_rx;
402 struct sg_table sgt_tx;
403 char *dummypage;
404 bool dma_running;
405 #endif
406 int cur_cs;
407 int *chipselects;
408 };
409
410 /**
411 * struct chip_data - To maintain runtime state of SSP for each client chip
412 * @cr0: Value of control register CR0 of SSP - on later ST variants this
413 * register is 32 bits wide rather than just 16
414 * @cr1: Value of control register CR1 of SSP
415 * @dmacr: Value of DMA control Register of SSP
416 * @cpsr: Value of Clock prescale register
417 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
418 * @enable_dma: Whether to enable DMA or not
419 * @read: function ptr to be used to read when doing xfer for this chip
420 * @write: function ptr to be used to write when doing xfer for this chip
421 * @cs_control: chip select callback provided by chip
422 * @xfer_type: polling/interrupt/DMA
423 *
424 * Runtime state of the SSP controller, maintained per chip,
425 * This would be set according to the current message that would be served
426 */
427 struct chip_data {
428 u32 cr0;
429 u16 cr1;
430 u16 dmacr;
431 u16 cpsr;
432 u8 n_bytes;
433 bool enable_dma;
434 enum ssp_reading read;
435 enum ssp_writing write;
436 void (*cs_control) (u32 command);
437 int xfer_type;
438 };
439
440 /**
441 * null_cs_control - Dummy chip select function
442 * @command: select/delect the chip
443 *
444 * If no chip select function is provided by client this is used as dummy
445 * chip select
446 */
447 static void null_cs_control(u32 command)
448 {
449 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
450 }
451
452 /**
453 * internal_cs_control - Control chip select signals via SSP_CSR.
454 * @pl022: SSP driver private data structure
455 * @command: select/delect the chip
456 *
457 * Used on controller with internal chip select control via SSP_CSR register
458 * (vendor extension). Each of the 5 LSB in the register controls one chip
459 * select signal.
460 */
461 static void internal_cs_control(struct pl022 *pl022, u32 command)
462 {
463 u32 tmp;
464
465 tmp = readw(SSP_CSR(pl022->virtbase));
466 if (command == SSP_CHIP_SELECT)
467 tmp &= ~BIT(pl022->cur_cs);
468 else
469 tmp |= BIT(pl022->cur_cs);
470 writew(tmp, SSP_CSR(pl022->virtbase));
471 }
472
473 static void pl022_cs_control(struct pl022 *pl022, u32 command)
474 {
475 if (pl022->vendor->internal_cs_ctrl)
476 internal_cs_control(pl022, command);
477 else if (gpio_is_valid(pl022->cur_cs))
478 gpio_set_value(pl022->cur_cs, command);
479 else
480 pl022->cur_chip->cs_control(command);
481 }
482
483 /**
484 * giveback - current spi_message is over, schedule next message and call
485 * callback of this message. Assumes that caller already
486 * set message->status; dma and pio irqs are blocked
487 * @pl022: SSP driver private data structure
488 */
489 static void giveback(struct pl022 *pl022)
490 {
491 struct spi_transfer *last_transfer;
492 pl022->next_msg_cs_active = false;
493
494 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
495 struct spi_transfer, transfer_list);
496
497 /* Delay if requested before any change in chip select */
498 if (last_transfer->delay_usecs)
499 /*
500 * FIXME: This runs in interrupt context.
501 * Is this really smart?
502 */
503 udelay(last_transfer->delay_usecs);
504
505 if (!last_transfer->cs_change) {
506 struct spi_message *next_msg;
507
508 /*
509 * cs_change was not set. We can keep the chip select
510 * enabled if there is message in the queue and it is
511 * for the same spi device.
512 *
513 * We cannot postpone this until pump_messages, because
514 * after calling msg->complete (below) the driver that
515 * sent the current message could be unloaded, which
516 * could invalidate the cs_control() callback...
517 */
518 /* get a pointer to the next message, if any */
519 next_msg = spi_get_next_queued_message(pl022->master);
520
521 /*
522 * see if the next and current messages point
523 * to the same spi device.
524 */
525 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
526 next_msg = NULL;
527 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
528 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
529 else
530 pl022->next_msg_cs_active = true;
531
532 }
533
534 pl022->cur_msg = NULL;
535 pl022->cur_transfer = NULL;
536 pl022->cur_chip = NULL;
537 spi_finalize_current_message(pl022->master);
538
539 /* disable the SPI/SSP operation */
540 writew((readw(SSP_CR1(pl022->virtbase)) &
541 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
542
543 }
544
545 /**
546 * flush - flush the FIFO to reach a clean state
547 * @pl022: SSP driver private data structure
548 */
549 static int flush(struct pl022 *pl022)
550 {
551 unsigned long limit = loops_per_jiffy << 1;
552
553 dev_dbg(&pl022->adev->dev, "flush\n");
554 do {
555 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
556 readw(SSP_DR(pl022->virtbase));
557 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
558
559 pl022->exp_fifo_level = 0;
560
561 return limit;
562 }
563
564 /**
565 * restore_state - Load configuration of current chip
566 * @pl022: SSP driver private data structure
567 */
568 static void restore_state(struct pl022 *pl022)
569 {
570 struct chip_data *chip = pl022->cur_chip;
571
572 if (pl022->vendor->extended_cr)
573 writel(chip->cr0, SSP_CR0(pl022->virtbase));
574 else
575 writew(chip->cr0, SSP_CR0(pl022->virtbase));
576 writew(chip->cr1, SSP_CR1(pl022->virtbase));
577 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
578 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
579 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
580 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
581 }
582
583 /*
584 * Default SSP Register Values
585 */
586 #define DEFAULT_SSP_REG_CR0 ( \
587 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
588 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
589 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
590 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
591 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592 )
593
594 /* ST versions have slightly different bit layout */
595 #define DEFAULT_SSP_REG_CR0_ST ( \
596 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
597 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
598 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
599 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
600 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
601 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
602 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
603 )
604
605 /* The PL023 version is slightly different again */
606 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
607 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
608 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
609 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
610 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
611 )
612
613 #define DEFAULT_SSP_REG_CR1 ( \
614 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
615 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
616 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
617 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
618 )
619
620 /* ST versions extend this register to use all 16 bits */
621 #define DEFAULT_SSP_REG_CR1_ST ( \
622 DEFAULT_SSP_REG_CR1 | \
623 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
624 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
625 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
626 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
627 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
628 )
629
630 /*
631 * The PL023 variant has further differences: no loopback mode, no microwire
632 * support, and a new clock feedback delay setting.
633 */
634 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
635 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
636 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
637 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
638 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
639 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
640 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
641 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
642 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
643 )
644
645 #define DEFAULT_SSP_REG_CPSR ( \
646 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
647 )
648
649 #define DEFAULT_SSP_REG_DMACR (\
650 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
651 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
652 )
653
654 /**
655 * load_ssp_default_config - Load default configuration for SSP
656 * @pl022: SSP driver private data structure
657 */
658 static void load_ssp_default_config(struct pl022 *pl022)
659 {
660 if (pl022->vendor->pl023) {
661 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
662 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
663 } else if (pl022->vendor->extended_cr) {
664 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
665 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
666 } else {
667 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
668 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
669 }
670 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
671 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
672 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
673 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
674 }
675
676 /**
677 * This will write to TX and read from RX according to the parameters
678 * set in pl022.
679 */
680 static void readwriter(struct pl022 *pl022)
681 {
682
683 /*
684 * The FIFO depth is different between primecell variants.
685 * I believe filling in too much in the FIFO might cause
686 * errons in 8bit wide transfers on ARM variants (just 8 words
687 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
688 *
689 * To prevent this issue, the TX FIFO is only filled to the
690 * unused RX FIFO fill length, regardless of what the TX
691 * FIFO status flag indicates.
692 */
693 dev_dbg(&pl022->adev->dev,
694 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
695 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
696
697 /* Read as much as you can */
698 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
699 && (pl022->rx < pl022->rx_end)) {
700 switch (pl022->read) {
701 case READING_NULL:
702 readw(SSP_DR(pl022->virtbase));
703 break;
704 case READING_U8:
705 *(u8 *) (pl022->rx) =
706 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
707 break;
708 case READING_U16:
709 *(u16 *) (pl022->rx) =
710 (u16) readw(SSP_DR(pl022->virtbase));
711 break;
712 case READING_U32:
713 *(u32 *) (pl022->rx) =
714 readl(SSP_DR(pl022->virtbase));
715 break;
716 }
717 pl022->rx += (pl022->cur_chip->n_bytes);
718 pl022->exp_fifo_level--;
719 }
720 /*
721 * Write as much as possible up to the RX FIFO size
722 */
723 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
724 && (pl022->tx < pl022->tx_end)) {
725 switch (pl022->write) {
726 case WRITING_NULL:
727 writew(0x0, SSP_DR(pl022->virtbase));
728 break;
729 case WRITING_U8:
730 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
731 break;
732 case WRITING_U16:
733 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
734 break;
735 case WRITING_U32:
736 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
737 break;
738 }
739 pl022->tx += (pl022->cur_chip->n_bytes);
740 pl022->exp_fifo_level++;
741 /*
742 * This inner reader takes care of things appearing in the RX
743 * FIFO as we're transmitting. This will happen a lot since the
744 * clock starts running when you put things into the TX FIFO,
745 * and then things are continuously clocked into the RX FIFO.
746 */
747 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
748 && (pl022->rx < pl022->rx_end)) {
749 switch (pl022->read) {
750 case READING_NULL:
751 readw(SSP_DR(pl022->virtbase));
752 break;
753 case READING_U8:
754 *(u8 *) (pl022->rx) =
755 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
756 break;
757 case READING_U16:
758 *(u16 *) (pl022->rx) =
759 (u16) readw(SSP_DR(pl022->virtbase));
760 break;
761 case READING_U32:
762 *(u32 *) (pl022->rx) =
763 readl(SSP_DR(pl022->virtbase));
764 break;
765 }
766 pl022->rx += (pl022->cur_chip->n_bytes);
767 pl022->exp_fifo_level--;
768 }
769 }
770 /*
771 * When we exit here the TX FIFO should be full and the RX FIFO
772 * should be empty
773 */
774 }
775
776 /**
777 * next_transfer - Move to the Next transfer in the current spi message
778 * @pl022: SSP driver private data structure
779 *
780 * This function moves though the linked list of spi transfers in the
781 * current spi message and returns with the state of current spi
782 * message i.e whether its last transfer is done(STATE_DONE) or
783 * Next transfer is ready(STATE_RUNNING)
784 */
785 static void *next_transfer(struct pl022 *pl022)
786 {
787 struct spi_message *msg = pl022->cur_msg;
788 struct spi_transfer *trans = pl022->cur_transfer;
789
790 /* Move to next transfer */
791 if (trans->transfer_list.next != &msg->transfers) {
792 pl022->cur_transfer =
793 list_entry(trans->transfer_list.next,
794 struct spi_transfer, transfer_list);
795 return STATE_RUNNING;
796 }
797 return STATE_DONE;
798 }
799
800 /*
801 * This DMA functionality is only compiled in if we have
802 * access to the generic DMA devices/DMA engine.
803 */
804 #ifdef CONFIG_DMA_ENGINE
805 static void unmap_free_dma_scatter(struct pl022 *pl022)
806 {
807 /* Unmap and free the SG tables */
808 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
809 pl022->sgt_tx.nents, DMA_TO_DEVICE);
810 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
811 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
812 sg_free_table(&pl022->sgt_rx);
813 sg_free_table(&pl022->sgt_tx);
814 }
815
816 static void dma_callback(void *data)
817 {
818 struct pl022 *pl022 = data;
819 struct spi_message *msg = pl022->cur_msg;
820
821 BUG_ON(!pl022->sgt_rx.sgl);
822
823 #ifdef VERBOSE_DEBUG
824 /*
825 * Optionally dump out buffers to inspect contents, this is
826 * good if you want to convince yourself that the loopback
827 * read/write contents are the same, when adopting to a new
828 * DMA engine.
829 */
830 {
831 struct scatterlist *sg;
832 unsigned int i;
833
834 dma_sync_sg_for_cpu(&pl022->adev->dev,
835 pl022->sgt_rx.sgl,
836 pl022->sgt_rx.nents,
837 DMA_FROM_DEVICE);
838
839 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
840 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
841 print_hex_dump(KERN_ERR, "SPI RX: ",
842 DUMP_PREFIX_OFFSET,
843 16,
844 1,
845 sg_virt(sg),
846 sg_dma_len(sg),
847 1);
848 }
849 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
850 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
851 print_hex_dump(KERN_ERR, "SPI TX: ",
852 DUMP_PREFIX_OFFSET,
853 16,
854 1,
855 sg_virt(sg),
856 sg_dma_len(sg),
857 1);
858 }
859 }
860 #endif
861
862 unmap_free_dma_scatter(pl022);
863
864 /* Update total bytes transferred */
865 msg->actual_length += pl022->cur_transfer->len;
866 if (pl022->cur_transfer->cs_change)
867 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
868
869 /* Move to next transfer */
870 msg->state = next_transfer(pl022);
871 tasklet_schedule(&pl022->pump_transfers);
872 }
873
874 static void setup_dma_scatter(struct pl022 *pl022,
875 void *buffer,
876 unsigned int length,
877 struct sg_table *sgtab)
878 {
879 struct scatterlist *sg;
880 int bytesleft = length;
881 void *bufp = buffer;
882 int mapbytes;
883 int i;
884
885 if (buffer) {
886 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
887 /*
888 * If there are less bytes left than what fits
889 * in the current page (plus page alignment offset)
890 * we just feed in this, else we stuff in as much
891 * as we can.
892 */
893 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
894 mapbytes = bytesleft;
895 else
896 mapbytes = PAGE_SIZE - offset_in_page(bufp);
897 sg_set_page(sg, virt_to_page(bufp),
898 mapbytes, offset_in_page(bufp));
899 bufp += mapbytes;
900 bytesleft -= mapbytes;
901 dev_dbg(&pl022->adev->dev,
902 "set RX/TX target page @ %p, %d bytes, %d left\n",
903 bufp, mapbytes, bytesleft);
904 }
905 } else {
906 /* Map the dummy buffer on every page */
907 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
908 if (bytesleft < PAGE_SIZE)
909 mapbytes = bytesleft;
910 else
911 mapbytes = PAGE_SIZE;
912 sg_set_page(sg, virt_to_page(pl022->dummypage),
913 mapbytes, 0);
914 bytesleft -= mapbytes;
915 dev_dbg(&pl022->adev->dev,
916 "set RX/TX to dummy page %d bytes, %d left\n",
917 mapbytes, bytesleft);
918
919 }
920 }
921 BUG_ON(bytesleft);
922 }
923
924 /**
925 * configure_dma - configures the channels for the next transfer
926 * @pl022: SSP driver's private data structure
927 */
928 static int configure_dma(struct pl022 *pl022)
929 {
930 struct dma_slave_config rx_conf = {
931 .src_addr = SSP_DR(pl022->phybase),
932 .direction = DMA_DEV_TO_MEM,
933 .device_fc = false,
934 };
935 struct dma_slave_config tx_conf = {
936 .dst_addr = SSP_DR(pl022->phybase),
937 .direction = DMA_MEM_TO_DEV,
938 .device_fc = false,
939 };
940 unsigned int pages;
941 int ret;
942 int rx_sglen, tx_sglen;
943 struct dma_chan *rxchan = pl022->dma_rx_channel;
944 struct dma_chan *txchan = pl022->dma_tx_channel;
945 struct dma_async_tx_descriptor *rxdesc;
946 struct dma_async_tx_descriptor *txdesc;
947
948 /* Check that the channels are available */
949 if (!rxchan || !txchan)
950 return -ENODEV;
951
952 /*
953 * If supplied, the DMA burstsize should equal the FIFO trigger level.
954 * Notice that the DMA engine uses one-to-one mapping. Since we can
955 * not trigger on 2 elements this needs explicit mapping rather than
956 * calculation.
957 */
958 switch (pl022->rx_lev_trig) {
959 case SSP_RX_1_OR_MORE_ELEM:
960 rx_conf.src_maxburst = 1;
961 break;
962 case SSP_RX_4_OR_MORE_ELEM:
963 rx_conf.src_maxburst = 4;
964 break;
965 case SSP_RX_8_OR_MORE_ELEM:
966 rx_conf.src_maxburst = 8;
967 break;
968 case SSP_RX_16_OR_MORE_ELEM:
969 rx_conf.src_maxburst = 16;
970 break;
971 case SSP_RX_32_OR_MORE_ELEM:
972 rx_conf.src_maxburst = 32;
973 break;
974 default:
975 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
976 break;
977 }
978
979 switch (pl022->tx_lev_trig) {
980 case SSP_TX_1_OR_MORE_EMPTY_LOC:
981 tx_conf.dst_maxburst = 1;
982 break;
983 case SSP_TX_4_OR_MORE_EMPTY_LOC:
984 tx_conf.dst_maxburst = 4;
985 break;
986 case SSP_TX_8_OR_MORE_EMPTY_LOC:
987 tx_conf.dst_maxburst = 8;
988 break;
989 case SSP_TX_16_OR_MORE_EMPTY_LOC:
990 tx_conf.dst_maxburst = 16;
991 break;
992 case SSP_TX_32_OR_MORE_EMPTY_LOC:
993 tx_conf.dst_maxburst = 32;
994 break;
995 default:
996 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
997 break;
998 }
999
1000 switch (pl022->read) {
1001 case READING_NULL:
1002 /* Use the same as for writing */
1003 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1004 break;
1005 case READING_U8:
1006 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1007 break;
1008 case READING_U16:
1009 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1010 break;
1011 case READING_U32:
1012 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1013 break;
1014 }
1015
1016 switch (pl022->write) {
1017 case WRITING_NULL:
1018 /* Use the same as for reading */
1019 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1020 break;
1021 case WRITING_U8:
1022 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1023 break;
1024 case WRITING_U16:
1025 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1026 break;
1027 case WRITING_U32:
1028 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1029 break;
1030 }
1031
1032 /* SPI pecularity: we need to read and write the same width */
1033 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1035 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1036 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1037 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1038
1039 dmaengine_slave_config(rxchan, &rx_conf);
1040 dmaengine_slave_config(txchan, &tx_conf);
1041
1042 /* Create sglists for the transfers */
1043 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1044 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1045
1046 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1047 if (ret)
1048 goto err_alloc_rx_sg;
1049
1050 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1051 if (ret)
1052 goto err_alloc_tx_sg;
1053
1054 /* Fill in the scatterlists for the RX+TX buffers */
1055 setup_dma_scatter(pl022, pl022->rx,
1056 pl022->cur_transfer->len, &pl022->sgt_rx);
1057 setup_dma_scatter(pl022, pl022->tx,
1058 pl022->cur_transfer->len, &pl022->sgt_tx);
1059
1060 /* Map DMA buffers */
1061 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1062 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1063 if (!rx_sglen)
1064 goto err_rx_sgmap;
1065
1066 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1067 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1068 if (!tx_sglen)
1069 goto err_tx_sgmap;
1070
1071 /* Send both scatterlists */
1072 rxdesc = dmaengine_prep_slave_sg(rxchan,
1073 pl022->sgt_rx.sgl,
1074 rx_sglen,
1075 DMA_DEV_TO_MEM,
1076 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077 if (!rxdesc)
1078 goto err_rxdesc;
1079
1080 txdesc = dmaengine_prep_slave_sg(txchan,
1081 pl022->sgt_tx.sgl,
1082 tx_sglen,
1083 DMA_MEM_TO_DEV,
1084 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1085 if (!txdesc)
1086 goto err_txdesc;
1087
1088 /* Put the callback on the RX transfer only, that should finish last */
1089 rxdesc->callback = dma_callback;
1090 rxdesc->callback_param = pl022;
1091
1092 /* Submit and fire RX and TX with TX last so we're ready to read! */
1093 dmaengine_submit(rxdesc);
1094 dmaengine_submit(txdesc);
1095 dma_async_issue_pending(rxchan);
1096 dma_async_issue_pending(txchan);
1097 pl022->dma_running = true;
1098
1099 return 0;
1100
1101 err_txdesc:
1102 dmaengine_terminate_all(txchan);
1103 err_rxdesc:
1104 dmaengine_terminate_all(rxchan);
1105 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1106 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1107 err_tx_sgmap:
1108 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1109 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1110 err_rx_sgmap:
1111 sg_free_table(&pl022->sgt_tx);
1112 err_alloc_tx_sg:
1113 sg_free_table(&pl022->sgt_rx);
1114 err_alloc_rx_sg:
1115 return -ENOMEM;
1116 }
1117
1118 static int pl022_dma_probe(struct pl022 *pl022)
1119 {
1120 dma_cap_mask_t mask;
1121
1122 /* Try to acquire a generic DMA engine slave channel */
1123 dma_cap_zero(mask);
1124 dma_cap_set(DMA_SLAVE, mask);
1125 /*
1126 * We need both RX and TX channels to do DMA, else do none
1127 * of them.
1128 */
1129 pl022->dma_rx_channel = dma_request_channel(mask,
1130 pl022->master_info->dma_filter,
1131 pl022->master_info->dma_rx_param);
1132 if (!pl022->dma_rx_channel) {
1133 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1134 goto err_no_rxchan;
1135 }
1136
1137 pl022->dma_tx_channel = dma_request_channel(mask,
1138 pl022->master_info->dma_filter,
1139 pl022->master_info->dma_tx_param);
1140 if (!pl022->dma_tx_channel) {
1141 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1142 goto err_no_txchan;
1143 }
1144
1145 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1146 if (!pl022->dummypage)
1147 goto err_no_dummypage;
1148
1149 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1150 dma_chan_name(pl022->dma_rx_channel),
1151 dma_chan_name(pl022->dma_tx_channel));
1152
1153 return 0;
1154
1155 err_no_dummypage:
1156 dma_release_channel(pl022->dma_tx_channel);
1157 err_no_txchan:
1158 dma_release_channel(pl022->dma_rx_channel);
1159 pl022->dma_rx_channel = NULL;
1160 err_no_rxchan:
1161 dev_err(&pl022->adev->dev,
1162 "Failed to work in dma mode, work without dma!\n");
1163 return -ENODEV;
1164 }
1165
1166 static int pl022_dma_autoprobe(struct pl022 *pl022)
1167 {
1168 struct device *dev = &pl022->adev->dev;
1169
1170 /* automatically configure DMA channels from platform, normally using DT */
1171 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1172 if (!pl022->dma_rx_channel)
1173 goto err_no_rxchan;
1174
1175 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1176 if (!pl022->dma_tx_channel)
1177 goto err_no_txchan;
1178
1179 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180 if (!pl022->dummypage)
1181 goto err_no_dummypage;
1182
1183 return 0;
1184
1185 err_no_dummypage:
1186 dma_release_channel(pl022->dma_tx_channel);
1187 pl022->dma_tx_channel = NULL;
1188 err_no_txchan:
1189 dma_release_channel(pl022->dma_rx_channel);
1190 pl022->dma_rx_channel = NULL;
1191 err_no_rxchan:
1192 return -ENODEV;
1193 }
1194
1195 static void terminate_dma(struct pl022 *pl022)
1196 {
1197 struct dma_chan *rxchan = pl022->dma_rx_channel;
1198 struct dma_chan *txchan = pl022->dma_tx_channel;
1199
1200 dmaengine_terminate_all(rxchan);
1201 dmaengine_terminate_all(txchan);
1202 unmap_free_dma_scatter(pl022);
1203 pl022->dma_running = false;
1204 }
1205
1206 static void pl022_dma_remove(struct pl022 *pl022)
1207 {
1208 if (pl022->dma_running)
1209 terminate_dma(pl022);
1210 if (pl022->dma_tx_channel)
1211 dma_release_channel(pl022->dma_tx_channel);
1212 if (pl022->dma_rx_channel)
1213 dma_release_channel(pl022->dma_rx_channel);
1214 kfree(pl022->dummypage);
1215 }
1216
1217 #else
1218 static inline int configure_dma(struct pl022 *pl022)
1219 {
1220 return -ENODEV;
1221 }
1222
1223 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1224 {
1225 return 0;
1226 }
1227
1228 static inline int pl022_dma_probe(struct pl022 *pl022)
1229 {
1230 return 0;
1231 }
1232
1233 static inline void pl022_dma_remove(struct pl022 *pl022)
1234 {
1235 }
1236 #endif
1237
1238 /**
1239 * pl022_interrupt_handler - Interrupt handler for SSP controller
1240 *
1241 * This function handles interrupts generated for an interrupt based transfer.
1242 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1243 * current message's state as STATE_ERROR and schedule the tasklet
1244 * pump_transfers which will do the postprocessing of the current message by
1245 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1246 * more data, and writes data in TX FIFO till it is not full. If we complete
1247 * the transfer we move to the next transfer and schedule the tasklet.
1248 */
1249 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1250 {
1251 struct pl022 *pl022 = dev_id;
1252 struct spi_message *msg = pl022->cur_msg;
1253 u16 irq_status = 0;
1254 u16 flag = 0;
1255
1256 if (unlikely(!msg)) {
1257 dev_err(&pl022->adev->dev,
1258 "bad message state in interrupt handler");
1259 /* Never fail */
1260 return IRQ_HANDLED;
1261 }
1262
1263 /* Read the Interrupt Status Register */
1264 irq_status = readw(SSP_MIS(pl022->virtbase));
1265
1266 if (unlikely(!irq_status))
1267 return IRQ_NONE;
1268
1269 /*
1270 * This handles the FIFO interrupts, the timeout
1271 * interrupts are flatly ignored, they cannot be
1272 * trusted.
1273 */
1274 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1275 /*
1276 * Overrun interrupt - bail out since our Data has been
1277 * corrupted
1278 */
1279 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1280 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1281 dev_err(&pl022->adev->dev,
1282 "RXFIFO is full\n");
1283
1284 /*
1285 * Disable and clear interrupts, disable SSP,
1286 * mark message with bad status so it can be
1287 * retried.
1288 */
1289 writew(DISABLE_ALL_INTERRUPTS,
1290 SSP_IMSC(pl022->virtbase));
1291 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1292 writew((readw(SSP_CR1(pl022->virtbase)) &
1293 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1294 msg->state = STATE_ERROR;
1295
1296 /* Schedule message queue handler */
1297 tasklet_schedule(&pl022->pump_transfers);
1298 return IRQ_HANDLED;
1299 }
1300
1301 readwriter(pl022);
1302
1303 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1304 flag = 1;
1305 /* Disable Transmit interrupt, enable receive interrupt */
1306 writew((readw(SSP_IMSC(pl022->virtbase)) &
1307 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1308 SSP_IMSC(pl022->virtbase));
1309 }
1310
1311 /*
1312 * Since all transactions must write as much as shall be read,
1313 * we can conclude the entire transaction once RX is complete.
1314 * At this point, all TX will always be finished.
1315 */
1316 if (pl022->rx >= pl022->rx_end) {
1317 writew(DISABLE_ALL_INTERRUPTS,
1318 SSP_IMSC(pl022->virtbase));
1319 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1320 if (unlikely(pl022->rx > pl022->rx_end)) {
1321 dev_warn(&pl022->adev->dev, "read %u surplus "
1322 "bytes (did you request an odd "
1323 "number of bytes on a 16bit bus?)\n",
1324 (u32) (pl022->rx - pl022->rx_end));
1325 }
1326 /* Update total bytes transferred */
1327 msg->actual_length += pl022->cur_transfer->len;
1328 if (pl022->cur_transfer->cs_change)
1329 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1330 /* Move to next transfer */
1331 msg->state = next_transfer(pl022);
1332 tasklet_schedule(&pl022->pump_transfers);
1333 return IRQ_HANDLED;
1334 }
1335
1336 return IRQ_HANDLED;
1337 }
1338
1339 /**
1340 * This sets up the pointers to memory for the next message to
1341 * send out on the SPI bus.
1342 */
1343 static int set_up_next_transfer(struct pl022 *pl022,
1344 struct spi_transfer *transfer)
1345 {
1346 int residue;
1347
1348 /* Sanity check the message for this bus width */
1349 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1350 if (unlikely(residue != 0)) {
1351 dev_err(&pl022->adev->dev,
1352 "message of %u bytes to transmit but the current "
1353 "chip bus has a data width of %u bytes!\n",
1354 pl022->cur_transfer->len,
1355 pl022->cur_chip->n_bytes);
1356 dev_err(&pl022->adev->dev, "skipping this message\n");
1357 return -EIO;
1358 }
1359 pl022->tx = (void *)transfer->tx_buf;
1360 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1361 pl022->rx = (void *)transfer->rx_buf;
1362 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1363 pl022->write =
1364 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1365 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1366 return 0;
1367 }
1368
1369 /**
1370 * pump_transfers - Tasklet function which schedules next transfer
1371 * when running in interrupt or DMA transfer mode.
1372 * @data: SSP driver private data structure
1373 *
1374 */
1375 static void pump_transfers(unsigned long data)
1376 {
1377 struct pl022 *pl022 = (struct pl022 *) data;
1378 struct spi_message *message = NULL;
1379 struct spi_transfer *transfer = NULL;
1380 struct spi_transfer *previous = NULL;
1381
1382 /* Get current state information */
1383 message = pl022->cur_msg;
1384 transfer = pl022->cur_transfer;
1385
1386 /* Handle for abort */
1387 if (message->state == STATE_ERROR) {
1388 message->status = -EIO;
1389 giveback(pl022);
1390 return;
1391 }
1392
1393 /* Handle end of message */
1394 if (message->state == STATE_DONE) {
1395 message->status = 0;
1396 giveback(pl022);
1397 return;
1398 }
1399
1400 /* Delay if requested at end of transfer before CS change */
1401 if (message->state == STATE_RUNNING) {
1402 previous = list_entry(transfer->transfer_list.prev,
1403 struct spi_transfer,
1404 transfer_list);
1405 if (previous->delay_usecs)
1406 /*
1407 * FIXME: This runs in interrupt context.
1408 * Is this really smart?
1409 */
1410 udelay(previous->delay_usecs);
1411
1412 /* Reselect chip select only if cs_change was requested */
1413 if (previous->cs_change)
1414 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1415 } else {
1416 /* STATE_START */
1417 message->state = STATE_RUNNING;
1418 }
1419
1420 if (set_up_next_transfer(pl022, transfer)) {
1421 message->state = STATE_ERROR;
1422 message->status = -EIO;
1423 giveback(pl022);
1424 return;
1425 }
1426 /* Flush the FIFOs and let's go! */
1427 flush(pl022);
1428
1429 if (pl022->cur_chip->enable_dma) {
1430 if (configure_dma(pl022)) {
1431 dev_dbg(&pl022->adev->dev,
1432 "configuration of DMA failed, fall back to interrupt mode\n");
1433 goto err_config_dma;
1434 }
1435 return;
1436 }
1437
1438 err_config_dma:
1439 /* enable all interrupts except RX */
1440 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1441 }
1442
1443 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1444 {
1445 /*
1446 * Default is to enable all interrupts except RX -
1447 * this will be enabled once TX is complete
1448 */
1449 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1450
1451 /* Enable target chip, if not already active */
1452 if (!pl022->next_msg_cs_active)
1453 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1454
1455 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1456 /* Error path */
1457 pl022->cur_msg->state = STATE_ERROR;
1458 pl022->cur_msg->status = -EIO;
1459 giveback(pl022);
1460 return;
1461 }
1462 /* If we're using DMA, set up DMA here */
1463 if (pl022->cur_chip->enable_dma) {
1464 /* Configure DMA transfer */
1465 if (configure_dma(pl022)) {
1466 dev_dbg(&pl022->adev->dev,
1467 "configuration of DMA failed, fall back to interrupt mode\n");
1468 goto err_config_dma;
1469 }
1470 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1471 irqflags = DISABLE_ALL_INTERRUPTS;
1472 }
1473 err_config_dma:
1474 /* Enable SSP, turn on interrupts */
1475 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1476 SSP_CR1(pl022->virtbase));
1477 writew(irqflags, SSP_IMSC(pl022->virtbase));
1478 }
1479
1480 static void do_polling_transfer(struct pl022 *pl022)
1481 {
1482 struct spi_message *message = NULL;
1483 struct spi_transfer *transfer = NULL;
1484 struct spi_transfer *previous = NULL;
1485 struct chip_data *chip;
1486 unsigned long time, timeout;
1487
1488 chip = pl022->cur_chip;
1489 message = pl022->cur_msg;
1490
1491 while (message->state != STATE_DONE) {
1492 /* Handle for abort */
1493 if (message->state == STATE_ERROR)
1494 break;
1495 transfer = pl022->cur_transfer;
1496
1497 /* Delay if requested at end of transfer */
1498 if (message->state == STATE_RUNNING) {
1499 previous =
1500 list_entry(transfer->transfer_list.prev,
1501 struct spi_transfer, transfer_list);
1502 if (previous->delay_usecs)
1503 udelay(previous->delay_usecs);
1504 if (previous->cs_change)
1505 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1506 } else {
1507 /* STATE_START */
1508 message->state = STATE_RUNNING;
1509 if (!pl022->next_msg_cs_active)
1510 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1511 }
1512
1513 /* Configuration Changing Per Transfer */
1514 if (set_up_next_transfer(pl022, transfer)) {
1515 /* Error path */
1516 message->state = STATE_ERROR;
1517 break;
1518 }
1519 /* Flush FIFOs and enable SSP */
1520 flush(pl022);
1521 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1522 SSP_CR1(pl022->virtbase));
1523
1524 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1525
1526 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1527 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1528 time = jiffies;
1529 readwriter(pl022);
1530 if (time_after(time, timeout)) {
1531 dev_warn(&pl022->adev->dev,
1532 "%s: timeout!\n", __func__);
1533 message->state = STATE_ERROR;
1534 goto out;
1535 }
1536 cpu_relax();
1537 }
1538
1539 /* Update total byte transferred */
1540 message->actual_length += pl022->cur_transfer->len;
1541 if (pl022->cur_transfer->cs_change)
1542 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1543 /* Move to next transfer */
1544 message->state = next_transfer(pl022);
1545 }
1546 out:
1547 /* Handle end of message */
1548 if (message->state == STATE_DONE)
1549 message->status = 0;
1550 else
1551 message->status = -EIO;
1552
1553 giveback(pl022);
1554 return;
1555 }
1556
1557 static int pl022_transfer_one_message(struct spi_master *master,
1558 struct spi_message *msg)
1559 {
1560 struct pl022 *pl022 = spi_master_get_devdata(master);
1561
1562 /* Initial message state */
1563 pl022->cur_msg = msg;
1564 msg->state = STATE_START;
1565
1566 pl022->cur_transfer = list_entry(msg->transfers.next,
1567 struct spi_transfer, transfer_list);
1568
1569 /* Setup the SPI using the per chip configuration */
1570 pl022->cur_chip = spi_get_ctldata(msg->spi);
1571 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1572
1573 restore_state(pl022);
1574 flush(pl022);
1575
1576 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1577 do_polling_transfer(pl022);
1578 else
1579 do_interrupt_dma_transfer(pl022);
1580
1581 return 0;
1582 }
1583
1584 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1585 {
1586 struct pl022 *pl022 = spi_master_get_devdata(master);
1587
1588 /* nothing more to do - disable spi/ssp and power off */
1589 writew((readw(SSP_CR1(pl022->virtbase)) &
1590 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1591
1592 return 0;
1593 }
1594
1595 static int verify_controller_parameters(struct pl022 *pl022,
1596 struct pl022_config_chip const *chip_info)
1597 {
1598 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1599 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1600 dev_err(&pl022->adev->dev,
1601 "interface is configured incorrectly\n");
1602 return -EINVAL;
1603 }
1604 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1605 (!pl022->vendor->unidir)) {
1606 dev_err(&pl022->adev->dev,
1607 "unidirectional mode not supported in this "
1608 "hardware version\n");
1609 return -EINVAL;
1610 }
1611 if ((chip_info->hierarchy != SSP_MASTER)
1612 && (chip_info->hierarchy != SSP_SLAVE)) {
1613 dev_err(&pl022->adev->dev,
1614 "hierarchy is configured incorrectly\n");
1615 return -EINVAL;
1616 }
1617 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1618 && (chip_info->com_mode != DMA_TRANSFER)
1619 && (chip_info->com_mode != POLLING_TRANSFER)) {
1620 dev_err(&pl022->adev->dev,
1621 "Communication mode is configured incorrectly\n");
1622 return -EINVAL;
1623 }
1624 switch (chip_info->rx_lev_trig) {
1625 case SSP_RX_1_OR_MORE_ELEM:
1626 case SSP_RX_4_OR_MORE_ELEM:
1627 case SSP_RX_8_OR_MORE_ELEM:
1628 /* These are always OK, all variants can handle this */
1629 break;
1630 case SSP_RX_16_OR_MORE_ELEM:
1631 if (pl022->vendor->fifodepth < 16) {
1632 dev_err(&pl022->adev->dev,
1633 "RX FIFO Trigger Level is configured incorrectly\n");
1634 return -EINVAL;
1635 }
1636 break;
1637 case SSP_RX_32_OR_MORE_ELEM:
1638 if (pl022->vendor->fifodepth < 32) {
1639 dev_err(&pl022->adev->dev,
1640 "RX FIFO Trigger Level is configured incorrectly\n");
1641 return -EINVAL;
1642 }
1643 break;
1644 default:
1645 dev_err(&pl022->adev->dev,
1646 "RX FIFO Trigger Level is configured incorrectly\n");
1647 return -EINVAL;
1648 }
1649 switch (chip_info->tx_lev_trig) {
1650 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1651 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1652 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1653 /* These are always OK, all variants can handle this */
1654 break;
1655 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1656 if (pl022->vendor->fifodepth < 16) {
1657 dev_err(&pl022->adev->dev,
1658 "TX FIFO Trigger Level is configured incorrectly\n");
1659 return -EINVAL;
1660 }
1661 break;
1662 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1663 if (pl022->vendor->fifodepth < 32) {
1664 dev_err(&pl022->adev->dev,
1665 "TX FIFO Trigger Level is configured incorrectly\n");
1666 return -EINVAL;
1667 }
1668 break;
1669 default:
1670 dev_err(&pl022->adev->dev,
1671 "TX FIFO Trigger Level is configured incorrectly\n");
1672 return -EINVAL;
1673 }
1674 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1675 if ((chip_info->ctrl_len < SSP_BITS_4)
1676 || (chip_info->ctrl_len > SSP_BITS_32)) {
1677 dev_err(&pl022->adev->dev,
1678 "CTRL LEN is configured incorrectly\n");
1679 return -EINVAL;
1680 }
1681 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1682 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1683 dev_err(&pl022->adev->dev,
1684 "Wait State is configured incorrectly\n");
1685 return -EINVAL;
1686 }
1687 /* Half duplex is only available in the ST Micro version */
1688 if (pl022->vendor->extended_cr) {
1689 if ((chip_info->duplex !=
1690 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1691 && (chip_info->duplex !=
1692 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1693 dev_err(&pl022->adev->dev,
1694 "Microwire duplex mode is configured incorrectly\n");
1695 return -EINVAL;
1696 }
1697 } else {
1698 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1699 dev_err(&pl022->adev->dev,
1700 "Microwire half duplex mode requested,"
1701 " but this is only available in the"
1702 " ST version of PL022\n");
1703 return -EINVAL;
1704 }
1705 }
1706 return 0;
1707 }
1708
1709 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1710 {
1711 return rate / (cpsdvsr * (1 + scr));
1712 }
1713
1714 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1715 ssp_clock_params * clk_freq)
1716 {
1717 /* Lets calculate the frequency parameters */
1718 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1719 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1720 best_scr = 0, tmp, found = 0;
1721
1722 rate = clk_get_rate(pl022->clk);
1723 /* cpsdvscr = 2 & scr 0 */
1724 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1725 /* cpsdvsr = 254 & scr = 255 */
1726 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1727
1728 if (freq > max_tclk)
1729 dev_warn(&pl022->adev->dev,
1730 "Max speed that can be programmed is %d Hz, you requested %d\n",
1731 max_tclk, freq);
1732
1733 if (freq < min_tclk) {
1734 dev_err(&pl022->adev->dev,
1735 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1736 freq, min_tclk);
1737 return -EINVAL;
1738 }
1739
1740 /*
1741 * best_freq will give closest possible available rate (<= requested
1742 * freq) for all values of scr & cpsdvsr.
1743 */
1744 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1745 while (scr <= SCR_MAX) {
1746 tmp = spi_rate(rate, cpsdvsr, scr);
1747
1748 if (tmp > freq) {
1749 /* we need lower freq */
1750 scr++;
1751 continue;
1752 }
1753
1754 /*
1755 * If found exact value, mark found and break.
1756 * If found more closer value, update and break.
1757 */
1758 if (tmp > best_freq) {
1759 best_freq = tmp;
1760 best_cpsdvsr = cpsdvsr;
1761 best_scr = scr;
1762
1763 if (tmp == freq)
1764 found = 1;
1765 }
1766 /*
1767 * increased scr will give lower rates, which are not
1768 * required
1769 */
1770 break;
1771 }
1772 cpsdvsr += 2;
1773 scr = SCR_MIN;
1774 }
1775
1776 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1777 freq);
1778
1779 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1780 clk_freq->scr = (u8) (best_scr & 0xFF);
1781 dev_dbg(&pl022->adev->dev,
1782 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1783 freq, best_freq);
1784 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1785 clk_freq->cpsdvsr, clk_freq->scr);
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * A piece of default chip info unless the platform
1792 * supplies it.
1793 */
1794 static const struct pl022_config_chip pl022_default_chip_info = {
1795 .com_mode = POLLING_TRANSFER,
1796 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1797 .hierarchy = SSP_SLAVE,
1798 .slave_tx_disable = DO_NOT_DRIVE_TX,
1799 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1800 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1801 .ctrl_len = SSP_BITS_8,
1802 .wait_state = SSP_MWIRE_WAIT_ZERO,
1803 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1804 .cs_control = null_cs_control,
1805 };
1806
1807 /**
1808 * pl022_setup - setup function registered to SPI master framework
1809 * @spi: spi device which is requesting setup
1810 *
1811 * This function is registered to the SPI framework for this SPI master
1812 * controller. If it is the first time when setup is called by this device,
1813 * this function will initialize the runtime state for this chip and save
1814 * the same in the device structure. Else it will update the runtime info
1815 * with the updated chip info. Nothing is really being written to the
1816 * controller hardware here, that is not done until the actual transfer
1817 * commence.
1818 */
1819 static int pl022_setup(struct spi_device *spi)
1820 {
1821 struct pl022_config_chip const *chip_info;
1822 struct pl022_config_chip chip_info_dt;
1823 struct chip_data *chip;
1824 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1825 int status = 0;
1826 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1827 unsigned int bits = spi->bits_per_word;
1828 u32 tmp;
1829 struct device_node *np = spi->dev.of_node;
1830
1831 if (!spi->max_speed_hz)
1832 return -EINVAL;
1833
1834 /* Get controller_state if one is supplied */
1835 chip = spi_get_ctldata(spi);
1836
1837 if (chip == NULL) {
1838 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1839 if (!chip)
1840 return -ENOMEM;
1841 dev_dbg(&spi->dev,
1842 "allocated memory for controller's runtime state\n");
1843 }
1844
1845 /* Get controller data if one is supplied */
1846 chip_info = spi->controller_data;
1847
1848 if (chip_info == NULL) {
1849 if (np) {
1850 chip_info_dt = pl022_default_chip_info;
1851
1852 chip_info_dt.hierarchy = SSP_MASTER;
1853 of_property_read_u32(np, "pl022,interface",
1854 &chip_info_dt.iface);
1855 of_property_read_u32(np, "pl022,com-mode",
1856 &chip_info_dt.com_mode);
1857 of_property_read_u32(np, "pl022,rx-level-trig",
1858 &chip_info_dt.rx_lev_trig);
1859 of_property_read_u32(np, "pl022,tx-level-trig",
1860 &chip_info_dt.tx_lev_trig);
1861 of_property_read_u32(np, "pl022,ctrl-len",
1862 &chip_info_dt.ctrl_len);
1863 of_property_read_u32(np, "pl022,wait-state",
1864 &chip_info_dt.wait_state);
1865 of_property_read_u32(np, "pl022,duplex",
1866 &chip_info_dt.duplex);
1867
1868 chip_info = &chip_info_dt;
1869 } else {
1870 chip_info = &pl022_default_chip_info;
1871 /* spi_board_info.controller_data not is supplied */
1872 dev_dbg(&spi->dev,
1873 "using default controller_data settings\n");
1874 }
1875 } else
1876 dev_dbg(&spi->dev,
1877 "using user supplied controller_data settings\n");
1878
1879 /*
1880 * We can override with custom divisors, else we use the board
1881 * frequency setting
1882 */
1883 if ((0 == chip_info->clk_freq.cpsdvsr)
1884 && (0 == chip_info->clk_freq.scr)) {
1885 status = calculate_effective_freq(pl022,
1886 spi->max_speed_hz,
1887 &clk_freq);
1888 if (status < 0)
1889 goto err_config_params;
1890 } else {
1891 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1892 if ((clk_freq.cpsdvsr % 2) != 0)
1893 clk_freq.cpsdvsr =
1894 clk_freq.cpsdvsr - 1;
1895 }
1896 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1897 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1898 status = -EINVAL;
1899 dev_err(&spi->dev,
1900 "cpsdvsr is configured incorrectly\n");
1901 goto err_config_params;
1902 }
1903
1904 status = verify_controller_parameters(pl022, chip_info);
1905 if (status) {
1906 dev_err(&spi->dev, "controller data is incorrect");
1907 goto err_config_params;
1908 }
1909
1910 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1911 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1912
1913 /* Now set controller state based on controller data */
1914 chip->xfer_type = chip_info->com_mode;
1915 if (!chip_info->cs_control) {
1916 chip->cs_control = null_cs_control;
1917 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1918 dev_warn(&spi->dev,
1919 "invalid chip select\n");
1920 } else
1921 chip->cs_control = chip_info->cs_control;
1922
1923 /* Check bits per word with vendor specific range */
1924 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1925 status = -ENOTSUPP;
1926 dev_err(&spi->dev, "illegal data size for this controller!\n");
1927 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1928 pl022->vendor->max_bpw);
1929 goto err_config_params;
1930 } else if (bits <= 8) {
1931 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1932 chip->n_bytes = 1;
1933 chip->read = READING_U8;
1934 chip->write = WRITING_U8;
1935 } else if (bits <= 16) {
1936 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1937 chip->n_bytes = 2;
1938 chip->read = READING_U16;
1939 chip->write = WRITING_U16;
1940 } else {
1941 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1942 chip->n_bytes = 4;
1943 chip->read = READING_U32;
1944 chip->write = WRITING_U32;
1945 }
1946
1947 /* Now Initialize all register settings required for this chip */
1948 chip->cr0 = 0;
1949 chip->cr1 = 0;
1950 chip->dmacr = 0;
1951 chip->cpsr = 0;
1952 if ((chip_info->com_mode == DMA_TRANSFER)
1953 && ((pl022->master_info)->enable_dma)) {
1954 chip->enable_dma = true;
1955 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1956 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1957 SSP_DMACR_MASK_RXDMAE, 0);
1958 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1959 SSP_DMACR_MASK_TXDMAE, 1);
1960 } else {
1961 chip->enable_dma = false;
1962 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1963 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1964 SSP_DMACR_MASK_RXDMAE, 0);
1965 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1966 SSP_DMACR_MASK_TXDMAE, 1);
1967 }
1968
1969 chip->cpsr = clk_freq.cpsdvsr;
1970
1971 /* Special setup for the ST micro extended control registers */
1972 if (pl022->vendor->extended_cr) {
1973 u32 etx;
1974
1975 if (pl022->vendor->pl023) {
1976 /* These bits are only in the PL023 */
1977 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1978 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1979 } else {
1980 /* These bits are in the PL022 but not PL023 */
1981 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1982 SSP_CR0_MASK_HALFDUP_ST, 5);
1983 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1984 SSP_CR0_MASK_CSS_ST, 16);
1985 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1986 SSP_CR0_MASK_FRF_ST, 21);
1987 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1988 SSP_CR1_MASK_MWAIT_ST, 6);
1989 }
1990 SSP_WRITE_BITS(chip->cr0, bits - 1,
1991 SSP_CR0_MASK_DSS_ST, 0);
1992
1993 if (spi->mode & SPI_LSB_FIRST) {
1994 tmp = SSP_RX_LSB;
1995 etx = SSP_TX_LSB;
1996 } else {
1997 tmp = SSP_RX_MSB;
1998 etx = SSP_TX_MSB;
1999 }
2000 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2001 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2002 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2003 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2004 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2005 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2006 } else {
2007 SSP_WRITE_BITS(chip->cr0, bits - 1,
2008 SSP_CR0_MASK_DSS, 0);
2009 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2010 SSP_CR0_MASK_FRF, 4);
2011 }
2012
2013 /* Stuff that is common for all versions */
2014 if (spi->mode & SPI_CPOL)
2015 tmp = SSP_CLK_POL_IDLE_HIGH;
2016 else
2017 tmp = SSP_CLK_POL_IDLE_LOW;
2018 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2019
2020 if (spi->mode & SPI_CPHA)
2021 tmp = SSP_CLK_SECOND_EDGE;
2022 else
2023 tmp = SSP_CLK_FIRST_EDGE;
2024 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2025
2026 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2027 /* Loopback is available on all versions except PL023 */
2028 if (pl022->vendor->loopback) {
2029 if (spi->mode & SPI_LOOP)
2030 tmp = LOOPBACK_ENABLED;
2031 else
2032 tmp = LOOPBACK_DISABLED;
2033 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2034 }
2035 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2036 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2037 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2038 3);
2039
2040 /* Save controller_state */
2041 spi_set_ctldata(spi, chip);
2042 return status;
2043 err_config_params:
2044 spi_set_ctldata(spi, NULL);
2045 kfree(chip);
2046 return status;
2047 }
2048
2049 /**
2050 * pl022_cleanup - cleanup function registered to SPI master framework
2051 * @spi: spi device which is requesting cleanup
2052 *
2053 * This function is registered to the SPI framework for this SPI master
2054 * controller. It will free the runtime state of chip.
2055 */
2056 static void pl022_cleanup(struct spi_device *spi)
2057 {
2058 struct chip_data *chip = spi_get_ctldata(spi);
2059
2060 spi_set_ctldata(spi, NULL);
2061 kfree(chip);
2062 }
2063
2064 static struct pl022_ssp_controller *
2065 pl022_platform_data_dt_get(struct device *dev)
2066 {
2067 struct device_node *np = dev->of_node;
2068 struct pl022_ssp_controller *pd;
2069 u32 tmp;
2070
2071 if (!np) {
2072 dev_err(dev, "no dt node defined\n");
2073 return NULL;
2074 }
2075
2076 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2077 if (!pd)
2078 return NULL;
2079
2080 pd->bus_id = -1;
2081 pd->enable_dma = 1;
2082 of_property_read_u32(np, "num-cs", &tmp);
2083 pd->num_chipselect = tmp;
2084 of_property_read_u32(np, "pl022,autosuspend-delay",
2085 &pd->autosuspend_delay);
2086 pd->rt = of_property_read_bool(np, "pl022,rt");
2087
2088 return pd;
2089 }
2090
2091 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2092 {
2093 struct device *dev = &adev->dev;
2094 struct pl022_ssp_controller *platform_info =
2095 dev_get_platdata(&adev->dev);
2096 struct spi_master *master;
2097 struct pl022 *pl022 = NULL; /*Data for this driver */
2098 struct device_node *np = adev->dev.of_node;
2099 int status = 0, i, num_cs;
2100
2101 dev_info(&adev->dev,
2102 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2103 if (!platform_info && IS_ENABLED(CONFIG_OF))
2104 platform_info = pl022_platform_data_dt_get(dev);
2105
2106 if (!platform_info) {
2107 dev_err(dev, "probe: no platform data defined\n");
2108 return -ENODEV;
2109 }
2110
2111 if (platform_info->num_chipselect) {
2112 num_cs = platform_info->num_chipselect;
2113 } else {
2114 dev_err(dev, "probe: no chip select defined\n");
2115 return -ENODEV;
2116 }
2117
2118 /* Allocate master with space for data */
2119 master = spi_alloc_master(dev, sizeof(struct pl022));
2120 if (master == NULL) {
2121 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2122 return -ENOMEM;
2123 }
2124
2125 pl022 = spi_master_get_devdata(master);
2126 pl022->master = master;
2127 pl022->master_info = platform_info;
2128 pl022->adev = adev;
2129 pl022->vendor = id->data;
2130 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2131 GFP_KERNEL);
2132 if (!pl022->chipselects) {
2133 status = -ENOMEM;
2134 goto err_no_mem;
2135 }
2136
2137 /*
2138 * Bus Number Which has been Assigned to this SSP controller
2139 * on this board
2140 */
2141 master->bus_num = platform_info->bus_id;
2142 master->num_chipselect = num_cs;
2143 master->cleanup = pl022_cleanup;
2144 master->setup = pl022_setup;
2145 master->auto_runtime_pm = true;
2146 master->transfer_one_message = pl022_transfer_one_message;
2147 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2148 master->rt = platform_info->rt;
2149 master->dev.of_node = dev->of_node;
2150
2151 if (platform_info->num_chipselect && platform_info->chipselects) {
2152 for (i = 0; i < num_cs; i++)
2153 pl022->chipselects[i] = platform_info->chipselects[i];
2154 } else if (pl022->vendor->internal_cs_ctrl) {
2155 for (i = 0; i < num_cs; i++)
2156 pl022->chipselects[i] = i;
2157 } else if (IS_ENABLED(CONFIG_OF)) {
2158 for (i = 0; i < num_cs; i++) {
2159 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2160
2161 if (cs_gpio == -EPROBE_DEFER) {
2162 status = -EPROBE_DEFER;
2163 goto err_no_gpio;
2164 }
2165
2166 pl022->chipselects[i] = cs_gpio;
2167
2168 if (gpio_is_valid(cs_gpio)) {
2169 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2170 dev_err(&adev->dev,
2171 "could not request %d gpio\n",
2172 cs_gpio);
2173 else if (gpio_direction_output(cs_gpio, 1))
2174 dev_err(&adev->dev,
2175 "could not set gpio %d as output\n",
2176 cs_gpio);
2177 }
2178 }
2179 }
2180
2181 /*
2182 * Supports mode 0-3, loopback, and active low CS. Transfers are
2183 * always MS bit first on the original pl022.
2184 */
2185 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2186 if (pl022->vendor->extended_cr)
2187 master->mode_bits |= SPI_LSB_FIRST;
2188
2189 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2190
2191 status = amba_request_regions(adev, NULL);
2192 if (status)
2193 goto err_no_ioregion;
2194
2195 pl022->phybase = adev->res.start;
2196 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2197 resource_size(&adev->res));
2198 if (pl022->virtbase == NULL) {
2199 status = -ENOMEM;
2200 goto err_no_ioremap;
2201 }
2202 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2203 &adev->res.start, pl022->virtbase);
2204
2205 pl022->clk = devm_clk_get(&adev->dev, NULL);
2206 if (IS_ERR(pl022->clk)) {
2207 status = PTR_ERR(pl022->clk);
2208 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2209 goto err_no_clk;
2210 }
2211
2212 status = clk_prepare_enable(pl022->clk);
2213 if (status) {
2214 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2215 goto err_no_clk_en;
2216 }
2217
2218 /* Initialize transfer pump */
2219 tasklet_init(&pl022->pump_transfers, pump_transfers,
2220 (unsigned long)pl022);
2221
2222 /* Disable SSP */
2223 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2224 SSP_CR1(pl022->virtbase));
2225 load_ssp_default_config(pl022);
2226
2227 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2228 0, "pl022", pl022);
2229 if (status < 0) {
2230 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2231 goto err_no_irq;
2232 }
2233
2234 /* Get DMA channels, try autoconfiguration first */
2235 status = pl022_dma_autoprobe(pl022);
2236
2237 /* If that failed, use channels from platform_info */
2238 if (status == 0)
2239 platform_info->enable_dma = 1;
2240 else if (platform_info->enable_dma) {
2241 status = pl022_dma_probe(pl022);
2242 if (status != 0)
2243 platform_info->enable_dma = 0;
2244 }
2245
2246 /* Register with the SPI framework */
2247 amba_set_drvdata(adev, pl022);
2248 status = devm_spi_register_master(&adev->dev, master);
2249 if (status != 0) {
2250 dev_err(&adev->dev,
2251 "probe - problem registering spi master\n");
2252 goto err_spi_register;
2253 }
2254 dev_dbg(dev, "probe succeeded\n");
2255
2256 /* let runtime pm put suspend */
2257 if (platform_info->autosuspend_delay > 0) {
2258 dev_info(&adev->dev,
2259 "will use autosuspend for runtime pm, delay %dms\n",
2260 platform_info->autosuspend_delay);
2261 pm_runtime_set_autosuspend_delay(dev,
2262 platform_info->autosuspend_delay);
2263 pm_runtime_use_autosuspend(dev);
2264 }
2265 pm_runtime_put(dev);
2266
2267 return 0;
2268
2269 err_spi_register:
2270 if (platform_info->enable_dma)
2271 pl022_dma_remove(pl022);
2272 err_no_irq:
2273 clk_disable_unprepare(pl022->clk);
2274 err_no_clk_en:
2275 err_no_clk:
2276 err_no_ioremap:
2277 amba_release_regions(adev);
2278 err_no_ioregion:
2279 err_no_gpio:
2280 err_no_mem:
2281 spi_master_put(master);
2282 return status;
2283 }
2284
2285 static int
2286 pl022_remove(struct amba_device *adev)
2287 {
2288 struct pl022 *pl022 = amba_get_drvdata(adev);
2289
2290 if (!pl022)
2291 return 0;
2292
2293 /*
2294 * undo pm_runtime_put() in probe. I assume that we're not
2295 * accessing the primecell here.
2296 */
2297 pm_runtime_get_noresume(&adev->dev);
2298
2299 load_ssp_default_config(pl022);
2300 if (pl022->master_info->enable_dma)
2301 pl022_dma_remove(pl022);
2302
2303 clk_disable_unprepare(pl022->clk);
2304 amba_release_regions(adev);
2305 tasklet_disable(&pl022->pump_transfers);
2306 return 0;
2307 }
2308
2309 #ifdef CONFIG_PM_SLEEP
2310 static int pl022_suspend(struct device *dev)
2311 {
2312 struct pl022 *pl022 = dev_get_drvdata(dev);
2313 int ret;
2314
2315 ret = spi_master_suspend(pl022->master);
2316 if (ret) {
2317 dev_warn(dev, "cannot suspend master\n");
2318 return ret;
2319 }
2320
2321 ret = pm_runtime_force_suspend(dev);
2322 if (ret) {
2323 spi_master_resume(pl022->master);
2324 return ret;
2325 }
2326
2327 pinctrl_pm_select_sleep_state(dev);
2328
2329 dev_dbg(dev, "suspended\n");
2330 return 0;
2331 }
2332
2333 static int pl022_resume(struct device *dev)
2334 {
2335 struct pl022 *pl022 = dev_get_drvdata(dev);
2336 int ret;
2337
2338 ret = pm_runtime_force_resume(dev);
2339 if (ret)
2340 dev_err(dev, "problem resuming\n");
2341
2342 /* Start the queue running */
2343 ret = spi_master_resume(pl022->master);
2344 if (ret)
2345 dev_err(dev, "problem starting queue (%d)\n", ret);
2346 else
2347 dev_dbg(dev, "resumed\n");
2348
2349 return ret;
2350 }
2351 #endif
2352
2353 #ifdef CONFIG_PM
2354 static int pl022_runtime_suspend(struct device *dev)
2355 {
2356 struct pl022 *pl022 = dev_get_drvdata(dev);
2357
2358 clk_disable_unprepare(pl022->clk);
2359 pinctrl_pm_select_idle_state(dev);
2360
2361 return 0;
2362 }
2363
2364 static int pl022_runtime_resume(struct device *dev)
2365 {
2366 struct pl022 *pl022 = dev_get_drvdata(dev);
2367
2368 pinctrl_pm_select_default_state(dev);
2369 clk_prepare_enable(pl022->clk);
2370
2371 return 0;
2372 }
2373 #endif
2374
2375 static const struct dev_pm_ops pl022_dev_pm_ops = {
2376 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2377 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2378 };
2379
2380 static struct vendor_data vendor_arm = {
2381 .fifodepth = 8,
2382 .max_bpw = 16,
2383 .unidir = false,
2384 .extended_cr = false,
2385 .pl023 = false,
2386 .loopback = true,
2387 .internal_cs_ctrl = false,
2388 };
2389
2390 static struct vendor_data vendor_st = {
2391 .fifodepth = 32,
2392 .max_bpw = 32,
2393 .unidir = false,
2394 .extended_cr = true,
2395 .pl023 = false,
2396 .loopback = true,
2397 .internal_cs_ctrl = false,
2398 };
2399
2400 static struct vendor_data vendor_st_pl023 = {
2401 .fifodepth = 32,
2402 .max_bpw = 32,
2403 .unidir = false,
2404 .extended_cr = true,
2405 .pl023 = true,
2406 .loopback = false,
2407 .internal_cs_ctrl = false,
2408 };
2409
2410 static struct vendor_data vendor_lsi = {
2411 .fifodepth = 8,
2412 .max_bpw = 16,
2413 .unidir = false,
2414 .extended_cr = false,
2415 .pl023 = false,
2416 .loopback = true,
2417 .internal_cs_ctrl = true,
2418 };
2419
2420 static struct amba_id pl022_ids[] = {
2421 {
2422 /*
2423 * ARM PL022 variant, this has a 16bit wide
2424 * and 8 locations deep TX/RX FIFO
2425 */
2426 .id = 0x00041022,
2427 .mask = 0x000fffff,
2428 .data = &vendor_arm,
2429 },
2430 {
2431 /*
2432 * ST Micro derivative, this has 32bit wide
2433 * and 32 locations deep TX/RX FIFO
2434 */
2435 .id = 0x01080022,
2436 .mask = 0xffffffff,
2437 .data = &vendor_st,
2438 },
2439 {
2440 /*
2441 * ST-Ericsson derivative "PL023" (this is not
2442 * an official ARM number), this is a PL022 SSP block
2443 * stripped to SPI mode only, it has 32bit wide
2444 * and 32 locations deep TX/RX FIFO but no extended
2445 * CR0/CR1 register
2446 */
2447 .id = 0x00080023,
2448 .mask = 0xffffffff,
2449 .data = &vendor_st_pl023,
2450 },
2451 {
2452 /*
2453 * PL022 variant that has a chip select control register whih
2454 * allows control of 5 output signals nCS[0:4].
2455 */
2456 .id = 0x000b6022,
2457 .mask = 0x000fffff,
2458 .data = &vendor_lsi,
2459 },
2460 { 0, 0 },
2461 };
2462
2463 MODULE_DEVICE_TABLE(amba, pl022_ids);
2464
2465 static struct amba_driver pl022_driver = {
2466 .drv = {
2467 .name = "ssp-pl022",
2468 .pm = &pl022_dev_pm_ops,
2469 },
2470 .id_table = pl022_ids,
2471 .probe = pl022_probe,
2472 .remove = pl022_remove,
2473 };
2474
2475 static int __init pl022_init(void)
2476 {
2477 return amba_driver_register(&pl022_driver);
2478 }
2479 subsys_initcall(pl022_init);
2480
2481 static void __exit pl022_exit(void)
2482 {
2483 amba_driver_unregister(&pl022_driver);
2484 }
2485 module_exit(pl022_exit);
2486
2487 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2488 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2489 MODULE_LICENSE("GPL");
This page took 0.112043 seconds and 5 git commands to generate.