Add copy_to_iter(), copy_from_iter() and iov_iter_zero()
[deliverable/linux.git] / drivers / spi / spi-pxa2xx.c
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/ioport.h>
24 #include <linux/errno.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/delay.h>
40
41 #include "spi-pxa2xx.h"
42
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
47
48 #define MAX_BUSES 3
49
50 #define TIMOUT_DFLT 1000
51
52 /*
53 * for testing SSCR1 changes that require SSP restart, basically
54 * everything except the service and interrupt enables, the pxa270 developer
55 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
56 * list, but the PXA255 dev man says all bits without really meaning the
57 * service and interrupt enables
58 */
59 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
60 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
61 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
62 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
63 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65
66 #define LPSS_RX_THRESH_DFLT 64
67 #define LPSS_TX_LOTHRESH_DFLT 160
68 #define LPSS_TX_HITHRESH_DFLT 224
69
70 /* Offset from drv_data->lpss_base */
71 #define GENERAL_REG 0x08
72 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
73 #define SSP_REG 0x0c
74 #define SPI_CS_CONTROL 0x18
75 #define SPI_CS_CONTROL_SW_MODE BIT(0)
76 #define SPI_CS_CONTROL_CS_HIGH BIT(1)
77
78 static bool is_lpss_ssp(const struct driver_data *drv_data)
79 {
80 return drv_data->ssp_type == LPSS_SSP;
81 }
82
83 /*
84 * Read and write LPSS SSP private registers. Caller must first check that
85 * is_lpss_ssp() returns true before these can be called.
86 */
87 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
88 {
89 WARN_ON(!drv_data->lpss_base);
90 return readl(drv_data->lpss_base + offset);
91 }
92
93 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
94 unsigned offset, u32 value)
95 {
96 WARN_ON(!drv_data->lpss_base);
97 writel(value, drv_data->lpss_base + offset);
98 }
99
100 /*
101 * lpss_ssp_setup - perform LPSS SSP specific setup
102 * @drv_data: pointer to the driver private data
103 *
104 * Perform LPSS SSP specific setup. This function must be called first if
105 * one is going to use LPSS SSP private registers.
106 */
107 static void lpss_ssp_setup(struct driver_data *drv_data)
108 {
109 unsigned offset = 0x400;
110 u32 value, orig;
111
112 if (!is_lpss_ssp(drv_data))
113 return;
114
115 /*
116 * Perform auto-detection of the LPSS SSP private registers. They
117 * can be either at 1k or 2k offset from the base address.
118 */
119 orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
120
121 /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
122 value = orig | SPI_CS_CONTROL_SW_MODE;
123 writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
124 value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
125 if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
126 offset = 0x800;
127 goto detection_done;
128 }
129
130 orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
131
132 /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
133 value = orig & ~SPI_CS_CONTROL_SW_MODE;
134 writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
135 value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
136 if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
137 offset = 0x800;
138 goto detection_done;
139 }
140
141 detection_done:
142 /* Now set the LPSS base */
143 drv_data->lpss_base = drv_data->ioaddr + offset;
144
145 /* Enable software chip select control */
146 value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
147 __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
148
149 /* Enable multiblock DMA transfers */
150 if (drv_data->master_info->enable_dma) {
151 __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
152
153 value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
154 value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
155 __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
156 }
157 }
158
159 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
160 {
161 u32 value;
162
163 if (!is_lpss_ssp(drv_data))
164 return;
165
166 value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
167 if (enable)
168 value &= ~SPI_CS_CONTROL_CS_HIGH;
169 else
170 value |= SPI_CS_CONTROL_CS_HIGH;
171 __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
172 }
173
174 static void cs_assert(struct driver_data *drv_data)
175 {
176 struct chip_data *chip = drv_data->cur_chip;
177
178 if (drv_data->ssp_type == CE4100_SSP) {
179 write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
180 return;
181 }
182
183 if (chip->cs_control) {
184 chip->cs_control(PXA2XX_CS_ASSERT);
185 return;
186 }
187
188 if (gpio_is_valid(chip->gpio_cs)) {
189 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
190 return;
191 }
192
193 lpss_ssp_cs_control(drv_data, true);
194 }
195
196 static void cs_deassert(struct driver_data *drv_data)
197 {
198 struct chip_data *chip = drv_data->cur_chip;
199
200 if (drv_data->ssp_type == CE4100_SSP)
201 return;
202
203 if (chip->cs_control) {
204 chip->cs_control(PXA2XX_CS_DEASSERT);
205 return;
206 }
207
208 if (gpio_is_valid(chip->gpio_cs)) {
209 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
210 return;
211 }
212
213 lpss_ssp_cs_control(drv_data, false);
214 }
215
216 int pxa2xx_spi_flush(struct driver_data *drv_data)
217 {
218 unsigned long limit = loops_per_jiffy << 1;
219
220 void __iomem *reg = drv_data->ioaddr;
221
222 do {
223 while (read_SSSR(reg) & SSSR_RNE) {
224 read_SSDR(reg);
225 }
226 } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
227 write_SSSR_CS(drv_data, SSSR_ROR);
228
229 return limit;
230 }
231
232 static int null_writer(struct driver_data *drv_data)
233 {
234 void __iomem *reg = drv_data->ioaddr;
235 u8 n_bytes = drv_data->n_bytes;
236
237 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
238 || (drv_data->tx == drv_data->tx_end))
239 return 0;
240
241 write_SSDR(0, reg);
242 drv_data->tx += n_bytes;
243
244 return 1;
245 }
246
247 static int null_reader(struct driver_data *drv_data)
248 {
249 void __iomem *reg = drv_data->ioaddr;
250 u8 n_bytes = drv_data->n_bytes;
251
252 while ((read_SSSR(reg) & SSSR_RNE)
253 && (drv_data->rx < drv_data->rx_end)) {
254 read_SSDR(reg);
255 drv_data->rx += n_bytes;
256 }
257
258 return drv_data->rx == drv_data->rx_end;
259 }
260
261 static int u8_writer(struct driver_data *drv_data)
262 {
263 void __iomem *reg = drv_data->ioaddr;
264
265 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
266 || (drv_data->tx == drv_data->tx_end))
267 return 0;
268
269 write_SSDR(*(u8 *)(drv_data->tx), reg);
270 ++drv_data->tx;
271
272 return 1;
273 }
274
275 static int u8_reader(struct driver_data *drv_data)
276 {
277 void __iomem *reg = drv_data->ioaddr;
278
279 while ((read_SSSR(reg) & SSSR_RNE)
280 && (drv_data->rx < drv_data->rx_end)) {
281 *(u8 *)(drv_data->rx) = read_SSDR(reg);
282 ++drv_data->rx;
283 }
284
285 return drv_data->rx == drv_data->rx_end;
286 }
287
288 static int u16_writer(struct driver_data *drv_data)
289 {
290 void __iomem *reg = drv_data->ioaddr;
291
292 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
293 || (drv_data->tx == drv_data->tx_end))
294 return 0;
295
296 write_SSDR(*(u16 *)(drv_data->tx), reg);
297 drv_data->tx += 2;
298
299 return 1;
300 }
301
302 static int u16_reader(struct driver_data *drv_data)
303 {
304 void __iomem *reg = drv_data->ioaddr;
305
306 while ((read_SSSR(reg) & SSSR_RNE)
307 && (drv_data->rx < drv_data->rx_end)) {
308 *(u16 *)(drv_data->rx) = read_SSDR(reg);
309 drv_data->rx += 2;
310 }
311
312 return drv_data->rx == drv_data->rx_end;
313 }
314
315 static int u32_writer(struct driver_data *drv_data)
316 {
317 void __iomem *reg = drv_data->ioaddr;
318
319 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
320 || (drv_data->tx == drv_data->tx_end))
321 return 0;
322
323 write_SSDR(*(u32 *)(drv_data->tx), reg);
324 drv_data->tx += 4;
325
326 return 1;
327 }
328
329 static int u32_reader(struct driver_data *drv_data)
330 {
331 void __iomem *reg = drv_data->ioaddr;
332
333 while ((read_SSSR(reg) & SSSR_RNE)
334 && (drv_data->rx < drv_data->rx_end)) {
335 *(u32 *)(drv_data->rx) = read_SSDR(reg);
336 drv_data->rx += 4;
337 }
338
339 return drv_data->rx == drv_data->rx_end;
340 }
341
342 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
343 {
344 struct spi_message *msg = drv_data->cur_msg;
345 struct spi_transfer *trans = drv_data->cur_transfer;
346
347 /* Move to next transfer */
348 if (trans->transfer_list.next != &msg->transfers) {
349 drv_data->cur_transfer =
350 list_entry(trans->transfer_list.next,
351 struct spi_transfer,
352 transfer_list);
353 return RUNNING_STATE;
354 } else
355 return DONE_STATE;
356 }
357
358 /* caller already set message->status; dma and pio irqs are blocked */
359 static void giveback(struct driver_data *drv_data)
360 {
361 struct spi_transfer* last_transfer;
362 struct spi_message *msg;
363
364 msg = drv_data->cur_msg;
365 drv_data->cur_msg = NULL;
366 drv_data->cur_transfer = NULL;
367
368 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
369 transfer_list);
370
371 /* Delay if requested before any change in chip select */
372 if (last_transfer->delay_usecs)
373 udelay(last_transfer->delay_usecs);
374
375 /* Drop chip select UNLESS cs_change is true or we are returning
376 * a message with an error, or next message is for another chip
377 */
378 if (!last_transfer->cs_change)
379 cs_deassert(drv_data);
380 else {
381 struct spi_message *next_msg;
382
383 /* Holding of cs was hinted, but we need to make sure
384 * the next message is for the same chip. Don't waste
385 * time with the following tests unless this was hinted.
386 *
387 * We cannot postpone this until pump_messages, because
388 * after calling msg->complete (below) the driver that
389 * sent the current message could be unloaded, which
390 * could invalidate the cs_control() callback...
391 */
392
393 /* get a pointer to the next message, if any */
394 next_msg = spi_get_next_queued_message(drv_data->master);
395
396 /* see if the next and current messages point
397 * to the same chip
398 */
399 if (next_msg && next_msg->spi != msg->spi)
400 next_msg = NULL;
401 if (!next_msg || msg->state == ERROR_STATE)
402 cs_deassert(drv_data);
403 }
404
405 spi_finalize_current_message(drv_data->master);
406 drv_data->cur_chip = NULL;
407 }
408
409 static void reset_sccr1(struct driver_data *drv_data)
410 {
411 void __iomem *reg = drv_data->ioaddr;
412 struct chip_data *chip = drv_data->cur_chip;
413 u32 sccr1_reg;
414
415 sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
416 sccr1_reg &= ~SSCR1_RFT;
417 sccr1_reg |= chip->threshold;
418 write_SSCR1(sccr1_reg, reg);
419 }
420
421 static void int_error_stop(struct driver_data *drv_data, const char* msg)
422 {
423 void __iomem *reg = drv_data->ioaddr;
424
425 /* Stop and reset SSP */
426 write_SSSR_CS(drv_data, drv_data->clear_sr);
427 reset_sccr1(drv_data);
428 if (!pxa25x_ssp_comp(drv_data))
429 write_SSTO(0, reg);
430 pxa2xx_spi_flush(drv_data);
431 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
432
433 dev_err(&drv_data->pdev->dev, "%s\n", msg);
434
435 drv_data->cur_msg->state = ERROR_STATE;
436 tasklet_schedule(&drv_data->pump_transfers);
437 }
438
439 static void int_transfer_complete(struct driver_data *drv_data)
440 {
441 void __iomem *reg = drv_data->ioaddr;
442
443 /* Stop SSP */
444 write_SSSR_CS(drv_data, drv_data->clear_sr);
445 reset_sccr1(drv_data);
446 if (!pxa25x_ssp_comp(drv_data))
447 write_SSTO(0, reg);
448
449 /* Update total byte transferred return count actual bytes read */
450 drv_data->cur_msg->actual_length += drv_data->len -
451 (drv_data->rx_end - drv_data->rx);
452
453 /* Transfer delays and chip select release are
454 * handled in pump_transfers or giveback
455 */
456
457 /* Move to next transfer */
458 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
459
460 /* Schedule transfer tasklet */
461 tasklet_schedule(&drv_data->pump_transfers);
462 }
463
464 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
465 {
466 void __iomem *reg = drv_data->ioaddr;
467
468 u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
469 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
470
471 u32 irq_status = read_SSSR(reg) & irq_mask;
472
473 if (irq_status & SSSR_ROR) {
474 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
475 return IRQ_HANDLED;
476 }
477
478 if (irq_status & SSSR_TINT) {
479 write_SSSR(SSSR_TINT, reg);
480 if (drv_data->read(drv_data)) {
481 int_transfer_complete(drv_data);
482 return IRQ_HANDLED;
483 }
484 }
485
486 /* Drain rx fifo, Fill tx fifo and prevent overruns */
487 do {
488 if (drv_data->read(drv_data)) {
489 int_transfer_complete(drv_data);
490 return IRQ_HANDLED;
491 }
492 } while (drv_data->write(drv_data));
493
494 if (drv_data->read(drv_data)) {
495 int_transfer_complete(drv_data);
496 return IRQ_HANDLED;
497 }
498
499 if (drv_data->tx == drv_data->tx_end) {
500 u32 bytes_left;
501 u32 sccr1_reg;
502
503 sccr1_reg = read_SSCR1(reg);
504 sccr1_reg &= ~SSCR1_TIE;
505
506 /*
507 * PXA25x_SSP has no timeout, set up rx threshould for the
508 * remaining RX bytes.
509 */
510 if (pxa25x_ssp_comp(drv_data)) {
511
512 sccr1_reg &= ~SSCR1_RFT;
513
514 bytes_left = drv_data->rx_end - drv_data->rx;
515 switch (drv_data->n_bytes) {
516 case 4:
517 bytes_left >>= 1;
518 case 2:
519 bytes_left >>= 1;
520 }
521
522 if (bytes_left > RX_THRESH_DFLT)
523 bytes_left = RX_THRESH_DFLT;
524
525 sccr1_reg |= SSCR1_RxTresh(bytes_left);
526 }
527 write_SSCR1(sccr1_reg, reg);
528 }
529
530 /* We did something */
531 return IRQ_HANDLED;
532 }
533
534 static irqreturn_t ssp_int(int irq, void *dev_id)
535 {
536 struct driver_data *drv_data = dev_id;
537 void __iomem *reg = drv_data->ioaddr;
538 u32 sccr1_reg;
539 u32 mask = drv_data->mask_sr;
540 u32 status;
541
542 /*
543 * The IRQ might be shared with other peripherals so we must first
544 * check that are we RPM suspended or not. If we are we assume that
545 * the IRQ was not for us (we shouldn't be RPM suspended when the
546 * interrupt is enabled).
547 */
548 if (pm_runtime_suspended(&drv_data->pdev->dev))
549 return IRQ_NONE;
550
551 /*
552 * If the device is not yet in RPM suspended state and we get an
553 * interrupt that is meant for another device, check if status bits
554 * are all set to one. That means that the device is already
555 * powered off.
556 */
557 status = read_SSSR(reg);
558 if (status == ~0)
559 return IRQ_NONE;
560
561 sccr1_reg = read_SSCR1(reg);
562
563 /* Ignore possible writes if we don't need to write */
564 if (!(sccr1_reg & SSCR1_TIE))
565 mask &= ~SSSR_TFS;
566
567 if (!(status & mask))
568 return IRQ_NONE;
569
570 if (!drv_data->cur_msg) {
571
572 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
573 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
574 if (!pxa25x_ssp_comp(drv_data))
575 write_SSTO(0, reg);
576 write_SSSR_CS(drv_data, drv_data->clear_sr);
577
578 dev_err(&drv_data->pdev->dev,
579 "bad message state in interrupt handler\n");
580
581 /* Never fail */
582 return IRQ_HANDLED;
583 }
584
585 return drv_data->transfer_handler(drv_data);
586 }
587
588 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
589 {
590 unsigned long ssp_clk = drv_data->max_clk_rate;
591 const struct ssp_device *ssp = drv_data->ssp;
592
593 rate = min_t(int, ssp_clk, rate);
594
595 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
596 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
597 else
598 return ((ssp_clk / rate - 1) & 0xfff) << 8;
599 }
600
601 static void pump_transfers(unsigned long data)
602 {
603 struct driver_data *drv_data = (struct driver_data *)data;
604 struct spi_message *message = NULL;
605 struct spi_transfer *transfer = NULL;
606 struct spi_transfer *previous = NULL;
607 struct chip_data *chip = NULL;
608 void __iomem *reg = drv_data->ioaddr;
609 u32 clk_div = 0;
610 u8 bits = 0;
611 u32 speed = 0;
612 u32 cr0;
613 u32 cr1;
614 u32 dma_thresh = drv_data->cur_chip->dma_threshold;
615 u32 dma_burst = drv_data->cur_chip->dma_burst_size;
616
617 /* Get current state information */
618 message = drv_data->cur_msg;
619 transfer = drv_data->cur_transfer;
620 chip = drv_data->cur_chip;
621
622 /* Handle for abort */
623 if (message->state == ERROR_STATE) {
624 message->status = -EIO;
625 giveback(drv_data);
626 return;
627 }
628
629 /* Handle end of message */
630 if (message->state == DONE_STATE) {
631 message->status = 0;
632 giveback(drv_data);
633 return;
634 }
635
636 /* Delay if requested at end of transfer before CS change */
637 if (message->state == RUNNING_STATE) {
638 previous = list_entry(transfer->transfer_list.prev,
639 struct spi_transfer,
640 transfer_list);
641 if (previous->delay_usecs)
642 udelay(previous->delay_usecs);
643
644 /* Drop chip select only if cs_change is requested */
645 if (previous->cs_change)
646 cs_deassert(drv_data);
647 }
648
649 /* Check if we can DMA this transfer */
650 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
651
652 /* reject already-mapped transfers; PIO won't always work */
653 if (message->is_dma_mapped
654 || transfer->rx_dma || transfer->tx_dma) {
655 dev_err(&drv_data->pdev->dev,
656 "pump_transfers: mapped transfer length of "
657 "%u is greater than %d\n",
658 transfer->len, MAX_DMA_LEN);
659 message->status = -EINVAL;
660 giveback(drv_data);
661 return;
662 }
663
664 /* warn ... we force this to PIO mode */
665 dev_warn_ratelimited(&message->spi->dev,
666 "pump_transfers: DMA disabled for transfer length %ld "
667 "greater than %d\n",
668 (long)drv_data->len, MAX_DMA_LEN);
669 }
670
671 /* Setup the transfer state based on the type of transfer */
672 if (pxa2xx_spi_flush(drv_data) == 0) {
673 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
674 message->status = -EIO;
675 giveback(drv_data);
676 return;
677 }
678 drv_data->n_bytes = chip->n_bytes;
679 drv_data->tx = (void *)transfer->tx_buf;
680 drv_data->tx_end = drv_data->tx + transfer->len;
681 drv_data->rx = transfer->rx_buf;
682 drv_data->rx_end = drv_data->rx + transfer->len;
683 drv_data->rx_dma = transfer->rx_dma;
684 drv_data->tx_dma = transfer->tx_dma;
685 drv_data->len = transfer->len;
686 drv_data->write = drv_data->tx ? chip->write : null_writer;
687 drv_data->read = drv_data->rx ? chip->read : null_reader;
688
689 /* Change speed and bit per word on a per transfer */
690 cr0 = chip->cr0;
691 if (transfer->speed_hz || transfer->bits_per_word) {
692
693 bits = chip->bits_per_word;
694 speed = chip->speed_hz;
695
696 if (transfer->speed_hz)
697 speed = transfer->speed_hz;
698
699 if (transfer->bits_per_word)
700 bits = transfer->bits_per_word;
701
702 clk_div = ssp_get_clk_div(drv_data, speed);
703
704 if (bits <= 8) {
705 drv_data->n_bytes = 1;
706 drv_data->read = drv_data->read != null_reader ?
707 u8_reader : null_reader;
708 drv_data->write = drv_data->write != null_writer ?
709 u8_writer : null_writer;
710 } else if (bits <= 16) {
711 drv_data->n_bytes = 2;
712 drv_data->read = drv_data->read != null_reader ?
713 u16_reader : null_reader;
714 drv_data->write = drv_data->write != null_writer ?
715 u16_writer : null_writer;
716 } else if (bits <= 32) {
717 drv_data->n_bytes = 4;
718 drv_data->read = drv_data->read != null_reader ?
719 u32_reader : null_reader;
720 drv_data->write = drv_data->write != null_writer ?
721 u32_writer : null_writer;
722 }
723 /* if bits/word is changed in dma mode, then must check the
724 * thresholds and burst also */
725 if (chip->enable_dma) {
726 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
727 message->spi,
728 bits, &dma_burst,
729 &dma_thresh))
730 dev_warn_ratelimited(&message->spi->dev,
731 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
732 }
733
734 cr0 = clk_div
735 | SSCR0_Motorola
736 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
737 | SSCR0_SSE
738 | (bits > 16 ? SSCR0_EDSS : 0);
739 }
740
741 message->state = RUNNING_STATE;
742
743 drv_data->dma_mapped = 0;
744 if (pxa2xx_spi_dma_is_possible(drv_data->len))
745 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
746 if (drv_data->dma_mapped) {
747
748 /* Ensure we have the correct interrupt handler */
749 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
750
751 pxa2xx_spi_dma_prepare(drv_data, dma_burst);
752
753 /* Clear status and start DMA engine */
754 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
755 write_SSSR(drv_data->clear_sr, reg);
756
757 pxa2xx_spi_dma_start(drv_data);
758 } else {
759 /* Ensure we have the correct interrupt handler */
760 drv_data->transfer_handler = interrupt_transfer;
761
762 /* Clear status */
763 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
764 write_SSSR_CS(drv_data, drv_data->clear_sr);
765 }
766
767 if (is_lpss_ssp(drv_data)) {
768 if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
769 write_SSIRF(chip->lpss_rx_threshold, reg);
770 if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
771 write_SSITF(chip->lpss_tx_threshold, reg);
772 }
773
774 /* see if we need to reload the config registers */
775 if ((read_SSCR0(reg) != cr0)
776 || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
777 (cr1 & SSCR1_CHANGE_MASK)) {
778
779 /* stop the SSP, and update the other bits */
780 write_SSCR0(cr0 & ~SSCR0_SSE, reg);
781 if (!pxa25x_ssp_comp(drv_data))
782 write_SSTO(chip->timeout, reg);
783 /* first set CR1 without interrupt and service enables */
784 write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
785 /* restart the SSP */
786 write_SSCR0(cr0, reg);
787
788 } else {
789 if (!pxa25x_ssp_comp(drv_data))
790 write_SSTO(chip->timeout, reg);
791 }
792
793 cs_assert(drv_data);
794
795 /* after chip select, release the data by enabling service
796 * requests and interrupts, without changing any mode bits */
797 write_SSCR1(cr1, reg);
798 }
799
800 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
801 struct spi_message *msg)
802 {
803 struct driver_data *drv_data = spi_master_get_devdata(master);
804
805 drv_data->cur_msg = msg;
806 /* Initial message state*/
807 drv_data->cur_msg->state = START_STATE;
808 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
809 struct spi_transfer,
810 transfer_list);
811
812 /* prepare to setup the SSP, in pump_transfers, using the per
813 * chip configuration */
814 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
815
816 /* Mark as busy and launch transfers */
817 tasklet_schedule(&drv_data->pump_transfers);
818 return 0;
819 }
820
821 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
822 {
823 struct driver_data *drv_data = spi_master_get_devdata(master);
824
825 /* Disable the SSP now */
826 write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
827 drv_data->ioaddr);
828
829 return 0;
830 }
831
832 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
833 struct pxa2xx_spi_chip *chip_info)
834 {
835 int err = 0;
836
837 if (chip == NULL || chip_info == NULL)
838 return 0;
839
840 /* NOTE: setup() can be called multiple times, possibly with
841 * different chip_info, release previously requested GPIO
842 */
843 if (gpio_is_valid(chip->gpio_cs))
844 gpio_free(chip->gpio_cs);
845
846 /* If (*cs_control) is provided, ignore GPIO chip select */
847 if (chip_info->cs_control) {
848 chip->cs_control = chip_info->cs_control;
849 return 0;
850 }
851
852 if (gpio_is_valid(chip_info->gpio_cs)) {
853 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
854 if (err) {
855 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
856 chip_info->gpio_cs);
857 return err;
858 }
859
860 chip->gpio_cs = chip_info->gpio_cs;
861 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
862
863 err = gpio_direction_output(chip->gpio_cs,
864 !chip->gpio_cs_inverted);
865 }
866
867 return err;
868 }
869
870 static int setup(struct spi_device *spi)
871 {
872 struct pxa2xx_spi_chip *chip_info = NULL;
873 struct chip_data *chip;
874 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
875 unsigned int clk_div;
876 uint tx_thres, tx_hi_thres, rx_thres;
877
878 if (is_lpss_ssp(drv_data)) {
879 tx_thres = LPSS_TX_LOTHRESH_DFLT;
880 tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
881 rx_thres = LPSS_RX_THRESH_DFLT;
882 } else {
883 tx_thres = TX_THRESH_DFLT;
884 tx_hi_thres = 0;
885 rx_thres = RX_THRESH_DFLT;
886 }
887
888 /* Only alloc on first setup */
889 chip = spi_get_ctldata(spi);
890 if (!chip) {
891 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
892 if (!chip)
893 return -ENOMEM;
894
895 if (drv_data->ssp_type == CE4100_SSP) {
896 if (spi->chip_select > 4) {
897 dev_err(&spi->dev,
898 "failed setup: cs number must not be > 4.\n");
899 kfree(chip);
900 return -EINVAL;
901 }
902
903 chip->frm = spi->chip_select;
904 } else
905 chip->gpio_cs = -1;
906 chip->enable_dma = 0;
907 chip->timeout = TIMOUT_DFLT;
908 }
909
910 /* protocol drivers may change the chip settings, so...
911 * if chip_info exists, use it */
912 chip_info = spi->controller_data;
913
914 /* chip_info isn't always needed */
915 chip->cr1 = 0;
916 if (chip_info) {
917 if (chip_info->timeout)
918 chip->timeout = chip_info->timeout;
919 if (chip_info->tx_threshold)
920 tx_thres = chip_info->tx_threshold;
921 if (chip_info->tx_hi_threshold)
922 tx_hi_thres = chip_info->tx_hi_threshold;
923 if (chip_info->rx_threshold)
924 rx_thres = chip_info->rx_threshold;
925 chip->enable_dma = drv_data->master_info->enable_dma;
926 chip->dma_threshold = 0;
927 if (chip_info->enable_loopback)
928 chip->cr1 = SSCR1_LBM;
929 } else if (ACPI_HANDLE(&spi->dev)) {
930 /*
931 * Slave devices enumerated from ACPI namespace don't
932 * usually have chip_info but we still might want to use
933 * DMA with them.
934 */
935 chip->enable_dma = drv_data->master_info->enable_dma;
936 }
937
938 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
939 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
940
941 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
942 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
943 | SSITF_TxHiThresh(tx_hi_thres);
944
945 /* set dma burst and threshold outside of chip_info path so that if
946 * chip_info goes away after setting chip->enable_dma, the
947 * burst and threshold can still respond to changes in bits_per_word */
948 if (chip->enable_dma) {
949 /* set up legal burst and threshold for dma */
950 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
951 spi->bits_per_word,
952 &chip->dma_burst_size,
953 &chip->dma_threshold)) {
954 dev_warn(&spi->dev,
955 "in setup: DMA burst size reduced to match bits_per_word\n");
956 }
957 }
958
959 clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
960 chip->speed_hz = spi->max_speed_hz;
961
962 chip->cr0 = clk_div
963 | SSCR0_Motorola
964 | SSCR0_DataSize(spi->bits_per_word > 16 ?
965 spi->bits_per_word - 16 : spi->bits_per_word)
966 | SSCR0_SSE
967 | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
968 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
969 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
970 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
971
972 if (spi->mode & SPI_LOOP)
973 chip->cr1 |= SSCR1_LBM;
974
975 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
976 if (!pxa25x_ssp_comp(drv_data))
977 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
978 drv_data->max_clk_rate
979 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
980 chip->enable_dma ? "DMA" : "PIO");
981 else
982 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
983 drv_data->max_clk_rate / 2
984 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
985 chip->enable_dma ? "DMA" : "PIO");
986
987 if (spi->bits_per_word <= 8) {
988 chip->n_bytes = 1;
989 chip->read = u8_reader;
990 chip->write = u8_writer;
991 } else if (spi->bits_per_word <= 16) {
992 chip->n_bytes = 2;
993 chip->read = u16_reader;
994 chip->write = u16_writer;
995 } else if (spi->bits_per_word <= 32) {
996 chip->cr0 |= SSCR0_EDSS;
997 chip->n_bytes = 4;
998 chip->read = u32_reader;
999 chip->write = u32_writer;
1000 }
1001 chip->bits_per_word = spi->bits_per_word;
1002
1003 spi_set_ctldata(spi, chip);
1004
1005 if (drv_data->ssp_type == CE4100_SSP)
1006 return 0;
1007
1008 return setup_cs(spi, chip, chip_info);
1009 }
1010
1011 static void cleanup(struct spi_device *spi)
1012 {
1013 struct chip_data *chip = spi_get_ctldata(spi);
1014 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1015
1016 if (!chip)
1017 return;
1018
1019 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1020 gpio_free(chip->gpio_cs);
1021
1022 kfree(chip);
1023 }
1024
1025 #ifdef CONFIG_ACPI
1026 static struct pxa2xx_spi_master *
1027 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1028 {
1029 struct pxa2xx_spi_master *pdata;
1030 struct acpi_device *adev;
1031 struct ssp_device *ssp;
1032 struct resource *res;
1033 int devid;
1034
1035 if (!ACPI_HANDLE(&pdev->dev) ||
1036 acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1037 return NULL;
1038
1039 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1040 if (!pdata)
1041 return NULL;
1042
1043 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1044 if (!res)
1045 return NULL;
1046
1047 ssp = &pdata->ssp;
1048
1049 ssp->phys_base = res->start;
1050 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1051 if (IS_ERR(ssp->mmio_base))
1052 return NULL;
1053
1054 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1055 ssp->irq = platform_get_irq(pdev, 0);
1056 ssp->type = LPSS_SSP;
1057 ssp->pdev = pdev;
1058
1059 ssp->port_id = -1;
1060 if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1061 ssp->port_id = devid;
1062
1063 pdata->num_chipselect = 1;
1064 pdata->enable_dma = true;
1065 pdata->tx_chan_id = -1;
1066 pdata->rx_chan_id = -1;
1067
1068 return pdata;
1069 }
1070
1071 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1072 { "INT33C0", 0 },
1073 { "INT33C1", 0 },
1074 { "INT3430", 0 },
1075 { "INT3431", 0 },
1076 { "80860F0E", 0 },
1077 { "8086228E", 0 },
1078 { },
1079 };
1080 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1081 #else
1082 static inline struct pxa2xx_spi_master *
1083 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1084 {
1085 return NULL;
1086 }
1087 #endif
1088
1089 static int pxa2xx_spi_probe(struct platform_device *pdev)
1090 {
1091 struct device *dev = &pdev->dev;
1092 struct pxa2xx_spi_master *platform_info;
1093 struct spi_master *master;
1094 struct driver_data *drv_data;
1095 struct ssp_device *ssp;
1096 int status;
1097
1098 platform_info = dev_get_platdata(dev);
1099 if (!platform_info) {
1100 platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1101 if (!platform_info) {
1102 dev_err(&pdev->dev, "missing platform data\n");
1103 return -ENODEV;
1104 }
1105 }
1106
1107 ssp = pxa_ssp_request(pdev->id, pdev->name);
1108 if (!ssp)
1109 ssp = &platform_info->ssp;
1110
1111 if (!ssp->mmio_base) {
1112 dev_err(&pdev->dev, "failed to get ssp\n");
1113 return -ENODEV;
1114 }
1115
1116 /* Allocate master with space for drv_data and null dma buffer */
1117 master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1118 if (!master) {
1119 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1120 pxa_ssp_free(ssp);
1121 return -ENOMEM;
1122 }
1123 drv_data = spi_master_get_devdata(master);
1124 drv_data->master = master;
1125 drv_data->master_info = platform_info;
1126 drv_data->pdev = pdev;
1127 drv_data->ssp = ssp;
1128
1129 master->dev.parent = &pdev->dev;
1130 master->dev.of_node = pdev->dev.of_node;
1131 /* the spi->mode bits understood by this driver: */
1132 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1133
1134 master->bus_num = ssp->port_id;
1135 master->num_chipselect = platform_info->num_chipselect;
1136 master->dma_alignment = DMA_ALIGNMENT;
1137 master->cleanup = cleanup;
1138 master->setup = setup;
1139 master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1140 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1141 master->auto_runtime_pm = true;
1142
1143 drv_data->ssp_type = ssp->type;
1144 drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1145
1146 drv_data->ioaddr = ssp->mmio_base;
1147 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1148 if (pxa25x_ssp_comp(drv_data)) {
1149 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1150 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1151 drv_data->dma_cr1 = 0;
1152 drv_data->clear_sr = SSSR_ROR;
1153 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1154 } else {
1155 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1156 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1157 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1158 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1159 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1160 }
1161
1162 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1163 drv_data);
1164 if (status < 0) {
1165 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1166 goto out_error_master_alloc;
1167 }
1168
1169 /* Setup DMA if requested */
1170 drv_data->tx_channel = -1;
1171 drv_data->rx_channel = -1;
1172 if (platform_info->enable_dma) {
1173 status = pxa2xx_spi_dma_setup(drv_data);
1174 if (status) {
1175 dev_dbg(dev, "no DMA channels available, using PIO\n");
1176 platform_info->enable_dma = false;
1177 }
1178 }
1179
1180 /* Enable SOC clock */
1181 clk_prepare_enable(ssp->clk);
1182
1183 drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1184
1185 /* Load default SSP configuration */
1186 write_SSCR0(0, drv_data->ioaddr);
1187 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1188 SSCR1_TxTresh(TX_THRESH_DFLT),
1189 drv_data->ioaddr);
1190 write_SSCR0(SSCR0_SCR(2)
1191 | SSCR0_Motorola
1192 | SSCR0_DataSize(8),
1193 drv_data->ioaddr);
1194 if (!pxa25x_ssp_comp(drv_data))
1195 write_SSTO(0, drv_data->ioaddr);
1196 write_SSPSP(0, drv_data->ioaddr);
1197
1198 lpss_ssp_setup(drv_data);
1199
1200 tasklet_init(&drv_data->pump_transfers, pump_transfers,
1201 (unsigned long)drv_data);
1202
1203 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1204 pm_runtime_use_autosuspend(&pdev->dev);
1205 pm_runtime_set_active(&pdev->dev);
1206 pm_runtime_enable(&pdev->dev);
1207
1208 /* Register with the SPI framework */
1209 platform_set_drvdata(pdev, drv_data);
1210 status = devm_spi_register_master(&pdev->dev, master);
1211 if (status != 0) {
1212 dev_err(&pdev->dev, "problem registering spi master\n");
1213 goto out_error_clock_enabled;
1214 }
1215
1216 return status;
1217
1218 out_error_clock_enabled:
1219 clk_disable_unprepare(ssp->clk);
1220 pxa2xx_spi_dma_release(drv_data);
1221 free_irq(ssp->irq, drv_data);
1222
1223 out_error_master_alloc:
1224 spi_master_put(master);
1225 pxa_ssp_free(ssp);
1226 return status;
1227 }
1228
1229 static int pxa2xx_spi_remove(struct platform_device *pdev)
1230 {
1231 struct driver_data *drv_data = platform_get_drvdata(pdev);
1232 struct ssp_device *ssp;
1233
1234 if (!drv_data)
1235 return 0;
1236 ssp = drv_data->ssp;
1237
1238 pm_runtime_get_sync(&pdev->dev);
1239
1240 /* Disable the SSP at the peripheral and SOC level */
1241 write_SSCR0(0, drv_data->ioaddr);
1242 clk_disable_unprepare(ssp->clk);
1243
1244 /* Release DMA */
1245 if (drv_data->master_info->enable_dma)
1246 pxa2xx_spi_dma_release(drv_data);
1247
1248 pm_runtime_put_noidle(&pdev->dev);
1249 pm_runtime_disable(&pdev->dev);
1250
1251 /* Release IRQ */
1252 free_irq(ssp->irq, drv_data);
1253
1254 /* Release SSP */
1255 pxa_ssp_free(ssp);
1256
1257 return 0;
1258 }
1259
1260 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1261 {
1262 int status = 0;
1263
1264 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1265 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1266 }
1267
1268 #ifdef CONFIG_PM_SLEEP
1269 static int pxa2xx_spi_suspend(struct device *dev)
1270 {
1271 struct driver_data *drv_data = dev_get_drvdata(dev);
1272 struct ssp_device *ssp = drv_data->ssp;
1273 int status = 0;
1274
1275 status = spi_master_suspend(drv_data->master);
1276 if (status != 0)
1277 return status;
1278 write_SSCR0(0, drv_data->ioaddr);
1279 clk_disable_unprepare(ssp->clk);
1280
1281 return 0;
1282 }
1283
1284 static int pxa2xx_spi_resume(struct device *dev)
1285 {
1286 struct driver_data *drv_data = dev_get_drvdata(dev);
1287 struct ssp_device *ssp = drv_data->ssp;
1288 int status = 0;
1289
1290 pxa2xx_spi_dma_resume(drv_data);
1291
1292 /* Enable the SSP clock */
1293 clk_prepare_enable(ssp->clk);
1294
1295 /* Restore LPSS private register bits */
1296 lpss_ssp_setup(drv_data);
1297
1298 /* Start the queue running */
1299 status = spi_master_resume(drv_data->master);
1300 if (status != 0) {
1301 dev_err(dev, "problem starting queue (%d)\n", status);
1302 return status;
1303 }
1304
1305 return 0;
1306 }
1307 #endif
1308
1309 #ifdef CONFIG_PM_RUNTIME
1310 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1311 {
1312 struct driver_data *drv_data = dev_get_drvdata(dev);
1313
1314 clk_disable_unprepare(drv_data->ssp->clk);
1315 return 0;
1316 }
1317
1318 static int pxa2xx_spi_runtime_resume(struct device *dev)
1319 {
1320 struct driver_data *drv_data = dev_get_drvdata(dev);
1321
1322 clk_prepare_enable(drv_data->ssp->clk);
1323 return 0;
1324 }
1325 #endif
1326
1327 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1328 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1329 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1330 pxa2xx_spi_runtime_resume, NULL)
1331 };
1332
1333 static struct platform_driver driver = {
1334 .driver = {
1335 .name = "pxa2xx-spi",
1336 .owner = THIS_MODULE,
1337 .pm = &pxa2xx_spi_pm_ops,
1338 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1339 },
1340 .probe = pxa2xx_spi_probe,
1341 .remove = pxa2xx_spi_remove,
1342 .shutdown = pxa2xx_spi_shutdown,
1343 };
1344
1345 static int __init pxa2xx_spi_init(void)
1346 {
1347 return platform_driver_register(&driver);
1348 }
1349 subsys_initcall(pxa2xx_spi_init);
1350
1351 static void __exit pxa2xx_spi_exit(void)
1352 {
1353 platform_driver_unregister(&driver);
1354 }
1355 module_exit(pxa2xx_spi_exit);
This page took 0.119955 seconds and 5 git commands to generate.