Documentation: DT: net: Add Xilinx gmiitorgmii converter device tree binding document...
[deliverable/linux.git] / drivers / spi / spi-s3c64xx.c
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/interrupt.h>
19 #include <linux/delay.h>
20 #include <linux/clk.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dmaengine.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/spi/spi.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29
30 #include <linux/platform_data/spi-s3c64xx.h>
31
32 #define MAX_SPI_PORTS 6
33 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
34 #define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1)
35 #define AUTOSUSPEND_TIMEOUT 2000
36
37 /* Registers and bit-fields */
38
39 #define S3C64XX_SPI_CH_CFG 0x00
40 #define S3C64XX_SPI_CLK_CFG 0x04
41 #define S3C64XX_SPI_MODE_CFG 0x08
42 #define S3C64XX_SPI_SLAVE_SEL 0x0C
43 #define S3C64XX_SPI_INT_EN 0x10
44 #define S3C64XX_SPI_STATUS 0x14
45 #define S3C64XX_SPI_TX_DATA 0x18
46 #define S3C64XX_SPI_RX_DATA 0x1C
47 #define S3C64XX_SPI_PACKET_CNT 0x20
48 #define S3C64XX_SPI_PENDING_CLR 0x24
49 #define S3C64XX_SPI_SWAP_CFG 0x28
50 #define S3C64XX_SPI_FB_CLK 0x2C
51
52 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
53 #define S3C64XX_SPI_CH_SW_RST (1<<5)
54 #define S3C64XX_SPI_CH_SLAVE (1<<4)
55 #define S3C64XX_SPI_CPOL_L (1<<3)
56 #define S3C64XX_SPI_CPHA_B (1<<2)
57 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
58 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
59
60 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
61 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
62 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
63 #define S3C64XX_SPI_PSR_MASK 0xff
64
65 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
66 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
67 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
68 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
69 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
70 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
71 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
73 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
74 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
75 #define S3C64XX_SPI_MODE_4BURST (1<<0)
76
77 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
78 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
79 #define S3C64XX_SPI_SLAVE_NSC_CNT_2 (2<<4)
80
81 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
82 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
83 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
84 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
85 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
86 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
87 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
88
89 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
90 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
91 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
92 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
93 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
94 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
95
96 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
97
98 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
99 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
100 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
101 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
102 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
103
104 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
105 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
106 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
107 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
108 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
109 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
110 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
111 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
112
113 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
114
115 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
116 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
117 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
118 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
119 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
120 FIFO_LVL_MASK(i))
121
122 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
123 #define S3C64XX_SPI_TRAILCNT_OFF 19
124
125 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
126
127 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
128 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
129
130 #define RXBUSY (1<<2)
131 #define TXBUSY (1<<3)
132
133 struct s3c64xx_spi_dma_data {
134 struct dma_chan *ch;
135 enum dma_transfer_direction direction;
136 };
137
138 /**
139 * struct s3c64xx_spi_info - SPI Controller hardware info
140 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
141 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
142 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
143 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
144 * @clk_from_cmu: True, if the controller does not include a clock mux and
145 * prescaler unit.
146 *
147 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
148 * differ in some aspects such as the size of the fifo and spi bus clock
149 * setup. Such differences are specified to the driver using this structure
150 * which is provided as driver data to the driver.
151 */
152 struct s3c64xx_spi_port_config {
153 int fifo_lvl_mask[MAX_SPI_PORTS];
154 int rx_lvl_offset;
155 int tx_st_done;
156 int quirks;
157 bool high_speed;
158 bool clk_from_cmu;
159 bool clk_ioclk;
160 };
161
162 /**
163 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
164 * @clk: Pointer to the spi clock.
165 * @src_clk: Pointer to the clock used to generate SPI signals.
166 * @ioclk: Pointer to the i/o clock between master and slave
167 * @master: Pointer to the SPI Protocol master.
168 * @cntrlr_info: Platform specific data for the controller this driver manages.
169 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
170 * @lock: Controller specific lock.
171 * @state: Set of FLAGS to indicate status.
172 * @rx_dmach: Controller's DMA channel for Rx.
173 * @tx_dmach: Controller's DMA channel for Tx.
174 * @sfr_start: BUS address of SPI controller regs.
175 * @regs: Pointer to ioremap'ed controller registers.
176 * @irq: interrupt
177 * @xfer_completion: To indicate completion of xfer task.
178 * @cur_mode: Stores the active configuration of the controller.
179 * @cur_bpw: Stores the active bits per word settings.
180 * @cur_speed: Stores the active xfer clock speed.
181 */
182 struct s3c64xx_spi_driver_data {
183 void __iomem *regs;
184 struct clk *clk;
185 struct clk *src_clk;
186 struct clk *ioclk;
187 struct platform_device *pdev;
188 struct spi_master *master;
189 struct s3c64xx_spi_info *cntrlr_info;
190 struct spi_device *tgl_spi;
191 spinlock_t lock;
192 unsigned long sfr_start;
193 struct completion xfer_completion;
194 unsigned state;
195 unsigned cur_mode, cur_bpw;
196 unsigned cur_speed;
197 struct s3c64xx_spi_dma_data rx_dma;
198 struct s3c64xx_spi_dma_data tx_dma;
199 struct s3c64xx_spi_port_config *port_conf;
200 unsigned int port_id;
201 };
202
203 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
204 {
205 void __iomem *regs = sdd->regs;
206 unsigned long loops;
207 u32 val;
208
209 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
210
211 val = readl(regs + S3C64XX_SPI_CH_CFG);
212 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
213 writel(val, regs + S3C64XX_SPI_CH_CFG);
214
215 val = readl(regs + S3C64XX_SPI_CH_CFG);
216 val |= S3C64XX_SPI_CH_SW_RST;
217 val &= ~S3C64XX_SPI_CH_HS_EN;
218 writel(val, regs + S3C64XX_SPI_CH_CFG);
219
220 /* Flush TxFIFO*/
221 loops = msecs_to_loops(1);
222 do {
223 val = readl(regs + S3C64XX_SPI_STATUS);
224 } while (TX_FIFO_LVL(val, sdd) && loops--);
225
226 if (loops == 0)
227 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
228
229 /* Flush RxFIFO*/
230 loops = msecs_to_loops(1);
231 do {
232 val = readl(regs + S3C64XX_SPI_STATUS);
233 if (RX_FIFO_LVL(val, sdd))
234 readl(regs + S3C64XX_SPI_RX_DATA);
235 else
236 break;
237 } while (loops--);
238
239 if (loops == 0)
240 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
241
242 val = readl(regs + S3C64XX_SPI_CH_CFG);
243 val &= ~S3C64XX_SPI_CH_SW_RST;
244 writel(val, regs + S3C64XX_SPI_CH_CFG);
245
246 val = readl(regs + S3C64XX_SPI_MODE_CFG);
247 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
248 writel(val, regs + S3C64XX_SPI_MODE_CFG);
249 }
250
251 static void s3c64xx_spi_dmacb(void *data)
252 {
253 struct s3c64xx_spi_driver_data *sdd;
254 struct s3c64xx_spi_dma_data *dma = data;
255 unsigned long flags;
256
257 if (dma->direction == DMA_DEV_TO_MEM)
258 sdd = container_of(data,
259 struct s3c64xx_spi_driver_data, rx_dma);
260 else
261 sdd = container_of(data,
262 struct s3c64xx_spi_driver_data, tx_dma);
263
264 spin_lock_irqsave(&sdd->lock, flags);
265
266 if (dma->direction == DMA_DEV_TO_MEM) {
267 sdd->state &= ~RXBUSY;
268 if (!(sdd->state & TXBUSY))
269 complete(&sdd->xfer_completion);
270 } else {
271 sdd->state &= ~TXBUSY;
272 if (!(sdd->state & RXBUSY))
273 complete(&sdd->xfer_completion);
274 }
275
276 spin_unlock_irqrestore(&sdd->lock, flags);
277 }
278
279 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
280 struct sg_table *sgt)
281 {
282 struct s3c64xx_spi_driver_data *sdd;
283 struct dma_slave_config config;
284 struct dma_async_tx_descriptor *desc;
285
286 memset(&config, 0, sizeof(config));
287
288 if (dma->direction == DMA_DEV_TO_MEM) {
289 sdd = container_of((void *)dma,
290 struct s3c64xx_spi_driver_data, rx_dma);
291 config.direction = dma->direction;
292 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
293 config.src_addr_width = sdd->cur_bpw / 8;
294 config.src_maxburst = 1;
295 dmaengine_slave_config(dma->ch, &config);
296 } else {
297 sdd = container_of((void *)dma,
298 struct s3c64xx_spi_driver_data, tx_dma);
299 config.direction = dma->direction;
300 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
301 config.dst_addr_width = sdd->cur_bpw / 8;
302 config.dst_maxburst = 1;
303 dmaengine_slave_config(dma->ch, &config);
304 }
305
306 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
307 dma->direction, DMA_PREP_INTERRUPT);
308
309 desc->callback = s3c64xx_spi_dmacb;
310 desc->callback_param = dma;
311
312 dmaengine_submit(desc);
313 dma_async_issue_pending(dma->ch);
314 }
315
316 static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
317 {
318 struct s3c64xx_spi_driver_data *sdd =
319 spi_master_get_devdata(spi->master);
320
321 if (sdd->cntrlr_info->no_cs)
322 return;
323
324 if (enable) {
325 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
326 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
327 } else {
328 u32 ssel = readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL);
329
330 ssel |= (S3C64XX_SPI_SLAVE_AUTO |
331 S3C64XX_SPI_SLAVE_NSC_CNT_2);
332 writel(ssel, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
333 }
334 } else {
335 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
336 writel(S3C64XX_SPI_SLAVE_SIG_INACT,
337 sdd->regs + S3C64XX_SPI_SLAVE_SEL);
338 }
339 }
340
341 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
342 {
343 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
344 dma_filter_fn filter = sdd->cntrlr_info->filter;
345 struct device *dev = &sdd->pdev->dev;
346 dma_cap_mask_t mask;
347
348 if (is_polling(sdd))
349 return 0;
350
351 dma_cap_zero(mask);
352 dma_cap_set(DMA_SLAVE, mask);
353
354 /* Acquire DMA channels */
355 sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
356 sdd->cntrlr_info->dma_rx, dev, "rx");
357 if (!sdd->rx_dma.ch) {
358 dev_err(dev, "Failed to get RX DMA channel\n");
359 return -EBUSY;
360 }
361 spi->dma_rx = sdd->rx_dma.ch;
362
363 sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
364 sdd->cntrlr_info->dma_tx, dev, "tx");
365 if (!sdd->tx_dma.ch) {
366 dev_err(dev, "Failed to get TX DMA channel\n");
367 dma_release_channel(sdd->rx_dma.ch);
368 return -EBUSY;
369 }
370 spi->dma_tx = sdd->tx_dma.ch;
371
372 return 0;
373 }
374
375 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
376 {
377 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
378
379 /* Free DMA channels */
380 if (!is_polling(sdd)) {
381 dma_release_channel(sdd->rx_dma.ch);
382 dma_release_channel(sdd->tx_dma.ch);
383 }
384
385 return 0;
386 }
387
388 static bool s3c64xx_spi_can_dma(struct spi_master *master,
389 struct spi_device *spi,
390 struct spi_transfer *xfer)
391 {
392 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
393
394 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
395 }
396
397 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
398 struct spi_device *spi,
399 struct spi_transfer *xfer, int dma_mode)
400 {
401 void __iomem *regs = sdd->regs;
402 u32 modecfg, chcfg;
403
404 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
405 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
406
407 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
408 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
409
410 if (dma_mode) {
411 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
412 } else {
413 /* Always shift in data in FIFO, even if xfer is Tx only,
414 * this helps setting PCKT_CNT value for generating clocks
415 * as exactly needed.
416 */
417 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
418 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
419 | S3C64XX_SPI_PACKET_CNT_EN,
420 regs + S3C64XX_SPI_PACKET_CNT);
421 }
422
423 if (xfer->tx_buf != NULL) {
424 sdd->state |= TXBUSY;
425 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
426 if (dma_mode) {
427 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
428 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
429 } else {
430 switch (sdd->cur_bpw) {
431 case 32:
432 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
433 xfer->tx_buf, xfer->len / 4);
434 break;
435 case 16:
436 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
437 xfer->tx_buf, xfer->len / 2);
438 break;
439 default:
440 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
441 xfer->tx_buf, xfer->len);
442 break;
443 }
444 }
445 }
446
447 if (xfer->rx_buf != NULL) {
448 sdd->state |= RXBUSY;
449
450 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
451 && !(sdd->cur_mode & SPI_CPHA))
452 chcfg |= S3C64XX_SPI_CH_HS_EN;
453
454 if (dma_mode) {
455 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
456 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
457 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
458 | S3C64XX_SPI_PACKET_CNT_EN,
459 regs + S3C64XX_SPI_PACKET_CNT);
460 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
461 }
462 }
463
464 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
465 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
466 }
467
468 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
469 int timeout_ms)
470 {
471 void __iomem *regs = sdd->regs;
472 unsigned long val = 1;
473 u32 status;
474
475 /* max fifo depth available */
476 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
477
478 if (timeout_ms)
479 val = msecs_to_loops(timeout_ms);
480
481 do {
482 status = readl(regs + S3C64XX_SPI_STATUS);
483 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
484
485 /* return the actual received data length */
486 return RX_FIFO_LVL(status, sdd);
487 }
488
489 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
490 struct spi_transfer *xfer)
491 {
492 void __iomem *regs = sdd->regs;
493 unsigned long val;
494 u32 status;
495 int ms;
496
497 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
498 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
499 ms += 10; /* some tolerance */
500
501 val = msecs_to_jiffies(ms) + 10;
502 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
503
504 /*
505 * If the previous xfer was completed within timeout, then
506 * proceed further else return -EIO.
507 * DmaTx returns after simply writing data in the FIFO,
508 * w/o waiting for real transmission on the bus to finish.
509 * DmaRx returns only after Dma read data from FIFO which
510 * needs bus transmission to finish, so we don't worry if
511 * Xfer involved Rx(with or without Tx).
512 */
513 if (val && !xfer->rx_buf) {
514 val = msecs_to_loops(10);
515 status = readl(regs + S3C64XX_SPI_STATUS);
516 while ((TX_FIFO_LVL(status, sdd)
517 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
518 && --val) {
519 cpu_relax();
520 status = readl(regs + S3C64XX_SPI_STATUS);
521 }
522
523 }
524
525 /* If timed out while checking rx/tx status return error */
526 if (!val)
527 return -EIO;
528
529 return 0;
530 }
531
532 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
533 struct spi_transfer *xfer)
534 {
535 void __iomem *regs = sdd->regs;
536 unsigned long val;
537 u32 status;
538 int loops;
539 u32 cpy_len;
540 u8 *buf;
541 int ms;
542
543 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
544 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
545 ms += 10; /* some tolerance */
546
547 val = msecs_to_loops(ms);
548 do {
549 status = readl(regs + S3C64XX_SPI_STATUS);
550 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
551
552
553 /* If it was only Tx */
554 if (!xfer->rx_buf) {
555 sdd->state &= ~TXBUSY;
556 return 0;
557 }
558
559 /*
560 * If the receive length is bigger than the controller fifo
561 * size, calculate the loops and read the fifo as many times.
562 * loops = length / max fifo size (calculated by using the
563 * fifo mask).
564 * For any size less than the fifo size the below code is
565 * executed atleast once.
566 */
567 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
568 buf = xfer->rx_buf;
569 do {
570 /* wait for data to be received in the fifo */
571 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
572 (loops ? ms : 0));
573
574 switch (sdd->cur_bpw) {
575 case 32:
576 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
577 buf, cpy_len / 4);
578 break;
579 case 16:
580 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
581 buf, cpy_len / 2);
582 break;
583 default:
584 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
585 buf, cpy_len);
586 break;
587 }
588
589 buf = buf + cpy_len;
590 } while (loops--);
591 sdd->state &= ~RXBUSY;
592
593 return 0;
594 }
595
596 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
597 {
598 void __iomem *regs = sdd->regs;
599 u32 val;
600
601 /* Disable Clock */
602 if (!sdd->port_conf->clk_from_cmu) {
603 val = readl(regs + S3C64XX_SPI_CLK_CFG);
604 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
605 writel(val, regs + S3C64XX_SPI_CLK_CFG);
606 }
607
608 /* Set Polarity and Phase */
609 val = readl(regs + S3C64XX_SPI_CH_CFG);
610 val &= ~(S3C64XX_SPI_CH_SLAVE |
611 S3C64XX_SPI_CPOL_L |
612 S3C64XX_SPI_CPHA_B);
613
614 if (sdd->cur_mode & SPI_CPOL)
615 val |= S3C64XX_SPI_CPOL_L;
616
617 if (sdd->cur_mode & SPI_CPHA)
618 val |= S3C64XX_SPI_CPHA_B;
619
620 writel(val, regs + S3C64XX_SPI_CH_CFG);
621
622 /* Set Channel & DMA Mode */
623 val = readl(regs + S3C64XX_SPI_MODE_CFG);
624 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
625 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
626
627 switch (sdd->cur_bpw) {
628 case 32:
629 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
630 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
631 break;
632 case 16:
633 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
634 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
635 break;
636 default:
637 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
638 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
639 break;
640 }
641
642 writel(val, regs + S3C64XX_SPI_MODE_CFG);
643
644 if (sdd->port_conf->clk_from_cmu) {
645 /* The src_clk clock is divided internally by 2 */
646 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
647 } else {
648 /* Configure Clock */
649 val = readl(regs + S3C64XX_SPI_CLK_CFG);
650 val &= ~S3C64XX_SPI_PSR_MASK;
651 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
652 & S3C64XX_SPI_PSR_MASK);
653 writel(val, regs + S3C64XX_SPI_CLK_CFG);
654
655 /* Enable Clock */
656 val = readl(regs + S3C64XX_SPI_CLK_CFG);
657 val |= S3C64XX_SPI_ENCLK_ENABLE;
658 writel(val, regs + S3C64XX_SPI_CLK_CFG);
659 }
660 }
661
662 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
663
664 static int s3c64xx_spi_prepare_message(struct spi_master *master,
665 struct spi_message *msg)
666 {
667 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
668 struct spi_device *spi = msg->spi;
669 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
670
671 /* Configure feedback delay */
672 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
673
674 return 0;
675 }
676
677 static int s3c64xx_spi_transfer_one(struct spi_master *master,
678 struct spi_device *spi,
679 struct spi_transfer *xfer)
680 {
681 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
682 int status;
683 u32 speed;
684 u8 bpw;
685 unsigned long flags;
686 int use_dma;
687
688 reinit_completion(&sdd->xfer_completion);
689
690 /* Only BPW and Speed may change across transfers */
691 bpw = xfer->bits_per_word;
692 speed = xfer->speed_hz;
693
694 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
695 sdd->cur_bpw = bpw;
696 sdd->cur_speed = speed;
697 sdd->cur_mode = spi->mode;
698 s3c64xx_spi_config(sdd);
699 }
700
701 /* Polling method for xfers not bigger than FIFO capacity */
702 use_dma = 0;
703 if (!is_polling(sdd) &&
704 (sdd->rx_dma.ch && sdd->tx_dma.ch &&
705 (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
706 use_dma = 1;
707
708 spin_lock_irqsave(&sdd->lock, flags);
709
710 /* Pending only which is to be done */
711 sdd->state &= ~RXBUSY;
712 sdd->state &= ~TXBUSY;
713
714 enable_datapath(sdd, spi, xfer, use_dma);
715
716 /* Start the signals */
717 s3c64xx_spi_set_cs(spi, true);
718
719 spin_unlock_irqrestore(&sdd->lock, flags);
720
721 if (use_dma)
722 status = wait_for_dma(sdd, xfer);
723 else
724 status = wait_for_pio(sdd, xfer);
725
726 if (status) {
727 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
728 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
729 (sdd->state & RXBUSY) ? 'f' : 'p',
730 (sdd->state & TXBUSY) ? 'f' : 'p',
731 xfer->len);
732
733 if (use_dma) {
734 if (xfer->tx_buf != NULL
735 && (sdd->state & TXBUSY))
736 dmaengine_terminate_all(sdd->tx_dma.ch);
737 if (xfer->rx_buf != NULL
738 && (sdd->state & RXBUSY))
739 dmaengine_terminate_all(sdd->rx_dma.ch);
740 }
741 } else {
742 flush_fifo(sdd);
743 }
744
745 return status;
746 }
747
748 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
749 struct spi_device *spi)
750 {
751 struct s3c64xx_spi_csinfo *cs;
752 struct device_node *slave_np, *data_np = NULL;
753 u32 fb_delay = 0;
754
755 slave_np = spi->dev.of_node;
756 if (!slave_np) {
757 dev_err(&spi->dev, "device node not found\n");
758 return ERR_PTR(-EINVAL);
759 }
760
761 data_np = of_get_child_by_name(slave_np, "controller-data");
762 if (!data_np) {
763 dev_err(&spi->dev, "child node 'controller-data' not found\n");
764 return ERR_PTR(-EINVAL);
765 }
766
767 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
768 if (!cs) {
769 of_node_put(data_np);
770 return ERR_PTR(-ENOMEM);
771 }
772
773 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
774 cs->fb_delay = fb_delay;
775 of_node_put(data_np);
776 return cs;
777 }
778
779 /*
780 * Here we only check the validity of requested configuration
781 * and save the configuration in a local data-structure.
782 * The controller is actually configured only just before we
783 * get a message to transfer.
784 */
785 static int s3c64xx_spi_setup(struct spi_device *spi)
786 {
787 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
788 struct s3c64xx_spi_driver_data *sdd;
789 struct s3c64xx_spi_info *sci;
790 int err;
791
792 sdd = spi_master_get_devdata(spi->master);
793 if (spi->dev.of_node) {
794 cs = s3c64xx_get_slave_ctrldata(spi);
795 spi->controller_data = cs;
796 } else if (cs) {
797 /* On non-DT platforms the SPI core will set spi->cs_gpio
798 * to -ENOENT. The GPIO pin used to drive the chip select
799 * is defined by using platform data so spi->cs_gpio value
800 * has to be override to have the proper GPIO pin number.
801 */
802 spi->cs_gpio = cs->line;
803 }
804
805 if (IS_ERR_OR_NULL(cs)) {
806 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
807 return -ENODEV;
808 }
809
810 if (!spi_get_ctldata(spi)) {
811 if (gpio_is_valid(spi->cs_gpio)) {
812 err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
813 dev_name(&spi->dev));
814 if (err) {
815 dev_err(&spi->dev,
816 "Failed to get /CS gpio [%d]: %d\n",
817 spi->cs_gpio, err);
818 goto err_gpio_req;
819 }
820 }
821
822 spi_set_ctldata(spi, cs);
823 }
824
825 sci = sdd->cntrlr_info;
826
827 pm_runtime_get_sync(&sdd->pdev->dev);
828
829 /* Check if we can provide the requested rate */
830 if (!sdd->port_conf->clk_from_cmu) {
831 u32 psr, speed;
832
833 /* Max possible */
834 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
835
836 if (spi->max_speed_hz > speed)
837 spi->max_speed_hz = speed;
838
839 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
840 psr &= S3C64XX_SPI_PSR_MASK;
841 if (psr == S3C64XX_SPI_PSR_MASK)
842 psr--;
843
844 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
845 if (spi->max_speed_hz < speed) {
846 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
847 psr++;
848 } else {
849 err = -EINVAL;
850 goto setup_exit;
851 }
852 }
853
854 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
855 if (spi->max_speed_hz >= speed) {
856 spi->max_speed_hz = speed;
857 } else {
858 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
859 spi->max_speed_hz);
860 err = -EINVAL;
861 goto setup_exit;
862 }
863 }
864
865 pm_runtime_mark_last_busy(&sdd->pdev->dev);
866 pm_runtime_put_autosuspend(&sdd->pdev->dev);
867 s3c64xx_spi_set_cs(spi, false);
868
869 return 0;
870
871 setup_exit:
872 pm_runtime_mark_last_busy(&sdd->pdev->dev);
873 pm_runtime_put_autosuspend(&sdd->pdev->dev);
874 /* setup() returns with device de-selected */
875 s3c64xx_spi_set_cs(spi, false);
876
877 if (gpio_is_valid(spi->cs_gpio))
878 gpio_free(spi->cs_gpio);
879 spi_set_ctldata(spi, NULL);
880
881 err_gpio_req:
882 if (spi->dev.of_node)
883 kfree(cs);
884
885 return err;
886 }
887
888 static void s3c64xx_spi_cleanup(struct spi_device *spi)
889 {
890 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
891
892 if (gpio_is_valid(spi->cs_gpio)) {
893 gpio_free(spi->cs_gpio);
894 if (spi->dev.of_node)
895 kfree(cs);
896 else {
897 /* On non-DT platforms, the SPI core sets
898 * spi->cs_gpio to -ENOENT and .setup()
899 * overrides it with the GPIO pin value
900 * passed using platform data.
901 */
902 spi->cs_gpio = -ENOENT;
903 }
904 }
905
906 spi_set_ctldata(spi, NULL);
907 }
908
909 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
910 {
911 struct s3c64xx_spi_driver_data *sdd = data;
912 struct spi_master *spi = sdd->master;
913 unsigned int val, clr = 0;
914
915 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
916
917 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
918 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
919 dev_err(&spi->dev, "RX overrun\n");
920 }
921 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
922 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
923 dev_err(&spi->dev, "RX underrun\n");
924 }
925 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
926 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
927 dev_err(&spi->dev, "TX overrun\n");
928 }
929 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
930 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
931 dev_err(&spi->dev, "TX underrun\n");
932 }
933
934 /* Clear the pending irq by setting and then clearing it */
935 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
936 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
937
938 return IRQ_HANDLED;
939 }
940
941 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
942 {
943 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
944 void __iomem *regs = sdd->regs;
945 unsigned int val;
946
947 sdd->cur_speed = 0;
948
949 if (sci->no_cs)
950 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
951 else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
952 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
953
954 /* Disable Interrupts - we use Polling if not DMA mode */
955 writel(0, regs + S3C64XX_SPI_INT_EN);
956
957 if (!sdd->port_conf->clk_from_cmu)
958 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
959 regs + S3C64XX_SPI_CLK_CFG);
960 writel(0, regs + S3C64XX_SPI_MODE_CFG);
961 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
962
963 /* Clear any irq pending bits, should set and clear the bits */
964 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
965 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
966 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
967 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
968 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
969 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
970
971 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
972
973 val = readl(regs + S3C64XX_SPI_MODE_CFG);
974 val &= ~S3C64XX_SPI_MODE_4BURST;
975 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
976 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
977 writel(val, regs + S3C64XX_SPI_MODE_CFG);
978
979 flush_fifo(sdd);
980 }
981
982 #ifdef CONFIG_OF
983 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
984 {
985 struct s3c64xx_spi_info *sci;
986 u32 temp;
987
988 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
989 if (!sci)
990 return ERR_PTR(-ENOMEM);
991
992 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
993 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
994 sci->src_clk_nr = 0;
995 } else {
996 sci->src_clk_nr = temp;
997 }
998
999 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1000 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1001 sci->num_cs = 1;
1002 } else {
1003 sci->num_cs = temp;
1004 }
1005
1006 sci->no_cs = of_property_read_bool(dev->of_node, "broken-cs");
1007
1008 return sci;
1009 }
1010 #else
1011 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1012 {
1013 return dev_get_platdata(dev);
1014 }
1015 #endif
1016
1017 static const struct of_device_id s3c64xx_spi_dt_match[];
1018
1019 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1020 struct platform_device *pdev)
1021 {
1022 #ifdef CONFIG_OF
1023 if (pdev->dev.of_node) {
1024 const struct of_device_id *match;
1025 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1026 return (struct s3c64xx_spi_port_config *)match->data;
1027 }
1028 #endif
1029 return (struct s3c64xx_spi_port_config *)
1030 platform_get_device_id(pdev)->driver_data;
1031 }
1032
1033 static int s3c64xx_spi_probe(struct platform_device *pdev)
1034 {
1035 struct resource *mem_res;
1036 struct s3c64xx_spi_driver_data *sdd;
1037 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1038 struct spi_master *master;
1039 int ret, irq;
1040 char clk_name[16];
1041
1042 if (!sci && pdev->dev.of_node) {
1043 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1044 if (IS_ERR(sci))
1045 return PTR_ERR(sci);
1046 }
1047
1048 if (!sci) {
1049 dev_err(&pdev->dev, "platform_data missing!\n");
1050 return -ENODEV;
1051 }
1052
1053 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 if (mem_res == NULL) {
1055 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1056 return -ENXIO;
1057 }
1058
1059 irq = platform_get_irq(pdev, 0);
1060 if (irq < 0) {
1061 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1062 return irq;
1063 }
1064
1065 master = spi_alloc_master(&pdev->dev,
1066 sizeof(struct s3c64xx_spi_driver_data));
1067 if (master == NULL) {
1068 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1069 return -ENOMEM;
1070 }
1071
1072 platform_set_drvdata(pdev, master);
1073
1074 sdd = spi_master_get_devdata(master);
1075 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1076 sdd->master = master;
1077 sdd->cntrlr_info = sci;
1078 sdd->pdev = pdev;
1079 sdd->sfr_start = mem_res->start;
1080 if (pdev->dev.of_node) {
1081 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1082 if (ret < 0) {
1083 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1084 ret);
1085 goto err_deref_master;
1086 }
1087 sdd->port_id = ret;
1088 } else {
1089 sdd->port_id = pdev->id;
1090 }
1091
1092 sdd->cur_bpw = 8;
1093
1094 if (!sdd->pdev->dev.of_node && (!sci->dma_tx || !sci->dma_rx)) {
1095 dev_warn(&pdev->dev, "Unable to get SPI tx/rx DMA data. Switching to poll mode\n");
1096 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1097 }
1098
1099 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1100 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1101
1102 master->dev.of_node = pdev->dev.of_node;
1103 master->bus_num = sdd->port_id;
1104 master->setup = s3c64xx_spi_setup;
1105 master->cleanup = s3c64xx_spi_cleanup;
1106 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1107 master->prepare_message = s3c64xx_spi_prepare_message;
1108 master->transfer_one = s3c64xx_spi_transfer_one;
1109 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1110 master->num_chipselect = sci->num_cs;
1111 master->dma_alignment = 8;
1112 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1113 SPI_BPW_MASK(8);
1114 /* the spi->mode bits understood by this driver: */
1115 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1116 master->auto_runtime_pm = true;
1117 if (!is_polling(sdd))
1118 master->can_dma = s3c64xx_spi_can_dma;
1119
1120 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1121 if (IS_ERR(sdd->regs)) {
1122 ret = PTR_ERR(sdd->regs);
1123 goto err_deref_master;
1124 }
1125
1126 if (sci->cfg_gpio && sci->cfg_gpio()) {
1127 dev_err(&pdev->dev, "Unable to config gpio\n");
1128 ret = -EBUSY;
1129 goto err_deref_master;
1130 }
1131
1132 /* Setup clocks */
1133 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1134 if (IS_ERR(sdd->clk)) {
1135 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1136 ret = PTR_ERR(sdd->clk);
1137 goto err_deref_master;
1138 }
1139
1140 ret = clk_prepare_enable(sdd->clk);
1141 if (ret) {
1142 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1143 goto err_deref_master;
1144 }
1145
1146 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1147 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1148 if (IS_ERR(sdd->src_clk)) {
1149 dev_err(&pdev->dev,
1150 "Unable to acquire clock '%s'\n", clk_name);
1151 ret = PTR_ERR(sdd->src_clk);
1152 goto err_disable_clk;
1153 }
1154
1155 ret = clk_prepare_enable(sdd->src_clk);
1156 if (ret) {
1157 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1158 goto err_disable_clk;
1159 }
1160
1161 if (sdd->port_conf->clk_ioclk) {
1162 sdd->ioclk = devm_clk_get(&pdev->dev, "spi_ioclk");
1163 if (IS_ERR(sdd->ioclk)) {
1164 dev_err(&pdev->dev, "Unable to acquire 'ioclk'\n");
1165 ret = PTR_ERR(sdd->ioclk);
1166 goto err_disable_src_clk;
1167 }
1168
1169 ret = clk_prepare_enable(sdd->ioclk);
1170 if (ret) {
1171 dev_err(&pdev->dev, "Couldn't enable clock 'ioclk'\n");
1172 goto err_disable_src_clk;
1173 }
1174 }
1175
1176 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1177 pm_runtime_use_autosuspend(&pdev->dev);
1178 pm_runtime_set_active(&pdev->dev);
1179 pm_runtime_enable(&pdev->dev);
1180 pm_runtime_get_sync(&pdev->dev);
1181
1182 /* Setup Deufult Mode */
1183 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1184
1185 spin_lock_init(&sdd->lock);
1186 init_completion(&sdd->xfer_completion);
1187
1188 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1189 "spi-s3c64xx", sdd);
1190 if (ret != 0) {
1191 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1192 irq, ret);
1193 goto err_pm_put;
1194 }
1195
1196 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1197 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1198 sdd->regs + S3C64XX_SPI_INT_EN);
1199
1200 ret = devm_spi_register_master(&pdev->dev, master);
1201 if (ret != 0) {
1202 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1203 goto err_pm_put;
1204 }
1205
1206 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1207 sdd->port_id, master->num_chipselect);
1208 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\tDMA=[Rx-%p, Tx-%p]\n",
1209 mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1,
1210 sci->dma_rx, sci->dma_tx);
1211
1212 pm_runtime_mark_last_busy(&pdev->dev);
1213 pm_runtime_put_autosuspend(&pdev->dev);
1214
1215 return 0;
1216
1217 err_pm_put:
1218 pm_runtime_put_noidle(&pdev->dev);
1219 pm_runtime_disable(&pdev->dev);
1220 pm_runtime_set_suspended(&pdev->dev);
1221
1222 clk_disable_unprepare(sdd->ioclk);
1223 err_disable_src_clk:
1224 clk_disable_unprepare(sdd->src_clk);
1225 err_disable_clk:
1226 clk_disable_unprepare(sdd->clk);
1227 err_deref_master:
1228 spi_master_put(master);
1229
1230 return ret;
1231 }
1232
1233 static int s3c64xx_spi_remove(struct platform_device *pdev)
1234 {
1235 struct spi_master *master = platform_get_drvdata(pdev);
1236 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1237
1238 pm_runtime_get_sync(&pdev->dev);
1239
1240 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1241
1242 clk_disable_unprepare(sdd->ioclk);
1243
1244 clk_disable_unprepare(sdd->src_clk);
1245
1246 clk_disable_unprepare(sdd->clk);
1247
1248 pm_runtime_put_noidle(&pdev->dev);
1249 pm_runtime_disable(&pdev->dev);
1250 pm_runtime_set_suspended(&pdev->dev);
1251
1252 return 0;
1253 }
1254
1255 #ifdef CONFIG_PM_SLEEP
1256 static int s3c64xx_spi_suspend(struct device *dev)
1257 {
1258 struct spi_master *master = dev_get_drvdata(dev);
1259 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1260
1261 int ret = spi_master_suspend(master);
1262 if (ret)
1263 return ret;
1264
1265 ret = pm_runtime_force_suspend(dev);
1266 if (ret < 0)
1267 return ret;
1268
1269 sdd->cur_speed = 0; /* Output Clock is stopped */
1270
1271 return 0;
1272 }
1273
1274 static int s3c64xx_spi_resume(struct device *dev)
1275 {
1276 struct spi_master *master = dev_get_drvdata(dev);
1277 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1278 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1279 int ret;
1280
1281 if (sci->cfg_gpio)
1282 sci->cfg_gpio();
1283
1284 ret = pm_runtime_force_resume(dev);
1285 if (ret < 0)
1286 return ret;
1287
1288 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1289
1290 return spi_master_resume(master);
1291 }
1292 #endif /* CONFIG_PM_SLEEP */
1293
1294 #ifdef CONFIG_PM
1295 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1296 {
1297 struct spi_master *master = dev_get_drvdata(dev);
1298 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1299
1300 clk_disable_unprepare(sdd->clk);
1301 clk_disable_unprepare(sdd->src_clk);
1302 clk_disable_unprepare(sdd->ioclk);
1303
1304 return 0;
1305 }
1306
1307 static int s3c64xx_spi_runtime_resume(struct device *dev)
1308 {
1309 struct spi_master *master = dev_get_drvdata(dev);
1310 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1311 int ret;
1312
1313 if (sdd->port_conf->clk_ioclk) {
1314 ret = clk_prepare_enable(sdd->ioclk);
1315 if (ret != 0)
1316 return ret;
1317 }
1318
1319 ret = clk_prepare_enable(sdd->src_clk);
1320 if (ret != 0)
1321 goto err_disable_ioclk;
1322
1323 ret = clk_prepare_enable(sdd->clk);
1324 if (ret != 0)
1325 goto err_disable_src_clk;
1326
1327 return 0;
1328
1329 err_disable_src_clk:
1330 clk_disable_unprepare(sdd->src_clk);
1331 err_disable_ioclk:
1332 clk_disable_unprepare(sdd->ioclk);
1333
1334 return ret;
1335 }
1336 #endif /* CONFIG_PM */
1337
1338 static const struct dev_pm_ops s3c64xx_spi_pm = {
1339 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1340 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1341 s3c64xx_spi_runtime_resume, NULL)
1342 };
1343
1344 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1345 .fifo_lvl_mask = { 0x7f },
1346 .rx_lvl_offset = 13,
1347 .tx_st_done = 21,
1348 .high_speed = true,
1349 };
1350
1351 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1352 .fifo_lvl_mask = { 0x7f, 0x7F },
1353 .rx_lvl_offset = 13,
1354 .tx_st_done = 21,
1355 };
1356
1357 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1358 .fifo_lvl_mask = { 0x1ff, 0x7F },
1359 .rx_lvl_offset = 15,
1360 .tx_st_done = 25,
1361 .high_speed = true,
1362 };
1363
1364 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1365 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1366 .rx_lvl_offset = 15,
1367 .tx_st_done = 25,
1368 .high_speed = true,
1369 .clk_from_cmu = true,
1370 };
1371
1372 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1373 .fifo_lvl_mask = { 0x1ff },
1374 .rx_lvl_offset = 15,
1375 .tx_st_done = 25,
1376 .high_speed = true,
1377 .clk_from_cmu = true,
1378 .quirks = S3C64XX_SPI_QUIRK_POLL,
1379 };
1380
1381 static struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1382 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1383 .rx_lvl_offset = 15,
1384 .tx_st_done = 25,
1385 .high_speed = true,
1386 .clk_from_cmu = true,
1387 .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
1388 };
1389
1390 static struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1391 .fifo_lvl_mask = { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
1392 .rx_lvl_offset = 15,
1393 .tx_st_done = 25,
1394 .high_speed = true,
1395 .clk_from_cmu = true,
1396 .clk_ioclk = true,
1397 .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
1398 };
1399
1400 static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1401 {
1402 .name = "s3c2443-spi",
1403 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1404 }, {
1405 .name = "s3c6410-spi",
1406 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1407 },
1408 { },
1409 };
1410
1411 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1412 { .compatible = "samsung,s3c2443-spi",
1413 .data = (void *)&s3c2443_spi_port_config,
1414 },
1415 { .compatible = "samsung,s3c6410-spi",
1416 .data = (void *)&s3c6410_spi_port_config,
1417 },
1418 { .compatible = "samsung,s5pv210-spi",
1419 .data = (void *)&s5pv210_spi_port_config,
1420 },
1421 { .compatible = "samsung,exynos4210-spi",
1422 .data = (void *)&exynos4_spi_port_config,
1423 },
1424 { .compatible = "samsung,exynos5440-spi",
1425 .data = (void *)&exynos5440_spi_port_config,
1426 },
1427 { .compatible = "samsung,exynos7-spi",
1428 .data = (void *)&exynos7_spi_port_config,
1429 },
1430 { .compatible = "samsung,exynos5433-spi",
1431 .data = (void *)&exynos5433_spi_port_config,
1432 },
1433 { },
1434 };
1435 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1436
1437 static struct platform_driver s3c64xx_spi_driver = {
1438 .driver = {
1439 .name = "s3c64xx-spi",
1440 .pm = &s3c64xx_spi_pm,
1441 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1442 },
1443 .probe = s3c64xx_spi_probe,
1444 .remove = s3c64xx_spi_remove,
1445 .id_table = s3c64xx_spi_driver_ids,
1446 };
1447 MODULE_ALIAS("platform:s3c64xx-spi");
1448
1449 module_platform_driver(s3c64xx_spi_driver);
1450
1451 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1452 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1453 MODULE_LICENSE("GPL");
This page took 0.0646 seconds and 5 git commands to generate.