Merge branch 'next' into for-linus
[deliverable/linux.git] / drivers / spi / spi-s3c64xx.c
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/spi/spi.h>
30 #include <linux/gpio.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33
34 #include <linux/platform_data/spi-s3c64xx.h>
35
36 #define MAX_SPI_PORTS 3
37 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
38
39 /* Registers and bit-fields */
40
41 #define S3C64XX_SPI_CH_CFG 0x00
42 #define S3C64XX_SPI_CLK_CFG 0x04
43 #define S3C64XX_SPI_MODE_CFG 0x08
44 #define S3C64XX_SPI_SLAVE_SEL 0x0C
45 #define S3C64XX_SPI_INT_EN 0x10
46 #define S3C64XX_SPI_STATUS 0x14
47 #define S3C64XX_SPI_TX_DATA 0x18
48 #define S3C64XX_SPI_RX_DATA 0x1C
49 #define S3C64XX_SPI_PACKET_CNT 0x20
50 #define S3C64XX_SPI_PENDING_CLR 0x24
51 #define S3C64XX_SPI_SWAP_CFG 0x28
52 #define S3C64XX_SPI_FB_CLK 0x2C
53
54 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
55 #define S3C64XX_SPI_CH_SW_RST (1<<5)
56 #define S3C64XX_SPI_CH_SLAVE (1<<4)
57 #define S3C64XX_SPI_CPOL_L (1<<3)
58 #define S3C64XX_SPI_CPHA_B (1<<2)
59 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
60 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
61
62 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
63 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
64 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
65 #define S3C64XX_SPI_PSR_MASK 0xff
66
67 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
68 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
71 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
75 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
76 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
77 #define S3C64XX_SPI_MODE_4BURST (1<<0)
78
79 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
80 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
81
82 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
83 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
84 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
85 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
86 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
87 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
88 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
89
90 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
91 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
92 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
93 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
94 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
95 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
96
97 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
98
99 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
100 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
101 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
102 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
103 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
104
105 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
106 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
107 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
108 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
109 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
110 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
111 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
112 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
113
114 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
115
116 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
117 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
118 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
119 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
120 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
121 FIFO_LVL_MASK(i))
122
123 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
124 #define S3C64XX_SPI_TRAILCNT_OFF 19
125
126 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
127
128 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
129 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
130
131 #define RXBUSY (1<<2)
132 #define TXBUSY (1<<3)
133
134 struct s3c64xx_spi_dma_data {
135 struct dma_chan *ch;
136 enum dma_transfer_direction direction;
137 unsigned int dmach;
138 };
139
140 /**
141 * struct s3c64xx_spi_info - SPI Controller hardware info
142 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
143 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
144 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
145 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
146 * @clk_from_cmu: True, if the controller does not include a clock mux and
147 * prescaler unit.
148 *
149 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
150 * differ in some aspects such as the size of the fifo and spi bus clock
151 * setup. Such differences are specified to the driver using this structure
152 * which is provided as driver data to the driver.
153 */
154 struct s3c64xx_spi_port_config {
155 int fifo_lvl_mask[MAX_SPI_PORTS];
156 int rx_lvl_offset;
157 int tx_st_done;
158 int quirks;
159 bool high_speed;
160 bool clk_from_cmu;
161 };
162
163 /**
164 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
165 * @clk: Pointer to the spi clock.
166 * @src_clk: Pointer to the clock used to generate SPI signals.
167 * @master: Pointer to the SPI Protocol master.
168 * @cntrlr_info: Platform specific data for the controller this driver manages.
169 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
170 * @lock: Controller specific lock.
171 * @state: Set of FLAGS to indicate status.
172 * @rx_dmach: Controller's DMA channel for Rx.
173 * @tx_dmach: Controller's DMA channel for Tx.
174 * @sfr_start: BUS address of SPI controller regs.
175 * @regs: Pointer to ioremap'ed controller registers.
176 * @irq: interrupt
177 * @xfer_completion: To indicate completion of xfer task.
178 * @cur_mode: Stores the active configuration of the controller.
179 * @cur_bpw: Stores the active bits per word settings.
180 * @cur_speed: Stores the active xfer clock speed.
181 */
182 struct s3c64xx_spi_driver_data {
183 void __iomem *regs;
184 struct clk *clk;
185 struct clk *src_clk;
186 struct platform_device *pdev;
187 struct spi_master *master;
188 struct s3c64xx_spi_info *cntrlr_info;
189 struct spi_device *tgl_spi;
190 spinlock_t lock;
191 unsigned long sfr_start;
192 struct completion xfer_completion;
193 unsigned state;
194 unsigned cur_mode, cur_bpw;
195 unsigned cur_speed;
196 struct s3c64xx_spi_dma_data rx_dma;
197 struct s3c64xx_spi_dma_data tx_dma;
198 struct s3c64xx_spi_port_config *port_conf;
199 unsigned int port_id;
200 bool cs_gpio;
201 };
202
203 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
204 {
205 void __iomem *regs = sdd->regs;
206 unsigned long loops;
207 u32 val;
208
209 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
210
211 val = readl(regs + S3C64XX_SPI_CH_CFG);
212 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
213 writel(val, regs + S3C64XX_SPI_CH_CFG);
214
215 val = readl(regs + S3C64XX_SPI_CH_CFG);
216 val |= S3C64XX_SPI_CH_SW_RST;
217 val &= ~S3C64XX_SPI_CH_HS_EN;
218 writel(val, regs + S3C64XX_SPI_CH_CFG);
219
220 /* Flush TxFIFO*/
221 loops = msecs_to_loops(1);
222 do {
223 val = readl(regs + S3C64XX_SPI_STATUS);
224 } while (TX_FIFO_LVL(val, sdd) && loops--);
225
226 if (loops == 0)
227 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
228
229 /* Flush RxFIFO*/
230 loops = msecs_to_loops(1);
231 do {
232 val = readl(regs + S3C64XX_SPI_STATUS);
233 if (RX_FIFO_LVL(val, sdd))
234 readl(regs + S3C64XX_SPI_RX_DATA);
235 else
236 break;
237 } while (loops--);
238
239 if (loops == 0)
240 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
241
242 val = readl(regs + S3C64XX_SPI_CH_CFG);
243 val &= ~S3C64XX_SPI_CH_SW_RST;
244 writel(val, regs + S3C64XX_SPI_CH_CFG);
245
246 val = readl(regs + S3C64XX_SPI_MODE_CFG);
247 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
248 writel(val, regs + S3C64XX_SPI_MODE_CFG);
249 }
250
251 static void s3c64xx_spi_dmacb(void *data)
252 {
253 struct s3c64xx_spi_driver_data *sdd;
254 struct s3c64xx_spi_dma_data *dma = data;
255 unsigned long flags;
256
257 if (dma->direction == DMA_DEV_TO_MEM)
258 sdd = container_of(data,
259 struct s3c64xx_spi_driver_data, rx_dma);
260 else
261 sdd = container_of(data,
262 struct s3c64xx_spi_driver_data, tx_dma);
263
264 spin_lock_irqsave(&sdd->lock, flags);
265
266 if (dma->direction == DMA_DEV_TO_MEM) {
267 sdd->state &= ~RXBUSY;
268 if (!(sdd->state & TXBUSY))
269 complete(&sdd->xfer_completion);
270 } else {
271 sdd->state &= ~TXBUSY;
272 if (!(sdd->state & RXBUSY))
273 complete(&sdd->xfer_completion);
274 }
275
276 spin_unlock_irqrestore(&sdd->lock, flags);
277 }
278
279 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
280 struct sg_table *sgt)
281 {
282 struct s3c64xx_spi_driver_data *sdd;
283 struct dma_slave_config config;
284 struct dma_async_tx_descriptor *desc;
285
286 memset(&config, 0, sizeof(config));
287
288 if (dma->direction == DMA_DEV_TO_MEM) {
289 sdd = container_of((void *)dma,
290 struct s3c64xx_spi_driver_data, rx_dma);
291 config.direction = dma->direction;
292 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
293 config.src_addr_width = sdd->cur_bpw / 8;
294 config.src_maxburst = 1;
295 dmaengine_slave_config(dma->ch, &config);
296 } else {
297 sdd = container_of((void *)dma,
298 struct s3c64xx_spi_driver_data, tx_dma);
299 config.direction = dma->direction;
300 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
301 config.dst_addr_width = sdd->cur_bpw / 8;
302 config.dst_maxburst = 1;
303 dmaengine_slave_config(dma->ch, &config);
304 }
305
306 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
307 dma->direction, DMA_PREP_INTERRUPT);
308
309 desc->callback = s3c64xx_spi_dmacb;
310 desc->callback_param = dma;
311
312 dmaengine_submit(desc);
313 dma_async_issue_pending(dma->ch);
314 }
315
316 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
317 {
318 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
319 dma_filter_fn filter = sdd->cntrlr_info->filter;
320 struct device *dev = &sdd->pdev->dev;
321 dma_cap_mask_t mask;
322 int ret;
323
324 if (!is_polling(sdd)) {
325 dma_cap_zero(mask);
326 dma_cap_set(DMA_SLAVE, mask);
327
328 /* Acquire DMA channels */
329 sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
330 (void *)sdd->rx_dma.dmach, dev, "rx");
331 if (!sdd->rx_dma.ch) {
332 dev_err(dev, "Failed to get RX DMA channel\n");
333 ret = -EBUSY;
334 goto out;
335 }
336 spi->dma_rx = sdd->rx_dma.ch;
337
338 sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
339 (void *)sdd->tx_dma.dmach, dev, "tx");
340 if (!sdd->tx_dma.ch) {
341 dev_err(dev, "Failed to get TX DMA channel\n");
342 ret = -EBUSY;
343 goto out_rx;
344 }
345 spi->dma_tx = sdd->tx_dma.ch;
346 }
347
348 ret = pm_runtime_get_sync(&sdd->pdev->dev);
349 if (ret < 0) {
350 dev_err(dev, "Failed to enable device: %d\n", ret);
351 goto out_tx;
352 }
353
354 return 0;
355
356 out_tx:
357 dma_release_channel(sdd->tx_dma.ch);
358 out_rx:
359 dma_release_channel(sdd->rx_dma.ch);
360 out:
361 return ret;
362 }
363
364 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
365 {
366 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
367
368 /* Free DMA channels */
369 if (!is_polling(sdd)) {
370 dma_release_channel(sdd->rx_dma.ch);
371 dma_release_channel(sdd->tx_dma.ch);
372 }
373
374 pm_runtime_put(&sdd->pdev->dev);
375 return 0;
376 }
377
378 static bool s3c64xx_spi_can_dma(struct spi_master *master,
379 struct spi_device *spi,
380 struct spi_transfer *xfer)
381 {
382 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
383
384 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
385 }
386
387 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
388 struct spi_device *spi,
389 struct spi_transfer *xfer, int dma_mode)
390 {
391 void __iomem *regs = sdd->regs;
392 u32 modecfg, chcfg;
393
394 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
395 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
396
397 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
398 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
399
400 if (dma_mode) {
401 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
402 } else {
403 /* Always shift in data in FIFO, even if xfer is Tx only,
404 * this helps setting PCKT_CNT value for generating clocks
405 * as exactly needed.
406 */
407 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
408 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
409 | S3C64XX_SPI_PACKET_CNT_EN,
410 regs + S3C64XX_SPI_PACKET_CNT);
411 }
412
413 if (xfer->tx_buf != NULL) {
414 sdd->state |= TXBUSY;
415 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
416 if (dma_mode) {
417 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
418 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
419 } else {
420 switch (sdd->cur_bpw) {
421 case 32:
422 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
423 xfer->tx_buf, xfer->len / 4);
424 break;
425 case 16:
426 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
427 xfer->tx_buf, xfer->len / 2);
428 break;
429 default:
430 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
431 xfer->tx_buf, xfer->len);
432 break;
433 }
434 }
435 }
436
437 if (xfer->rx_buf != NULL) {
438 sdd->state |= RXBUSY;
439
440 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
441 && !(sdd->cur_mode & SPI_CPHA))
442 chcfg |= S3C64XX_SPI_CH_HS_EN;
443
444 if (dma_mode) {
445 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
446 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
447 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
448 | S3C64XX_SPI_PACKET_CNT_EN,
449 regs + S3C64XX_SPI_PACKET_CNT);
450 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
451 }
452 }
453
454 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
455 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
456 }
457
458 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
459 int timeout_ms)
460 {
461 void __iomem *regs = sdd->regs;
462 unsigned long val = 1;
463 u32 status;
464
465 /* max fifo depth available */
466 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
467
468 if (timeout_ms)
469 val = msecs_to_loops(timeout_ms);
470
471 do {
472 status = readl(regs + S3C64XX_SPI_STATUS);
473 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
474
475 /* return the actual received data length */
476 return RX_FIFO_LVL(status, sdd);
477 }
478
479 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
480 struct spi_transfer *xfer)
481 {
482 void __iomem *regs = sdd->regs;
483 unsigned long val;
484 u32 status;
485 int ms;
486
487 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
488 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
489 ms += 10; /* some tolerance */
490
491 val = msecs_to_jiffies(ms) + 10;
492 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
493
494 /*
495 * If the previous xfer was completed within timeout, then
496 * proceed further else return -EIO.
497 * DmaTx returns after simply writing data in the FIFO,
498 * w/o waiting for real transmission on the bus to finish.
499 * DmaRx returns only after Dma read data from FIFO which
500 * needs bus transmission to finish, so we don't worry if
501 * Xfer involved Rx(with or without Tx).
502 */
503 if (val && !xfer->rx_buf) {
504 val = msecs_to_loops(10);
505 status = readl(regs + S3C64XX_SPI_STATUS);
506 while ((TX_FIFO_LVL(status, sdd)
507 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
508 && --val) {
509 cpu_relax();
510 status = readl(regs + S3C64XX_SPI_STATUS);
511 }
512
513 }
514
515 /* If timed out while checking rx/tx status return error */
516 if (!val)
517 return -EIO;
518
519 return 0;
520 }
521
522 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
523 struct spi_transfer *xfer)
524 {
525 void __iomem *regs = sdd->regs;
526 unsigned long val;
527 u32 status;
528 int loops;
529 u32 cpy_len;
530 u8 *buf;
531 int ms;
532
533 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
534 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
535 ms += 10; /* some tolerance */
536
537 val = msecs_to_loops(ms);
538 do {
539 status = readl(regs + S3C64XX_SPI_STATUS);
540 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
541
542
543 /* If it was only Tx */
544 if (!xfer->rx_buf) {
545 sdd->state &= ~TXBUSY;
546 return 0;
547 }
548
549 /*
550 * If the receive length is bigger than the controller fifo
551 * size, calculate the loops and read the fifo as many times.
552 * loops = length / max fifo size (calculated by using the
553 * fifo mask).
554 * For any size less than the fifo size the below code is
555 * executed atleast once.
556 */
557 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
558 buf = xfer->rx_buf;
559 do {
560 /* wait for data to be received in the fifo */
561 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
562 (loops ? ms : 0));
563
564 switch (sdd->cur_bpw) {
565 case 32:
566 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
567 buf, cpy_len / 4);
568 break;
569 case 16:
570 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
571 buf, cpy_len / 2);
572 break;
573 default:
574 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
575 buf, cpy_len);
576 break;
577 }
578
579 buf = buf + cpy_len;
580 } while (loops--);
581 sdd->state &= ~RXBUSY;
582
583 return 0;
584 }
585
586 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
587 {
588 void __iomem *regs = sdd->regs;
589 u32 val;
590
591 /* Disable Clock */
592 if (sdd->port_conf->clk_from_cmu) {
593 clk_disable_unprepare(sdd->src_clk);
594 } else {
595 val = readl(regs + S3C64XX_SPI_CLK_CFG);
596 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
597 writel(val, regs + S3C64XX_SPI_CLK_CFG);
598 }
599
600 /* Set Polarity and Phase */
601 val = readl(regs + S3C64XX_SPI_CH_CFG);
602 val &= ~(S3C64XX_SPI_CH_SLAVE |
603 S3C64XX_SPI_CPOL_L |
604 S3C64XX_SPI_CPHA_B);
605
606 if (sdd->cur_mode & SPI_CPOL)
607 val |= S3C64XX_SPI_CPOL_L;
608
609 if (sdd->cur_mode & SPI_CPHA)
610 val |= S3C64XX_SPI_CPHA_B;
611
612 writel(val, regs + S3C64XX_SPI_CH_CFG);
613
614 /* Set Channel & DMA Mode */
615 val = readl(regs + S3C64XX_SPI_MODE_CFG);
616 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
617 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
618
619 switch (sdd->cur_bpw) {
620 case 32:
621 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
622 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
623 break;
624 case 16:
625 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
626 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
627 break;
628 default:
629 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
630 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
631 break;
632 }
633
634 writel(val, regs + S3C64XX_SPI_MODE_CFG);
635
636 if (sdd->port_conf->clk_from_cmu) {
637 /* Configure Clock */
638 /* There is half-multiplier before the SPI */
639 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
640 /* Enable Clock */
641 clk_prepare_enable(sdd->src_clk);
642 } else {
643 /* Configure Clock */
644 val = readl(regs + S3C64XX_SPI_CLK_CFG);
645 val &= ~S3C64XX_SPI_PSR_MASK;
646 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
647 & S3C64XX_SPI_PSR_MASK);
648 writel(val, regs + S3C64XX_SPI_CLK_CFG);
649
650 /* Enable Clock */
651 val = readl(regs + S3C64XX_SPI_CLK_CFG);
652 val |= S3C64XX_SPI_ENCLK_ENABLE;
653 writel(val, regs + S3C64XX_SPI_CLK_CFG);
654 }
655 }
656
657 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
658
659 static int s3c64xx_spi_prepare_message(struct spi_master *master,
660 struct spi_message *msg)
661 {
662 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
663 struct spi_device *spi = msg->spi;
664 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
665
666 /* If Master's(controller) state differs from that needed by Slave */
667 if (sdd->cur_speed != spi->max_speed_hz
668 || sdd->cur_mode != spi->mode
669 || sdd->cur_bpw != spi->bits_per_word) {
670 sdd->cur_bpw = spi->bits_per_word;
671 sdd->cur_speed = spi->max_speed_hz;
672 sdd->cur_mode = spi->mode;
673 s3c64xx_spi_config(sdd);
674 }
675
676 /* Configure feedback delay */
677 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
678
679 return 0;
680 }
681
682 static int s3c64xx_spi_transfer_one(struct spi_master *master,
683 struct spi_device *spi,
684 struct spi_transfer *xfer)
685 {
686 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
687 int status;
688 u32 speed;
689 u8 bpw;
690 unsigned long flags;
691 int use_dma;
692
693 reinit_completion(&sdd->xfer_completion);
694
695 /* Only BPW and Speed may change across transfers */
696 bpw = xfer->bits_per_word;
697 speed = xfer->speed_hz ? : spi->max_speed_hz;
698
699 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
700 sdd->cur_bpw = bpw;
701 sdd->cur_speed = speed;
702 s3c64xx_spi_config(sdd);
703 }
704
705 /* Polling method for xfers not bigger than FIFO capacity */
706 use_dma = 0;
707 if (!is_polling(sdd) &&
708 (sdd->rx_dma.ch && sdd->tx_dma.ch &&
709 (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
710 use_dma = 1;
711
712 spin_lock_irqsave(&sdd->lock, flags);
713
714 /* Pending only which is to be done */
715 sdd->state &= ~RXBUSY;
716 sdd->state &= ~TXBUSY;
717
718 enable_datapath(sdd, spi, xfer, use_dma);
719
720 /* Start the signals */
721 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
722
723 spin_unlock_irqrestore(&sdd->lock, flags);
724
725 if (use_dma)
726 status = wait_for_dma(sdd, xfer);
727 else
728 status = wait_for_pio(sdd, xfer);
729
730 if (status) {
731 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
732 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
733 (sdd->state & RXBUSY) ? 'f' : 'p',
734 (sdd->state & TXBUSY) ? 'f' : 'p',
735 xfer->len);
736
737 if (use_dma) {
738 if (xfer->tx_buf != NULL
739 && (sdd->state & TXBUSY))
740 dmaengine_terminate_all(sdd->tx_dma.ch);
741 if (xfer->rx_buf != NULL
742 && (sdd->state & RXBUSY))
743 dmaengine_terminate_all(sdd->rx_dma.ch);
744 }
745 } else {
746 flush_fifo(sdd);
747 }
748
749 return status;
750 }
751
752 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
753 struct spi_device *spi)
754 {
755 struct s3c64xx_spi_csinfo *cs;
756 struct device_node *slave_np, *data_np = NULL;
757 struct s3c64xx_spi_driver_data *sdd;
758 u32 fb_delay = 0;
759
760 sdd = spi_master_get_devdata(spi->master);
761 slave_np = spi->dev.of_node;
762 if (!slave_np) {
763 dev_err(&spi->dev, "device node not found\n");
764 return ERR_PTR(-EINVAL);
765 }
766
767 data_np = of_get_child_by_name(slave_np, "controller-data");
768 if (!data_np) {
769 dev_err(&spi->dev, "child node 'controller-data' not found\n");
770 return ERR_PTR(-EINVAL);
771 }
772
773 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
774 if (!cs) {
775 of_node_put(data_np);
776 return ERR_PTR(-ENOMEM);
777 }
778
779 /* The CS line is asserted/deasserted by the gpio pin */
780 if (sdd->cs_gpio)
781 cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
782
783 if (!gpio_is_valid(cs->line)) {
784 dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
785 kfree(cs);
786 of_node_put(data_np);
787 return ERR_PTR(-EINVAL);
788 }
789
790 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
791 cs->fb_delay = fb_delay;
792 of_node_put(data_np);
793 return cs;
794 }
795
796 /*
797 * Here we only check the validity of requested configuration
798 * and save the configuration in a local data-structure.
799 * The controller is actually configured only just before we
800 * get a message to transfer.
801 */
802 static int s3c64xx_spi_setup(struct spi_device *spi)
803 {
804 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
805 struct s3c64xx_spi_driver_data *sdd;
806 struct s3c64xx_spi_info *sci;
807 int err;
808
809 sdd = spi_master_get_devdata(spi->master);
810 if (!cs && spi->dev.of_node) {
811 cs = s3c64xx_get_slave_ctrldata(spi);
812 spi->controller_data = cs;
813 }
814
815 if (IS_ERR_OR_NULL(cs)) {
816 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
817 return -ENODEV;
818 }
819
820 if (!spi_get_ctldata(spi)) {
821 /* Request gpio only if cs line is asserted by gpio pins */
822 if (sdd->cs_gpio) {
823 err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
824 dev_name(&spi->dev));
825 if (err) {
826 dev_err(&spi->dev,
827 "Failed to get /CS gpio [%d]: %d\n",
828 cs->line, err);
829 goto err_gpio_req;
830 }
831
832 spi->cs_gpio = cs->line;
833 }
834
835 spi_set_ctldata(spi, cs);
836 }
837
838 sci = sdd->cntrlr_info;
839
840 pm_runtime_get_sync(&sdd->pdev->dev);
841
842 /* Check if we can provide the requested rate */
843 if (!sdd->port_conf->clk_from_cmu) {
844 u32 psr, speed;
845
846 /* Max possible */
847 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
848
849 if (spi->max_speed_hz > speed)
850 spi->max_speed_hz = speed;
851
852 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
853 psr &= S3C64XX_SPI_PSR_MASK;
854 if (psr == S3C64XX_SPI_PSR_MASK)
855 psr--;
856
857 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
858 if (spi->max_speed_hz < speed) {
859 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
860 psr++;
861 } else {
862 err = -EINVAL;
863 goto setup_exit;
864 }
865 }
866
867 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
868 if (spi->max_speed_hz >= speed) {
869 spi->max_speed_hz = speed;
870 } else {
871 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
872 spi->max_speed_hz);
873 err = -EINVAL;
874 goto setup_exit;
875 }
876 }
877
878 pm_runtime_put(&sdd->pdev->dev);
879 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
880 return 0;
881
882 setup_exit:
883 pm_runtime_put(&sdd->pdev->dev);
884 /* setup() returns with device de-selected */
885 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
886
887 gpio_free(cs->line);
888 spi_set_ctldata(spi, NULL);
889
890 err_gpio_req:
891 if (spi->dev.of_node)
892 kfree(cs);
893
894 return err;
895 }
896
897 static void s3c64xx_spi_cleanup(struct spi_device *spi)
898 {
899 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
900 struct s3c64xx_spi_driver_data *sdd;
901
902 sdd = spi_master_get_devdata(spi->master);
903 if (spi->cs_gpio) {
904 gpio_free(spi->cs_gpio);
905 if (spi->dev.of_node)
906 kfree(cs);
907 }
908 spi_set_ctldata(spi, NULL);
909 }
910
911 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
912 {
913 struct s3c64xx_spi_driver_data *sdd = data;
914 struct spi_master *spi = sdd->master;
915 unsigned int val, clr = 0;
916
917 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
918
919 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
920 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
921 dev_err(&spi->dev, "RX overrun\n");
922 }
923 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
924 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
925 dev_err(&spi->dev, "RX underrun\n");
926 }
927 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
928 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
929 dev_err(&spi->dev, "TX overrun\n");
930 }
931 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
932 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
933 dev_err(&spi->dev, "TX underrun\n");
934 }
935
936 /* Clear the pending irq by setting and then clearing it */
937 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
938 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
939
940 return IRQ_HANDLED;
941 }
942
943 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
944 {
945 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
946 void __iomem *regs = sdd->regs;
947 unsigned int val;
948
949 sdd->cur_speed = 0;
950
951 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
952
953 /* Disable Interrupts - we use Polling if not DMA mode */
954 writel(0, regs + S3C64XX_SPI_INT_EN);
955
956 if (!sdd->port_conf->clk_from_cmu)
957 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
958 regs + S3C64XX_SPI_CLK_CFG);
959 writel(0, regs + S3C64XX_SPI_MODE_CFG);
960 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
961
962 /* Clear any irq pending bits, should set and clear the bits */
963 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
964 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
965 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
966 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
967 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
968 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
969
970 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
971
972 val = readl(regs + S3C64XX_SPI_MODE_CFG);
973 val &= ~S3C64XX_SPI_MODE_4BURST;
974 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
975 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
976 writel(val, regs + S3C64XX_SPI_MODE_CFG);
977
978 flush_fifo(sdd);
979 }
980
981 #ifdef CONFIG_OF
982 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
983 {
984 struct s3c64xx_spi_info *sci;
985 u32 temp;
986
987 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
988 if (!sci)
989 return ERR_PTR(-ENOMEM);
990
991 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
992 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
993 sci->src_clk_nr = 0;
994 } else {
995 sci->src_clk_nr = temp;
996 }
997
998 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
999 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1000 sci->num_cs = 1;
1001 } else {
1002 sci->num_cs = temp;
1003 }
1004
1005 return sci;
1006 }
1007 #else
1008 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1009 {
1010 return dev_get_platdata(dev);
1011 }
1012 #endif
1013
1014 static const struct of_device_id s3c64xx_spi_dt_match[];
1015
1016 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1017 struct platform_device *pdev)
1018 {
1019 #ifdef CONFIG_OF
1020 if (pdev->dev.of_node) {
1021 const struct of_device_id *match;
1022 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1023 return (struct s3c64xx_spi_port_config *)match->data;
1024 }
1025 #endif
1026 return (struct s3c64xx_spi_port_config *)
1027 platform_get_device_id(pdev)->driver_data;
1028 }
1029
1030 static int s3c64xx_spi_probe(struct platform_device *pdev)
1031 {
1032 struct resource *mem_res;
1033 struct resource *res;
1034 struct s3c64xx_spi_driver_data *sdd;
1035 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1036 struct spi_master *master;
1037 int ret, irq;
1038 char clk_name[16];
1039
1040 if (!sci && pdev->dev.of_node) {
1041 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1042 if (IS_ERR(sci))
1043 return PTR_ERR(sci);
1044 }
1045
1046 if (!sci) {
1047 dev_err(&pdev->dev, "platform_data missing!\n");
1048 return -ENODEV;
1049 }
1050
1051 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052 if (mem_res == NULL) {
1053 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1054 return -ENXIO;
1055 }
1056
1057 irq = platform_get_irq(pdev, 0);
1058 if (irq < 0) {
1059 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1060 return irq;
1061 }
1062
1063 master = spi_alloc_master(&pdev->dev,
1064 sizeof(struct s3c64xx_spi_driver_data));
1065 if (master == NULL) {
1066 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1067 return -ENOMEM;
1068 }
1069
1070 platform_set_drvdata(pdev, master);
1071
1072 sdd = spi_master_get_devdata(master);
1073 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1074 sdd->master = master;
1075 sdd->cntrlr_info = sci;
1076 sdd->pdev = pdev;
1077 sdd->sfr_start = mem_res->start;
1078 sdd->cs_gpio = true;
1079 if (pdev->dev.of_node) {
1080 if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
1081 sdd->cs_gpio = false;
1082
1083 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1084 if (ret < 0) {
1085 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1086 ret);
1087 goto err0;
1088 }
1089 sdd->port_id = ret;
1090 } else {
1091 sdd->port_id = pdev->id;
1092 }
1093
1094 sdd->cur_bpw = 8;
1095
1096 if (!sdd->pdev->dev.of_node) {
1097 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1098 if (!res) {
1099 dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1100 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1101 } else
1102 sdd->tx_dma.dmach = res->start;
1103
1104 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1105 if (!res) {
1106 dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1107 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1108 } else
1109 sdd->rx_dma.dmach = res->start;
1110 }
1111
1112 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1113 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1114
1115 master->dev.of_node = pdev->dev.of_node;
1116 master->bus_num = sdd->port_id;
1117 master->setup = s3c64xx_spi_setup;
1118 master->cleanup = s3c64xx_spi_cleanup;
1119 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1120 master->prepare_message = s3c64xx_spi_prepare_message;
1121 master->transfer_one = s3c64xx_spi_transfer_one;
1122 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1123 master->num_chipselect = sci->num_cs;
1124 master->dma_alignment = 8;
1125 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1126 SPI_BPW_MASK(8);
1127 /* the spi->mode bits understood by this driver: */
1128 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1129 master->auto_runtime_pm = true;
1130 if (!is_polling(sdd))
1131 master->can_dma = s3c64xx_spi_can_dma;
1132
1133 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1134 if (IS_ERR(sdd->regs)) {
1135 ret = PTR_ERR(sdd->regs);
1136 goto err0;
1137 }
1138
1139 if (sci->cfg_gpio && sci->cfg_gpio()) {
1140 dev_err(&pdev->dev, "Unable to config gpio\n");
1141 ret = -EBUSY;
1142 goto err0;
1143 }
1144
1145 /* Setup clocks */
1146 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1147 if (IS_ERR(sdd->clk)) {
1148 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1149 ret = PTR_ERR(sdd->clk);
1150 goto err0;
1151 }
1152
1153 if (clk_prepare_enable(sdd->clk)) {
1154 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1155 ret = -EBUSY;
1156 goto err0;
1157 }
1158
1159 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1160 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1161 if (IS_ERR(sdd->src_clk)) {
1162 dev_err(&pdev->dev,
1163 "Unable to acquire clock '%s'\n", clk_name);
1164 ret = PTR_ERR(sdd->src_clk);
1165 goto err2;
1166 }
1167
1168 if (clk_prepare_enable(sdd->src_clk)) {
1169 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1170 ret = -EBUSY;
1171 goto err2;
1172 }
1173
1174 /* Setup Deufult Mode */
1175 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1176
1177 spin_lock_init(&sdd->lock);
1178 init_completion(&sdd->xfer_completion);
1179
1180 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1181 "spi-s3c64xx", sdd);
1182 if (ret != 0) {
1183 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1184 irq, ret);
1185 goto err3;
1186 }
1187
1188 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1189 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1190 sdd->regs + S3C64XX_SPI_INT_EN);
1191
1192 pm_runtime_set_active(&pdev->dev);
1193 pm_runtime_enable(&pdev->dev);
1194
1195 ret = devm_spi_register_master(&pdev->dev, master);
1196 if (ret != 0) {
1197 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1198 goto err3;
1199 }
1200
1201 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1202 sdd->port_id, master->num_chipselect);
1203 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1204 mem_res,
1205 sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1206
1207 return 0;
1208
1209 err3:
1210 clk_disable_unprepare(sdd->src_clk);
1211 err2:
1212 clk_disable_unprepare(sdd->clk);
1213 err0:
1214 spi_master_put(master);
1215
1216 return ret;
1217 }
1218
1219 static int s3c64xx_spi_remove(struct platform_device *pdev)
1220 {
1221 struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1222 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1223
1224 pm_runtime_disable(&pdev->dev);
1225
1226 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1227
1228 clk_disable_unprepare(sdd->src_clk);
1229
1230 clk_disable_unprepare(sdd->clk);
1231
1232 return 0;
1233 }
1234
1235 #ifdef CONFIG_PM_SLEEP
1236 static int s3c64xx_spi_suspend(struct device *dev)
1237 {
1238 struct spi_master *master = dev_get_drvdata(dev);
1239 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1240
1241 int ret = spi_master_suspend(master);
1242 if (ret)
1243 return ret;
1244
1245 if (!pm_runtime_suspended(dev)) {
1246 clk_disable_unprepare(sdd->clk);
1247 clk_disable_unprepare(sdd->src_clk);
1248 }
1249
1250 sdd->cur_speed = 0; /* Output Clock is stopped */
1251
1252 return 0;
1253 }
1254
1255 static int s3c64xx_spi_resume(struct device *dev)
1256 {
1257 struct spi_master *master = dev_get_drvdata(dev);
1258 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1259 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1260
1261 if (sci->cfg_gpio)
1262 sci->cfg_gpio();
1263
1264 if (!pm_runtime_suspended(dev)) {
1265 clk_prepare_enable(sdd->src_clk);
1266 clk_prepare_enable(sdd->clk);
1267 }
1268
1269 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1270
1271 return spi_master_resume(master);
1272 }
1273 #endif /* CONFIG_PM_SLEEP */
1274
1275 #ifdef CONFIG_PM_RUNTIME
1276 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1277 {
1278 struct spi_master *master = dev_get_drvdata(dev);
1279 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1280
1281 clk_disable_unprepare(sdd->clk);
1282 clk_disable_unprepare(sdd->src_clk);
1283
1284 return 0;
1285 }
1286
1287 static int s3c64xx_spi_runtime_resume(struct device *dev)
1288 {
1289 struct spi_master *master = dev_get_drvdata(dev);
1290 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1291 int ret;
1292
1293 ret = clk_prepare_enable(sdd->src_clk);
1294 if (ret != 0)
1295 return ret;
1296
1297 ret = clk_prepare_enable(sdd->clk);
1298 if (ret != 0) {
1299 clk_disable_unprepare(sdd->src_clk);
1300 return ret;
1301 }
1302
1303 return 0;
1304 }
1305 #endif /* CONFIG_PM_RUNTIME */
1306
1307 static const struct dev_pm_ops s3c64xx_spi_pm = {
1308 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1309 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1310 s3c64xx_spi_runtime_resume, NULL)
1311 };
1312
1313 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1314 .fifo_lvl_mask = { 0x7f },
1315 .rx_lvl_offset = 13,
1316 .tx_st_done = 21,
1317 .high_speed = true,
1318 };
1319
1320 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1321 .fifo_lvl_mask = { 0x7f, 0x7F },
1322 .rx_lvl_offset = 13,
1323 .tx_st_done = 21,
1324 };
1325
1326 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1327 .fifo_lvl_mask = { 0x1ff, 0x7F },
1328 .rx_lvl_offset = 15,
1329 .tx_st_done = 25,
1330 };
1331
1332 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1333 .fifo_lvl_mask = { 0x7f, 0x7F },
1334 .rx_lvl_offset = 13,
1335 .tx_st_done = 21,
1336 .high_speed = true,
1337 };
1338
1339 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1340 .fifo_lvl_mask = { 0x1ff, 0x7F },
1341 .rx_lvl_offset = 15,
1342 .tx_st_done = 25,
1343 .high_speed = true,
1344 };
1345
1346 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1347 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1348 .rx_lvl_offset = 15,
1349 .tx_st_done = 25,
1350 .high_speed = true,
1351 .clk_from_cmu = true,
1352 };
1353
1354 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1355 .fifo_lvl_mask = { 0x1ff },
1356 .rx_lvl_offset = 15,
1357 .tx_st_done = 25,
1358 .high_speed = true,
1359 .clk_from_cmu = true,
1360 .quirks = S3C64XX_SPI_QUIRK_POLL,
1361 };
1362
1363 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1364 {
1365 .name = "s3c2443-spi",
1366 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1367 }, {
1368 .name = "s3c6410-spi",
1369 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1370 }, {
1371 .name = "s5p64x0-spi",
1372 .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
1373 }, {
1374 .name = "s5pc100-spi",
1375 .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
1376 }, {
1377 .name = "s5pv210-spi",
1378 .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
1379 }, {
1380 .name = "exynos4210-spi",
1381 .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
1382 },
1383 { },
1384 };
1385
1386 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1387 { .compatible = "samsung,s3c2443-spi",
1388 .data = (void *)&s3c2443_spi_port_config,
1389 },
1390 { .compatible = "samsung,s3c6410-spi",
1391 .data = (void *)&s3c6410_spi_port_config,
1392 },
1393 { .compatible = "samsung,s5pc100-spi",
1394 .data = (void *)&s5pc100_spi_port_config,
1395 },
1396 { .compatible = "samsung,s5pv210-spi",
1397 .data = (void *)&s5pv210_spi_port_config,
1398 },
1399 { .compatible = "samsung,exynos4210-spi",
1400 .data = (void *)&exynos4_spi_port_config,
1401 },
1402 { .compatible = "samsung,exynos5440-spi",
1403 .data = (void *)&exynos5440_spi_port_config,
1404 },
1405 { },
1406 };
1407 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1408
1409 static struct platform_driver s3c64xx_spi_driver = {
1410 .driver = {
1411 .name = "s3c64xx-spi",
1412 .owner = THIS_MODULE,
1413 .pm = &s3c64xx_spi_pm,
1414 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1415 },
1416 .probe = s3c64xx_spi_probe,
1417 .remove = s3c64xx_spi_remove,
1418 .id_table = s3c64xx_spi_driver_ids,
1419 };
1420 MODULE_ALIAS("platform:s3c64xx-spi");
1421
1422 module_platform_driver(s3c64xx_spi_driver);
1423
1424 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1425 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1426 MODULE_LICENSE("GPL");
This page took 0.069337 seconds and 5 git commands to generate.