9309a396c01e24d757c94949b4a991fe2513bbda
[deliverable/linux.git] / drivers / spi / spi-sh-msiof.c
1 /*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33
34 #include <asm/unaligned.h>
35
36
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41 };
42
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 const struct sh_msiof_chipdata *chipdata;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 int tx_fifo_size;
52 int rx_fifo_size;
53 void *tx_dma_page;
54 void *rx_dma_page;
55 dma_addr_t tx_dma_addr;
56 dma_addr_t rx_dma_addr;
57 };
58
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
77
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT 2
89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
90 /* TMDR1 */
91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92
93 /* TMDR2 and RMDR2 */
94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97
98 #define MAX_WDLEN 256U
99
100 /* TSCR and RSCR */
101 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
102 #define SCR_BRPS(i) (((i) - 1) << 8)
103 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
104 #define SCR_BRDV_DIV_2 0x0000
105 #define SCR_BRDV_DIV_4 0x0001
106 #define SCR_BRDV_DIV_8 0x0002
107 #define SCR_BRDV_DIV_16 0x0003
108 #define SCR_BRDV_DIV_32 0x0004
109 #define SCR_BRDV_DIV_1 0x0007
110
111 /* CTR */
112 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
113 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
114 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
115 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
116 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
117 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
118 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
119 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
120 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
121 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
122 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
123 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
124 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
125 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
126 #define CTR_TXE 0x00000200 /* Transmit Enable */
127 #define CTR_RXE 0x00000100 /* Receive Enable */
128
129 /* FCTR */
130 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
131 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
132 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
133 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
134 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
135 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
136 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
137 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
138 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
139 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
140 #define FCTR_TFUA_SHIFT 20
141 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
142 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
143 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
144 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
145 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
146 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
147 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
148 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
149 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
150 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
151 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
152 #define FCTR_RFUA_SHIFT 4
153 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
154
155 /* STR */
156 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
157 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
158 #define STR_TEOF 0x00800000 /* Frame Transmission End */
159 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
160 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
161 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
162 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
163 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
164 #define STR_REOF 0x00000080 /* Frame Reception End */
165 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
166 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
167 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
168
169 /* IER */
170 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
171 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
172 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
173 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
174 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
175 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
176 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
177 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
178 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
179 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
180 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
181 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
182 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
183 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
184
185
186 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
187 {
188 switch (reg_offs) {
189 case TSCR:
190 case RSCR:
191 return ioread16(p->mapbase + reg_offs);
192 default:
193 return ioread32(p->mapbase + reg_offs);
194 }
195 }
196
197 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
198 u32 value)
199 {
200 switch (reg_offs) {
201 case TSCR:
202 case RSCR:
203 iowrite16(value, p->mapbase + reg_offs);
204 break;
205 default:
206 iowrite32(value, p->mapbase + reg_offs);
207 break;
208 }
209 }
210
211 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
212 u32 clr, u32 set)
213 {
214 u32 mask = clr | set;
215 u32 data;
216 int k;
217
218 data = sh_msiof_read(p, CTR);
219 data &= ~clr;
220 data |= set;
221 sh_msiof_write(p, CTR, data);
222
223 for (k = 100; k > 0; k--) {
224 if ((sh_msiof_read(p, CTR) & mask) == set)
225 break;
226
227 udelay(10);
228 }
229
230 return k > 0 ? 0 : -ETIMEDOUT;
231 }
232
233 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234 {
235 struct sh_msiof_spi_priv *p = data;
236
237 /* just disable the interrupt and wake up */
238 sh_msiof_write(p, IER, 0);
239 complete(&p->done);
240
241 return IRQ_HANDLED;
242 }
243
244 static struct {
245 unsigned short div;
246 unsigned short brdv;
247 } const sh_msiof_spi_div_table[] = {
248 { 1, SCR_BRDV_DIV_1 },
249 { 2, SCR_BRDV_DIV_2 },
250 { 4, SCR_BRDV_DIV_4 },
251 { 8, SCR_BRDV_DIV_8 },
252 { 16, SCR_BRDV_DIV_16 },
253 { 32, SCR_BRDV_DIV_32 },
254 };
255
256 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
257 unsigned long parent_rate, u32 spi_hz)
258 {
259 unsigned long div = 1024;
260 u32 brps, scr;
261 size_t k;
262
263 if (!WARN_ON(!spi_hz || !parent_rate))
264 div = DIV_ROUND_UP(parent_rate, spi_hz);
265
266 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
267 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
268 if (brps <= 32) /* max of brdv is 32 */
269 break;
270 }
271
272 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
273
274 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
275 sh_msiof_write(p, TSCR, scr);
276 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
277 sh_msiof_write(p, RSCR, scr);
278 }
279
280 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
281 {
282 /*
283 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
284 * b'000 : 0
285 * b'001 : 100
286 * b'010 : 200
287 * b'011 (SYNCDL only) : 300
288 * b'101 : 50
289 * b'110 : 150
290 */
291 if (dtdl_or_syncdl % 100)
292 return dtdl_or_syncdl / 100 + 5;
293 else
294 return dtdl_or_syncdl / 100;
295 }
296
297 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
298 {
299 u32 val;
300
301 if (!p->info)
302 return 0;
303
304 /* check if DTDL and SYNCDL is allowed value */
305 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
306 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
307 return 0;
308 }
309
310 /* check if the sum of DTDL and SYNCDL becomes an integer value */
311 if ((p->info->dtdl + p->info->syncdl) % 100) {
312 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
313 return 0;
314 }
315
316 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
317 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
318
319 return val;
320 }
321
322 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
323 u32 cpol, u32 cpha,
324 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
325 {
326 u32 tmp;
327 int edge;
328
329 /*
330 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
331 * 0 0 10 10 1 1
332 * 0 1 10 10 0 0
333 * 1 0 11 11 0 0
334 * 1 1 11 11 1 1
335 */
336 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
337 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
338 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
339 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
340 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
341 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
342 /* These bits are reserved if RX needs TX */
343 tmp &= ~0x0000ffff;
344 }
345 sh_msiof_write(p, RMDR1, tmp);
346
347 tmp = 0;
348 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
349 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
350
351 edge = cpol ^ !cpha;
352
353 tmp |= edge << CTR_TEDG_SHIFT;
354 tmp |= edge << CTR_REDG_SHIFT;
355 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
356 sh_msiof_write(p, CTR, tmp);
357 }
358
359 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
360 const void *tx_buf, void *rx_buf,
361 u32 bits, u32 words)
362 {
363 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
364
365 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
366 sh_msiof_write(p, TMDR2, dr2);
367 else
368 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
369
370 if (rx_buf)
371 sh_msiof_write(p, RMDR2, dr2);
372 }
373
374 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
375 {
376 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
377 }
378
379 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, int words, int fs)
381 {
382 const u8 *buf_8 = tx_buf;
383 int k;
384
385 for (k = 0; k < words; k++)
386 sh_msiof_write(p, TFDR, buf_8[k] << fs);
387 }
388
389 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
390 const void *tx_buf, int words, int fs)
391 {
392 const u16 *buf_16 = tx_buf;
393 int k;
394
395 for (k = 0; k < words; k++)
396 sh_msiof_write(p, TFDR, buf_16[k] << fs);
397 }
398
399 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
401 {
402 const u16 *buf_16 = tx_buf;
403 int k;
404
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
407 }
408
409 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
411 {
412 const u32 *buf_32 = tx_buf;
413 int k;
414
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_32[k] << fs);
417 }
418
419 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
421 {
422 const u32 *buf_32 = tx_buf;
423 int k;
424
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
427 }
428
429 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
431 {
432 const u32 *buf_32 = tx_buf;
433 int k;
434
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
437 }
438
439 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
441 {
442 const u32 *buf_32 = tx_buf;
443 int k;
444
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
447 }
448
449 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
450 void *rx_buf, int words, int fs)
451 {
452 u8 *buf_8 = rx_buf;
453 int k;
454
455 for (k = 0; k < words; k++)
456 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
457 }
458
459 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
460 void *rx_buf, int words, int fs)
461 {
462 u16 *buf_16 = rx_buf;
463 int k;
464
465 for (k = 0; k < words; k++)
466 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
467 }
468
469 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
471 {
472 u16 *buf_16 = rx_buf;
473 int k;
474
475 for (k = 0; k < words; k++)
476 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
477 }
478
479 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
481 {
482 u32 *buf_32 = rx_buf;
483 int k;
484
485 for (k = 0; k < words; k++)
486 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
487 }
488
489 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
491 {
492 u32 *buf_32 = rx_buf;
493 int k;
494
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
497 }
498
499 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
501 {
502 u32 *buf_32 = rx_buf;
503 int k;
504
505 for (k = 0; k < words; k++)
506 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
507 }
508
509 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
511 {
512 u32 *buf_32 = rx_buf;
513 int k;
514
515 for (k = 0; k < words; k++)
516 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
517 }
518
519 static int sh_msiof_spi_setup(struct spi_device *spi)
520 {
521 struct device_node *np = spi->master->dev.of_node;
522 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
523
524 pm_runtime_get_sync(&p->pdev->dev);
525
526 if (!np) {
527 /*
528 * Use spi->controller_data for CS (same strategy as spi_gpio),
529 * if any. otherwise let HW control CS
530 */
531 spi->cs_gpio = (uintptr_t)spi->controller_data;
532 }
533
534 /* Configure pins before deasserting CS */
535 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
536 !!(spi->mode & SPI_CPHA),
537 !!(spi->mode & SPI_3WIRE),
538 !!(spi->mode & SPI_LSB_FIRST),
539 !!(spi->mode & SPI_CS_HIGH));
540
541 if (spi->cs_gpio >= 0)
542 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
543
544
545 pm_runtime_put(&p->pdev->dev);
546
547 return 0;
548 }
549
550 static int sh_msiof_prepare_message(struct spi_master *master,
551 struct spi_message *msg)
552 {
553 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
554 const struct spi_device *spi = msg->spi;
555
556 /* Configure pins before asserting CS */
557 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
558 !!(spi->mode & SPI_CPHA),
559 !!(spi->mode & SPI_3WIRE),
560 !!(spi->mode & SPI_LSB_FIRST),
561 !!(spi->mode & SPI_CS_HIGH));
562 return 0;
563 }
564
565 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
566 {
567 int ret;
568
569 /* setup clock and rx/tx signals */
570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
571 if (rx_buf && !ret)
572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
573 if (!ret)
574 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
575
576 /* start by setting frame bit */
577 if (!ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
579
580 return ret;
581 }
582
583 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
584 {
585 int ret;
586
587 /* shut down frame, rx/tx and clock signals */
588 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
589 if (!ret)
590 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
591 if (rx_buf && !ret)
592 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
593 if (!ret)
594 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
595
596 return ret;
597 }
598
599 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
600 void (*tx_fifo)(struct sh_msiof_spi_priv *,
601 const void *, int, int),
602 void (*rx_fifo)(struct sh_msiof_spi_priv *,
603 void *, int, int),
604 const void *tx_buf, void *rx_buf,
605 int words, int bits)
606 {
607 int fifo_shift;
608 int ret;
609
610 /* limit maximum word transfer to rx/tx fifo size */
611 if (tx_buf)
612 words = min_t(int, words, p->tx_fifo_size);
613 if (rx_buf)
614 words = min_t(int, words, p->rx_fifo_size);
615
616 /* the fifo contents need shifting */
617 fifo_shift = 32 - bits;
618
619 /* default FIFO watermarks for PIO */
620 sh_msiof_write(p, FCTR, 0);
621
622 /* setup msiof transfer mode registers */
623 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
624 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
625
626 /* write tx fifo */
627 if (tx_buf)
628 tx_fifo(p, tx_buf, words, fifo_shift);
629
630 reinit_completion(&p->done);
631
632 ret = sh_msiof_spi_start(p, rx_buf);
633 if (ret) {
634 dev_err(&p->pdev->dev, "failed to start hardware\n");
635 goto stop_ier;
636 }
637
638 /* wait for tx fifo to be emptied / rx fifo to be filled */
639 ret = wait_for_completion_timeout(&p->done, HZ);
640 if (!ret) {
641 dev_err(&p->pdev->dev, "PIO timeout\n");
642 ret = -ETIMEDOUT;
643 goto stop_reset;
644 }
645
646 /* read rx fifo */
647 if (rx_buf)
648 rx_fifo(p, rx_buf, words, fifo_shift);
649
650 /* clear status bits */
651 sh_msiof_reset_str(p);
652
653 ret = sh_msiof_spi_stop(p, rx_buf);
654 if (ret) {
655 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
656 return ret;
657 }
658
659 return words;
660
661 stop_reset:
662 sh_msiof_reset_str(p);
663 sh_msiof_spi_stop(p, rx_buf);
664 stop_ier:
665 sh_msiof_write(p, IER, 0);
666 return ret;
667 }
668
669 static void sh_msiof_dma_complete(void *arg)
670 {
671 struct sh_msiof_spi_priv *p = arg;
672
673 sh_msiof_write(p, IER, 0);
674 complete(&p->done);
675 }
676
677 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
678 void *rx, unsigned int len)
679 {
680 u32 ier_bits = 0;
681 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
682 dma_cookie_t cookie;
683 int ret;
684
685 /* First prepare and submit the DMA request(s), as this may fail */
686 if (rx) {
687 ier_bits |= IER_RDREQE | IER_RDMAE;
688 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
689 p->rx_dma_addr, len, DMA_FROM_DEVICE,
690 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
691 if (!desc_rx)
692 return -EAGAIN;
693
694 desc_rx->callback = sh_msiof_dma_complete;
695 desc_rx->callback_param = p;
696 cookie = dmaengine_submit(desc_rx);
697 if (dma_submit_error(cookie))
698 return cookie;
699 }
700
701 if (tx) {
702 ier_bits |= IER_TDREQE | IER_TDMAE;
703 dma_sync_single_for_device(p->master->dma_tx->device->dev,
704 p->tx_dma_addr, len, DMA_TO_DEVICE);
705 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
706 p->tx_dma_addr, len, DMA_TO_DEVICE,
707 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
708 if (!desc_tx) {
709 ret = -EAGAIN;
710 goto no_dma_tx;
711 }
712
713 if (rx) {
714 /* No callback */
715 desc_tx->callback = NULL;
716 } else {
717 desc_tx->callback = sh_msiof_dma_complete;
718 desc_tx->callback_param = p;
719 }
720 cookie = dmaengine_submit(desc_tx);
721 if (dma_submit_error(cookie)) {
722 ret = cookie;
723 goto no_dma_tx;
724 }
725 }
726
727 /* 1 stage FIFO watermarks for DMA */
728 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
729
730 /* setup msiof transfer mode registers (32-bit words) */
731 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
732
733 sh_msiof_write(p, IER, ier_bits);
734
735 reinit_completion(&p->done);
736
737 /* Now start DMA */
738 if (rx)
739 dma_async_issue_pending(p->master->dma_rx);
740 if (tx)
741 dma_async_issue_pending(p->master->dma_tx);
742
743 ret = sh_msiof_spi_start(p, rx);
744 if (ret) {
745 dev_err(&p->pdev->dev, "failed to start hardware\n");
746 goto stop_dma;
747 }
748
749 /* wait for tx fifo to be emptied / rx fifo to be filled */
750 ret = wait_for_completion_timeout(&p->done, HZ);
751 if (!ret) {
752 dev_err(&p->pdev->dev, "DMA timeout\n");
753 ret = -ETIMEDOUT;
754 goto stop_reset;
755 }
756
757 /* clear status bits */
758 sh_msiof_reset_str(p);
759
760 ret = sh_msiof_spi_stop(p, rx);
761 if (ret) {
762 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
763 return ret;
764 }
765
766 if (rx)
767 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
768 p->rx_dma_addr, len,
769 DMA_FROM_DEVICE);
770
771 return 0;
772
773 stop_reset:
774 sh_msiof_reset_str(p);
775 sh_msiof_spi_stop(p, rx);
776 stop_dma:
777 if (tx)
778 dmaengine_terminate_all(p->master->dma_tx);
779 no_dma_tx:
780 if (rx)
781 dmaengine_terminate_all(p->master->dma_rx);
782 sh_msiof_write(p, IER, 0);
783 return ret;
784 }
785
786 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
787 {
788 /* src or dst can be unaligned, but not both */
789 if ((unsigned long)src & 3) {
790 while (words--) {
791 *dst++ = swab32(get_unaligned(src));
792 src++;
793 }
794 } else if ((unsigned long)dst & 3) {
795 while (words--) {
796 put_unaligned(swab32(*src++), dst);
797 dst++;
798 }
799 } else {
800 while (words--)
801 *dst++ = swab32(*src++);
802 }
803 }
804
805 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
806 {
807 /* src or dst can be unaligned, but not both */
808 if ((unsigned long)src & 3) {
809 while (words--) {
810 *dst++ = swahw32(get_unaligned(src));
811 src++;
812 }
813 } else if ((unsigned long)dst & 3) {
814 while (words--) {
815 put_unaligned(swahw32(*src++), dst);
816 dst++;
817 }
818 } else {
819 while (words--)
820 *dst++ = swahw32(*src++);
821 }
822 }
823
824 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
825 {
826 memcpy(dst, src, words * 4);
827 }
828
829 static int sh_msiof_transfer_one(struct spi_master *master,
830 struct spi_device *spi,
831 struct spi_transfer *t)
832 {
833 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
834 void (*copy32)(u32 *, const u32 *, unsigned int);
835 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
836 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
837 const void *tx_buf = t->tx_buf;
838 void *rx_buf = t->rx_buf;
839 unsigned int len = t->len;
840 unsigned int bits = t->bits_per_word;
841 unsigned int bytes_per_word;
842 unsigned int words;
843 int n;
844 bool swab;
845 int ret;
846
847 /* setup clocks (clock already enabled in chipselect()) */
848 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
849
850 while (master->dma_tx && len > 15) {
851 /*
852 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
853 * words, with byte resp. word swapping.
854 */
855 unsigned int l = min(len, MAX_WDLEN * 4);
856
857 if (bits <= 8) {
858 if (l & 3)
859 break;
860 copy32 = copy_bswap32;
861 } else if (bits <= 16) {
862 if (l & 1)
863 break;
864 copy32 = copy_wswap32;
865 } else {
866 copy32 = copy_plain32;
867 }
868
869 if (tx_buf)
870 copy32(p->tx_dma_page, tx_buf, l / 4);
871
872 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
873 if (ret == -EAGAIN) {
874 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
875 dev_driver_string(&p->pdev->dev),
876 dev_name(&p->pdev->dev));
877 break;
878 }
879 if (ret)
880 return ret;
881
882 if (rx_buf) {
883 copy32(rx_buf, p->rx_dma_page, l / 4);
884 rx_buf += l;
885 }
886 if (tx_buf)
887 tx_buf += l;
888
889 len -= l;
890 if (!len)
891 return 0;
892 }
893
894 if (bits <= 8 && len > 15 && !(len & 3)) {
895 bits = 32;
896 swab = true;
897 } else {
898 swab = false;
899 }
900
901 /* setup bytes per word and fifo read/write functions */
902 if (bits <= 8) {
903 bytes_per_word = 1;
904 tx_fifo = sh_msiof_spi_write_fifo_8;
905 rx_fifo = sh_msiof_spi_read_fifo_8;
906 } else if (bits <= 16) {
907 bytes_per_word = 2;
908 if ((unsigned long)tx_buf & 0x01)
909 tx_fifo = sh_msiof_spi_write_fifo_16u;
910 else
911 tx_fifo = sh_msiof_spi_write_fifo_16;
912
913 if ((unsigned long)rx_buf & 0x01)
914 rx_fifo = sh_msiof_spi_read_fifo_16u;
915 else
916 rx_fifo = sh_msiof_spi_read_fifo_16;
917 } else if (swab) {
918 bytes_per_word = 4;
919 if ((unsigned long)tx_buf & 0x03)
920 tx_fifo = sh_msiof_spi_write_fifo_s32u;
921 else
922 tx_fifo = sh_msiof_spi_write_fifo_s32;
923
924 if ((unsigned long)rx_buf & 0x03)
925 rx_fifo = sh_msiof_spi_read_fifo_s32u;
926 else
927 rx_fifo = sh_msiof_spi_read_fifo_s32;
928 } else {
929 bytes_per_word = 4;
930 if ((unsigned long)tx_buf & 0x03)
931 tx_fifo = sh_msiof_spi_write_fifo_32u;
932 else
933 tx_fifo = sh_msiof_spi_write_fifo_32;
934
935 if ((unsigned long)rx_buf & 0x03)
936 rx_fifo = sh_msiof_spi_read_fifo_32u;
937 else
938 rx_fifo = sh_msiof_spi_read_fifo_32;
939 }
940
941 /* transfer in fifo sized chunks */
942 words = len / bytes_per_word;
943
944 while (words > 0) {
945 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
946 words, bits);
947 if (n < 0)
948 return n;
949
950 if (tx_buf)
951 tx_buf += n * bytes_per_word;
952 if (rx_buf)
953 rx_buf += n * bytes_per_word;
954 words -= n;
955 }
956
957 return 0;
958 }
959
960 static const struct sh_msiof_chipdata sh_data = {
961 .tx_fifo_size = 64,
962 .rx_fifo_size = 64,
963 .master_flags = 0,
964 };
965
966 static const struct sh_msiof_chipdata r8a779x_data = {
967 .tx_fifo_size = 64,
968 .rx_fifo_size = 256,
969 .master_flags = SPI_MASTER_MUST_TX,
970 };
971
972 static const struct of_device_id sh_msiof_match[] = {
973 { .compatible = "renesas,sh-msiof", .data = &sh_data },
974 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
975 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
976 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
977 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
978 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
979 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
980 {},
981 };
982 MODULE_DEVICE_TABLE(of, sh_msiof_match);
983
984 #ifdef CONFIG_OF
985 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
986 {
987 struct sh_msiof_spi_info *info;
988 struct device_node *np = dev->of_node;
989 u32 num_cs = 1;
990
991 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
992 if (!info)
993 return NULL;
994
995 /* Parse the MSIOF properties */
996 of_property_read_u32(np, "num-cs", &num_cs);
997 of_property_read_u32(np, "renesas,tx-fifo-size",
998 &info->tx_fifo_override);
999 of_property_read_u32(np, "renesas,rx-fifo-size",
1000 &info->rx_fifo_override);
1001 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1002 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1003
1004 info->num_chipselect = num_cs;
1005
1006 return info;
1007 }
1008 #else
1009 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1010 {
1011 return NULL;
1012 }
1013 #endif
1014
1015 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1016 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1017 {
1018 dma_cap_mask_t mask;
1019 struct dma_chan *chan;
1020 struct dma_slave_config cfg;
1021 int ret;
1022
1023 dma_cap_zero(mask);
1024 dma_cap_set(DMA_SLAVE, mask);
1025
1026 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1027 (void *)(unsigned long)id, dev,
1028 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1029 if (!chan) {
1030 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1031 return NULL;
1032 }
1033
1034 memset(&cfg, 0, sizeof(cfg));
1035 cfg.slave_id = id;
1036 cfg.direction = dir;
1037 if (dir == DMA_MEM_TO_DEV) {
1038 cfg.dst_addr = port_addr;
1039 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040 } else {
1041 cfg.src_addr = port_addr;
1042 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1043 }
1044
1045 ret = dmaengine_slave_config(chan, &cfg);
1046 if (ret) {
1047 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1048 dma_release_channel(chan);
1049 return NULL;
1050 }
1051
1052 return chan;
1053 }
1054
1055 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1056 {
1057 struct platform_device *pdev = p->pdev;
1058 struct device *dev = &pdev->dev;
1059 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060 unsigned int dma_tx_id, dma_rx_id;
1061 const struct resource *res;
1062 struct spi_master *master;
1063 struct device *tx_dev, *rx_dev;
1064
1065 if (dev->of_node) {
1066 /* In the OF case we will get the slave IDs from the DT */
1067 dma_tx_id = 0;
1068 dma_rx_id = 0;
1069 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1070 dma_tx_id = info->dma_tx_id;
1071 dma_rx_id = info->dma_rx_id;
1072 } else {
1073 /* The driver assumes no error */
1074 return 0;
1075 }
1076
1077 /* The DMA engine uses the second register set, if present */
1078 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1079 if (!res)
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081
1082 master = p->master;
1083 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084 dma_tx_id,
1085 res->start + TFDR);
1086 if (!master->dma_tx)
1087 return -ENODEV;
1088
1089 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090 dma_rx_id,
1091 res->start + RFDR);
1092 if (!master->dma_rx)
1093 goto free_tx_chan;
1094
1095 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1096 if (!p->tx_dma_page)
1097 goto free_rx_chan;
1098
1099 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100 if (!p->rx_dma_page)
1101 goto free_tx_page;
1102
1103 tx_dev = master->dma_tx->device->dev;
1104 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105 DMA_TO_DEVICE);
1106 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107 goto free_rx_page;
1108
1109 rx_dev = master->dma_rx->device->dev;
1110 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111 DMA_FROM_DEVICE);
1112 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113 goto unmap_tx_page;
1114
1115 dev_info(dev, "DMA available");
1116 return 0;
1117
1118 unmap_tx_page:
1119 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120 free_rx_page:
1121 free_page((unsigned long)p->rx_dma_page);
1122 free_tx_page:
1123 free_page((unsigned long)p->tx_dma_page);
1124 free_rx_chan:
1125 dma_release_channel(master->dma_rx);
1126 free_tx_chan:
1127 dma_release_channel(master->dma_tx);
1128 master->dma_tx = NULL;
1129 return -ENODEV;
1130 }
1131
1132 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1133 {
1134 struct spi_master *master = p->master;
1135 struct device *dev;
1136
1137 if (!master->dma_tx)
1138 return;
1139
1140 dev = &p->pdev->dev;
1141 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1142 PAGE_SIZE, DMA_FROM_DEVICE);
1143 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1144 PAGE_SIZE, DMA_TO_DEVICE);
1145 free_page((unsigned long)p->rx_dma_page);
1146 free_page((unsigned long)p->tx_dma_page);
1147 dma_release_channel(master->dma_rx);
1148 dma_release_channel(master->dma_tx);
1149 }
1150
1151 static int sh_msiof_spi_probe(struct platform_device *pdev)
1152 {
1153 struct resource *r;
1154 struct spi_master *master;
1155 const struct of_device_id *of_id;
1156 struct sh_msiof_spi_priv *p;
1157 int i;
1158 int ret;
1159
1160 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1161 if (master == NULL) {
1162 dev_err(&pdev->dev, "failed to allocate spi master\n");
1163 return -ENOMEM;
1164 }
1165
1166 p = spi_master_get_devdata(master);
1167
1168 platform_set_drvdata(pdev, p);
1169 p->master = master;
1170
1171 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1172 if (of_id) {
1173 p->chipdata = of_id->data;
1174 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175 } else {
1176 p->chipdata = (const void *)pdev->id_entry->driver_data;
1177 p->info = dev_get_platdata(&pdev->dev);
1178 }
1179
1180 if (!p->info) {
1181 dev_err(&pdev->dev, "failed to obtain device info\n");
1182 ret = -ENXIO;
1183 goto err1;
1184 }
1185
1186 init_completion(&p->done);
1187
1188 p->clk = devm_clk_get(&pdev->dev, NULL);
1189 if (IS_ERR(p->clk)) {
1190 dev_err(&pdev->dev, "cannot get clock\n");
1191 ret = PTR_ERR(p->clk);
1192 goto err1;
1193 }
1194
1195 i = platform_get_irq(pdev, 0);
1196 if (i < 0) {
1197 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198 ret = -ENOENT;
1199 goto err1;
1200 }
1201
1202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1204 if (IS_ERR(p->mapbase)) {
1205 ret = PTR_ERR(p->mapbase);
1206 goto err1;
1207 }
1208
1209 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1210 dev_name(&pdev->dev), p);
1211 if (ret) {
1212 dev_err(&pdev->dev, "unable to request irq\n");
1213 goto err1;
1214 }
1215
1216 p->pdev = pdev;
1217 pm_runtime_enable(&pdev->dev);
1218
1219 /* Platform data may override FIFO sizes */
1220 p->tx_fifo_size = p->chipdata->tx_fifo_size;
1221 p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222 if (p->info->tx_fifo_override)
1223 p->tx_fifo_size = p->info->tx_fifo_override;
1224 if (p->info->rx_fifo_override)
1225 p->rx_fifo_size = p->info->rx_fifo_override;
1226
1227 /* init master code */
1228 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1229 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230 master->flags = p->chipdata->master_flags;
1231 master->bus_num = pdev->id;
1232 master->dev.of_node = pdev->dev.of_node;
1233 master->num_chipselect = p->info->num_chipselect;
1234 master->setup = sh_msiof_spi_setup;
1235 master->prepare_message = sh_msiof_prepare_message;
1236 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237 master->auto_runtime_pm = true;
1238 master->transfer_one = sh_msiof_transfer_one;
1239
1240 ret = sh_msiof_request_dma(p);
1241 if (ret < 0)
1242 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1243
1244 ret = devm_spi_register_master(&pdev->dev, master);
1245 if (ret < 0) {
1246 dev_err(&pdev->dev, "spi_register_master error.\n");
1247 goto err2;
1248 }
1249
1250 return 0;
1251
1252 err2:
1253 sh_msiof_release_dma(p);
1254 pm_runtime_disable(&pdev->dev);
1255 err1:
1256 spi_master_put(master);
1257 return ret;
1258 }
1259
1260 static int sh_msiof_spi_remove(struct platform_device *pdev)
1261 {
1262 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1263
1264 sh_msiof_release_dma(p);
1265 pm_runtime_disable(&pdev->dev);
1266 return 0;
1267 }
1268
1269 static struct platform_device_id spi_driver_ids[] = {
1270 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1271 { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
1272 { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
1273 { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data },
1274 { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data },
1275 { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data },
1276 {},
1277 };
1278 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1279
1280 static struct platform_driver sh_msiof_spi_drv = {
1281 .probe = sh_msiof_spi_probe,
1282 .remove = sh_msiof_spi_remove,
1283 .id_table = spi_driver_ids,
1284 .driver = {
1285 .name = "spi_sh_msiof",
1286 .of_match_table = of_match_ptr(sh_msiof_match),
1287 },
1288 };
1289 module_platform_driver(sh_msiof_spi_drv);
1290
1291 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1292 MODULE_AUTHOR("Magnus Damm");
1293 MODULE_LICENSE("GPL v2");
1294 MODULE_ALIAS("platform:spi_sh_msiof");
This page took 0.057461 seconds and 4 git commands to generate.