Merge branch 'for-3.17-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / drivers / spi / spi-sh-msiof.c
1 /*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33
34 #include <asm/unaligned.h>
35
36
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41 };
42
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 const struct sh_msiof_chipdata *chipdata;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 int tx_fifo_size;
52 int rx_fifo_size;
53 void *tx_dma_page;
54 void *rx_dma_page;
55 dma_addr_t tx_dma_addr;
56 dma_addr_t rx_dma_addr;
57 };
58
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
77
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_FLD_MASK 0x000000c0 /* Frame Sync Signal Interval (0-3) */
86 #define MDR1_FLD_SHIFT 2
87 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
88 /* TMDR1 */
89 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
90
91 /* TMDR2 and RMDR2 */
92 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
93 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
94 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
95
96 #define MAX_WDLEN 256U
97
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i) (((i) - 1) << 8)
101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2 0x0000
103 #define SCR_BRDV_DIV_4 0x0001
104 #define SCR_BRDV_DIV_8 0x0002
105 #define SCR_BRDV_DIV_16 0x0003
106 #define SCR_BRDV_DIV_32 0x0004
107 #define SCR_BRDV_DIV_1 0x0007
108
109 /* CTR */
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE 0x00000200 /* Transmit Enable */
125 #define CTR_RXE 0x00000100 /* Receive Enable */
126
127 /* FCTR */
128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT 20
139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT 4
151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
152
153 /* STR */
154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF 0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF 0x00000080 /* Frame Reception End */
163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
166
167 /* IER */
168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
182
183
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 switch (reg_offs) {
187 case TSCR:
188 case RSCR:
189 return ioread16(p->mapbase + reg_offs);
190 default:
191 return ioread32(p->mapbase + reg_offs);
192 }
193 }
194
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 u32 value)
197 {
198 switch (reg_offs) {
199 case TSCR:
200 case RSCR:
201 iowrite16(value, p->mapbase + reg_offs);
202 break;
203 default:
204 iowrite32(value, p->mapbase + reg_offs);
205 break;
206 }
207 }
208
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 u32 clr, u32 set)
211 {
212 u32 mask = clr | set;
213 u32 data;
214 int k;
215
216 data = sh_msiof_read(p, CTR);
217 data &= ~clr;
218 data |= set;
219 sh_msiof_write(p, CTR, data);
220
221 for (k = 100; k > 0; k--) {
222 if ((sh_msiof_read(p, CTR) & mask) == set)
223 break;
224
225 udelay(10);
226 }
227
228 return k > 0 ? 0 : -ETIMEDOUT;
229 }
230
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 struct sh_msiof_spi_priv *p = data;
234
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p, IER, 0);
237 complete(&p->done);
238
239 return IRQ_HANDLED;
240 }
241
242 static struct {
243 unsigned short div;
244 unsigned short scr;
245 } const sh_msiof_spi_clk_table[] = {
246 { 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
247 { 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
248 { 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
249 { 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
250 { 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
251 { 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
252 { 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
253 { 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
254 { 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
255 { 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
256 { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
257 };
258
259 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260 unsigned long parent_rate, u32 spi_hz)
261 {
262 unsigned long div = 1024;
263 size_t k;
264
265 if (!WARN_ON(!spi_hz || !parent_rate))
266 div = DIV_ROUND_UP(parent_rate, spi_hz);
267
268 /* TODO: make more fine grained */
269
270 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
271 if (sh_msiof_spi_clk_table[k].div >= div)
272 break;
273 }
274
275 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
276
277 sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
279 sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
280 }
281
282 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283 u32 cpol, u32 cpha,
284 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
285 {
286 u32 tmp;
287 int edge;
288
289 /*
290 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
291 * 0 0 10 10 1 1
292 * 0 1 10 10 0 0
293 * 1 0 11 11 0 0
294 * 1 1 11 11 1 1
295 */
296 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
297 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
298 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
299 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
301 /* These bits are reserved if RX needs TX */
302 tmp &= ~0x0000ffff;
303 }
304 sh_msiof_write(p, RMDR1, tmp);
305
306 tmp = 0;
307 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
308 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
309
310 edge = cpol ^ !cpha;
311
312 tmp |= edge << CTR_TEDG_SHIFT;
313 tmp |= edge << CTR_REDG_SHIFT;
314 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315 sh_msiof_write(p, CTR, tmp);
316 }
317
318 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
319 const void *tx_buf, void *rx_buf,
320 u32 bits, u32 words)
321 {
322 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
323
324 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325 sh_msiof_write(p, TMDR2, dr2);
326 else
327 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
328
329 if (rx_buf)
330 sh_msiof_write(p, RMDR2, dr2);
331 }
332
333 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
334 {
335 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
336 }
337
338 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
339 const void *tx_buf, int words, int fs)
340 {
341 const u8 *buf_8 = tx_buf;
342 int k;
343
344 for (k = 0; k < words; k++)
345 sh_msiof_write(p, TFDR, buf_8[k] << fs);
346 }
347
348 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
349 const void *tx_buf, int words, int fs)
350 {
351 const u16 *buf_16 = tx_buf;
352 int k;
353
354 for (k = 0; k < words; k++)
355 sh_msiof_write(p, TFDR, buf_16[k] << fs);
356 }
357
358 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
359 const void *tx_buf, int words, int fs)
360 {
361 const u16 *buf_16 = tx_buf;
362 int k;
363
364 for (k = 0; k < words; k++)
365 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
366 }
367
368 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
369 const void *tx_buf, int words, int fs)
370 {
371 const u32 *buf_32 = tx_buf;
372 int k;
373
374 for (k = 0; k < words; k++)
375 sh_msiof_write(p, TFDR, buf_32[k] << fs);
376 }
377
378 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
379 const void *tx_buf, int words, int fs)
380 {
381 const u32 *buf_32 = tx_buf;
382 int k;
383
384 for (k = 0; k < words; k++)
385 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
386 }
387
388 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
389 const void *tx_buf, int words, int fs)
390 {
391 const u32 *buf_32 = tx_buf;
392 int k;
393
394 for (k = 0; k < words; k++)
395 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
396 }
397
398 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
399 const void *tx_buf, int words, int fs)
400 {
401 const u32 *buf_32 = tx_buf;
402 int k;
403
404 for (k = 0; k < words; k++)
405 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
406 }
407
408 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
409 void *rx_buf, int words, int fs)
410 {
411 u8 *buf_8 = rx_buf;
412 int k;
413
414 for (k = 0; k < words; k++)
415 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
416 }
417
418 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
419 void *rx_buf, int words, int fs)
420 {
421 u16 *buf_16 = rx_buf;
422 int k;
423
424 for (k = 0; k < words; k++)
425 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
426 }
427
428 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
429 void *rx_buf, int words, int fs)
430 {
431 u16 *buf_16 = rx_buf;
432 int k;
433
434 for (k = 0; k < words; k++)
435 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
436 }
437
438 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
439 void *rx_buf, int words, int fs)
440 {
441 u32 *buf_32 = rx_buf;
442 int k;
443
444 for (k = 0; k < words; k++)
445 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
446 }
447
448 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
449 void *rx_buf, int words, int fs)
450 {
451 u32 *buf_32 = rx_buf;
452 int k;
453
454 for (k = 0; k < words; k++)
455 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
456 }
457
458 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
459 void *rx_buf, int words, int fs)
460 {
461 u32 *buf_32 = rx_buf;
462 int k;
463
464 for (k = 0; k < words; k++)
465 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
466 }
467
468 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
469 void *rx_buf, int words, int fs)
470 {
471 u32 *buf_32 = rx_buf;
472 int k;
473
474 for (k = 0; k < words; k++)
475 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
476 }
477
478 static int sh_msiof_spi_setup(struct spi_device *spi)
479 {
480 struct device_node *np = spi->master->dev.of_node;
481 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
482
483 if (!np) {
484 /*
485 * Use spi->controller_data for CS (same strategy as spi_gpio),
486 * if any. otherwise let HW control CS
487 */
488 spi->cs_gpio = (uintptr_t)spi->controller_data;
489 }
490
491 /* Configure pins before deasserting CS */
492 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
493 !!(spi->mode & SPI_CPHA),
494 !!(spi->mode & SPI_3WIRE),
495 !!(spi->mode & SPI_LSB_FIRST),
496 !!(spi->mode & SPI_CS_HIGH));
497
498 if (spi->cs_gpio >= 0)
499 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
500
501 return 0;
502 }
503
504 static int sh_msiof_prepare_message(struct spi_master *master,
505 struct spi_message *msg)
506 {
507 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
508 const struct spi_device *spi = msg->spi;
509
510 /* Configure pins before asserting CS */
511 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
512 !!(spi->mode & SPI_CPHA),
513 !!(spi->mode & SPI_3WIRE),
514 !!(spi->mode & SPI_LSB_FIRST),
515 !!(spi->mode & SPI_CS_HIGH));
516 return 0;
517 }
518
519 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
520 {
521 int ret;
522
523 /* setup clock and rx/tx signals */
524 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
525 if (rx_buf && !ret)
526 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
527 if (!ret)
528 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
529
530 /* start by setting frame bit */
531 if (!ret)
532 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
533
534 return ret;
535 }
536
537 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
538 {
539 int ret;
540
541 /* shut down frame, rx/tx and clock signals */
542 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
543 if (!ret)
544 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
545 if (rx_buf && !ret)
546 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
547 if (!ret)
548 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
549
550 return ret;
551 }
552
553 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
554 void (*tx_fifo)(struct sh_msiof_spi_priv *,
555 const void *, int, int),
556 void (*rx_fifo)(struct sh_msiof_spi_priv *,
557 void *, int, int),
558 const void *tx_buf, void *rx_buf,
559 int words, int bits)
560 {
561 int fifo_shift;
562 int ret;
563
564 /* limit maximum word transfer to rx/tx fifo size */
565 if (tx_buf)
566 words = min_t(int, words, p->tx_fifo_size);
567 if (rx_buf)
568 words = min_t(int, words, p->rx_fifo_size);
569
570 /* the fifo contents need shifting */
571 fifo_shift = 32 - bits;
572
573 /* default FIFO watermarks for PIO */
574 sh_msiof_write(p, FCTR, 0);
575
576 /* setup msiof transfer mode registers */
577 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
579
580 /* write tx fifo */
581 if (tx_buf)
582 tx_fifo(p, tx_buf, words, fifo_shift);
583
584 reinit_completion(&p->done);
585
586 ret = sh_msiof_spi_start(p, rx_buf);
587 if (ret) {
588 dev_err(&p->pdev->dev, "failed to start hardware\n");
589 goto stop_ier;
590 }
591
592 /* wait for tx fifo to be emptied / rx fifo to be filled */
593 ret = wait_for_completion_timeout(&p->done, HZ);
594 if (!ret) {
595 dev_err(&p->pdev->dev, "PIO timeout\n");
596 ret = -ETIMEDOUT;
597 goto stop_reset;
598 }
599
600 /* read rx fifo */
601 if (rx_buf)
602 rx_fifo(p, rx_buf, words, fifo_shift);
603
604 /* clear status bits */
605 sh_msiof_reset_str(p);
606
607 ret = sh_msiof_spi_stop(p, rx_buf);
608 if (ret) {
609 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610 return ret;
611 }
612
613 return words;
614
615 stop_reset:
616 sh_msiof_reset_str(p);
617 sh_msiof_spi_stop(p, rx_buf);
618 stop_ier:
619 sh_msiof_write(p, IER, 0);
620 return ret;
621 }
622
623 static void sh_msiof_dma_complete(void *arg)
624 {
625 struct sh_msiof_spi_priv *p = arg;
626
627 sh_msiof_write(p, IER, 0);
628 complete(&p->done);
629 }
630
631 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
632 void *rx, unsigned int len)
633 {
634 u32 ier_bits = 0;
635 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
636 dma_cookie_t cookie;
637 int ret;
638
639 /* First prepare and submit the DMA request(s), as this may fail */
640 if (rx) {
641 ier_bits |= IER_RDREQE | IER_RDMAE;
642 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
643 p->rx_dma_addr, len, DMA_FROM_DEVICE,
644 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 if (!desc_rx) {
646 ret = -EAGAIN;
647 goto no_dma_rx;
648 }
649
650 desc_rx->callback = sh_msiof_dma_complete;
651 desc_rx->callback_param = p;
652 cookie = dmaengine_submit(desc_rx);
653 if (dma_submit_error(cookie)) {
654 ret = cookie;
655 goto no_dma_rx;
656 }
657 }
658
659 if (tx) {
660 ier_bits |= IER_TDREQE | IER_TDMAE;
661 dma_sync_single_for_device(p->master->dma_tx->device->dev,
662 p->tx_dma_addr, len, DMA_TO_DEVICE);
663 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
664 p->tx_dma_addr, len, DMA_TO_DEVICE,
665 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 if (!desc_tx) {
667 ret = -EAGAIN;
668 goto no_dma_tx;
669 }
670
671 if (rx) {
672 /* No callback */
673 desc_tx->callback = NULL;
674 } else {
675 desc_tx->callback = sh_msiof_dma_complete;
676 desc_tx->callback_param = p;
677 }
678 cookie = dmaengine_submit(desc_tx);
679 if (dma_submit_error(cookie)) {
680 ret = cookie;
681 goto no_dma_tx;
682 }
683 }
684
685 /* 1 stage FIFO watermarks for DMA */
686 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
687
688 /* setup msiof transfer mode registers (32-bit words) */
689 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
690
691 sh_msiof_write(p, IER, ier_bits);
692
693 reinit_completion(&p->done);
694
695 /* Now start DMA */
696 if (rx)
697 dma_async_issue_pending(p->master->dma_rx);
698 if (tx)
699 dma_async_issue_pending(p->master->dma_tx);
700
701 ret = sh_msiof_spi_start(p, rx);
702 if (ret) {
703 dev_err(&p->pdev->dev, "failed to start hardware\n");
704 goto stop_dma;
705 }
706
707 /* wait for tx fifo to be emptied / rx fifo to be filled */
708 ret = wait_for_completion_timeout(&p->done, HZ);
709 if (!ret) {
710 dev_err(&p->pdev->dev, "DMA timeout\n");
711 ret = -ETIMEDOUT;
712 goto stop_reset;
713 }
714
715 /* clear status bits */
716 sh_msiof_reset_str(p);
717
718 ret = sh_msiof_spi_stop(p, rx);
719 if (ret) {
720 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
721 return ret;
722 }
723
724 if (rx)
725 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
726 p->rx_dma_addr, len,
727 DMA_FROM_DEVICE);
728
729 return 0;
730
731 stop_reset:
732 sh_msiof_reset_str(p);
733 sh_msiof_spi_stop(p, rx);
734 stop_dma:
735 if (tx)
736 dmaengine_terminate_all(p->master->dma_tx);
737 no_dma_tx:
738 if (rx)
739 dmaengine_terminate_all(p->master->dma_rx);
740 sh_msiof_write(p, IER, 0);
741 no_dma_rx:
742 return ret;
743 }
744
745 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
746 {
747 /* src or dst can be unaligned, but not both */
748 if ((unsigned long)src & 3) {
749 while (words--) {
750 *dst++ = swab32(get_unaligned(src));
751 src++;
752 }
753 } else if ((unsigned long)dst & 3) {
754 while (words--) {
755 put_unaligned(swab32(*src++), dst);
756 dst++;
757 }
758 } else {
759 while (words--)
760 *dst++ = swab32(*src++);
761 }
762 }
763
764 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
765 {
766 /* src or dst can be unaligned, but not both */
767 if ((unsigned long)src & 3) {
768 while (words--) {
769 *dst++ = swahw32(get_unaligned(src));
770 src++;
771 }
772 } else if ((unsigned long)dst & 3) {
773 while (words--) {
774 put_unaligned(swahw32(*src++), dst);
775 dst++;
776 }
777 } else {
778 while (words--)
779 *dst++ = swahw32(*src++);
780 }
781 }
782
783 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
784 {
785 memcpy(dst, src, words * 4);
786 }
787
788 static int sh_msiof_transfer_one(struct spi_master *master,
789 struct spi_device *spi,
790 struct spi_transfer *t)
791 {
792 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
793 void (*copy32)(u32 *, const u32 *, unsigned int);
794 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
795 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
796 const void *tx_buf = t->tx_buf;
797 void *rx_buf = t->rx_buf;
798 unsigned int len = t->len;
799 unsigned int bits = t->bits_per_word;
800 unsigned int bytes_per_word;
801 unsigned int words;
802 int n;
803 bool swab;
804 int ret;
805
806 /* setup clocks (clock already enabled in chipselect()) */
807 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
808
809 while (master->dma_tx && len > 15) {
810 /*
811 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
812 * words, with byte resp. word swapping.
813 */
814 unsigned int l = min(len, MAX_WDLEN * 4);
815
816 if (bits <= 8) {
817 if (l & 3)
818 break;
819 copy32 = copy_bswap32;
820 } else if (bits <= 16) {
821 if (l & 1)
822 break;
823 copy32 = copy_wswap32;
824 } else {
825 copy32 = copy_plain32;
826 }
827
828 if (tx_buf)
829 copy32(p->tx_dma_page, tx_buf, l / 4);
830
831 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
832 if (ret == -EAGAIN) {
833 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
834 dev_driver_string(&p->pdev->dev),
835 dev_name(&p->pdev->dev));
836 break;
837 }
838 if (ret)
839 return ret;
840
841 if (rx_buf) {
842 copy32(rx_buf, p->rx_dma_page, l / 4);
843 rx_buf += l;
844 }
845 if (tx_buf)
846 tx_buf += l;
847
848 len -= l;
849 if (!len)
850 return 0;
851 }
852
853 if (bits <= 8 && len > 15 && !(len & 3)) {
854 bits = 32;
855 swab = true;
856 } else {
857 swab = false;
858 }
859
860 /* setup bytes per word and fifo read/write functions */
861 if (bits <= 8) {
862 bytes_per_word = 1;
863 tx_fifo = sh_msiof_spi_write_fifo_8;
864 rx_fifo = sh_msiof_spi_read_fifo_8;
865 } else if (bits <= 16) {
866 bytes_per_word = 2;
867 if ((unsigned long)tx_buf & 0x01)
868 tx_fifo = sh_msiof_spi_write_fifo_16u;
869 else
870 tx_fifo = sh_msiof_spi_write_fifo_16;
871
872 if ((unsigned long)rx_buf & 0x01)
873 rx_fifo = sh_msiof_spi_read_fifo_16u;
874 else
875 rx_fifo = sh_msiof_spi_read_fifo_16;
876 } else if (swab) {
877 bytes_per_word = 4;
878 if ((unsigned long)tx_buf & 0x03)
879 tx_fifo = sh_msiof_spi_write_fifo_s32u;
880 else
881 tx_fifo = sh_msiof_spi_write_fifo_s32;
882
883 if ((unsigned long)rx_buf & 0x03)
884 rx_fifo = sh_msiof_spi_read_fifo_s32u;
885 else
886 rx_fifo = sh_msiof_spi_read_fifo_s32;
887 } else {
888 bytes_per_word = 4;
889 if ((unsigned long)tx_buf & 0x03)
890 tx_fifo = sh_msiof_spi_write_fifo_32u;
891 else
892 tx_fifo = sh_msiof_spi_write_fifo_32;
893
894 if ((unsigned long)rx_buf & 0x03)
895 rx_fifo = sh_msiof_spi_read_fifo_32u;
896 else
897 rx_fifo = sh_msiof_spi_read_fifo_32;
898 }
899
900 /* transfer in fifo sized chunks */
901 words = len / bytes_per_word;
902
903 while (words > 0) {
904 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
905 words, bits);
906 if (n < 0)
907 return n;
908
909 if (tx_buf)
910 tx_buf += n * bytes_per_word;
911 if (rx_buf)
912 rx_buf += n * bytes_per_word;
913 words -= n;
914 }
915
916 return 0;
917 }
918
919 static const struct sh_msiof_chipdata sh_data = {
920 .tx_fifo_size = 64,
921 .rx_fifo_size = 64,
922 .master_flags = 0,
923 };
924
925 static const struct sh_msiof_chipdata r8a779x_data = {
926 .tx_fifo_size = 64,
927 .rx_fifo_size = 256,
928 .master_flags = SPI_MASTER_MUST_TX,
929 };
930
931 static const struct of_device_id sh_msiof_match[] = {
932 { .compatible = "renesas,sh-msiof", .data = &sh_data },
933 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
934 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
935 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
936 {},
937 };
938 MODULE_DEVICE_TABLE(of, sh_msiof_match);
939
940 #ifdef CONFIG_OF
941 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
942 {
943 struct sh_msiof_spi_info *info;
944 struct device_node *np = dev->of_node;
945 u32 num_cs = 1;
946
947 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
948 if (!info)
949 return NULL;
950
951 /* Parse the MSIOF properties */
952 of_property_read_u32(np, "num-cs", &num_cs);
953 of_property_read_u32(np, "renesas,tx-fifo-size",
954 &info->tx_fifo_override);
955 of_property_read_u32(np, "renesas,rx-fifo-size",
956 &info->rx_fifo_override);
957
958 info->num_chipselect = num_cs;
959
960 return info;
961 }
962 #else
963 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
964 {
965 return NULL;
966 }
967 #endif
968
969 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
970 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
971 {
972 dma_cap_mask_t mask;
973 struct dma_chan *chan;
974 struct dma_slave_config cfg;
975 int ret;
976
977 dma_cap_zero(mask);
978 dma_cap_set(DMA_SLAVE, mask);
979
980 chan = dma_request_channel(mask, shdma_chan_filter,
981 (void *)(unsigned long)id);
982 if (!chan) {
983 dev_warn(dev, "dma_request_channel failed\n");
984 return NULL;
985 }
986
987 memset(&cfg, 0, sizeof(cfg));
988 cfg.slave_id = id;
989 cfg.direction = dir;
990 if (dir == DMA_MEM_TO_DEV)
991 cfg.dst_addr = port_addr;
992 else
993 cfg.src_addr = port_addr;
994
995 ret = dmaengine_slave_config(chan, &cfg);
996 if (ret) {
997 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
998 dma_release_channel(chan);
999 return NULL;
1000 }
1001
1002 return chan;
1003 }
1004
1005 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1006 {
1007 struct platform_device *pdev = p->pdev;
1008 struct device *dev = &pdev->dev;
1009 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1010 const struct resource *res;
1011 struct spi_master *master;
1012 struct device *tx_dev, *rx_dev;
1013
1014 if (!info || !info->dma_tx_id || !info->dma_rx_id)
1015 return 0; /* The driver assumes no error */
1016
1017 /* The DMA engine uses the second register set, if present */
1018 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1019 if (!res)
1020 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1021
1022 master = p->master;
1023 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1024 info->dma_tx_id,
1025 res->start + TFDR);
1026 if (!master->dma_tx)
1027 return -ENODEV;
1028
1029 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1030 info->dma_rx_id,
1031 res->start + RFDR);
1032 if (!master->dma_rx)
1033 goto free_tx_chan;
1034
1035 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1036 if (!p->tx_dma_page)
1037 goto free_rx_chan;
1038
1039 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1040 if (!p->rx_dma_page)
1041 goto free_tx_page;
1042
1043 tx_dev = master->dma_tx->device->dev;
1044 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1045 DMA_TO_DEVICE);
1046 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1047 goto free_rx_page;
1048
1049 rx_dev = master->dma_rx->device->dev;
1050 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1051 DMA_FROM_DEVICE);
1052 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1053 goto unmap_tx_page;
1054
1055 dev_info(dev, "DMA available");
1056 return 0;
1057
1058 unmap_tx_page:
1059 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1060 free_rx_page:
1061 free_page((unsigned long)p->rx_dma_page);
1062 free_tx_page:
1063 free_page((unsigned long)p->tx_dma_page);
1064 free_rx_chan:
1065 dma_release_channel(master->dma_rx);
1066 free_tx_chan:
1067 dma_release_channel(master->dma_tx);
1068 master->dma_tx = NULL;
1069 return -ENODEV;
1070 }
1071
1072 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1073 {
1074 struct spi_master *master = p->master;
1075 struct device *dev;
1076
1077 if (!master->dma_tx)
1078 return;
1079
1080 dev = &p->pdev->dev;
1081 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1082 PAGE_SIZE, DMA_FROM_DEVICE);
1083 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1084 PAGE_SIZE, DMA_TO_DEVICE);
1085 free_page((unsigned long)p->rx_dma_page);
1086 free_page((unsigned long)p->tx_dma_page);
1087 dma_release_channel(master->dma_rx);
1088 dma_release_channel(master->dma_tx);
1089 }
1090
1091 static int sh_msiof_spi_probe(struct platform_device *pdev)
1092 {
1093 struct resource *r;
1094 struct spi_master *master;
1095 const struct of_device_id *of_id;
1096 struct sh_msiof_spi_priv *p;
1097 int i;
1098 int ret;
1099
1100 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1101 if (master == NULL) {
1102 dev_err(&pdev->dev, "failed to allocate spi master\n");
1103 return -ENOMEM;
1104 }
1105
1106 p = spi_master_get_devdata(master);
1107
1108 platform_set_drvdata(pdev, p);
1109 p->master = master;
1110
1111 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1112 if (of_id) {
1113 p->chipdata = of_id->data;
1114 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1115 } else {
1116 p->chipdata = (const void *)pdev->id_entry->driver_data;
1117 p->info = dev_get_platdata(&pdev->dev);
1118 }
1119
1120 if (!p->info) {
1121 dev_err(&pdev->dev, "failed to obtain device info\n");
1122 ret = -ENXIO;
1123 goto err1;
1124 }
1125
1126 init_completion(&p->done);
1127
1128 p->clk = devm_clk_get(&pdev->dev, NULL);
1129 if (IS_ERR(p->clk)) {
1130 dev_err(&pdev->dev, "cannot get clock\n");
1131 ret = PTR_ERR(p->clk);
1132 goto err1;
1133 }
1134
1135 i = platform_get_irq(pdev, 0);
1136 if (i < 0) {
1137 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1138 ret = -ENOENT;
1139 goto err1;
1140 }
1141
1142 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1143 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1144 if (IS_ERR(p->mapbase)) {
1145 ret = PTR_ERR(p->mapbase);
1146 goto err1;
1147 }
1148
1149 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1150 dev_name(&pdev->dev), p);
1151 if (ret) {
1152 dev_err(&pdev->dev, "unable to request irq\n");
1153 goto err1;
1154 }
1155
1156 p->pdev = pdev;
1157 pm_runtime_enable(&pdev->dev);
1158
1159 /* Platform data may override FIFO sizes */
1160 p->tx_fifo_size = p->chipdata->tx_fifo_size;
1161 p->rx_fifo_size = p->chipdata->rx_fifo_size;
1162 if (p->info->tx_fifo_override)
1163 p->tx_fifo_size = p->info->tx_fifo_override;
1164 if (p->info->rx_fifo_override)
1165 p->rx_fifo_size = p->info->rx_fifo_override;
1166
1167 /* init master code */
1168 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1169 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1170 master->flags = p->chipdata->master_flags;
1171 master->bus_num = pdev->id;
1172 master->dev.of_node = pdev->dev.of_node;
1173 master->num_chipselect = p->info->num_chipselect;
1174 master->setup = sh_msiof_spi_setup;
1175 master->prepare_message = sh_msiof_prepare_message;
1176 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1177 master->auto_runtime_pm = true;
1178 master->transfer_one = sh_msiof_transfer_one;
1179
1180 ret = sh_msiof_request_dma(p);
1181 if (ret < 0)
1182 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1183
1184 ret = devm_spi_register_master(&pdev->dev, master);
1185 if (ret < 0) {
1186 dev_err(&pdev->dev, "spi_register_master error.\n");
1187 goto err2;
1188 }
1189
1190 return 0;
1191
1192 err2:
1193 sh_msiof_release_dma(p);
1194 pm_runtime_disable(&pdev->dev);
1195 err1:
1196 spi_master_put(master);
1197 return ret;
1198 }
1199
1200 static int sh_msiof_spi_remove(struct platform_device *pdev)
1201 {
1202 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1203
1204 sh_msiof_release_dma(p);
1205 pm_runtime_disable(&pdev->dev);
1206 return 0;
1207 }
1208
1209 static struct platform_device_id spi_driver_ids[] = {
1210 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1211 { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
1212 { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
1213 {},
1214 };
1215 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1216
1217 static struct platform_driver sh_msiof_spi_drv = {
1218 .probe = sh_msiof_spi_probe,
1219 .remove = sh_msiof_spi_remove,
1220 .id_table = spi_driver_ids,
1221 .driver = {
1222 .name = "spi_sh_msiof",
1223 .owner = THIS_MODULE,
1224 .of_match_table = of_match_ptr(sh_msiof_match),
1225 },
1226 };
1227 module_platform_driver(sh_msiof_spi_drv);
1228
1229 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1230 MODULE_AUTHOR("Magnus Damm");
1231 MODULE_LICENSE("GPL v2");
1232 MODULE_ALIAS("platform:spi_sh_msiof");
This page took 0.085082 seconds and 6 git commands to generate.