Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / spi / spi-tegra.c
1 /*
2 * Driver for Nvidia TEGRA spi controller.
3 *
4 * Copyright (C) 2010 Google, Inc.
5 *
6 * Author:
7 * Erik Gilling <konkers@android.com>
8 *
9 * This software is licensed under the terms of the GNU General Public
10 * License version 2, as published by the Free Software Foundation, and
11 * may be copied, distributed, and modified under those terms.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/clk.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31
32 #include <linux/spi/spi.h>
33 #include <linux/dmaengine.h>
34
35 #include <mach/dma.h>
36
37 #define SLINK_COMMAND 0x000
38 #define SLINK_BIT_LENGTH(x) (((x) & 0x1f) << 0)
39 #define SLINK_WORD_SIZE(x) (((x) & 0x1f) << 5)
40 #define SLINK_BOTH_EN (1 << 10)
41 #define SLINK_CS_SW (1 << 11)
42 #define SLINK_CS_VALUE (1 << 12)
43 #define SLINK_CS_POLARITY (1 << 13)
44 #define SLINK_IDLE_SDA_DRIVE_LOW (0 << 16)
45 #define SLINK_IDLE_SDA_DRIVE_HIGH (1 << 16)
46 #define SLINK_IDLE_SDA_PULL_LOW (2 << 16)
47 #define SLINK_IDLE_SDA_PULL_HIGH (3 << 16)
48 #define SLINK_IDLE_SDA_MASK (3 << 16)
49 #define SLINK_CS_POLARITY1 (1 << 20)
50 #define SLINK_CK_SDA (1 << 21)
51 #define SLINK_CS_POLARITY2 (1 << 22)
52 #define SLINK_CS_POLARITY3 (1 << 23)
53 #define SLINK_IDLE_SCLK_DRIVE_LOW (0 << 24)
54 #define SLINK_IDLE_SCLK_DRIVE_HIGH (1 << 24)
55 #define SLINK_IDLE_SCLK_PULL_LOW (2 << 24)
56 #define SLINK_IDLE_SCLK_PULL_HIGH (3 << 24)
57 #define SLINK_IDLE_SCLK_MASK (3 << 24)
58 #define SLINK_M_S (1 << 28)
59 #define SLINK_WAIT (1 << 29)
60 #define SLINK_GO (1 << 30)
61 #define SLINK_ENB (1 << 31)
62
63 #define SLINK_COMMAND2 0x004
64 #define SLINK_LSBFE (1 << 0)
65 #define SLINK_SSOE (1 << 1)
66 #define SLINK_SPIE (1 << 4)
67 #define SLINK_BIDIROE (1 << 6)
68 #define SLINK_MODFEN (1 << 7)
69 #define SLINK_INT_SIZE(x) (((x) & 0x1f) << 8)
70 #define SLINK_CS_ACTIVE_BETWEEN (1 << 17)
71 #define SLINK_SS_EN_CS(x) (((x) & 0x3) << 18)
72 #define SLINK_SS_SETUP(x) (((x) & 0x3) << 20)
73 #define SLINK_FIFO_REFILLS_0 (0 << 22)
74 #define SLINK_FIFO_REFILLS_1 (1 << 22)
75 #define SLINK_FIFO_REFILLS_2 (2 << 22)
76 #define SLINK_FIFO_REFILLS_3 (3 << 22)
77 #define SLINK_FIFO_REFILLS_MASK (3 << 22)
78 #define SLINK_WAIT_PACK_INT(x) (((x) & 0x7) << 26)
79 #define SLINK_SPC0 (1 << 29)
80 #define SLINK_TXEN (1 << 30)
81 #define SLINK_RXEN (1 << 31)
82
83 #define SLINK_STATUS 0x008
84 #define SLINK_COUNT(val) (((val) >> 0) & 0x1f)
85 #define SLINK_WORD(val) (((val) >> 5) & 0x1f)
86 #define SLINK_BLK_CNT(val) (((val) >> 0) & 0xffff)
87 #define SLINK_MODF (1 << 16)
88 #define SLINK_RX_UNF (1 << 18)
89 #define SLINK_TX_OVF (1 << 19)
90 #define SLINK_TX_FULL (1 << 20)
91 #define SLINK_TX_EMPTY (1 << 21)
92 #define SLINK_RX_FULL (1 << 22)
93 #define SLINK_RX_EMPTY (1 << 23)
94 #define SLINK_TX_UNF (1 << 24)
95 #define SLINK_RX_OVF (1 << 25)
96 #define SLINK_TX_FLUSH (1 << 26)
97 #define SLINK_RX_FLUSH (1 << 27)
98 #define SLINK_SCLK (1 << 28)
99 #define SLINK_ERR (1 << 29)
100 #define SLINK_RDY (1 << 30)
101 #define SLINK_BSY (1 << 31)
102
103 #define SLINK_MAS_DATA 0x010
104 #define SLINK_SLAVE_DATA 0x014
105
106 #define SLINK_DMA_CTL 0x018
107 #define SLINK_DMA_BLOCK_SIZE(x) (((x) & 0xffff) << 0)
108 #define SLINK_TX_TRIG_1 (0 << 16)
109 #define SLINK_TX_TRIG_4 (1 << 16)
110 #define SLINK_TX_TRIG_8 (2 << 16)
111 #define SLINK_TX_TRIG_16 (3 << 16)
112 #define SLINK_TX_TRIG_MASK (3 << 16)
113 #define SLINK_RX_TRIG_1 (0 << 18)
114 #define SLINK_RX_TRIG_4 (1 << 18)
115 #define SLINK_RX_TRIG_8 (2 << 18)
116 #define SLINK_RX_TRIG_16 (3 << 18)
117 #define SLINK_RX_TRIG_MASK (3 << 18)
118 #define SLINK_PACKED (1 << 20)
119 #define SLINK_PACK_SIZE_4 (0 << 21)
120 #define SLINK_PACK_SIZE_8 (1 << 21)
121 #define SLINK_PACK_SIZE_16 (2 << 21)
122 #define SLINK_PACK_SIZE_32 (3 << 21)
123 #define SLINK_PACK_SIZE_MASK (3 << 21)
124 #define SLINK_IE_TXC (1 << 26)
125 #define SLINK_IE_RXC (1 << 27)
126 #define SLINK_DMA_EN (1 << 31)
127
128 #define SLINK_STATUS2 0x01c
129 #define SLINK_TX_FIFO_EMPTY_COUNT(val) (((val) & 0x3f) >> 0)
130 #define SLINK_RX_FIFO_FULL_COUNT(val) (((val) & 0x3f) >> 16)
131
132 #define SLINK_TX_FIFO 0x100
133 #define SLINK_RX_FIFO 0x180
134
135 static const unsigned long spi_tegra_req_sels[] = {
136 TEGRA_DMA_REQ_SEL_SL2B1,
137 TEGRA_DMA_REQ_SEL_SL2B2,
138 TEGRA_DMA_REQ_SEL_SL2B3,
139 TEGRA_DMA_REQ_SEL_SL2B4,
140 };
141
142 #define BB_LEN 32
143
144 struct spi_tegra_data {
145 struct spi_master *master;
146 struct platform_device *pdev;
147 spinlock_t lock;
148
149 struct clk *clk;
150 void __iomem *base;
151 unsigned long phys;
152
153 u32 cur_speed;
154
155 struct list_head queue;
156 struct spi_transfer *cur;
157 unsigned cur_pos;
158 unsigned cur_len;
159 unsigned cur_bytes_per_word;
160
161 /* The tegra spi controller has a bug which causes the first word
162 * in PIO transactions to be garbage. Since packed DMA transactions
163 * require transfers to be 4 byte aligned we need a bounce buffer
164 * for the generic case.
165 */
166 int dma_req_len;
167 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
168 struct tegra_dma_req rx_dma_req;
169 struct tegra_dma_channel *rx_dma;
170 #else
171 struct dma_chan *rx_dma;
172 struct dma_slave_config sconfig;
173 struct dma_async_tx_descriptor *rx_dma_desc;
174 dma_cookie_t rx_cookie;
175 #endif
176 u32 *rx_bb;
177 dma_addr_t rx_bb_phys;
178 };
179
180 #if !defined(CONFIG_TEGRA_SYSTEM_DMA)
181 static void tegra_spi_rx_dma_complete(void *args);
182 #endif
183
184 static inline unsigned long spi_tegra_readl(struct spi_tegra_data *tspi,
185 unsigned long reg)
186 {
187 return readl(tspi->base + reg);
188 }
189
190 static inline void spi_tegra_writel(struct spi_tegra_data *tspi,
191 unsigned long val,
192 unsigned long reg)
193 {
194 writel(val, tspi->base + reg);
195 }
196
197 static void spi_tegra_go(struct spi_tegra_data *tspi)
198 {
199 unsigned long val;
200
201 wmb();
202
203 val = spi_tegra_readl(tspi, SLINK_DMA_CTL);
204 val &= ~SLINK_DMA_BLOCK_SIZE(~0) & ~SLINK_DMA_EN;
205 val |= SLINK_DMA_BLOCK_SIZE(tspi->dma_req_len / 4 - 1);
206 spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
207 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
208 tspi->rx_dma_req.size = tspi->dma_req_len;
209 tegra_dma_enqueue_req(tspi->rx_dma, &tspi->rx_dma_req);
210 #else
211 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma,
212 tspi->rx_bb_phys, tspi->dma_req_len,
213 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
214 if (!tspi->rx_dma_desc) {
215 dev_err(&tspi->pdev->dev, "dmaengine slave prep failed\n");
216 return;
217 }
218 tspi->rx_dma_desc->callback = tegra_spi_rx_dma_complete;
219 tspi->rx_dma_desc->callback_param = tspi;
220 tspi->rx_cookie = dmaengine_submit(tspi->rx_dma_desc);
221 dma_async_issue_pending(tspi->rx_dma);
222 #endif
223
224 val |= SLINK_DMA_EN;
225 spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
226 }
227
228 static unsigned spi_tegra_fill_tx_fifo(struct spi_tegra_data *tspi,
229 struct spi_transfer *t)
230 {
231 unsigned len = min(t->len - tspi->cur_pos, BB_LEN *
232 tspi->cur_bytes_per_word);
233 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_pos;
234 int i, j;
235 unsigned long val;
236
237 val = spi_tegra_readl(tspi, SLINK_COMMAND);
238 val &= ~SLINK_WORD_SIZE(~0);
239 val |= SLINK_WORD_SIZE(len / tspi->cur_bytes_per_word - 1);
240 spi_tegra_writel(tspi, val, SLINK_COMMAND);
241
242 for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
243 val = 0;
244 for (j = 0; j < tspi->cur_bytes_per_word; j++)
245 val |= tx_buf[i + j] << j * 8;
246
247 spi_tegra_writel(tspi, val, SLINK_TX_FIFO);
248 }
249
250 tspi->dma_req_len = len / tspi->cur_bytes_per_word * 4;
251
252 return len;
253 }
254
255 static unsigned spi_tegra_drain_rx_fifo(struct spi_tegra_data *tspi,
256 struct spi_transfer *t)
257 {
258 unsigned len = tspi->cur_len;
259 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_pos;
260 int i, j;
261 unsigned long val;
262
263 for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
264 val = tspi->rx_bb[i / tspi->cur_bytes_per_word];
265 for (j = 0; j < tspi->cur_bytes_per_word; j++)
266 rx_buf[i + j] = (val >> (j * 8)) & 0xff;
267 }
268
269 return len;
270 }
271
272 static void spi_tegra_start_transfer(struct spi_device *spi,
273 struct spi_transfer *t)
274 {
275 struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
276 u32 speed;
277 u8 bits_per_word;
278 unsigned long val;
279
280 speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
281 bits_per_word = t->bits_per_word ? t->bits_per_word :
282 spi->bits_per_word;
283
284 tspi->cur_bytes_per_word = (bits_per_word - 1) / 8 + 1;
285
286 if (speed != tspi->cur_speed)
287 clk_set_rate(tspi->clk, speed);
288
289 if (tspi->cur_speed == 0)
290 clk_prepare_enable(tspi->clk);
291
292 tspi->cur_speed = speed;
293
294 val = spi_tegra_readl(tspi, SLINK_COMMAND2);
295 val &= ~SLINK_SS_EN_CS(~0) | SLINK_RXEN | SLINK_TXEN;
296 if (t->rx_buf)
297 val |= SLINK_RXEN;
298 if (t->tx_buf)
299 val |= SLINK_TXEN;
300 val |= SLINK_SS_EN_CS(spi->chip_select);
301 val |= SLINK_SPIE;
302 spi_tegra_writel(tspi, val, SLINK_COMMAND2);
303
304 val = spi_tegra_readl(tspi, SLINK_COMMAND);
305 val &= ~SLINK_BIT_LENGTH(~0);
306 val |= SLINK_BIT_LENGTH(bits_per_word - 1);
307
308 /* FIXME: should probably control CS manually so that we can be sure
309 * it does not go low between transfer and to support delay_usecs
310 * correctly.
311 */
312 val &= ~SLINK_IDLE_SCLK_MASK & ~SLINK_CK_SDA & ~SLINK_CS_SW;
313
314 if (spi->mode & SPI_CPHA)
315 val |= SLINK_CK_SDA;
316
317 if (spi->mode & SPI_CPOL)
318 val |= SLINK_IDLE_SCLK_DRIVE_HIGH;
319 else
320 val |= SLINK_IDLE_SCLK_DRIVE_LOW;
321
322 val |= SLINK_M_S;
323
324 spi_tegra_writel(tspi, val, SLINK_COMMAND);
325
326 spi_tegra_writel(tspi, SLINK_RX_FLUSH | SLINK_TX_FLUSH, SLINK_STATUS);
327
328 tspi->cur = t;
329 tspi->cur_pos = 0;
330 tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, t);
331
332 spi_tegra_go(tspi);
333 }
334
335 static void spi_tegra_start_message(struct spi_device *spi,
336 struct spi_message *m)
337 {
338 struct spi_transfer *t;
339
340 m->actual_length = 0;
341 m->status = 0;
342
343 t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list);
344 spi_tegra_start_transfer(spi, t);
345 }
346
347 static void handle_spi_rx_dma_complete(struct spi_tegra_data *tspi)
348 {
349 unsigned long flags;
350 struct spi_message *m;
351 struct spi_device *spi;
352 int timeout = 0;
353 unsigned long val;
354
355 /* the SPI controller may come back with both the BSY and RDY bits
356 * set. In this case we need to wait for the BSY bit to clear so
357 * that we are sure the DMA is finished. 1000 reads was empirically
358 * determined to be long enough.
359 */
360 while (timeout++ < 1000) {
361 if (!(spi_tegra_readl(tspi, SLINK_STATUS) & SLINK_BSY))
362 break;
363 }
364
365 spin_lock_irqsave(&tspi->lock, flags);
366
367 val = spi_tegra_readl(tspi, SLINK_STATUS);
368 val |= SLINK_RDY;
369 spi_tegra_writel(tspi, val, SLINK_STATUS);
370
371 m = list_first_entry(&tspi->queue, struct spi_message, queue);
372
373 if (timeout >= 1000)
374 m->status = -EIO;
375
376 spi = m->state;
377
378 tspi->cur_pos += spi_tegra_drain_rx_fifo(tspi, tspi->cur);
379 m->actual_length += tspi->cur_pos;
380
381 if (tspi->cur_pos < tspi->cur->len) {
382 tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, tspi->cur);
383 spi_tegra_go(tspi);
384 } else if (!list_is_last(&tspi->cur->transfer_list,
385 &m->transfers)) {
386 tspi->cur = list_first_entry(&tspi->cur->transfer_list,
387 struct spi_transfer,
388 transfer_list);
389 spi_tegra_start_transfer(spi, tspi->cur);
390 } else {
391 list_del(&m->queue);
392
393 m->complete(m->context);
394
395 if (!list_empty(&tspi->queue)) {
396 m = list_first_entry(&tspi->queue, struct spi_message,
397 queue);
398 spi = m->state;
399 spi_tegra_start_message(spi, m);
400 } else {
401 clk_disable_unprepare(tspi->clk);
402 tspi->cur_speed = 0;
403 }
404 }
405
406 spin_unlock_irqrestore(&tspi->lock, flags);
407 }
408 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
409 static void tegra_spi_rx_dma_complete(struct tegra_dma_req *req)
410 {
411 struct spi_tegra_data *tspi = req->dev;
412 handle_spi_rx_dma_complete(tspi);
413 }
414 #else
415 static void tegra_spi_rx_dma_complete(void *args)
416 {
417 struct spi_tegra_data *tspi = args;
418 handle_spi_rx_dma_complete(tspi);
419 }
420 #endif
421
422 static int spi_tegra_setup(struct spi_device *spi)
423 {
424 struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
425 unsigned long cs_bit;
426 unsigned long val;
427 unsigned long flags;
428
429 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
430 spi->bits_per_word,
431 spi->mode & SPI_CPOL ? "" : "~",
432 spi->mode & SPI_CPHA ? "" : "~",
433 spi->max_speed_hz);
434
435
436 switch (spi->chip_select) {
437 case 0:
438 cs_bit = SLINK_CS_POLARITY;
439 break;
440
441 case 1:
442 cs_bit = SLINK_CS_POLARITY1;
443 break;
444
445 case 2:
446 cs_bit = SLINK_CS_POLARITY2;
447 break;
448
449 case 4:
450 cs_bit = SLINK_CS_POLARITY3;
451 break;
452
453 default:
454 return -EINVAL;
455 }
456
457 spin_lock_irqsave(&tspi->lock, flags);
458
459 val = spi_tegra_readl(tspi, SLINK_COMMAND);
460 if (spi->mode & SPI_CS_HIGH)
461 val |= cs_bit;
462 else
463 val &= ~cs_bit;
464 spi_tegra_writel(tspi, val, SLINK_COMMAND);
465
466 spin_unlock_irqrestore(&tspi->lock, flags);
467
468 return 0;
469 }
470
471 static int spi_tegra_transfer(struct spi_device *spi, struct spi_message *m)
472 {
473 struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
474 struct spi_transfer *t;
475 unsigned long flags;
476 int was_empty;
477
478 if (list_empty(&m->transfers) || !m->complete)
479 return -EINVAL;
480
481 list_for_each_entry(t, &m->transfers, transfer_list) {
482 if (t->bits_per_word < 0 || t->bits_per_word > 32)
483 return -EINVAL;
484
485 if (t->len == 0)
486 return -EINVAL;
487
488 if (!t->rx_buf && !t->tx_buf)
489 return -EINVAL;
490 }
491
492 m->state = spi;
493
494 spin_lock_irqsave(&tspi->lock, flags);
495 was_empty = list_empty(&tspi->queue);
496 list_add_tail(&m->queue, &tspi->queue);
497
498 if (was_empty)
499 spi_tegra_start_message(spi, m);
500
501 spin_unlock_irqrestore(&tspi->lock, flags);
502
503 return 0;
504 }
505
506 static int __devinit spi_tegra_probe(struct platform_device *pdev)
507 {
508 struct spi_master *master;
509 struct spi_tegra_data *tspi;
510 struct resource *r;
511 int ret;
512 #if !defined(CONFIG_TEGRA_SYSTEM_DMA)
513 dma_cap_mask_t mask;
514 #endif
515
516 master = spi_alloc_master(&pdev->dev, sizeof *tspi);
517 if (master == NULL) {
518 dev_err(&pdev->dev, "master allocation failed\n");
519 return -ENOMEM;
520 }
521
522 /* the spi->mode bits understood by this driver: */
523 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
524
525 master->bus_num = pdev->id;
526
527 master->setup = spi_tegra_setup;
528 master->transfer = spi_tegra_transfer;
529 master->num_chipselect = 4;
530
531 dev_set_drvdata(&pdev->dev, master);
532 tspi = spi_master_get_devdata(master);
533 tspi->master = master;
534 tspi->pdev = pdev;
535 spin_lock_init(&tspi->lock);
536
537 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
538 if (r == NULL) {
539 ret = -ENODEV;
540 goto err0;
541 }
542
543 if (!request_mem_region(r->start, resource_size(r),
544 dev_name(&pdev->dev))) {
545 ret = -EBUSY;
546 goto err0;
547 }
548
549 tspi->phys = r->start;
550 tspi->base = ioremap(r->start, resource_size(r));
551 if (!tspi->base) {
552 dev_err(&pdev->dev, "can't ioremap iomem\n");
553 ret = -ENOMEM;
554 goto err1;
555 }
556
557 tspi->clk = clk_get(&pdev->dev, NULL);
558 if (IS_ERR(tspi->clk)) {
559 dev_err(&pdev->dev, "can not get clock\n");
560 ret = PTR_ERR(tspi->clk);
561 goto err2;
562 }
563
564 INIT_LIST_HEAD(&tspi->queue);
565
566 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
567 tspi->rx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT);
568 if (!tspi->rx_dma) {
569 dev_err(&pdev->dev, "can not allocate rx dma channel\n");
570 ret = -ENODEV;
571 goto err3;
572 }
573 #else
574 dma_cap_zero(mask);
575 dma_cap_set(DMA_SLAVE, mask);
576 tspi->rx_dma = dma_request_channel(mask, NULL, NULL);
577 if (!tspi->rx_dma) {
578 dev_err(&pdev->dev, "can not allocate rx dma channel\n");
579 ret = -ENODEV;
580 goto err3;
581 }
582
583 #endif
584
585 tspi->rx_bb = dma_alloc_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
586 &tspi->rx_bb_phys, GFP_KERNEL);
587 if (!tspi->rx_bb) {
588 dev_err(&pdev->dev, "can not allocate rx bounce buffer\n");
589 ret = -ENOMEM;
590 goto err4;
591 }
592
593 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
594 tspi->rx_dma_req.complete = tegra_spi_rx_dma_complete;
595 tspi->rx_dma_req.to_memory = 1;
596 tspi->rx_dma_req.dest_addr = tspi->rx_bb_phys;
597 tspi->rx_dma_req.dest_bus_width = 32;
598 tspi->rx_dma_req.source_addr = tspi->phys + SLINK_RX_FIFO;
599 tspi->rx_dma_req.source_bus_width = 32;
600 tspi->rx_dma_req.source_wrap = 4;
601 tspi->rx_dma_req.req_sel = spi_tegra_req_sels[pdev->id];
602 tspi->rx_dma_req.dev = tspi;
603 #else
604 /* Dmaengine Dma slave config */
605 tspi->sconfig.src_addr = tspi->phys + SLINK_RX_FIFO;
606 tspi->sconfig.dst_addr = tspi->phys + SLINK_RX_FIFO;
607 tspi->sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
608 tspi->sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
609 tspi->sconfig.slave_id = spi_tegra_req_sels[pdev->id];
610 tspi->sconfig.src_maxburst = 1;
611 tspi->sconfig.dst_maxburst = 1;
612 ret = dmaengine_device_control(tspi->rx_dma,
613 DMA_SLAVE_CONFIG, (unsigned long) &tspi->sconfig);
614 if (ret < 0) {
615 dev_err(&pdev->dev, "can not do slave configure for dma %d\n",
616 ret);
617 goto err4;
618 }
619 #endif
620
621 master->dev.of_node = pdev->dev.of_node;
622 ret = spi_register_master(master);
623
624 if (ret < 0)
625 goto err5;
626
627 return ret;
628
629 err5:
630 dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
631 tspi->rx_bb, tspi->rx_bb_phys);
632 err4:
633 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
634 tegra_dma_free_channel(tspi->rx_dma);
635 #else
636 dma_release_channel(tspi->rx_dma);
637 #endif
638 err3:
639 clk_put(tspi->clk);
640 err2:
641 iounmap(tspi->base);
642 err1:
643 release_mem_region(r->start, resource_size(r));
644 err0:
645 spi_master_put(master);
646 return ret;
647 }
648
649 static int __devexit spi_tegra_remove(struct platform_device *pdev)
650 {
651 struct spi_master *master;
652 struct spi_tegra_data *tspi;
653 struct resource *r;
654
655 master = dev_get_drvdata(&pdev->dev);
656 tspi = spi_master_get_devdata(master);
657
658 spi_unregister_master(master);
659 #if defined(CONFIG_TEGRA_SYSTEM_DMA)
660 tegra_dma_free_channel(tspi->rx_dma);
661 #else
662 dma_release_channel(tspi->rx_dma);
663 #endif
664
665 dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
666 tspi->rx_bb, tspi->rx_bb_phys);
667
668 clk_put(tspi->clk);
669 iounmap(tspi->base);
670
671 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
672 release_mem_region(r->start, resource_size(r));
673
674 return 0;
675 }
676
677 MODULE_ALIAS("platform:spi_tegra");
678
679 #ifdef CONFIG_OF
680 static struct of_device_id spi_tegra_of_match_table[] __devinitdata = {
681 { .compatible = "nvidia,tegra20-spi", },
682 {}
683 };
684 MODULE_DEVICE_TABLE(of, spi_tegra_of_match_table);
685 #else /* CONFIG_OF */
686 #define spi_tegra_of_match_table NULL
687 #endif /* CONFIG_OF */
688
689 static struct platform_driver spi_tegra_driver = {
690 .driver = {
691 .name = "spi_tegra",
692 .owner = THIS_MODULE,
693 .of_match_table = spi_tegra_of_match_table,
694 },
695 .probe = spi_tegra_probe,
696 .remove = __devexit_p(spi_tegra_remove),
697 };
698 module_platform_driver(spi_tegra_driver);
699
700 MODULE_LICENSE("GPL");
This page took 0.056256 seconds and 6 git commands to generate.