spi-topcliff-pch: Fix CPU read complete condition issue
[deliverable/linux.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
3 *
4 * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
43
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
46
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
52
53 #define PCH_MAX_BAUDRATE 5000000
54 #define PCH_MAX_FIFO_DEPTH 16
55
56 #define STATUS_RUNNING 1
57 #define STATUS_EXITING 2
58 #define PCH_SLEEP_TIME 10
59
60 #define SSN_LOW 0x02U
61 #define SSN_HIGH 0x03U
62 #define SSN_NO_CONTROL 0x00U
63 #define PCH_MAX_CS 0xFF
64 #define PCI_DEVICE_ID_GE_SPI 0x8816
65
66 #define SPCR_SPE_BIT (1 << 0)
67 #define SPCR_MSTR_BIT (1 << 1)
68 #define SPCR_LSBF_BIT (1 << 4)
69 #define SPCR_CPHA_BIT (1 << 5)
70 #define SPCR_CPOL_BIT (1 << 6)
71 #define SPCR_TFIE_BIT (1 << 8)
72 #define SPCR_RFIE_BIT (1 << 9)
73 #define SPCR_FIE_BIT (1 << 10)
74 #define SPCR_ORIE_BIT (1 << 11)
75 #define SPCR_MDFIE_BIT (1 << 12)
76 #define SPCR_FICLR_BIT (1 << 24)
77 #define SPSR_TFI_BIT (1 << 0)
78 #define SPSR_RFI_BIT (1 << 1)
79 #define SPSR_FI_BIT (1 << 2)
80 #define SPSR_ORF_BIT (1 << 3)
81 #define SPBRR_SIZE_BIT (1 << 10)
82
83 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
84 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
85
86 #define SPCR_RFIC_FIELD 20
87 #define SPCR_TFIC_FIELD 16
88
89 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
90 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
91 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
92
93 #define PCH_CLOCK_HZ 50000000
94 #define PCH_MAX_SPBR 1023
95
96 /* Definition for ML7213 by OKI SEMICONDUCTOR */
97 #define PCI_VENDOR_ID_ROHM 0x10DB
98 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
99 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
100
101 /*
102 * Set the number of SPI instance max
103 * Intel EG20T PCH : 1ch
104 * OKI SEMICONDUCTOR ML7213 IOH : 2ch
105 * OKI SEMICONDUCTOR ML7223 IOH : 1ch
106 */
107 #define PCH_SPI_MAX_DEV 2
108
109 #define PCH_BUF_SIZE 4096
110 #define PCH_DMA_TRANS_SIZE 12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115 struct dma_async_tx_descriptor *desc_tx;
116 struct dma_async_tx_descriptor *desc_rx;
117 struct pch_dma_slave param_tx;
118 struct pch_dma_slave param_rx;
119 struct dma_chan *chan_tx;
120 struct dma_chan *chan_rx;
121 struct scatterlist *sg_tx_p;
122 struct scatterlist *sg_rx_p;
123 struct scatterlist sg_tx;
124 struct scatterlist sg_rx;
125 int nent;
126 void *tx_buf_virt;
127 void *rx_buf_virt;
128 dma_addr_t tx_buf_dma;
129 dma_addr_t rx_buf_dma;
130 };
131 /**
132 * struct pch_spi_data - Holds the SPI channel specific details
133 * @io_remap_addr: The remapped PCI base address
134 * @master: Pointer to the SPI master structure
135 * @work: Reference to work queue handler
136 * @wk: Workqueue for carrying out execution of the
137 * requests
138 * @wait: Wait queue for waking up upon receiving an
139 * interrupt.
140 * @transfer_complete: Status of SPI Transfer
141 * @bcurrent_msg_processing: Status flag for message processing
142 * @lock: Lock for protecting this structure
143 * @queue: SPI Message queue
144 * @status: Status of the SPI driver
145 * @bpw_len: Length of data to be transferred in bits per
146 * word
147 * @transfer_active: Flag showing active transfer
148 * @tx_index: Transmit data count; for bookkeeping during
149 * transfer
150 * @rx_index: Receive data count; for bookkeeping during
151 * transfer
152 * @tx_buff: Buffer for data to be transmitted
153 * @rx_index: Buffer for Received data
154 * @n_curnt_chip: The chip number that this SPI driver currently
155 * operates on
156 * @current_chip: Reference to the current chip that this SPI
157 * driver currently operates on
158 * @current_msg: The current message that this SPI driver is
159 * handling
160 * @cur_trans: The current transfer that this SPI driver is
161 * handling
162 * @board_dat: Reference to the SPI device data structure
163 * @plat_dev: platform_device structure
164 * @ch: SPI channel number
165 * @irq_reg_sts: Status of IRQ registration
166 */
167 struct pch_spi_data {
168 void __iomem *io_remap_addr;
169 unsigned long io_base_addr;
170 struct spi_master *master;
171 struct work_struct work;
172 struct workqueue_struct *wk;
173 wait_queue_head_t wait;
174 u8 transfer_complete;
175 u8 bcurrent_msg_processing;
176 spinlock_t lock;
177 struct list_head queue;
178 u8 status;
179 u32 bpw_len;
180 u8 transfer_active;
181 u32 tx_index;
182 u32 rx_index;
183 u16 *pkt_tx_buff;
184 u16 *pkt_rx_buff;
185 u8 n_curnt_chip;
186 struct spi_device *current_chip;
187 struct spi_message *current_msg;
188 struct spi_transfer *cur_trans;
189 struct pch_spi_board_data *board_dat;
190 struct platform_device *plat_dev;
191 int ch;
192 struct pch_spi_dma_ctrl dma;
193 int use_dma;
194 u8 irq_reg_sts;
195 };
196
197 /**
198 * struct pch_spi_board_data - Holds the SPI device specific details
199 * @pdev: Pointer to the PCI device
200 * @suspend_sts: Status of suspend
201 * @num: The number of SPI device instance
202 */
203 struct pch_spi_board_data {
204 struct pci_dev *pdev;
205 u8 suspend_sts;
206 int num;
207 };
208
209 struct pch_pd_dev_save {
210 int num;
211 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
212 struct pch_spi_board_data *board_dat;
213 };
214
215 static struct pci_device_id pch_spi_pcidev_id[] = {
216 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
217 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
218 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
219 { }
220 };
221
222 /**
223 * pch_spi_writereg() - Performs register writes
224 * @master: Pointer to struct spi_master.
225 * @idx: Register offset.
226 * @val: Value to be written to register.
227 */
228 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
229 {
230 struct pch_spi_data *data = spi_master_get_devdata(master);
231 iowrite32(val, (data->io_remap_addr + idx));
232 }
233
234 /**
235 * pch_spi_readreg() - Performs register reads
236 * @master: Pointer to struct spi_master.
237 * @idx: Register offset.
238 */
239 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
240 {
241 struct pch_spi_data *data = spi_master_get_devdata(master);
242 return ioread32(data->io_remap_addr + idx);
243 }
244
245 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
246 u32 set, u32 clr)
247 {
248 u32 tmp = pch_spi_readreg(master, idx);
249 tmp = (tmp & ~clr) | set;
250 pch_spi_writereg(master, idx, tmp);
251 }
252
253 static void pch_spi_set_master_mode(struct spi_master *master)
254 {
255 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
256 }
257
258 /**
259 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
260 * @master: Pointer to struct spi_master.
261 */
262 static void pch_spi_clear_fifo(struct spi_master *master)
263 {
264 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
265 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
266 }
267
268 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
269 void __iomem *io_remap_addr)
270 {
271 u32 n_read, tx_index, rx_index, bpw_len;
272 u16 *pkt_rx_buffer, *pkt_tx_buff;
273 int read_cnt;
274 u32 reg_spcr_val;
275 void __iomem *spsr;
276 void __iomem *spdrr;
277 void __iomem *spdwr;
278
279 spsr = io_remap_addr + PCH_SPSR;
280 iowrite32(reg_spsr_val, spsr);
281
282 if (data->transfer_active) {
283 rx_index = data->rx_index;
284 tx_index = data->tx_index;
285 bpw_len = data->bpw_len;
286 pkt_rx_buffer = data->pkt_rx_buff;
287 pkt_tx_buff = data->pkt_tx_buff;
288
289 spdrr = io_remap_addr + PCH_SPDRR;
290 spdwr = io_remap_addr + PCH_SPDWR;
291
292 n_read = PCH_READABLE(reg_spsr_val);
293
294 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
295 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
296 if (tx_index < bpw_len)
297 iowrite32(pkt_tx_buff[tx_index++], spdwr);
298 }
299
300 /* disable RFI if not needed */
301 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
302 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
303 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
304
305 /* reset rx threshold */
306 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
307 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
308
309 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
310 }
311
312 /* update counts */
313 data->tx_index = tx_index;
314 data->rx_index = rx_index;
315
316 }
317
318 /* if transfer complete interrupt */
319 if (reg_spsr_val & SPSR_FI_BIT) {
320 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
321 /* disable interrupts */
322 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
323
324 /* transfer is completed;
325 inform pch_spi_process_messages */
326 data->transfer_complete = true;
327 data->transfer_active = false;
328 wake_up(&data->wait);
329 } else {
330 dev_err(&data->master->dev,
331 "%s : Transfer is not completed", __func__);
332 }
333 }
334 }
335
336 /**
337 * pch_spi_handler() - Interrupt handler
338 * @irq: The interrupt number.
339 * @dev_id: Pointer to struct pch_spi_board_data.
340 */
341 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
342 {
343 u32 reg_spsr_val;
344 void __iomem *spsr;
345 void __iomem *io_remap_addr;
346 irqreturn_t ret = IRQ_NONE;
347 struct pch_spi_data *data = dev_id;
348 struct pch_spi_board_data *board_dat = data->board_dat;
349
350 if (board_dat->suspend_sts) {
351 dev_dbg(&board_dat->pdev->dev,
352 "%s returning due to suspend\n", __func__);
353 return IRQ_NONE;
354 }
355 if (data->use_dma)
356 return IRQ_NONE;
357
358 io_remap_addr = data->io_remap_addr;
359 spsr = io_remap_addr + PCH_SPSR;
360
361 reg_spsr_val = ioread32(spsr);
362
363 if (reg_spsr_val & SPSR_ORF_BIT)
364 dev_err(&board_dat->pdev->dev, "%s Over run error", __func__);
365
366 /* Check if the interrupt is for SPI device */
367 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
368 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
369 ret = IRQ_HANDLED;
370 }
371
372 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
373 __func__, ret);
374
375 return ret;
376 }
377
378 /**
379 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
380 * @master: Pointer to struct spi_master.
381 * @speed_hz: Baud rate.
382 */
383 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
384 {
385 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
386
387 /* if baud rate is less than we can support limit it */
388 if (n_spbr > PCH_MAX_SPBR)
389 n_spbr = PCH_MAX_SPBR;
390
391 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
392 }
393
394 /**
395 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
396 * @master: Pointer to struct spi_master.
397 * @bits_per_word: Bits per word for SPI transfer.
398 */
399 static void pch_spi_set_bits_per_word(struct spi_master *master,
400 u8 bits_per_word)
401 {
402 if (bits_per_word == 8)
403 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
404 else
405 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
406 }
407
408 /**
409 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
410 * @spi: Pointer to struct spi_device.
411 */
412 static void pch_spi_setup_transfer(struct spi_device *spi)
413 {
414 u32 flags = 0;
415
416 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
417 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
418 spi->max_speed_hz);
419 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
420
421 /* set bits per word */
422 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
423
424 if (!(spi->mode & SPI_LSB_FIRST))
425 flags |= SPCR_LSBF_BIT;
426 if (spi->mode & SPI_CPOL)
427 flags |= SPCR_CPOL_BIT;
428 if (spi->mode & SPI_CPHA)
429 flags |= SPCR_CPHA_BIT;
430 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
431 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
432
433 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
434 pch_spi_clear_fifo(spi->master);
435 }
436
437 /**
438 * pch_spi_reset() - Clears SPI registers
439 * @master: Pointer to struct spi_master.
440 */
441 static void pch_spi_reset(struct spi_master *master)
442 {
443 /* write 1 to reset SPI */
444 pch_spi_writereg(master, PCH_SRST, 0x1);
445
446 /* clear reset */
447 pch_spi_writereg(master, PCH_SRST, 0x0);
448 }
449
450 static int pch_spi_setup(struct spi_device *pspi)
451 {
452 /* check bits per word */
453 if (pspi->bits_per_word == 0) {
454 pspi->bits_per_word = 8;
455 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
456 }
457
458 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
459 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
460 return -EINVAL;
461 }
462
463 /* Check baud rate setting */
464 /* if baud rate of chip is greater than
465 max we can support,return error */
466 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
467 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
468
469 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
470 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
471
472 return 0;
473 }
474
475 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
476 {
477
478 struct spi_transfer *transfer;
479 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
480 int retval;
481 unsigned long flags;
482
483 /* validate spi message and baud rate */
484 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
485 dev_err(&pspi->dev, "%s list empty\n", __func__);
486 retval = -EINVAL;
487 goto err_out;
488 }
489
490 if (unlikely(pspi->max_speed_hz == 0)) {
491 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
492 __func__, pspi->max_speed_hz);
493 retval = -EINVAL;
494 goto err_out;
495 }
496
497 dev_dbg(&pspi->dev, "%s Transfer List not empty. "
498 "Transfer Speed is set.\n", __func__);
499
500 spin_lock_irqsave(&data->lock, flags);
501 /* validate Tx/Rx buffers and Transfer length */
502 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
503 if (!transfer->tx_buf && !transfer->rx_buf) {
504 dev_err(&pspi->dev,
505 "%s Tx and Rx buffer NULL\n", __func__);
506 retval = -EINVAL;
507 goto err_return_spinlock;
508 }
509
510 if (!transfer->len) {
511 dev_err(&pspi->dev, "%s Transfer length invalid\n",
512 __func__);
513 retval = -EINVAL;
514 goto err_return_spinlock;
515 }
516
517 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
518 " valid\n", __func__);
519
520 /* if baud rate has been specified validate the same */
521 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
522 transfer->speed_hz = PCH_MAX_BAUDRATE;
523
524 /* if bits per word has been specified validate the same */
525 if (transfer->bits_per_word) {
526 if ((transfer->bits_per_word != 8)
527 && (transfer->bits_per_word != 16)) {
528 retval = -EINVAL;
529 dev_err(&pspi->dev,
530 "%s Invalid bits per word\n", __func__);
531 goto err_return_spinlock;
532 }
533 }
534 }
535 spin_unlock_irqrestore(&data->lock, flags);
536
537 /* We won't process any messages if we have been asked to terminate */
538 if (data->status == STATUS_EXITING) {
539 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
540 retval = -ESHUTDOWN;
541 goto err_out;
542 }
543
544 /* If suspended ,return -EINVAL */
545 if (data->board_dat->suspend_sts) {
546 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
547 retval = -EINVAL;
548 goto err_out;
549 }
550
551 /* set status of message */
552 pmsg->actual_length = 0;
553 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
554
555 pmsg->status = -EINPROGRESS;
556 spin_lock_irqsave(&data->lock, flags);
557 /* add message to queue */
558 list_add_tail(&pmsg->queue, &data->queue);
559 spin_unlock_irqrestore(&data->lock, flags);
560
561 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
562
563 /* schedule work queue to run */
564 queue_work(data->wk, &data->work);
565 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
566
567 retval = 0;
568
569 err_out:
570 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
571 return retval;
572 err_return_spinlock:
573 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
574 spin_unlock_irqrestore(&data->lock, flags);
575 return retval;
576 }
577
578 static inline void pch_spi_select_chip(struct pch_spi_data *data,
579 struct spi_device *pspi)
580 {
581 if (data->current_chip != NULL) {
582 if (pspi->chip_select != data->n_curnt_chip) {
583 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
584 data->current_chip = NULL;
585 }
586 }
587
588 data->current_chip = pspi;
589
590 data->n_curnt_chip = data->current_chip->chip_select;
591
592 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
593 pch_spi_setup_transfer(pspi);
594 }
595
596 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
597 {
598 int size;
599 u32 n_writes;
600 int j;
601 struct spi_message *pmsg;
602 const u8 *tx_buf;
603 const u16 *tx_sbuf;
604
605 /* set baud rate if needed */
606 if (data->cur_trans->speed_hz) {
607 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
608 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
609 }
610
611 /* set bits per word if needed */
612 if (data->cur_trans->bits_per_word &&
613 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
614 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
615 pch_spi_set_bits_per_word(data->master,
616 data->cur_trans->bits_per_word);
617 *bpw = data->cur_trans->bits_per_word;
618 } else {
619 *bpw = data->current_msg->spi->bits_per_word;
620 }
621
622 /* reset Tx/Rx index */
623 data->tx_index = 0;
624 data->rx_index = 0;
625
626 data->bpw_len = data->cur_trans->len / (*bpw / 8);
627
628 /* find alloc size */
629 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
630
631 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
632 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
633 if (data->pkt_tx_buff != NULL) {
634 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
635 if (!data->pkt_rx_buff)
636 kfree(data->pkt_tx_buff);
637 }
638
639 if (!data->pkt_rx_buff) {
640 /* flush queue and set status of all transfers to -ENOMEM */
641 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
642 list_for_each_entry(pmsg, data->queue.next, queue) {
643 pmsg->status = -ENOMEM;
644
645 if (pmsg->complete != 0)
646 pmsg->complete(pmsg->context);
647
648 /* delete from queue */
649 list_del_init(&pmsg->queue);
650 }
651 return;
652 }
653
654 /* copy Tx Data */
655 if (data->cur_trans->tx_buf != NULL) {
656 if (*bpw == 8) {
657 tx_buf = data->cur_trans->tx_buf;
658 for (j = 0; j < data->bpw_len; j++)
659 data->pkt_tx_buff[j] = *tx_buf++;
660 } else {
661 tx_sbuf = data->cur_trans->tx_buf;
662 for (j = 0; j < data->bpw_len; j++)
663 data->pkt_tx_buff[j] = *tx_sbuf++;
664 }
665 }
666
667 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
668 n_writes = data->bpw_len;
669 if (n_writes > PCH_MAX_FIFO_DEPTH)
670 n_writes = PCH_MAX_FIFO_DEPTH;
671
672 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
673 "0x2 to SSNXCR\n", __func__);
674 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
675
676 for (j = 0; j < n_writes; j++)
677 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
678
679 /* update tx_index */
680 data->tx_index = j;
681
682 /* reset transfer complete flag */
683 data->transfer_complete = false;
684 data->transfer_active = true;
685 }
686
687 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
688 {
689 struct spi_message *pmsg;
690 dev_dbg(&data->master->dev, "%s called\n", __func__);
691 /* Invoke complete callback
692 * [To the spi core..indicating end of transfer] */
693 data->current_msg->status = 0;
694
695 if (data->current_msg->complete != 0) {
696 dev_dbg(&data->master->dev,
697 "%s:Invoking callback of SPI core\n", __func__);
698 data->current_msg->complete(data->current_msg->context);
699 }
700
701 /* update status in global variable */
702 data->bcurrent_msg_processing = false;
703
704 dev_dbg(&data->master->dev,
705 "%s:data->bcurrent_msg_processing = false\n", __func__);
706
707 data->current_msg = NULL;
708 data->cur_trans = NULL;
709
710 /* check if we have items in list and not suspending
711 * return 1 if list empty */
712 if ((list_empty(&data->queue) == 0) &&
713 (!data->board_dat->suspend_sts) &&
714 (data->status != STATUS_EXITING)) {
715 /* We have some more work to do (either there is more tranint
716 * bpw;sfer requests in the current message or there are
717 *more messages)
718 */
719 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
720 queue_work(data->wk, &data->work);
721 } else if (data->board_dat->suspend_sts ||
722 data->status == STATUS_EXITING) {
723 dev_dbg(&data->master->dev,
724 "%s suspend/remove initiated, flushing queue\n",
725 __func__);
726 list_for_each_entry(pmsg, data->queue.next, queue) {
727 pmsg->status = -EIO;
728
729 if (pmsg->complete)
730 pmsg->complete(pmsg->context);
731
732 /* delete from queue */
733 list_del_init(&pmsg->queue);
734 }
735 }
736 }
737
738 static void pch_spi_set_ir(struct pch_spi_data *data)
739 {
740 /* enable interrupts, set threshold, enable SPI */
741 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
742 /* set receive threshold to PCH_RX_THOLD */
743 pch_spi_setclr_reg(data->master, PCH_SPCR,
744 PCH_RX_THOLD << SPCR_RFIC_FIELD |
745 SPCR_FIE_BIT | SPCR_RFIE_BIT |
746 SPCR_ORIE_BIT | SPCR_SPE_BIT,
747 MASK_RFIC_SPCR_BITS | PCH_ALL);
748 else
749 /* set receive threshold to maximum */
750 pch_spi_setclr_reg(data->master, PCH_SPCR,
751 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
752 SPCR_FIE_BIT | SPCR_ORIE_BIT |
753 SPCR_SPE_BIT,
754 MASK_RFIC_SPCR_BITS | PCH_ALL);
755
756 /* Wait until the transfer completes; go to sleep after
757 initiating the transfer. */
758 dev_dbg(&data->master->dev,
759 "%s:waiting for transfer to get over\n", __func__);
760
761 wait_event_interruptible(data->wait, data->transfer_complete);
762
763 /* clear all interrupts */
764 pch_spi_writereg(data->master, PCH_SPSR,
765 pch_spi_readreg(data->master, PCH_SPSR));
766 /* Disable interrupts and SPI transfer */
767 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
768 /* clear FIFO */
769 pch_spi_clear_fifo(data->master);
770 }
771
772 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
773 {
774 int j;
775 u8 *rx_buf;
776 u16 *rx_sbuf;
777
778 /* copy Rx Data */
779 if (!data->cur_trans->rx_buf)
780 return;
781
782 if (bpw == 8) {
783 rx_buf = data->cur_trans->rx_buf;
784 for (j = 0; j < data->bpw_len; j++)
785 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
786 } else {
787 rx_sbuf = data->cur_trans->rx_buf;
788 for (j = 0; j < data->bpw_len; j++)
789 *rx_sbuf++ = data->pkt_rx_buff[j];
790 }
791 }
792
793 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
794 {
795 int j;
796 u8 *rx_buf;
797 u16 *rx_sbuf;
798 const u8 *rx_dma_buf;
799 const u16 *rx_dma_sbuf;
800
801 /* copy Rx Data */
802 if (!data->cur_trans->rx_buf)
803 return;
804
805 if (bpw == 8) {
806 rx_buf = data->cur_trans->rx_buf;
807 rx_dma_buf = data->dma.rx_buf_virt;
808 for (j = 0; j < data->bpw_len; j++)
809 *rx_buf++ = *rx_dma_buf++ & 0xFF;
810 } else {
811 rx_sbuf = data->cur_trans->rx_buf;
812 rx_dma_sbuf = data->dma.rx_buf_virt;
813 for (j = 0; j < data->bpw_len; j++)
814 *rx_sbuf++ = *rx_dma_sbuf++;
815 }
816 }
817
818 static void pch_spi_start_transfer(struct pch_spi_data *data)
819 {
820 struct pch_spi_dma_ctrl *dma;
821 unsigned long flags;
822
823 dma = &data->dma;
824
825 spin_lock_irqsave(&data->lock, flags);
826
827 /* disable interrupts, SPI set enable */
828 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
829
830 spin_unlock_irqrestore(&data->lock, flags);
831
832 /* Wait until the transfer completes; go to sleep after
833 initiating the transfer. */
834 dev_dbg(&data->master->dev,
835 "%s:waiting for transfer to get over\n", __func__);
836 wait_event_interruptible(data->wait, data->transfer_complete);
837
838 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
839 DMA_FROM_DEVICE);
840
841 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
842 DMA_FROM_DEVICE);
843 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
844
845 async_tx_ack(dma->desc_rx);
846 async_tx_ack(dma->desc_tx);
847 kfree(dma->sg_tx_p);
848 kfree(dma->sg_rx_p);
849
850 spin_lock_irqsave(&data->lock, flags);
851
852 /* clear fifo threshold, disable interrupts, disable SPI transfer */
853 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
854 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
855 SPCR_SPE_BIT);
856 /* clear all interrupts */
857 pch_spi_writereg(data->master, PCH_SPSR,
858 pch_spi_readreg(data->master, PCH_SPSR));
859 /* clear FIFO */
860 pch_spi_clear_fifo(data->master);
861
862 spin_unlock_irqrestore(&data->lock, flags);
863 }
864
865 static void pch_dma_rx_complete(void *arg)
866 {
867 struct pch_spi_data *data = arg;
868
869 /* transfer is completed;inform pch_spi_process_messages_dma */
870 data->transfer_complete = true;
871 wake_up_interruptible(&data->wait);
872 }
873
874 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
875 {
876 struct pch_dma_slave *param = slave;
877
878 if ((chan->chan_id == param->chan_id) &&
879 (param->dma_dev == chan->device->dev)) {
880 chan->private = param;
881 return true;
882 } else {
883 return false;
884 }
885 }
886
887 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
888 {
889 dma_cap_mask_t mask;
890 struct dma_chan *chan;
891 struct pci_dev *dma_dev;
892 struct pch_dma_slave *param;
893 struct pch_spi_dma_ctrl *dma;
894 unsigned int width;
895
896 if (bpw == 8)
897 width = PCH_DMA_WIDTH_1_BYTE;
898 else
899 width = PCH_DMA_WIDTH_2_BYTES;
900
901 dma = &data->dma;
902 dma_cap_zero(mask);
903 dma_cap_set(DMA_SLAVE, mask);
904
905 /* Get DMA's dev information */
906 dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
907
908 /* Set Tx DMA */
909 param = &dma->param_tx;
910 param->dma_dev = &dma_dev->dev;
911 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
912 param->tx_reg = data->io_base_addr + PCH_SPDWR;
913 param->width = width;
914 chan = dma_request_channel(mask, pch_spi_filter, param);
915 if (!chan) {
916 dev_err(&data->master->dev,
917 "ERROR: dma_request_channel FAILS(Tx)\n");
918 data->use_dma = 0;
919 return;
920 }
921 dma->chan_tx = chan;
922
923 /* Set Rx DMA */
924 param = &dma->param_rx;
925 param->dma_dev = &dma_dev->dev;
926 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
927 param->rx_reg = data->io_base_addr + PCH_SPDRR;
928 param->width = width;
929 chan = dma_request_channel(mask, pch_spi_filter, param);
930 if (!chan) {
931 dev_err(&data->master->dev,
932 "ERROR: dma_request_channel FAILS(Rx)\n");
933 dma_release_channel(dma->chan_tx);
934 dma->chan_tx = NULL;
935 data->use_dma = 0;
936 return;
937 }
938 dma->chan_rx = chan;
939 }
940
941 static void pch_spi_release_dma(struct pch_spi_data *data)
942 {
943 struct pch_spi_dma_ctrl *dma;
944
945 dma = &data->dma;
946 if (dma->chan_tx) {
947 dma_release_channel(dma->chan_tx);
948 dma->chan_tx = NULL;
949 }
950 if (dma->chan_rx) {
951 dma_release_channel(dma->chan_rx);
952 dma->chan_rx = NULL;
953 }
954 return;
955 }
956
957 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
958 {
959 const u8 *tx_buf;
960 const u16 *tx_sbuf;
961 u8 *tx_dma_buf;
962 u16 *tx_dma_sbuf;
963 struct scatterlist *sg;
964 struct dma_async_tx_descriptor *desc_tx;
965 struct dma_async_tx_descriptor *desc_rx;
966 int num;
967 int i;
968 int size;
969 int rem;
970 unsigned long flags;
971 struct pch_spi_dma_ctrl *dma;
972
973 dma = &data->dma;
974
975 /* set baud rate if needed */
976 if (data->cur_trans->speed_hz) {
977 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
978 spin_lock_irqsave(&data->lock, flags);
979 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
980 spin_unlock_irqrestore(&data->lock, flags);
981 }
982
983 /* set bits per word if needed */
984 if (data->cur_trans->bits_per_word &&
985 (data->current_msg->spi->bits_per_word !=
986 data->cur_trans->bits_per_word)) {
987 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
988 spin_lock_irqsave(&data->lock, flags);
989 pch_spi_set_bits_per_word(data->master,
990 data->cur_trans->bits_per_word);
991 spin_unlock_irqrestore(&data->lock, flags);
992 *bpw = data->cur_trans->bits_per_word;
993 } else {
994 *bpw = data->current_msg->spi->bits_per_word;
995 }
996 data->bpw_len = data->cur_trans->len / (*bpw / 8);
997
998 /* copy Tx Data */
999 if (data->cur_trans->tx_buf != NULL) {
1000 if (*bpw == 8) {
1001 tx_buf = data->cur_trans->tx_buf;
1002 tx_dma_buf = dma->tx_buf_virt;
1003 for (i = 0; i < data->bpw_len; i++)
1004 *tx_dma_buf++ = *tx_buf++;
1005 } else {
1006 tx_sbuf = data->cur_trans->tx_buf;
1007 tx_dma_sbuf = dma->tx_buf_virt;
1008 for (i = 0; i < data->bpw_len; i++)
1009 *tx_dma_sbuf++ = *tx_sbuf++;
1010 }
1011 }
1012 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1013 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1014 size = PCH_DMA_TRANS_SIZE;
1015 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1016 } else {
1017 num = 1;
1018 size = data->bpw_len;
1019 rem = data->bpw_len;
1020 }
1021 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1022 __func__, num, size, rem);
1023 spin_lock_irqsave(&data->lock, flags);
1024
1025 /* set receive fifo threshold and transmit fifo threshold */
1026 pch_spi_setclr_reg(data->master, PCH_SPCR,
1027 ((size - 1) << SPCR_RFIC_FIELD) |
1028 ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
1029 SPCR_TFIC_FIELD),
1030 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1031
1032 spin_unlock_irqrestore(&data->lock, flags);
1033
1034 /* RX */
1035 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1036 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1037 /* offset, length setting */
1038 sg = dma->sg_rx_p;
1039 for (i = 0; i < num; i++, sg++) {
1040 if (i == 0) {
1041 sg->offset = 0;
1042 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1043 sg->offset);
1044 sg_dma_len(sg) = rem;
1045 } else {
1046 sg->offset = rem + size * (i - 1);
1047 sg->offset = sg->offset * (*bpw / 8);
1048 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1049 sg->offset);
1050 sg_dma_len(sg) = size;
1051 }
1052 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1053 }
1054 sg = dma->sg_rx_p;
1055 desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1056 num, DMA_FROM_DEVICE,
1057 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1058 if (!desc_rx) {
1059 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1060 __func__);
1061 return;
1062 }
1063 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1064 desc_rx->callback = pch_dma_rx_complete;
1065 desc_rx->callback_param = data;
1066 dma->nent = num;
1067 dma->desc_rx = desc_rx;
1068
1069 /* TX */
1070 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1071 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1072 /* offset, length setting */
1073 sg = dma->sg_tx_p;
1074 for (i = 0; i < num; i++, sg++) {
1075 if (i == 0) {
1076 sg->offset = 0;
1077 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1078 sg->offset);
1079 sg_dma_len(sg) = rem;
1080 } else {
1081 sg->offset = rem + size * (i - 1);
1082 sg->offset = sg->offset * (*bpw / 8);
1083 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1084 sg->offset);
1085 sg_dma_len(sg) = size;
1086 }
1087 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1088 }
1089 sg = dma->sg_tx_p;
1090 desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1091 sg, num, DMA_TO_DEVICE,
1092 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1093 if (!desc_tx) {
1094 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1095 __func__);
1096 return;
1097 }
1098 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1099 desc_tx->callback = NULL;
1100 desc_tx->callback_param = data;
1101 dma->nent = num;
1102 dma->desc_tx = desc_tx;
1103
1104 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1105 "0x2 to SSNXCR\n", __func__);
1106
1107 spin_lock_irqsave(&data->lock, flags);
1108 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1109 desc_rx->tx_submit(desc_rx);
1110 desc_tx->tx_submit(desc_tx);
1111 spin_unlock_irqrestore(&data->lock, flags);
1112
1113 /* reset transfer complete flag */
1114 data->transfer_complete = false;
1115 }
1116
1117 static void pch_spi_process_messages(struct work_struct *pwork)
1118 {
1119 struct spi_message *pmsg;
1120 struct pch_spi_data *data;
1121 int bpw;
1122
1123 data = container_of(pwork, struct pch_spi_data, work);
1124 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1125
1126 spin_lock(&data->lock);
1127 /* check if suspend has been initiated;if yes flush queue */
1128 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1129 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1130 "flushing queue\n", __func__);
1131 list_for_each_entry(pmsg, data->queue.next, queue) {
1132 pmsg->status = -EIO;
1133
1134 if (pmsg->complete != 0) {
1135 spin_unlock(&data->lock);
1136 pmsg->complete(pmsg->context);
1137 spin_lock(&data->lock);
1138 }
1139
1140 /* delete from queue */
1141 list_del_init(&pmsg->queue);
1142 }
1143
1144 spin_unlock(&data->lock);
1145 return;
1146 }
1147
1148 data->bcurrent_msg_processing = true;
1149 dev_dbg(&data->master->dev,
1150 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1151
1152 /* Get the message from the queue and delete it from there. */
1153 data->current_msg = list_entry(data->queue.next, struct spi_message,
1154 queue);
1155
1156 list_del_init(&data->current_msg->queue);
1157
1158 data->current_msg->status = 0;
1159
1160 pch_spi_select_chip(data, data->current_msg->spi);
1161
1162 spin_unlock(&data->lock);
1163
1164 if (data->use_dma)
1165 pch_spi_request_dma(data,
1166 data->current_msg->spi->bits_per_word);
1167 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1168 do {
1169 /* If we are already processing a message get the next
1170 transfer structure from the message otherwise retrieve
1171 the 1st transfer request from the message. */
1172 spin_lock(&data->lock);
1173 if (data->cur_trans == NULL) {
1174 data->cur_trans =
1175 list_entry(data->current_msg->transfers.next,
1176 struct spi_transfer, transfer_list);
1177 dev_dbg(&data->master->dev, "%s "
1178 ":Getting 1st transfer message\n", __func__);
1179 } else {
1180 data->cur_trans =
1181 list_entry(data->cur_trans->transfer_list.next,
1182 struct spi_transfer, transfer_list);
1183 dev_dbg(&data->master->dev, "%s "
1184 ":Getting next transfer message\n", __func__);
1185 }
1186 spin_unlock(&data->lock);
1187
1188 if (data->use_dma) {
1189 pch_spi_handle_dma(data, &bpw);
1190 pch_spi_start_transfer(data);
1191 pch_spi_copy_rx_data_for_dma(data, bpw);
1192 } else {
1193 pch_spi_set_tx(data, &bpw);
1194 pch_spi_set_ir(data);
1195 pch_spi_copy_rx_data(data, bpw);
1196 kfree(data->pkt_rx_buff);
1197 data->pkt_rx_buff = NULL;
1198 kfree(data->pkt_tx_buff);
1199 data->pkt_tx_buff = NULL;
1200 }
1201 /* increment message count */
1202 data->current_msg->actual_length += data->cur_trans->len;
1203
1204 dev_dbg(&data->master->dev,
1205 "%s:data->current_msg->actual_length=%d\n",
1206 __func__, data->current_msg->actual_length);
1207
1208 /* check for delay */
1209 if (data->cur_trans->delay_usecs) {
1210 dev_dbg(&data->master->dev, "%s:"
1211 "delay in usec=%d\n", __func__,
1212 data->cur_trans->delay_usecs);
1213 udelay(data->cur_trans->delay_usecs);
1214 }
1215
1216 spin_lock(&data->lock);
1217
1218 /* No more transfer in this message. */
1219 if ((data->cur_trans->transfer_list.next) ==
1220 &(data->current_msg->transfers)) {
1221 pch_spi_nomore_transfer(data);
1222 }
1223
1224 spin_unlock(&data->lock);
1225
1226 } while (data->cur_trans != NULL);
1227
1228 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1229 if (data->use_dma)
1230 pch_spi_release_dma(data);
1231 }
1232
1233 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1234 struct pch_spi_data *data)
1235 {
1236 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1237
1238 /* free workqueue */
1239 if (data->wk != NULL) {
1240 destroy_workqueue(data->wk);
1241 data->wk = NULL;
1242 dev_dbg(&board_dat->pdev->dev,
1243 "%s destroy_workqueue invoked successfully\n",
1244 __func__);
1245 }
1246 }
1247
1248 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1249 struct pch_spi_data *data)
1250 {
1251 int retval = 0;
1252
1253 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1254
1255 /* create workqueue */
1256 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1257 if (!data->wk) {
1258 dev_err(&board_dat->pdev->dev,
1259 "%s create_singlet hread_workqueue failed\n", __func__);
1260 retval = -EBUSY;
1261 goto err_return;
1262 }
1263
1264 /* reset PCH SPI h/w */
1265 pch_spi_reset(data->master);
1266 dev_dbg(&board_dat->pdev->dev,
1267 "%s pch_spi_reset invoked successfully\n", __func__);
1268
1269 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1270
1271 err_return:
1272 if (retval != 0) {
1273 dev_err(&board_dat->pdev->dev,
1274 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1275 pch_spi_free_resources(board_dat, data);
1276 }
1277
1278 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1279
1280 return retval;
1281 }
1282
1283 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1284 struct pch_spi_data *data)
1285 {
1286 struct pch_spi_dma_ctrl *dma;
1287
1288 dma = &data->dma;
1289 if (dma->tx_buf_dma)
1290 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291 dma->tx_buf_virt, dma->tx_buf_dma);
1292 if (dma->rx_buf_dma)
1293 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1294 dma->rx_buf_virt, dma->rx_buf_dma);
1295 return;
1296 }
1297
1298 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1299 struct pch_spi_data *data)
1300 {
1301 struct pch_spi_dma_ctrl *dma;
1302
1303 dma = &data->dma;
1304 /* Get Consistent memory for Tx DMA */
1305 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1306 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1307 /* Get Consistent memory for Rx DMA */
1308 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1309 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1310 }
1311
1312 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1313 {
1314 int ret;
1315 struct spi_master *master;
1316 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1317 struct pch_spi_data *data;
1318
1319 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1320
1321 master = spi_alloc_master(&board_dat->pdev->dev,
1322 sizeof(struct pch_spi_data));
1323 if (!master) {
1324 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1325 plat_dev->id);
1326 return -ENOMEM;
1327 }
1328
1329 data = spi_master_get_devdata(master);
1330 data->master = master;
1331
1332 platform_set_drvdata(plat_dev, data);
1333
1334 /* baseaddress + address offset) */
1335 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1336 PCH_ADDRESS_SIZE * plat_dev->id;
1337 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1338 PCH_ADDRESS_SIZE * plat_dev->id;
1339 if (!data->io_remap_addr) {
1340 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1341 ret = -ENOMEM;
1342 goto err_pci_iomap;
1343 }
1344
1345 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1346 plat_dev->id, data->io_remap_addr);
1347
1348 /* initialize members of SPI master */
1349 master->bus_num = -1;
1350 master->num_chipselect = PCH_MAX_CS;
1351 master->setup = pch_spi_setup;
1352 master->transfer = pch_spi_transfer;
1353
1354 data->board_dat = board_dat;
1355 data->plat_dev = plat_dev;
1356 data->n_curnt_chip = 255;
1357 data->status = STATUS_RUNNING;
1358 data->ch = plat_dev->id;
1359 data->use_dma = use_dma;
1360
1361 INIT_LIST_HEAD(&data->queue);
1362 spin_lock_init(&data->lock);
1363 INIT_WORK(&data->work, pch_spi_process_messages);
1364 init_waitqueue_head(&data->wait);
1365
1366 ret = pch_spi_get_resources(board_dat, data);
1367 if (ret) {
1368 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1369 goto err_spi_get_resources;
1370 }
1371
1372 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1373 IRQF_SHARED, KBUILD_MODNAME, data);
1374 if (ret) {
1375 dev_err(&plat_dev->dev,
1376 "%s request_irq failed\n", __func__);
1377 goto err_request_irq;
1378 }
1379 data->irq_reg_sts = true;
1380
1381 pch_spi_set_master_mode(master);
1382
1383 ret = spi_register_master(master);
1384 if (ret != 0) {
1385 dev_err(&plat_dev->dev,
1386 "%s spi_register_master FAILED\n", __func__);
1387 goto err_spi_register_master;
1388 }
1389
1390 if (use_dma) {
1391 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1392 pch_alloc_dma_buf(board_dat, data);
1393 }
1394
1395 return 0;
1396
1397 err_spi_register_master:
1398 free_irq(board_dat->pdev->irq, board_dat);
1399 err_request_irq:
1400 pch_spi_free_resources(board_dat, data);
1401 err_spi_get_resources:
1402 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1403 err_pci_iomap:
1404 spi_master_put(master);
1405
1406 return ret;
1407 }
1408
1409 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1410 {
1411 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1412 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1413 int count;
1414 unsigned long flags;
1415
1416 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1417 __func__, plat_dev->id, board_dat->pdev->irq);
1418
1419 if (use_dma)
1420 pch_free_dma_buf(board_dat, data);
1421
1422 /* check for any pending messages; no action is taken if the queue
1423 * is still full; but at least we tried. Unload anyway */
1424 count = 500;
1425 spin_lock_irqsave(&data->lock, flags);
1426 data->status = STATUS_EXITING;
1427 while ((list_empty(&data->queue) == 0) && --count) {
1428 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1429 __func__);
1430 spin_unlock_irqrestore(&data->lock, flags);
1431 msleep(PCH_SLEEP_TIME);
1432 spin_lock_irqsave(&data->lock, flags);
1433 }
1434 spin_unlock_irqrestore(&data->lock, flags);
1435
1436 pch_spi_free_resources(board_dat, data);
1437 /* disable interrupts & free IRQ */
1438 if (data->irq_reg_sts) {
1439 /* disable interrupts */
1440 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1441 data->irq_reg_sts = false;
1442 free_irq(board_dat->pdev->irq, data);
1443 }
1444
1445 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1446 spi_unregister_master(data->master);
1447 spi_master_put(data->master);
1448 platform_set_drvdata(plat_dev, NULL);
1449
1450 return 0;
1451 }
1452 #ifdef CONFIG_PM
1453 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1454 pm_message_t state)
1455 {
1456 u8 count;
1457 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1458 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1459
1460 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1461
1462 if (!board_dat) {
1463 dev_err(&pd_dev->dev,
1464 "%s pci_get_drvdata returned NULL\n", __func__);
1465 return -EFAULT;
1466 }
1467
1468 /* check if the current message is processed:
1469 Only after thats done the transfer will be suspended */
1470 count = 255;
1471 while ((--count) > 0) {
1472 if (!(data->bcurrent_msg_processing))
1473 break;
1474 msleep(PCH_SLEEP_TIME);
1475 }
1476
1477 /* Free IRQ */
1478 if (data->irq_reg_sts) {
1479 /* disable all interrupts */
1480 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1481 pch_spi_reset(data->master);
1482 free_irq(board_dat->pdev->irq, data);
1483
1484 data->irq_reg_sts = false;
1485 dev_dbg(&pd_dev->dev,
1486 "%s free_irq invoked successfully.\n", __func__);
1487 }
1488
1489 return 0;
1490 }
1491
1492 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1493 {
1494 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1495 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1496 int retval;
1497
1498 if (!board_dat) {
1499 dev_err(&pd_dev->dev,
1500 "%s pci_get_drvdata returned NULL\n", __func__);
1501 return -EFAULT;
1502 }
1503
1504 if (!data->irq_reg_sts) {
1505 /* register IRQ */
1506 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1507 IRQF_SHARED, KBUILD_MODNAME, data);
1508 if (retval < 0) {
1509 dev_err(&pd_dev->dev,
1510 "%s request_irq failed\n", __func__);
1511 return retval;
1512 }
1513
1514 /* reset PCH SPI h/w */
1515 pch_spi_reset(data->master);
1516 pch_spi_set_master_mode(data->master);
1517 data->irq_reg_sts = true;
1518 }
1519 return 0;
1520 }
1521 #else
1522 #define pch_spi_pd_suspend NULL
1523 #define pch_spi_pd_resume NULL
1524 #endif
1525
1526 static struct platform_driver pch_spi_pd_driver = {
1527 .driver = {
1528 .name = "pch-spi",
1529 .owner = THIS_MODULE,
1530 },
1531 .probe = pch_spi_pd_probe,
1532 .remove = __devexit_p(pch_spi_pd_remove),
1533 .suspend = pch_spi_pd_suspend,
1534 .resume = pch_spi_pd_resume
1535 };
1536
1537 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1538 const struct pci_device_id *id)
1539 {
1540 struct pch_spi_board_data *board_dat;
1541 struct platform_device *pd_dev = NULL;
1542 int retval;
1543 int i;
1544 struct pch_pd_dev_save *pd_dev_save;
1545
1546 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1547 if (!pd_dev_save) {
1548 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1549 return -ENOMEM;
1550 }
1551
1552 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1553 if (!board_dat) {
1554 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1555 retval = -ENOMEM;
1556 goto err_no_mem;
1557 }
1558
1559 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1560 if (retval) {
1561 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1562 goto pci_request_regions;
1563 }
1564
1565 board_dat->pdev = pdev;
1566 board_dat->num = id->driver_data;
1567 pd_dev_save->num = id->driver_data;
1568 pd_dev_save->board_dat = board_dat;
1569
1570 retval = pci_enable_device(pdev);
1571 if (retval) {
1572 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1573 goto pci_enable_device;
1574 }
1575
1576 for (i = 0; i < board_dat->num; i++) {
1577 pd_dev = platform_device_alloc("pch-spi", i);
1578 if (!pd_dev) {
1579 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1580 goto err_platform_device;
1581 }
1582 pd_dev_save->pd_save[i] = pd_dev;
1583 pd_dev->dev.parent = &pdev->dev;
1584
1585 retval = platform_device_add_data(pd_dev, board_dat,
1586 sizeof(*board_dat));
1587 if (retval) {
1588 dev_err(&pdev->dev,
1589 "platform_device_add_data failed\n");
1590 platform_device_put(pd_dev);
1591 goto err_platform_device;
1592 }
1593
1594 retval = platform_device_add(pd_dev);
1595 if (retval) {
1596 dev_err(&pdev->dev, "platform_device_add failed\n");
1597 platform_device_put(pd_dev);
1598 goto err_platform_device;
1599 }
1600 }
1601
1602 pci_set_drvdata(pdev, pd_dev_save);
1603
1604 return 0;
1605
1606 err_platform_device:
1607 pci_disable_device(pdev);
1608 pci_enable_device:
1609 pci_release_regions(pdev);
1610 pci_request_regions:
1611 kfree(board_dat);
1612 err_no_mem:
1613 kfree(pd_dev_save);
1614
1615 return retval;
1616 }
1617
1618 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1619 {
1620 int i;
1621 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1622
1623 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1624
1625 for (i = 0; i < pd_dev_save->num; i++)
1626 platform_device_unregister(pd_dev_save->pd_save[i]);
1627
1628 pci_disable_device(pdev);
1629 pci_release_regions(pdev);
1630 kfree(pd_dev_save->board_dat);
1631 kfree(pd_dev_save);
1632 }
1633
1634 #ifdef CONFIG_PM
1635 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1636 {
1637 int retval;
1638 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1639
1640 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1641
1642 pd_dev_save->board_dat->suspend_sts = true;
1643
1644 /* save config space */
1645 retval = pci_save_state(pdev);
1646 if (retval == 0) {
1647 pci_enable_wake(pdev, PCI_D3hot, 0);
1648 pci_disable_device(pdev);
1649 pci_set_power_state(pdev, PCI_D3hot);
1650 } else {
1651 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1652 }
1653
1654 return retval;
1655 }
1656
1657 static int pch_spi_resume(struct pci_dev *pdev)
1658 {
1659 int retval;
1660 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1661 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1662
1663 pci_set_power_state(pdev, PCI_D0);
1664 pci_restore_state(pdev);
1665
1666 retval = pci_enable_device(pdev);
1667 if (retval < 0) {
1668 dev_err(&pdev->dev,
1669 "%s pci_enable_device failed\n", __func__);
1670 } else {
1671 pci_enable_wake(pdev, PCI_D3hot, 0);
1672
1673 /* set suspend status to false */
1674 pd_dev_save->board_dat->suspend_sts = false;
1675 }
1676
1677 return retval;
1678 }
1679 #else
1680 #define pch_spi_suspend NULL
1681 #define pch_spi_resume NULL
1682
1683 #endif
1684
1685 static struct pci_driver pch_spi_pcidev = {
1686 .name = "pch_spi",
1687 .id_table = pch_spi_pcidev_id,
1688 .probe = pch_spi_probe,
1689 .remove = pch_spi_remove,
1690 .suspend = pch_spi_suspend,
1691 .resume = pch_spi_resume,
1692 };
1693
1694 static int __init pch_spi_init(void)
1695 {
1696 int ret;
1697 ret = platform_driver_register(&pch_spi_pd_driver);
1698 if (ret)
1699 return ret;
1700
1701 ret = pci_register_driver(&pch_spi_pcidev);
1702 if (ret)
1703 return ret;
1704
1705 return 0;
1706 }
1707 module_init(pch_spi_init);
1708
1709 static void __exit pch_spi_exit(void)
1710 {
1711 pci_unregister_driver(&pch_spi_pcidev);
1712 platform_driver_unregister(&pch_spi_pd_driver);
1713 }
1714 module_exit(pch_spi_exit);
1715
1716 module_param(use_dma, int, 0644);
1717 MODULE_PARM_DESC(use_dma,
1718 "to use DMA for data transfers pass 1 else 0; default 1");
1719
1720 MODULE_LICENSE("GPL");
1721 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");
This page took 0.093867 seconds and 6 git commands to generate.