0bcf4c1601a23a8225c2c4395c2309e191439f5d
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * spi.c - SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/spi/spi.h>
29 #include <linux/of_spi.h>
30
31
32 /* SPI bustype and spi_master class are registered after board init code
33 * provides the SPI device tables, ensuring that both are present by the
34 * time controller driver registration causes spi_devices to "enumerate".
35 */
36 static void spidev_release(struct device *dev)
37 {
38 struct spi_device *spi = to_spi_device(dev);
39
40 /* spi masters may cleanup for released devices */
41 if (spi->master->cleanup)
42 spi->master->cleanup(spi);
43
44 spi_master_put(spi->master);
45 kfree(spi);
46 }
47
48 static ssize_t
49 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
50 {
51 const struct spi_device *spi = to_spi_device(dev);
52
53 return sprintf(buf, "%s\n", spi->modalias);
54 }
55
56 static struct device_attribute spi_dev_attrs[] = {
57 __ATTR_RO(modalias),
58 __ATTR_NULL,
59 };
60
61 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
62 * and the sysfs version makes coldplug work too.
63 */
64
65 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
66 const struct spi_device *sdev)
67 {
68 while (id->name[0]) {
69 if (!strcmp(sdev->modalias, id->name))
70 return id;
71 id++;
72 }
73 return NULL;
74 }
75
76 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
77 {
78 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
79
80 return spi_match_id(sdrv->id_table, sdev);
81 }
82 EXPORT_SYMBOL_GPL(spi_get_device_id);
83
84 static int spi_match_device(struct device *dev, struct device_driver *drv)
85 {
86 const struct spi_device *spi = to_spi_device(dev);
87 const struct spi_driver *sdrv = to_spi_driver(drv);
88
89 if (sdrv->id_table)
90 return !!spi_match_id(sdrv->id_table, spi);
91
92 return strcmp(spi->modalias, drv->name) == 0;
93 }
94
95 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
96 {
97 const struct spi_device *spi = to_spi_device(dev);
98
99 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
100 return 0;
101 }
102
103 #ifdef CONFIG_PM
104
105 static int spi_suspend(struct device *dev, pm_message_t message)
106 {
107 int value = 0;
108 struct spi_driver *drv = to_spi_driver(dev->driver);
109
110 /* suspend will stop irqs and dma; no more i/o */
111 if (drv) {
112 if (drv->suspend)
113 value = drv->suspend(to_spi_device(dev), message);
114 else
115 dev_dbg(dev, "... can't suspend\n");
116 }
117 return value;
118 }
119
120 static int spi_resume(struct device *dev)
121 {
122 int value = 0;
123 struct spi_driver *drv = to_spi_driver(dev->driver);
124
125 /* resume may restart the i/o queue */
126 if (drv) {
127 if (drv->resume)
128 value = drv->resume(to_spi_device(dev));
129 else
130 dev_dbg(dev, "... can't resume\n");
131 }
132 return value;
133 }
134
135 #else
136 #define spi_suspend NULL
137 #define spi_resume NULL
138 #endif
139
140 struct bus_type spi_bus_type = {
141 .name = "spi",
142 .dev_attrs = spi_dev_attrs,
143 .match = spi_match_device,
144 .uevent = spi_uevent,
145 .suspend = spi_suspend,
146 .resume = spi_resume,
147 };
148 EXPORT_SYMBOL_GPL(spi_bus_type);
149
150
151 static int spi_drv_probe(struct device *dev)
152 {
153 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
154
155 return sdrv->probe(to_spi_device(dev));
156 }
157
158 static int spi_drv_remove(struct device *dev)
159 {
160 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
161
162 return sdrv->remove(to_spi_device(dev));
163 }
164
165 static void spi_drv_shutdown(struct device *dev)
166 {
167 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
168
169 sdrv->shutdown(to_spi_device(dev));
170 }
171
172 /**
173 * spi_register_driver - register a SPI driver
174 * @sdrv: the driver to register
175 * Context: can sleep
176 */
177 int spi_register_driver(struct spi_driver *sdrv)
178 {
179 sdrv->driver.bus = &spi_bus_type;
180 if (sdrv->probe)
181 sdrv->driver.probe = spi_drv_probe;
182 if (sdrv->remove)
183 sdrv->driver.remove = spi_drv_remove;
184 if (sdrv->shutdown)
185 sdrv->driver.shutdown = spi_drv_shutdown;
186 return driver_register(&sdrv->driver);
187 }
188 EXPORT_SYMBOL_GPL(spi_register_driver);
189
190 /*-------------------------------------------------------------------------*/
191
192 /* SPI devices should normally not be created by SPI device drivers; that
193 * would make them board-specific. Similarly with SPI master drivers.
194 * Device registration normally goes into like arch/.../mach.../board-YYY.c
195 * with other readonly (flashable) information about mainboard devices.
196 */
197
198 struct boardinfo {
199 struct list_head list;
200 unsigned n_board_info;
201 struct spi_board_info board_info[0];
202 };
203
204 static LIST_HEAD(board_list);
205 static DEFINE_MUTEX(board_lock);
206
207 /**
208 * spi_alloc_device - Allocate a new SPI device
209 * @master: Controller to which device is connected
210 * Context: can sleep
211 *
212 * Allows a driver to allocate and initialize a spi_device without
213 * registering it immediately. This allows a driver to directly
214 * fill the spi_device with device parameters before calling
215 * spi_add_device() on it.
216 *
217 * Caller is responsible to call spi_add_device() on the returned
218 * spi_device structure to add it to the SPI master. If the caller
219 * needs to discard the spi_device without adding it, then it should
220 * call spi_dev_put() on it.
221 *
222 * Returns a pointer to the new device, or NULL.
223 */
224 struct spi_device *spi_alloc_device(struct spi_master *master)
225 {
226 struct spi_device *spi;
227 struct device *dev = master->dev.parent;
228
229 if (!spi_master_get(master))
230 return NULL;
231
232 spi = kzalloc(sizeof *spi, GFP_KERNEL);
233 if (!spi) {
234 dev_err(dev, "cannot alloc spi_device\n");
235 spi_master_put(master);
236 return NULL;
237 }
238
239 spi->master = master;
240 spi->dev.parent = dev;
241 spi->dev.bus = &spi_bus_type;
242 spi->dev.release = spidev_release;
243 device_initialize(&spi->dev);
244 return spi;
245 }
246 EXPORT_SYMBOL_GPL(spi_alloc_device);
247
248 /**
249 * spi_add_device - Add spi_device allocated with spi_alloc_device
250 * @spi: spi_device to register
251 *
252 * Companion function to spi_alloc_device. Devices allocated with
253 * spi_alloc_device can be added onto the spi bus with this function.
254 *
255 * Returns 0 on success; negative errno on failure
256 */
257 int spi_add_device(struct spi_device *spi)
258 {
259 static DEFINE_MUTEX(spi_add_lock);
260 struct device *dev = spi->master->dev.parent;
261 struct device *d;
262 int status;
263
264 /* Chipselects are numbered 0..max; validate. */
265 if (spi->chip_select >= spi->master->num_chipselect) {
266 dev_err(dev, "cs%d >= max %d\n",
267 spi->chip_select,
268 spi->master->num_chipselect);
269 return -EINVAL;
270 }
271
272 /* Set the bus ID string */
273 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
274 spi->chip_select);
275
276
277 /* We need to make sure there's no other device with this
278 * chipselect **BEFORE** we call setup(), else we'll trash
279 * its configuration. Lock against concurrent add() calls.
280 */
281 mutex_lock(&spi_add_lock);
282
283 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
284 if (d != NULL) {
285 dev_err(dev, "chipselect %d already in use\n",
286 spi->chip_select);
287 put_device(d);
288 status = -EBUSY;
289 goto done;
290 }
291
292 /* Drivers may modify this initial i/o setup, but will
293 * normally rely on the device being setup. Devices
294 * using SPI_CS_HIGH can't coexist well otherwise...
295 */
296 status = spi_setup(spi);
297 if (status < 0) {
298 dev_err(dev, "can't %s %s, status %d\n",
299 "setup", dev_name(&spi->dev), status);
300 goto done;
301 }
302
303 /* Device may be bound to an active driver when this returns */
304 status = device_add(&spi->dev);
305 if (status < 0)
306 dev_err(dev, "can't %s %s, status %d\n",
307 "add", dev_name(&spi->dev), status);
308 else
309 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
310
311 done:
312 mutex_unlock(&spi_add_lock);
313 return status;
314 }
315 EXPORT_SYMBOL_GPL(spi_add_device);
316
317 /**
318 * spi_new_device - instantiate one new SPI device
319 * @master: Controller to which device is connected
320 * @chip: Describes the SPI device
321 * Context: can sleep
322 *
323 * On typical mainboards, this is purely internal; and it's not needed
324 * after board init creates the hard-wired devices. Some development
325 * platforms may not be able to use spi_register_board_info though, and
326 * this is exported so that for example a USB or parport based adapter
327 * driver could add devices (which it would learn about out-of-band).
328 *
329 * Returns the new device, or NULL.
330 */
331 struct spi_device *spi_new_device(struct spi_master *master,
332 struct spi_board_info *chip)
333 {
334 struct spi_device *proxy;
335 int status;
336
337 /* NOTE: caller did any chip->bus_num checks necessary.
338 *
339 * Also, unless we change the return value convention to use
340 * error-or-pointer (not NULL-or-pointer), troubleshootability
341 * suggests syslogged diagnostics are best here (ugh).
342 */
343
344 proxy = spi_alloc_device(master);
345 if (!proxy)
346 return NULL;
347
348 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
349
350 proxy->chip_select = chip->chip_select;
351 proxy->max_speed_hz = chip->max_speed_hz;
352 proxy->mode = chip->mode;
353 proxy->irq = chip->irq;
354 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
355 proxy->dev.platform_data = (void *) chip->platform_data;
356 proxy->controller_data = chip->controller_data;
357 proxy->controller_state = NULL;
358
359 status = spi_add_device(proxy);
360 if (status < 0) {
361 spi_dev_put(proxy);
362 return NULL;
363 }
364
365 return proxy;
366 }
367 EXPORT_SYMBOL_GPL(spi_new_device);
368
369 /**
370 * spi_register_board_info - register SPI devices for a given board
371 * @info: array of chip descriptors
372 * @n: how many descriptors are provided
373 * Context: can sleep
374 *
375 * Board-specific early init code calls this (probably during arch_initcall)
376 * with segments of the SPI device table. Any device nodes are created later,
377 * after the relevant parent SPI controller (bus_num) is defined. We keep
378 * this table of devices forever, so that reloading a controller driver will
379 * not make Linux forget about these hard-wired devices.
380 *
381 * Other code can also call this, e.g. a particular add-on board might provide
382 * SPI devices through its expansion connector, so code initializing that board
383 * would naturally declare its SPI devices.
384 *
385 * The board info passed can safely be __initdata ... but be careful of
386 * any embedded pointers (platform_data, etc), they're copied as-is.
387 */
388 int __init
389 spi_register_board_info(struct spi_board_info const *info, unsigned n)
390 {
391 struct boardinfo *bi;
392
393 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
394 if (!bi)
395 return -ENOMEM;
396 bi->n_board_info = n;
397 memcpy(bi->board_info, info, n * sizeof *info);
398
399 mutex_lock(&board_lock);
400 list_add_tail(&bi->list, &board_list);
401 mutex_unlock(&board_lock);
402 return 0;
403 }
404
405 /* FIXME someone should add support for a __setup("spi", ...) that
406 * creates board info from kernel command lines
407 */
408
409 static void scan_boardinfo(struct spi_master *master)
410 {
411 struct boardinfo *bi;
412
413 mutex_lock(&board_lock);
414 list_for_each_entry(bi, &board_list, list) {
415 struct spi_board_info *chip = bi->board_info;
416 unsigned n;
417
418 for (n = bi->n_board_info; n > 0; n--, chip++) {
419 if (chip->bus_num != master->bus_num)
420 continue;
421 /* NOTE: this relies on spi_new_device to
422 * issue diagnostics when given bogus inputs
423 */
424 (void) spi_new_device(master, chip);
425 }
426 }
427 mutex_unlock(&board_lock);
428 }
429
430 /*-------------------------------------------------------------------------*/
431
432 static void spi_master_release(struct device *dev)
433 {
434 struct spi_master *master;
435
436 master = container_of(dev, struct spi_master, dev);
437 kfree(master);
438 }
439
440 static struct class spi_master_class = {
441 .name = "spi_master",
442 .owner = THIS_MODULE,
443 .dev_release = spi_master_release,
444 };
445
446
447 /**
448 * spi_alloc_master - allocate SPI master controller
449 * @dev: the controller, possibly using the platform_bus
450 * @size: how much zeroed driver-private data to allocate; the pointer to this
451 * memory is in the driver_data field of the returned device,
452 * accessible with spi_master_get_devdata().
453 * Context: can sleep
454 *
455 * This call is used only by SPI master controller drivers, which are the
456 * only ones directly touching chip registers. It's how they allocate
457 * an spi_master structure, prior to calling spi_register_master().
458 *
459 * This must be called from context that can sleep. It returns the SPI
460 * master structure on success, else NULL.
461 *
462 * The caller is responsible for assigning the bus number and initializing
463 * the master's methods before calling spi_register_master(); and (after errors
464 * adding the device) calling spi_master_put() to prevent a memory leak.
465 */
466 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
467 {
468 struct spi_master *master;
469
470 if (!dev)
471 return NULL;
472
473 master = kzalloc(size + sizeof *master, GFP_KERNEL);
474 if (!master)
475 return NULL;
476
477 device_initialize(&master->dev);
478 master->dev.class = &spi_master_class;
479 master->dev.parent = get_device(dev);
480 spi_master_set_devdata(master, &master[1]);
481
482 return master;
483 }
484 EXPORT_SYMBOL_GPL(spi_alloc_master);
485
486 /**
487 * spi_register_master - register SPI master controller
488 * @master: initialized master, originally from spi_alloc_master()
489 * Context: can sleep
490 *
491 * SPI master controllers connect to their drivers using some non-SPI bus,
492 * such as the platform bus. The final stage of probe() in that code
493 * includes calling spi_register_master() to hook up to this SPI bus glue.
494 *
495 * SPI controllers use board specific (often SOC specific) bus numbers,
496 * and board-specific addressing for SPI devices combines those numbers
497 * with chip select numbers. Since SPI does not directly support dynamic
498 * device identification, boards need configuration tables telling which
499 * chip is at which address.
500 *
501 * This must be called from context that can sleep. It returns zero on
502 * success, else a negative error code (dropping the master's refcount).
503 * After a successful return, the caller is responsible for calling
504 * spi_unregister_master().
505 */
506 int spi_register_master(struct spi_master *master)
507 {
508 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
509 struct device *dev = master->dev.parent;
510 int status = -ENODEV;
511 int dynamic = 0;
512
513 if (!dev)
514 return -ENODEV;
515
516 /* even if it's just one always-selected device, there must
517 * be at least one chipselect
518 */
519 if (master->num_chipselect == 0)
520 return -EINVAL;
521
522 /* convention: dynamically assigned bus IDs count down from the max */
523 if (master->bus_num < 0) {
524 /* FIXME switch to an IDR based scheme, something like
525 * I2C now uses, so we can't run out of "dynamic" IDs
526 */
527 master->bus_num = atomic_dec_return(&dyn_bus_id);
528 dynamic = 1;
529 }
530
531 spin_lock_init(&master->bus_lock_spinlock);
532 mutex_init(&master->bus_lock_mutex);
533 master->bus_lock_flag = 0;
534
535 /* register the device, then userspace will see it.
536 * registration fails if the bus ID is in use.
537 */
538 dev_set_name(&master->dev, "spi%u", master->bus_num);
539 status = device_add(&master->dev);
540 if (status < 0)
541 goto done;
542 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
543 dynamic ? " (dynamic)" : "");
544
545 /* populate children from any spi device tables */
546 scan_boardinfo(master);
547 status = 0;
548
549 /* Register devices from the device tree */
550 of_register_spi_devices(master);
551 done:
552 return status;
553 }
554 EXPORT_SYMBOL_GPL(spi_register_master);
555
556
557 static int __unregister(struct device *dev, void *null)
558 {
559 spi_unregister_device(to_spi_device(dev));
560 return 0;
561 }
562
563 /**
564 * spi_unregister_master - unregister SPI master controller
565 * @master: the master being unregistered
566 * Context: can sleep
567 *
568 * This call is used only by SPI master controller drivers, which are the
569 * only ones directly touching chip registers.
570 *
571 * This must be called from context that can sleep.
572 */
573 void spi_unregister_master(struct spi_master *master)
574 {
575 int dummy;
576
577 dummy = device_for_each_child(&master->dev, NULL, __unregister);
578 device_unregister(&master->dev);
579 }
580 EXPORT_SYMBOL_GPL(spi_unregister_master);
581
582 static int __spi_master_match(struct device *dev, void *data)
583 {
584 struct spi_master *m;
585 u16 *bus_num = data;
586
587 m = container_of(dev, struct spi_master, dev);
588 return m->bus_num == *bus_num;
589 }
590
591 /**
592 * spi_busnum_to_master - look up master associated with bus_num
593 * @bus_num: the master's bus number
594 * Context: can sleep
595 *
596 * This call may be used with devices that are registered after
597 * arch init time. It returns a refcounted pointer to the relevant
598 * spi_master (which the caller must release), or NULL if there is
599 * no such master registered.
600 */
601 struct spi_master *spi_busnum_to_master(u16 bus_num)
602 {
603 struct device *dev;
604 struct spi_master *master = NULL;
605
606 dev = class_find_device(&spi_master_class, NULL, &bus_num,
607 __spi_master_match);
608 if (dev)
609 master = container_of(dev, struct spi_master, dev);
610 /* reference got in class_find_device */
611 return master;
612 }
613 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
614
615
616 /*-------------------------------------------------------------------------*/
617
618 /* Core methods for SPI master protocol drivers. Some of the
619 * other core methods are currently defined as inline functions.
620 */
621
622 /**
623 * spi_setup - setup SPI mode and clock rate
624 * @spi: the device whose settings are being modified
625 * Context: can sleep, and no requests are queued to the device
626 *
627 * SPI protocol drivers may need to update the transfer mode if the
628 * device doesn't work with its default. They may likewise need
629 * to update clock rates or word sizes from initial values. This function
630 * changes those settings, and must be called from a context that can sleep.
631 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
632 * effect the next time the device is selected and data is transferred to
633 * or from it. When this function returns, the spi device is deselected.
634 *
635 * Note that this call will fail if the protocol driver specifies an option
636 * that the underlying controller or its driver does not support. For
637 * example, not all hardware supports wire transfers using nine bit words,
638 * LSB-first wire encoding, or active-high chipselects.
639 */
640 int spi_setup(struct spi_device *spi)
641 {
642 unsigned bad_bits;
643 int status;
644
645 /* help drivers fail *cleanly* when they need options
646 * that aren't supported with their current master
647 */
648 bad_bits = spi->mode & ~spi->master->mode_bits;
649 if (bad_bits) {
650 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
651 bad_bits);
652 return -EINVAL;
653 }
654
655 if (!spi->bits_per_word)
656 spi->bits_per_word = 8;
657
658 status = spi->master->setup(spi);
659
660 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
661 "%u bits/w, %u Hz max --> %d\n",
662 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
663 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
664 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
665 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
666 (spi->mode & SPI_LOOP) ? "loopback, " : "",
667 spi->bits_per_word, spi->max_speed_hz,
668 status);
669
670 return status;
671 }
672 EXPORT_SYMBOL_GPL(spi_setup);
673
674 static int __spi_async(struct spi_device *spi, struct spi_message *message)
675 {
676 struct spi_master *master = spi->master;
677
678 /* Half-duplex links include original MicroWire, and ones with
679 * only one data pin like SPI_3WIRE (switches direction) or where
680 * either MOSI or MISO is missing. They can also be caused by
681 * software limitations.
682 */
683 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
684 || (spi->mode & SPI_3WIRE)) {
685 struct spi_transfer *xfer;
686 unsigned flags = master->flags;
687
688 list_for_each_entry(xfer, &message->transfers, transfer_list) {
689 if (xfer->rx_buf && xfer->tx_buf)
690 return -EINVAL;
691 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
692 return -EINVAL;
693 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
694 return -EINVAL;
695 }
696 }
697
698 message->spi = spi;
699 message->status = -EINPROGRESS;
700 return master->transfer(spi, message);
701 }
702
703 /**
704 * spi_async - asynchronous SPI transfer
705 * @spi: device with which data will be exchanged
706 * @message: describes the data transfers, including completion callback
707 * Context: any (irqs may be blocked, etc)
708 *
709 * This call may be used in_irq and other contexts which can't sleep,
710 * as well as from task contexts which can sleep.
711 *
712 * The completion callback is invoked in a context which can't sleep.
713 * Before that invocation, the value of message->status is undefined.
714 * When the callback is issued, message->status holds either zero (to
715 * indicate complete success) or a negative error code. After that
716 * callback returns, the driver which issued the transfer request may
717 * deallocate the associated memory; it's no longer in use by any SPI
718 * core or controller driver code.
719 *
720 * Note that although all messages to a spi_device are handled in
721 * FIFO order, messages may go to different devices in other orders.
722 * Some device might be higher priority, or have various "hard" access
723 * time requirements, for example.
724 *
725 * On detection of any fault during the transfer, processing of
726 * the entire message is aborted, and the device is deselected.
727 * Until returning from the associated message completion callback,
728 * no other spi_message queued to that device will be processed.
729 * (This rule applies equally to all the synchronous transfer calls,
730 * which are wrappers around this core asynchronous primitive.)
731 */
732 int spi_async(struct spi_device *spi, struct spi_message *message)
733 {
734 struct spi_master *master = spi->master;
735 int ret;
736 unsigned long flags;
737
738 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
739
740 if (master->bus_lock_flag)
741 ret = -EBUSY;
742 else
743 ret = __spi_async(spi, message);
744
745 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
746
747 return ret;
748 }
749 EXPORT_SYMBOL_GPL(spi_async);
750
751 /**
752 * spi_async_locked - version of spi_async with exclusive bus usage
753 * @spi: device with which data will be exchanged
754 * @message: describes the data transfers, including completion callback
755 * Context: any (irqs may be blocked, etc)
756 *
757 * This call may be used in_irq and other contexts which can't sleep,
758 * as well as from task contexts which can sleep.
759 *
760 * The completion callback is invoked in a context which can't sleep.
761 * Before that invocation, the value of message->status is undefined.
762 * When the callback is issued, message->status holds either zero (to
763 * indicate complete success) or a negative error code. After that
764 * callback returns, the driver which issued the transfer request may
765 * deallocate the associated memory; it's no longer in use by any SPI
766 * core or controller driver code.
767 *
768 * Note that although all messages to a spi_device are handled in
769 * FIFO order, messages may go to different devices in other orders.
770 * Some device might be higher priority, or have various "hard" access
771 * time requirements, for example.
772 *
773 * On detection of any fault during the transfer, processing of
774 * the entire message is aborted, and the device is deselected.
775 * Until returning from the associated message completion callback,
776 * no other spi_message queued to that device will be processed.
777 * (This rule applies equally to all the synchronous transfer calls,
778 * which are wrappers around this core asynchronous primitive.)
779 */
780 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
781 {
782 struct spi_master *master = spi->master;
783 int ret;
784 unsigned long flags;
785
786 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
787
788 ret = __spi_async(spi, message);
789
790 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
791
792 return ret;
793
794 }
795 EXPORT_SYMBOL_GPL(spi_async_locked);
796
797
798 /*-------------------------------------------------------------------------*/
799
800 /* Utility methods for SPI master protocol drivers, layered on
801 * top of the core. Some other utility methods are defined as
802 * inline functions.
803 */
804
805 static void spi_complete(void *arg)
806 {
807 complete(arg);
808 }
809
810 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
811 int bus_locked)
812 {
813 DECLARE_COMPLETION_ONSTACK(done);
814 int status;
815 struct spi_master *master = spi->master;
816
817 message->complete = spi_complete;
818 message->context = &done;
819
820 if (!bus_locked)
821 mutex_lock(&master->bus_lock_mutex);
822
823 status = spi_async_locked(spi, message);
824
825 if (!bus_locked)
826 mutex_unlock(&master->bus_lock_mutex);
827
828 if (status == 0) {
829 wait_for_completion(&done);
830 status = message->status;
831 }
832 message->context = NULL;
833 return status;
834 }
835
836 /**
837 * spi_sync - blocking/synchronous SPI data transfers
838 * @spi: device with which data will be exchanged
839 * @message: describes the data transfers
840 * Context: can sleep
841 *
842 * This call may only be used from a context that may sleep. The sleep
843 * is non-interruptible, and has no timeout. Low-overhead controller
844 * drivers may DMA directly into and out of the message buffers.
845 *
846 * Note that the SPI device's chip select is active during the message,
847 * and then is normally disabled between messages. Drivers for some
848 * frequently-used devices may want to minimize costs of selecting a chip,
849 * by leaving it selected in anticipation that the next message will go
850 * to the same chip. (That may increase power usage.)
851 *
852 * Also, the caller is guaranteeing that the memory associated with the
853 * message will not be freed before this call returns.
854 *
855 * It returns zero on success, else a negative error code.
856 */
857 int spi_sync(struct spi_device *spi, struct spi_message *message)
858 {
859 return __spi_sync(spi, message, 0);
860 }
861 EXPORT_SYMBOL_GPL(spi_sync);
862
863 /**
864 * spi_sync_locked - version of spi_sync with exclusive bus usage
865 * @spi: device with which data will be exchanged
866 * @message: describes the data transfers
867 * Context: can sleep
868 *
869 * This call may only be used from a context that may sleep. The sleep
870 * is non-interruptible, and has no timeout. Low-overhead controller
871 * drivers may DMA directly into and out of the message buffers.
872 *
873 * This call should be used by drivers that require exclusive access to the
874 * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
875 * be released by a spi_bus_unlock call when the exclusive access is over.
876 *
877 * It returns zero on success, else a negative error code.
878 */
879 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
880 {
881 return __spi_sync(spi, message, 1);
882 }
883 EXPORT_SYMBOL_GPL(spi_sync_locked);
884
885 /**
886 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
887 * @master: SPI bus master that should be locked for exclusive bus access
888 * Context: can sleep
889 *
890 * This call may only be used from a context that may sleep. The sleep
891 * is non-interruptible, and has no timeout.
892 *
893 * This call should be used by drivers that require exclusive access to the
894 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
895 * exclusive access is over. Data transfer must be done by spi_sync_locked
896 * and spi_async_locked calls when the SPI bus lock is held.
897 *
898 * It returns zero on success, else a negative error code.
899 */
900 int spi_bus_lock(struct spi_master *master)
901 {
902 unsigned long flags;
903
904 mutex_lock(&master->bus_lock_mutex);
905
906 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
907 master->bus_lock_flag = 1;
908 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
909
910 /* mutex remains locked until spi_bus_unlock is called */
911
912 return 0;
913 }
914 EXPORT_SYMBOL_GPL(spi_bus_lock);
915
916 /**
917 * spi_bus_unlock - release the lock for exclusive SPI bus usage
918 * @master: SPI bus master that was locked for exclusive bus access
919 * Context: can sleep
920 *
921 * This call may only be used from a context that may sleep. The sleep
922 * is non-interruptible, and has no timeout.
923 *
924 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
925 * call.
926 *
927 * It returns zero on success, else a negative error code.
928 */
929 int spi_bus_unlock(struct spi_master *master)
930 {
931 master->bus_lock_flag = 0;
932
933 mutex_unlock(&master->bus_lock_mutex);
934
935 return 0;
936 }
937 EXPORT_SYMBOL_GPL(spi_bus_unlock);
938
939 /* portable code must never pass more than 32 bytes */
940 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
941
942 static u8 *buf;
943
944 /**
945 * spi_write_then_read - SPI synchronous write followed by read
946 * @spi: device with which data will be exchanged
947 * @txbuf: data to be written (need not be dma-safe)
948 * @n_tx: size of txbuf, in bytes
949 * @rxbuf: buffer into which data will be read (need not be dma-safe)
950 * @n_rx: size of rxbuf, in bytes
951 * Context: can sleep
952 *
953 * This performs a half duplex MicroWire style transaction with the
954 * device, sending txbuf and then reading rxbuf. The return value
955 * is zero for success, else a negative errno status code.
956 * This call may only be used from a context that may sleep.
957 *
958 * Parameters to this routine are always copied using a small buffer;
959 * portable code should never use this for more than 32 bytes.
960 * Performance-sensitive or bulk transfer code should instead use
961 * spi_{async,sync}() calls with dma-safe buffers.
962 */
963 int spi_write_then_read(struct spi_device *spi,
964 const u8 *txbuf, unsigned n_tx,
965 u8 *rxbuf, unsigned n_rx)
966 {
967 static DEFINE_MUTEX(lock);
968
969 int status;
970 struct spi_message message;
971 struct spi_transfer x[2];
972 u8 *local_buf;
973
974 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
975 * (as a pure convenience thing), but we can keep heap costs
976 * out of the hot path ...
977 */
978 if ((n_tx + n_rx) > SPI_BUFSIZ)
979 return -EINVAL;
980
981 spi_message_init(&message);
982 memset(x, 0, sizeof x);
983 if (n_tx) {
984 x[0].len = n_tx;
985 spi_message_add_tail(&x[0], &message);
986 }
987 if (n_rx) {
988 x[1].len = n_rx;
989 spi_message_add_tail(&x[1], &message);
990 }
991
992 /* ... unless someone else is using the pre-allocated buffer */
993 if (!mutex_trylock(&lock)) {
994 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
995 if (!local_buf)
996 return -ENOMEM;
997 } else
998 local_buf = buf;
999
1000 memcpy(local_buf, txbuf, n_tx);
1001 x[0].tx_buf = local_buf;
1002 x[1].rx_buf = local_buf + n_tx;
1003
1004 /* do the i/o */
1005 status = spi_sync(spi, &message);
1006 if (status == 0)
1007 memcpy(rxbuf, x[1].rx_buf, n_rx);
1008
1009 if (x[0].tx_buf == buf)
1010 mutex_unlock(&lock);
1011 else
1012 kfree(local_buf);
1013
1014 return status;
1015 }
1016 EXPORT_SYMBOL_GPL(spi_write_then_read);
1017
1018 /*-------------------------------------------------------------------------*/
1019
1020 static int __init spi_init(void)
1021 {
1022 int status;
1023
1024 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1025 if (!buf) {
1026 status = -ENOMEM;
1027 goto err0;
1028 }
1029
1030 status = bus_register(&spi_bus_type);
1031 if (status < 0)
1032 goto err1;
1033
1034 status = class_register(&spi_master_class);
1035 if (status < 0)
1036 goto err2;
1037 return 0;
1038
1039 err2:
1040 bus_unregister(&spi_bus_type);
1041 err1:
1042 kfree(buf);
1043 buf = NULL;
1044 err0:
1045 return status;
1046 }
1047
1048 /* board_info is normally registered in arch_initcall(),
1049 * but even essential drivers wait till later
1050 *
1051 * REVISIT only boardinfo really needs static linking. the rest (device and
1052 * driver registration) _could_ be dynamically linked (modular) ... costs
1053 * include needing to have boardinfo data structures be much more public.
1054 */
1055 postcore_initcall(spi_init);
1056
This page took 0.049025 seconds and 4 git commands to generate.