Merge branch 'pm-cpuidle'
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
151 };
152
153 static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
155 };
156
157 static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
185 NULL,
186 };
187
188 static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
191 };
192
193 static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
197 };
198
199 static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
227 NULL,
228 };
229
230 static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
233 };
234
235 static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
238 };
239
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
243 {
244 unsigned long flags;
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246
247 if (l2len < 0)
248 l2len = 0;
249
250 spin_lock_irqsave(&stats->lock, flags);
251
252 stats->transfers++;
253 stats->transfer_bytes_histo[l2len]++;
254
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
262
263 spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
269 */
270
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
273 {
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
278 }
279 return NULL;
280 }
281
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285
286 return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292 const struct spi_device *spi = to_spi_device(dev);
293 const struct spi_driver *sdrv = to_spi_driver(drv);
294
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
298
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
302
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
305
306 return strcmp(spi->modalias, drv->name) == 0;
307 }
308
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311 const struct spi_device *spi = to_spi_device(dev);
312 int rc;
313
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
317
318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 return 0;
320 }
321
322 struct bus_type spi_bus_type = {
323 .name = "spi",
324 .dev_groups = spi_dev_groups,
325 .match = spi_match_device,
326 .uevent = spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329
330
331 static int spi_drv_probe(struct device *dev)
332 {
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
334 struct spi_device *spi = to_spi_device(dev);
335 int ret;
336
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
340
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
347 }
348
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
351 ret = sdrv->probe(spi);
352 if (ret)
353 dev_pm_domain_detach(dev, true);
354 }
355
356 return ret;
357 }
358
359 static int spi_drv_remove(struct device *dev)
360 {
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
362 int ret;
363
364 ret = sdrv->remove(to_spi_device(dev));
365 dev_pm_domain_detach(dev, true);
366
367 return ret;
368 }
369
370 static void spi_drv_shutdown(struct device *dev)
371 {
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
373
374 sdrv->shutdown(to_spi_device(dev));
375 }
376
377 /**
378 * __spi_register_driver - register a SPI driver
379 * @owner: owner module of the driver to register
380 * @sdrv: the driver to register
381 * Context: can sleep
382 *
383 * Return: zero on success, else a negative error code.
384 */
385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
386 {
387 sdrv->driver.owner = owner;
388 sdrv->driver.bus = &spi_bus_type;
389 if (sdrv->probe)
390 sdrv->driver.probe = spi_drv_probe;
391 if (sdrv->remove)
392 sdrv->driver.remove = spi_drv_remove;
393 if (sdrv->shutdown)
394 sdrv->driver.shutdown = spi_drv_shutdown;
395 return driver_register(&sdrv->driver);
396 }
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
398
399 /*-------------------------------------------------------------------------*/
400
401 /* SPI devices should normally not be created by SPI device drivers; that
402 * would make them board-specific. Similarly with SPI master drivers.
403 * Device registration normally goes into like arch/.../mach.../board-YYY.c
404 * with other readonly (flashable) information about mainboard devices.
405 */
406
407 struct boardinfo {
408 struct list_head list;
409 struct spi_board_info board_info;
410 };
411
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
414
415 /*
416 * Used to protect add/del opertion for board_info list and
417 * spi_master list, and their matching process
418 */
419 static DEFINE_MUTEX(board_lock);
420
421 /**
422 * spi_alloc_device - Allocate a new SPI device
423 * @master: Controller to which device is connected
424 * Context: can sleep
425 *
426 * Allows a driver to allocate and initialize a spi_device without
427 * registering it immediately. This allows a driver to directly
428 * fill the spi_device with device parameters before calling
429 * spi_add_device() on it.
430 *
431 * Caller is responsible to call spi_add_device() on the returned
432 * spi_device structure to add it to the SPI master. If the caller
433 * needs to discard the spi_device without adding it, then it should
434 * call spi_dev_put() on it.
435 *
436 * Return: a pointer to the new device, or NULL.
437 */
438 struct spi_device *spi_alloc_device(struct spi_master *master)
439 {
440 struct spi_device *spi;
441
442 if (!spi_master_get(master))
443 return NULL;
444
445 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446 if (!spi) {
447 spi_master_put(master);
448 return NULL;
449 }
450
451 spi->master = master;
452 spi->dev.parent = &master->dev;
453 spi->dev.bus = &spi_bus_type;
454 spi->dev.release = spidev_release;
455 spi->cs_gpio = -ENOENT;
456
457 spin_lock_init(&spi->statistics.lock);
458
459 device_initialize(&spi->dev);
460 return spi;
461 }
462 EXPORT_SYMBOL_GPL(spi_alloc_device);
463
464 static void spi_dev_set_name(struct spi_device *spi)
465 {
466 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
467
468 if (adev) {
469 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
470 return;
471 }
472
473 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
474 spi->chip_select);
475 }
476
477 static int spi_dev_check(struct device *dev, void *data)
478 {
479 struct spi_device *spi = to_spi_device(dev);
480 struct spi_device *new_spi = data;
481
482 if (spi->master == new_spi->master &&
483 spi->chip_select == new_spi->chip_select)
484 return -EBUSY;
485 return 0;
486 }
487
488 /**
489 * spi_add_device - Add spi_device allocated with spi_alloc_device
490 * @spi: spi_device to register
491 *
492 * Companion function to spi_alloc_device. Devices allocated with
493 * spi_alloc_device can be added onto the spi bus with this function.
494 *
495 * Return: 0 on success; negative errno on failure
496 */
497 int spi_add_device(struct spi_device *spi)
498 {
499 static DEFINE_MUTEX(spi_add_lock);
500 struct spi_master *master = spi->master;
501 struct device *dev = master->dev.parent;
502 int status;
503
504 /* Chipselects are numbered 0..max; validate. */
505 if (spi->chip_select >= master->num_chipselect) {
506 dev_err(dev, "cs%d >= max %d\n",
507 spi->chip_select,
508 master->num_chipselect);
509 return -EINVAL;
510 }
511
512 /* Set the bus ID string */
513 spi_dev_set_name(spi);
514
515 /* We need to make sure there's no other device with this
516 * chipselect **BEFORE** we call setup(), else we'll trash
517 * its configuration. Lock against concurrent add() calls.
518 */
519 mutex_lock(&spi_add_lock);
520
521 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522 if (status) {
523 dev_err(dev, "chipselect %d already in use\n",
524 spi->chip_select);
525 goto done;
526 }
527
528 if (master->cs_gpios)
529 spi->cs_gpio = master->cs_gpios[spi->chip_select];
530
531 /* Drivers may modify this initial i/o setup, but will
532 * normally rely on the device being setup. Devices
533 * using SPI_CS_HIGH can't coexist well otherwise...
534 */
535 status = spi_setup(spi);
536 if (status < 0) {
537 dev_err(dev, "can't setup %s, status %d\n",
538 dev_name(&spi->dev), status);
539 goto done;
540 }
541
542 /* Device may be bound to an active driver when this returns */
543 status = device_add(&spi->dev);
544 if (status < 0)
545 dev_err(dev, "can't add %s, status %d\n",
546 dev_name(&spi->dev), status);
547 else
548 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
549
550 done:
551 mutex_unlock(&spi_add_lock);
552 return status;
553 }
554 EXPORT_SYMBOL_GPL(spi_add_device);
555
556 /**
557 * spi_new_device - instantiate one new SPI device
558 * @master: Controller to which device is connected
559 * @chip: Describes the SPI device
560 * Context: can sleep
561 *
562 * On typical mainboards, this is purely internal; and it's not needed
563 * after board init creates the hard-wired devices. Some development
564 * platforms may not be able to use spi_register_board_info though, and
565 * this is exported so that for example a USB or parport based adapter
566 * driver could add devices (which it would learn about out-of-band).
567 *
568 * Return: the new device, or NULL.
569 */
570 struct spi_device *spi_new_device(struct spi_master *master,
571 struct spi_board_info *chip)
572 {
573 struct spi_device *proxy;
574 int status;
575
576 /* NOTE: caller did any chip->bus_num checks necessary.
577 *
578 * Also, unless we change the return value convention to use
579 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 * suggests syslogged diagnostics are best here (ugh).
581 */
582
583 proxy = spi_alloc_device(master);
584 if (!proxy)
585 return NULL;
586
587 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
588
589 proxy->chip_select = chip->chip_select;
590 proxy->max_speed_hz = chip->max_speed_hz;
591 proxy->mode = chip->mode;
592 proxy->irq = chip->irq;
593 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
594 proxy->dev.platform_data = (void *) chip->platform_data;
595 proxy->controller_data = chip->controller_data;
596 proxy->controller_state = NULL;
597
598 status = spi_add_device(proxy);
599 if (status < 0) {
600 spi_dev_put(proxy);
601 return NULL;
602 }
603
604 return proxy;
605 }
606 EXPORT_SYMBOL_GPL(spi_new_device);
607
608 static void spi_match_master_to_boardinfo(struct spi_master *master,
609 struct spi_board_info *bi)
610 {
611 struct spi_device *dev;
612
613 if (master->bus_num != bi->bus_num)
614 return;
615
616 dev = spi_new_device(master, bi);
617 if (!dev)
618 dev_err(master->dev.parent, "can't create new device for %s\n",
619 bi->modalias);
620 }
621
622 /**
623 * spi_register_board_info - register SPI devices for a given board
624 * @info: array of chip descriptors
625 * @n: how many descriptors are provided
626 * Context: can sleep
627 *
628 * Board-specific early init code calls this (probably during arch_initcall)
629 * with segments of the SPI device table. Any device nodes are created later,
630 * after the relevant parent SPI controller (bus_num) is defined. We keep
631 * this table of devices forever, so that reloading a controller driver will
632 * not make Linux forget about these hard-wired devices.
633 *
634 * Other code can also call this, e.g. a particular add-on board might provide
635 * SPI devices through its expansion connector, so code initializing that board
636 * would naturally declare its SPI devices.
637 *
638 * The board info passed can safely be __initdata ... but be careful of
639 * any embedded pointers (platform_data, etc), they're copied as-is.
640 *
641 * Return: zero on success, else a negative error code.
642 */
643 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
644 {
645 struct boardinfo *bi;
646 int i;
647
648 if (!n)
649 return -EINVAL;
650
651 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
652 if (!bi)
653 return -ENOMEM;
654
655 for (i = 0; i < n; i++, bi++, info++) {
656 struct spi_master *master;
657
658 memcpy(&bi->board_info, info, sizeof(*info));
659 mutex_lock(&board_lock);
660 list_add_tail(&bi->list, &board_list);
661 list_for_each_entry(master, &spi_master_list, list)
662 spi_match_master_to_boardinfo(master, &bi->board_info);
663 mutex_unlock(&board_lock);
664 }
665
666 return 0;
667 }
668
669 /*-------------------------------------------------------------------------*/
670
671 static void spi_set_cs(struct spi_device *spi, bool enable)
672 {
673 if (spi->mode & SPI_CS_HIGH)
674 enable = !enable;
675
676 if (gpio_is_valid(spi->cs_gpio))
677 gpio_set_value(spi->cs_gpio, !enable);
678 else if (spi->master->set_cs)
679 spi->master->set_cs(spi, !enable);
680 }
681
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master *master, struct device *dev,
684 struct sg_table *sgt, void *buf, size_t len,
685 enum dma_data_direction dir)
686 {
687 const bool vmalloced_buf = is_vmalloc_addr(buf);
688 int desc_len;
689 int sgs;
690 struct page *vm_page;
691 void *sg_buf;
692 size_t min;
693 int i, ret;
694
695 if (vmalloced_buf) {
696 desc_len = PAGE_SIZE;
697 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698 } else {
699 desc_len = master->max_dma_len;
700 sgs = DIV_ROUND_UP(len, desc_len);
701 }
702
703 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
704 if (ret != 0)
705 return ret;
706
707 for (i = 0; i < sgs; i++) {
708
709 if (vmalloced_buf) {
710 min = min_t(size_t,
711 len, desc_len - offset_in_page(buf));
712 vm_page = vmalloc_to_page(buf);
713 if (!vm_page) {
714 sg_free_table(sgt);
715 return -ENOMEM;
716 }
717 sg_set_page(&sgt->sgl[i], vm_page,
718 min, offset_in_page(buf));
719 } else {
720 min = min_t(size_t, len, desc_len);
721 sg_buf = buf;
722 sg_set_buf(&sgt->sgl[i], sg_buf, min);
723 }
724
725
726 buf += min;
727 len -= min;
728 }
729
730 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
731 if (!ret)
732 ret = -ENOMEM;
733 if (ret < 0) {
734 sg_free_table(sgt);
735 return ret;
736 }
737
738 sgt->nents = ret;
739
740 return 0;
741 }
742
743 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
744 struct sg_table *sgt, enum dma_data_direction dir)
745 {
746 if (sgt->orig_nents) {
747 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
748 sg_free_table(sgt);
749 }
750 }
751
752 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
753 {
754 struct device *tx_dev, *rx_dev;
755 struct spi_transfer *xfer;
756 int ret;
757
758 if (!master->can_dma)
759 return 0;
760
761 if (master->dma_tx)
762 tx_dev = master->dma_tx->device->dev;
763 else
764 tx_dev = &master->dev;
765
766 if (master->dma_rx)
767 rx_dev = master->dma_rx->device->dev;
768 else
769 rx_dev = &master->dev;
770
771 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772 if (!master->can_dma(master, msg->spi, xfer))
773 continue;
774
775 if (xfer->tx_buf != NULL) {
776 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
777 (void *)xfer->tx_buf, xfer->len,
778 DMA_TO_DEVICE);
779 if (ret != 0)
780 return ret;
781 }
782
783 if (xfer->rx_buf != NULL) {
784 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
785 xfer->rx_buf, xfer->len,
786 DMA_FROM_DEVICE);
787 if (ret != 0) {
788 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
789 DMA_TO_DEVICE);
790 return ret;
791 }
792 }
793 }
794
795 master->cur_msg_mapped = true;
796
797 return 0;
798 }
799
800 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
801 {
802 struct spi_transfer *xfer;
803 struct device *tx_dev, *rx_dev;
804
805 if (!master->cur_msg_mapped || !master->can_dma)
806 return 0;
807
808 if (master->dma_tx)
809 tx_dev = master->dma_tx->device->dev;
810 else
811 tx_dev = &master->dev;
812
813 if (master->dma_rx)
814 rx_dev = master->dma_rx->device->dev;
815 else
816 rx_dev = &master->dev;
817
818 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
819 if (!master->can_dma(master, msg->spi, xfer))
820 continue;
821
822 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
823 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
824 }
825
826 return 0;
827 }
828 #else /* !CONFIG_HAS_DMA */
829 static inline int __spi_map_msg(struct spi_master *master,
830 struct spi_message *msg)
831 {
832 return 0;
833 }
834
835 static inline int __spi_unmap_msg(struct spi_master *master,
836 struct spi_message *msg)
837 {
838 return 0;
839 }
840 #endif /* !CONFIG_HAS_DMA */
841
842 static inline int spi_unmap_msg(struct spi_master *master,
843 struct spi_message *msg)
844 {
845 struct spi_transfer *xfer;
846
847 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848 /*
849 * Restore the original value of tx_buf or rx_buf if they are
850 * NULL.
851 */
852 if (xfer->tx_buf == master->dummy_tx)
853 xfer->tx_buf = NULL;
854 if (xfer->rx_buf == master->dummy_rx)
855 xfer->rx_buf = NULL;
856 }
857
858 return __spi_unmap_msg(master, msg);
859 }
860
861 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
862 {
863 struct spi_transfer *xfer;
864 void *tmp;
865 unsigned int max_tx, max_rx;
866
867 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
868 max_tx = 0;
869 max_rx = 0;
870
871 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
872 if ((master->flags & SPI_MASTER_MUST_TX) &&
873 !xfer->tx_buf)
874 max_tx = max(xfer->len, max_tx);
875 if ((master->flags & SPI_MASTER_MUST_RX) &&
876 !xfer->rx_buf)
877 max_rx = max(xfer->len, max_rx);
878 }
879
880 if (max_tx) {
881 tmp = krealloc(master->dummy_tx, max_tx,
882 GFP_KERNEL | GFP_DMA);
883 if (!tmp)
884 return -ENOMEM;
885 master->dummy_tx = tmp;
886 memset(tmp, 0, max_tx);
887 }
888
889 if (max_rx) {
890 tmp = krealloc(master->dummy_rx, max_rx,
891 GFP_KERNEL | GFP_DMA);
892 if (!tmp)
893 return -ENOMEM;
894 master->dummy_rx = tmp;
895 }
896
897 if (max_tx || max_rx) {
898 list_for_each_entry(xfer, &msg->transfers,
899 transfer_list) {
900 if (!xfer->tx_buf)
901 xfer->tx_buf = master->dummy_tx;
902 if (!xfer->rx_buf)
903 xfer->rx_buf = master->dummy_rx;
904 }
905 }
906 }
907
908 return __spi_map_msg(master, msg);
909 }
910
911 /*
912 * spi_transfer_one_message - Default implementation of transfer_one_message()
913 *
914 * This is a standard implementation of transfer_one_message() for
915 * drivers which impelment a transfer_one() operation. It provides
916 * standard handling of delays and chip select management.
917 */
918 static int spi_transfer_one_message(struct spi_master *master,
919 struct spi_message *msg)
920 {
921 struct spi_transfer *xfer;
922 bool keep_cs = false;
923 int ret = 0;
924 unsigned long ms = 1;
925 struct spi_statistics *statm = &master->statistics;
926 struct spi_statistics *stats = &msg->spi->statistics;
927
928 spi_set_cs(msg->spi, true);
929
930 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
931 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
932
933 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
934 trace_spi_transfer_start(msg, xfer);
935
936 spi_statistics_add_transfer_stats(statm, xfer, master);
937 spi_statistics_add_transfer_stats(stats, xfer, master);
938
939 if (xfer->tx_buf || xfer->rx_buf) {
940 reinit_completion(&master->xfer_completion);
941
942 ret = master->transfer_one(master, msg->spi, xfer);
943 if (ret < 0) {
944 SPI_STATISTICS_INCREMENT_FIELD(statm,
945 errors);
946 SPI_STATISTICS_INCREMENT_FIELD(stats,
947 errors);
948 dev_err(&msg->spi->dev,
949 "SPI transfer failed: %d\n", ret);
950 goto out;
951 }
952
953 if (ret > 0) {
954 ret = 0;
955 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
956 ms += ms + 100; /* some tolerance */
957
958 ms = wait_for_completion_timeout(&master->xfer_completion,
959 msecs_to_jiffies(ms));
960 }
961
962 if (ms == 0) {
963 SPI_STATISTICS_INCREMENT_FIELD(statm,
964 timedout);
965 SPI_STATISTICS_INCREMENT_FIELD(stats,
966 timedout);
967 dev_err(&msg->spi->dev,
968 "SPI transfer timed out\n");
969 msg->status = -ETIMEDOUT;
970 }
971 } else {
972 if (xfer->len)
973 dev_err(&msg->spi->dev,
974 "Bufferless transfer has length %u\n",
975 xfer->len);
976 }
977
978 trace_spi_transfer_stop(msg, xfer);
979
980 if (msg->status != -EINPROGRESS)
981 goto out;
982
983 if (xfer->delay_usecs)
984 udelay(xfer->delay_usecs);
985
986 if (xfer->cs_change) {
987 if (list_is_last(&xfer->transfer_list,
988 &msg->transfers)) {
989 keep_cs = true;
990 } else {
991 spi_set_cs(msg->spi, false);
992 udelay(10);
993 spi_set_cs(msg->spi, true);
994 }
995 }
996
997 msg->actual_length += xfer->len;
998 }
999
1000 out:
1001 if (ret != 0 || !keep_cs)
1002 spi_set_cs(msg->spi, false);
1003
1004 if (msg->status == -EINPROGRESS)
1005 msg->status = ret;
1006
1007 if (msg->status && master->handle_err)
1008 master->handle_err(master, msg);
1009
1010 spi_finalize_current_message(master);
1011
1012 return ret;
1013 }
1014
1015 /**
1016 * spi_finalize_current_transfer - report completion of a transfer
1017 * @master: the master reporting completion
1018 *
1019 * Called by SPI drivers using the core transfer_one_message()
1020 * implementation to notify it that the current interrupt driven
1021 * transfer has finished and the next one may be scheduled.
1022 */
1023 void spi_finalize_current_transfer(struct spi_master *master)
1024 {
1025 complete(&master->xfer_completion);
1026 }
1027 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1028
1029 /**
1030 * __spi_pump_messages - function which processes spi message queue
1031 * @master: master to process queue for
1032 * @in_kthread: true if we are in the context of the message pump thread
1033 *
1034 * This function checks if there is any spi message in the queue that
1035 * needs processing and if so call out to the driver to initialize hardware
1036 * and transfer each message.
1037 *
1038 * Note that it is called both from the kthread itself and also from
1039 * inside spi_sync(); the queue extraction handling at the top of the
1040 * function should deal with this safely.
1041 */
1042 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1043 {
1044 unsigned long flags;
1045 bool was_busy = false;
1046 int ret;
1047
1048 /* Lock queue */
1049 spin_lock_irqsave(&master->queue_lock, flags);
1050
1051 /* Make sure we are not already running a message */
1052 if (master->cur_msg) {
1053 spin_unlock_irqrestore(&master->queue_lock, flags);
1054 return;
1055 }
1056
1057 /* If another context is idling the device then defer */
1058 if (master->idling) {
1059 queue_kthread_work(&master->kworker, &master->pump_messages);
1060 spin_unlock_irqrestore(&master->queue_lock, flags);
1061 return;
1062 }
1063
1064 /* Check if the queue is idle */
1065 if (list_empty(&master->queue) || !master->running) {
1066 if (!master->busy) {
1067 spin_unlock_irqrestore(&master->queue_lock, flags);
1068 return;
1069 }
1070
1071 /* Only do teardown in the thread */
1072 if (!in_kthread) {
1073 queue_kthread_work(&master->kworker,
1074 &master->pump_messages);
1075 spin_unlock_irqrestore(&master->queue_lock, flags);
1076 return;
1077 }
1078
1079 master->busy = false;
1080 master->idling = true;
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1082
1083 kfree(master->dummy_rx);
1084 master->dummy_rx = NULL;
1085 kfree(master->dummy_tx);
1086 master->dummy_tx = NULL;
1087 if (master->unprepare_transfer_hardware &&
1088 master->unprepare_transfer_hardware(master))
1089 dev_err(&master->dev,
1090 "failed to unprepare transfer hardware\n");
1091 if (master->auto_runtime_pm) {
1092 pm_runtime_mark_last_busy(master->dev.parent);
1093 pm_runtime_put_autosuspend(master->dev.parent);
1094 }
1095 trace_spi_master_idle(master);
1096
1097 spin_lock_irqsave(&master->queue_lock, flags);
1098 master->idling = false;
1099 spin_unlock_irqrestore(&master->queue_lock, flags);
1100 return;
1101 }
1102
1103 /* Extract head of queue */
1104 master->cur_msg =
1105 list_first_entry(&master->queue, struct spi_message, queue);
1106
1107 list_del_init(&master->cur_msg->queue);
1108 if (master->busy)
1109 was_busy = true;
1110 else
1111 master->busy = true;
1112 spin_unlock_irqrestore(&master->queue_lock, flags);
1113
1114 if (!was_busy && master->auto_runtime_pm) {
1115 ret = pm_runtime_get_sync(master->dev.parent);
1116 if (ret < 0) {
1117 dev_err(&master->dev, "Failed to power device: %d\n",
1118 ret);
1119 return;
1120 }
1121 }
1122
1123 if (!was_busy)
1124 trace_spi_master_busy(master);
1125
1126 if (!was_busy && master->prepare_transfer_hardware) {
1127 ret = master->prepare_transfer_hardware(master);
1128 if (ret) {
1129 dev_err(&master->dev,
1130 "failed to prepare transfer hardware\n");
1131
1132 if (master->auto_runtime_pm)
1133 pm_runtime_put(master->dev.parent);
1134 return;
1135 }
1136 }
1137
1138 trace_spi_message_start(master->cur_msg);
1139
1140 if (master->prepare_message) {
1141 ret = master->prepare_message(master, master->cur_msg);
1142 if (ret) {
1143 dev_err(&master->dev,
1144 "failed to prepare message: %d\n", ret);
1145 master->cur_msg->status = ret;
1146 spi_finalize_current_message(master);
1147 return;
1148 }
1149 master->cur_msg_prepared = true;
1150 }
1151
1152 ret = spi_map_msg(master, master->cur_msg);
1153 if (ret) {
1154 master->cur_msg->status = ret;
1155 spi_finalize_current_message(master);
1156 return;
1157 }
1158
1159 ret = master->transfer_one_message(master, master->cur_msg);
1160 if (ret) {
1161 dev_err(&master->dev,
1162 "failed to transfer one message from queue\n");
1163 return;
1164 }
1165 }
1166
1167 /**
1168 * spi_pump_messages - kthread work function which processes spi message queue
1169 * @work: pointer to kthread work struct contained in the master struct
1170 */
1171 static void spi_pump_messages(struct kthread_work *work)
1172 {
1173 struct spi_master *master =
1174 container_of(work, struct spi_master, pump_messages);
1175
1176 __spi_pump_messages(master, true);
1177 }
1178
1179 static int spi_init_queue(struct spi_master *master)
1180 {
1181 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1182
1183 master->running = false;
1184 master->busy = false;
1185
1186 init_kthread_worker(&master->kworker);
1187 master->kworker_task = kthread_run(kthread_worker_fn,
1188 &master->kworker, "%s",
1189 dev_name(&master->dev));
1190 if (IS_ERR(master->kworker_task)) {
1191 dev_err(&master->dev, "failed to create message pump task\n");
1192 return PTR_ERR(master->kworker_task);
1193 }
1194 init_kthread_work(&master->pump_messages, spi_pump_messages);
1195
1196 /*
1197 * Master config will indicate if this controller should run the
1198 * message pump with high (realtime) priority to reduce the transfer
1199 * latency on the bus by minimising the delay between a transfer
1200 * request and the scheduling of the message pump thread. Without this
1201 * setting the message pump thread will remain at default priority.
1202 */
1203 if (master->rt) {
1204 dev_info(&master->dev,
1205 "will run message pump with realtime priority\n");
1206 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1207 }
1208
1209 return 0;
1210 }
1211
1212 /**
1213 * spi_get_next_queued_message() - called by driver to check for queued
1214 * messages
1215 * @master: the master to check for queued messages
1216 *
1217 * If there are more messages in the queue, the next message is returned from
1218 * this call.
1219 *
1220 * Return: the next message in the queue, else NULL if the queue is empty.
1221 */
1222 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1223 {
1224 struct spi_message *next;
1225 unsigned long flags;
1226
1227 /* get a pointer to the next message, if any */
1228 spin_lock_irqsave(&master->queue_lock, flags);
1229 next = list_first_entry_or_null(&master->queue, struct spi_message,
1230 queue);
1231 spin_unlock_irqrestore(&master->queue_lock, flags);
1232
1233 return next;
1234 }
1235 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1236
1237 /**
1238 * spi_finalize_current_message() - the current message is complete
1239 * @master: the master to return the message to
1240 *
1241 * Called by the driver to notify the core that the message in the front of the
1242 * queue is complete and can be removed from the queue.
1243 */
1244 void spi_finalize_current_message(struct spi_master *master)
1245 {
1246 struct spi_message *mesg;
1247 unsigned long flags;
1248 int ret;
1249
1250 spin_lock_irqsave(&master->queue_lock, flags);
1251 mesg = master->cur_msg;
1252 spin_unlock_irqrestore(&master->queue_lock, flags);
1253
1254 spi_unmap_msg(master, mesg);
1255
1256 if (master->cur_msg_prepared && master->unprepare_message) {
1257 ret = master->unprepare_message(master, mesg);
1258 if (ret) {
1259 dev_err(&master->dev,
1260 "failed to unprepare message: %d\n", ret);
1261 }
1262 }
1263
1264 spin_lock_irqsave(&master->queue_lock, flags);
1265 master->cur_msg = NULL;
1266 master->cur_msg_prepared = false;
1267 queue_kthread_work(&master->kworker, &master->pump_messages);
1268 spin_unlock_irqrestore(&master->queue_lock, flags);
1269
1270 trace_spi_message_done(mesg);
1271
1272 mesg->state = NULL;
1273 if (mesg->complete)
1274 mesg->complete(mesg->context);
1275 }
1276 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1277
1278 static int spi_start_queue(struct spi_master *master)
1279 {
1280 unsigned long flags;
1281
1282 spin_lock_irqsave(&master->queue_lock, flags);
1283
1284 if (master->running || master->busy) {
1285 spin_unlock_irqrestore(&master->queue_lock, flags);
1286 return -EBUSY;
1287 }
1288
1289 master->running = true;
1290 master->cur_msg = NULL;
1291 spin_unlock_irqrestore(&master->queue_lock, flags);
1292
1293 queue_kthread_work(&master->kworker, &master->pump_messages);
1294
1295 return 0;
1296 }
1297
1298 static int spi_stop_queue(struct spi_master *master)
1299 {
1300 unsigned long flags;
1301 unsigned limit = 500;
1302 int ret = 0;
1303
1304 spin_lock_irqsave(&master->queue_lock, flags);
1305
1306 /*
1307 * This is a bit lame, but is optimized for the common execution path.
1308 * A wait_queue on the master->busy could be used, but then the common
1309 * execution path (pump_messages) would be required to call wake_up or
1310 * friends on every SPI message. Do this instead.
1311 */
1312 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1313 spin_unlock_irqrestore(&master->queue_lock, flags);
1314 usleep_range(10000, 11000);
1315 spin_lock_irqsave(&master->queue_lock, flags);
1316 }
1317
1318 if (!list_empty(&master->queue) || master->busy)
1319 ret = -EBUSY;
1320 else
1321 master->running = false;
1322
1323 spin_unlock_irqrestore(&master->queue_lock, flags);
1324
1325 if (ret) {
1326 dev_warn(&master->dev,
1327 "could not stop message queue\n");
1328 return ret;
1329 }
1330 return ret;
1331 }
1332
1333 static int spi_destroy_queue(struct spi_master *master)
1334 {
1335 int ret;
1336
1337 ret = spi_stop_queue(master);
1338
1339 /*
1340 * flush_kthread_worker will block until all work is done.
1341 * If the reason that stop_queue timed out is that the work will never
1342 * finish, then it does no good to call flush/stop thread, so
1343 * return anyway.
1344 */
1345 if (ret) {
1346 dev_err(&master->dev, "problem destroying queue\n");
1347 return ret;
1348 }
1349
1350 flush_kthread_worker(&master->kworker);
1351 kthread_stop(master->kworker_task);
1352
1353 return 0;
1354 }
1355
1356 static int __spi_queued_transfer(struct spi_device *spi,
1357 struct spi_message *msg,
1358 bool need_pump)
1359 {
1360 struct spi_master *master = spi->master;
1361 unsigned long flags;
1362
1363 spin_lock_irqsave(&master->queue_lock, flags);
1364
1365 if (!master->running) {
1366 spin_unlock_irqrestore(&master->queue_lock, flags);
1367 return -ESHUTDOWN;
1368 }
1369 msg->actual_length = 0;
1370 msg->status = -EINPROGRESS;
1371
1372 list_add_tail(&msg->queue, &master->queue);
1373 if (!master->busy && need_pump)
1374 queue_kthread_work(&master->kworker, &master->pump_messages);
1375
1376 spin_unlock_irqrestore(&master->queue_lock, flags);
1377 return 0;
1378 }
1379
1380 /**
1381 * spi_queued_transfer - transfer function for queued transfers
1382 * @spi: spi device which is requesting transfer
1383 * @msg: spi message which is to handled is queued to driver queue
1384 *
1385 * Return: zero on success, else a negative error code.
1386 */
1387 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1388 {
1389 return __spi_queued_transfer(spi, msg, true);
1390 }
1391
1392 static int spi_master_initialize_queue(struct spi_master *master)
1393 {
1394 int ret;
1395
1396 master->transfer = spi_queued_transfer;
1397 if (!master->transfer_one_message)
1398 master->transfer_one_message = spi_transfer_one_message;
1399
1400 /* Initialize and start queue */
1401 ret = spi_init_queue(master);
1402 if (ret) {
1403 dev_err(&master->dev, "problem initializing queue\n");
1404 goto err_init_queue;
1405 }
1406 master->queued = true;
1407 ret = spi_start_queue(master);
1408 if (ret) {
1409 dev_err(&master->dev, "problem starting queue\n");
1410 goto err_start_queue;
1411 }
1412
1413 return 0;
1414
1415 err_start_queue:
1416 spi_destroy_queue(master);
1417 err_init_queue:
1418 return ret;
1419 }
1420
1421 /*-------------------------------------------------------------------------*/
1422
1423 #if defined(CONFIG_OF)
1424 static struct spi_device *
1425 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1426 {
1427 struct spi_device *spi;
1428 int rc;
1429 u32 value;
1430
1431 /* Alloc an spi_device */
1432 spi = spi_alloc_device(master);
1433 if (!spi) {
1434 dev_err(&master->dev, "spi_device alloc error for %s\n",
1435 nc->full_name);
1436 rc = -ENOMEM;
1437 goto err_out;
1438 }
1439
1440 /* Select device driver */
1441 rc = of_modalias_node(nc, spi->modalias,
1442 sizeof(spi->modalias));
1443 if (rc < 0) {
1444 dev_err(&master->dev, "cannot find modalias for %s\n",
1445 nc->full_name);
1446 goto err_out;
1447 }
1448
1449 /* Device address */
1450 rc = of_property_read_u32(nc, "reg", &value);
1451 if (rc) {
1452 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1453 nc->full_name, rc);
1454 goto err_out;
1455 }
1456 spi->chip_select = value;
1457
1458 /* Mode (clock phase/polarity/etc.) */
1459 if (of_find_property(nc, "spi-cpha", NULL))
1460 spi->mode |= SPI_CPHA;
1461 if (of_find_property(nc, "spi-cpol", NULL))
1462 spi->mode |= SPI_CPOL;
1463 if (of_find_property(nc, "spi-cs-high", NULL))
1464 spi->mode |= SPI_CS_HIGH;
1465 if (of_find_property(nc, "spi-3wire", NULL))
1466 spi->mode |= SPI_3WIRE;
1467 if (of_find_property(nc, "spi-lsb-first", NULL))
1468 spi->mode |= SPI_LSB_FIRST;
1469
1470 /* Device DUAL/QUAD mode */
1471 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1472 switch (value) {
1473 case 1:
1474 break;
1475 case 2:
1476 spi->mode |= SPI_TX_DUAL;
1477 break;
1478 case 4:
1479 spi->mode |= SPI_TX_QUAD;
1480 break;
1481 default:
1482 dev_warn(&master->dev,
1483 "spi-tx-bus-width %d not supported\n",
1484 value);
1485 break;
1486 }
1487 }
1488
1489 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1490 switch (value) {
1491 case 1:
1492 break;
1493 case 2:
1494 spi->mode |= SPI_RX_DUAL;
1495 break;
1496 case 4:
1497 spi->mode |= SPI_RX_QUAD;
1498 break;
1499 default:
1500 dev_warn(&master->dev,
1501 "spi-rx-bus-width %d not supported\n",
1502 value);
1503 break;
1504 }
1505 }
1506
1507 /* Device speed */
1508 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1509 if (rc) {
1510 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1511 nc->full_name, rc);
1512 goto err_out;
1513 }
1514 spi->max_speed_hz = value;
1515
1516 /* Store a pointer to the node in the device structure */
1517 of_node_get(nc);
1518 spi->dev.of_node = nc;
1519
1520 /* Register the new device */
1521 rc = spi_add_device(spi);
1522 if (rc) {
1523 dev_err(&master->dev, "spi_device register error %s\n",
1524 nc->full_name);
1525 goto err_out;
1526 }
1527
1528 return spi;
1529
1530 err_out:
1531 spi_dev_put(spi);
1532 return ERR_PTR(rc);
1533 }
1534
1535 /**
1536 * of_register_spi_devices() - Register child devices onto the SPI bus
1537 * @master: Pointer to spi_master device
1538 *
1539 * Registers an spi_device for each child node of master node which has a 'reg'
1540 * property.
1541 */
1542 static void of_register_spi_devices(struct spi_master *master)
1543 {
1544 struct spi_device *spi;
1545 struct device_node *nc;
1546
1547 if (!master->dev.of_node)
1548 return;
1549
1550 for_each_available_child_of_node(master->dev.of_node, nc) {
1551 spi = of_register_spi_device(master, nc);
1552 if (IS_ERR(spi))
1553 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1554 nc->full_name);
1555 }
1556 }
1557 #else
1558 static void of_register_spi_devices(struct spi_master *master) { }
1559 #endif
1560
1561 #ifdef CONFIG_ACPI
1562 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1563 {
1564 struct spi_device *spi = data;
1565
1566 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1567 struct acpi_resource_spi_serialbus *sb;
1568
1569 sb = &ares->data.spi_serial_bus;
1570 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1571 spi->chip_select = sb->device_selection;
1572 spi->max_speed_hz = sb->connection_speed;
1573
1574 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1575 spi->mode |= SPI_CPHA;
1576 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1577 spi->mode |= SPI_CPOL;
1578 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1579 spi->mode |= SPI_CS_HIGH;
1580 }
1581 } else if (spi->irq < 0) {
1582 struct resource r;
1583
1584 if (acpi_dev_resource_interrupt(ares, 0, &r))
1585 spi->irq = r.start;
1586 }
1587
1588 /* Always tell the ACPI core to skip this resource */
1589 return 1;
1590 }
1591
1592 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1593 void *data, void **return_value)
1594 {
1595 struct spi_master *master = data;
1596 struct list_head resource_list;
1597 struct acpi_device *adev;
1598 struct spi_device *spi;
1599 int ret;
1600
1601 if (acpi_bus_get_device(handle, &adev))
1602 return AE_OK;
1603 if (acpi_bus_get_status(adev) || !adev->status.present)
1604 return AE_OK;
1605
1606 spi = spi_alloc_device(master);
1607 if (!spi) {
1608 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1609 dev_name(&adev->dev));
1610 return AE_NO_MEMORY;
1611 }
1612
1613 ACPI_COMPANION_SET(&spi->dev, adev);
1614 spi->irq = -1;
1615
1616 INIT_LIST_HEAD(&resource_list);
1617 ret = acpi_dev_get_resources(adev, &resource_list,
1618 acpi_spi_add_resource, spi);
1619 acpi_dev_free_resource_list(&resource_list);
1620
1621 if (ret < 0 || !spi->max_speed_hz) {
1622 spi_dev_put(spi);
1623 return AE_OK;
1624 }
1625
1626 if (spi->irq < 0)
1627 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1628
1629 adev->power.flags.ignore_parent = true;
1630 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1631 if (spi_add_device(spi)) {
1632 adev->power.flags.ignore_parent = false;
1633 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1634 dev_name(&adev->dev));
1635 spi_dev_put(spi);
1636 }
1637
1638 return AE_OK;
1639 }
1640
1641 static void acpi_register_spi_devices(struct spi_master *master)
1642 {
1643 acpi_status status;
1644 acpi_handle handle;
1645
1646 handle = ACPI_HANDLE(master->dev.parent);
1647 if (!handle)
1648 return;
1649
1650 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1651 acpi_spi_add_device, NULL,
1652 master, NULL);
1653 if (ACPI_FAILURE(status))
1654 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1655 }
1656 #else
1657 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1658 #endif /* CONFIG_ACPI */
1659
1660 static void spi_master_release(struct device *dev)
1661 {
1662 struct spi_master *master;
1663
1664 master = container_of(dev, struct spi_master, dev);
1665 kfree(master);
1666 }
1667
1668 static struct class spi_master_class = {
1669 .name = "spi_master",
1670 .owner = THIS_MODULE,
1671 .dev_release = spi_master_release,
1672 .dev_groups = spi_master_groups,
1673 };
1674
1675
1676 /**
1677 * spi_alloc_master - allocate SPI master controller
1678 * @dev: the controller, possibly using the platform_bus
1679 * @size: how much zeroed driver-private data to allocate; the pointer to this
1680 * memory is in the driver_data field of the returned device,
1681 * accessible with spi_master_get_devdata().
1682 * Context: can sleep
1683 *
1684 * This call is used only by SPI master controller drivers, which are the
1685 * only ones directly touching chip registers. It's how they allocate
1686 * an spi_master structure, prior to calling spi_register_master().
1687 *
1688 * This must be called from context that can sleep.
1689 *
1690 * The caller is responsible for assigning the bus number and initializing
1691 * the master's methods before calling spi_register_master(); and (after errors
1692 * adding the device) calling spi_master_put() to prevent a memory leak.
1693 *
1694 * Return: the SPI master structure on success, else NULL.
1695 */
1696 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1697 {
1698 struct spi_master *master;
1699
1700 if (!dev)
1701 return NULL;
1702
1703 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1704 if (!master)
1705 return NULL;
1706
1707 device_initialize(&master->dev);
1708 master->bus_num = -1;
1709 master->num_chipselect = 1;
1710 master->dev.class = &spi_master_class;
1711 master->dev.parent = dev;
1712 spi_master_set_devdata(master, &master[1]);
1713
1714 return master;
1715 }
1716 EXPORT_SYMBOL_GPL(spi_alloc_master);
1717
1718 #ifdef CONFIG_OF
1719 static int of_spi_register_master(struct spi_master *master)
1720 {
1721 int nb, i, *cs;
1722 struct device_node *np = master->dev.of_node;
1723
1724 if (!np)
1725 return 0;
1726
1727 nb = of_gpio_named_count(np, "cs-gpios");
1728 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1729
1730 /* Return error only for an incorrectly formed cs-gpios property */
1731 if (nb == 0 || nb == -ENOENT)
1732 return 0;
1733 else if (nb < 0)
1734 return nb;
1735
1736 cs = devm_kzalloc(&master->dev,
1737 sizeof(int) * master->num_chipselect,
1738 GFP_KERNEL);
1739 master->cs_gpios = cs;
1740
1741 if (!master->cs_gpios)
1742 return -ENOMEM;
1743
1744 for (i = 0; i < master->num_chipselect; i++)
1745 cs[i] = -ENOENT;
1746
1747 for (i = 0; i < nb; i++)
1748 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1749
1750 return 0;
1751 }
1752 #else
1753 static int of_spi_register_master(struct spi_master *master)
1754 {
1755 return 0;
1756 }
1757 #endif
1758
1759 /**
1760 * spi_register_master - register SPI master controller
1761 * @master: initialized master, originally from spi_alloc_master()
1762 * Context: can sleep
1763 *
1764 * SPI master controllers connect to their drivers using some non-SPI bus,
1765 * such as the platform bus. The final stage of probe() in that code
1766 * includes calling spi_register_master() to hook up to this SPI bus glue.
1767 *
1768 * SPI controllers use board specific (often SOC specific) bus numbers,
1769 * and board-specific addressing for SPI devices combines those numbers
1770 * with chip select numbers. Since SPI does not directly support dynamic
1771 * device identification, boards need configuration tables telling which
1772 * chip is at which address.
1773 *
1774 * This must be called from context that can sleep. It returns zero on
1775 * success, else a negative error code (dropping the master's refcount).
1776 * After a successful return, the caller is responsible for calling
1777 * spi_unregister_master().
1778 *
1779 * Return: zero on success, else a negative error code.
1780 */
1781 int spi_register_master(struct spi_master *master)
1782 {
1783 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1784 struct device *dev = master->dev.parent;
1785 struct boardinfo *bi;
1786 int status = -ENODEV;
1787 int dynamic = 0;
1788
1789 if (!dev)
1790 return -ENODEV;
1791
1792 status = of_spi_register_master(master);
1793 if (status)
1794 return status;
1795
1796 /* even if it's just one always-selected device, there must
1797 * be at least one chipselect
1798 */
1799 if (master->num_chipselect == 0)
1800 return -EINVAL;
1801
1802 if ((master->bus_num < 0) && master->dev.of_node)
1803 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1804
1805 /* convention: dynamically assigned bus IDs count down from the max */
1806 if (master->bus_num < 0) {
1807 /* FIXME switch to an IDR based scheme, something like
1808 * I2C now uses, so we can't run out of "dynamic" IDs
1809 */
1810 master->bus_num = atomic_dec_return(&dyn_bus_id);
1811 dynamic = 1;
1812 }
1813
1814 INIT_LIST_HEAD(&master->queue);
1815 spin_lock_init(&master->queue_lock);
1816 spin_lock_init(&master->bus_lock_spinlock);
1817 mutex_init(&master->bus_lock_mutex);
1818 master->bus_lock_flag = 0;
1819 init_completion(&master->xfer_completion);
1820 if (!master->max_dma_len)
1821 master->max_dma_len = INT_MAX;
1822
1823 /* register the device, then userspace will see it.
1824 * registration fails if the bus ID is in use.
1825 */
1826 dev_set_name(&master->dev, "spi%u", master->bus_num);
1827 status = device_add(&master->dev);
1828 if (status < 0)
1829 goto done;
1830 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1831 dynamic ? " (dynamic)" : "");
1832
1833 /* If we're using a queued driver, start the queue */
1834 if (master->transfer)
1835 dev_info(dev, "master is unqueued, this is deprecated\n");
1836 else {
1837 status = spi_master_initialize_queue(master);
1838 if (status) {
1839 device_del(&master->dev);
1840 goto done;
1841 }
1842 }
1843 /* add statistics */
1844 spin_lock_init(&master->statistics.lock);
1845
1846 mutex_lock(&board_lock);
1847 list_add_tail(&master->list, &spi_master_list);
1848 list_for_each_entry(bi, &board_list, list)
1849 spi_match_master_to_boardinfo(master, &bi->board_info);
1850 mutex_unlock(&board_lock);
1851
1852 /* Register devices from the device tree and ACPI */
1853 of_register_spi_devices(master);
1854 acpi_register_spi_devices(master);
1855 done:
1856 return status;
1857 }
1858 EXPORT_SYMBOL_GPL(spi_register_master);
1859
1860 static void devm_spi_unregister(struct device *dev, void *res)
1861 {
1862 spi_unregister_master(*(struct spi_master **)res);
1863 }
1864
1865 /**
1866 * dev_spi_register_master - register managed SPI master controller
1867 * @dev: device managing SPI master
1868 * @master: initialized master, originally from spi_alloc_master()
1869 * Context: can sleep
1870 *
1871 * Register a SPI device as with spi_register_master() which will
1872 * automatically be unregister
1873 *
1874 * Return: zero on success, else a negative error code.
1875 */
1876 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1877 {
1878 struct spi_master **ptr;
1879 int ret;
1880
1881 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1882 if (!ptr)
1883 return -ENOMEM;
1884
1885 ret = spi_register_master(master);
1886 if (!ret) {
1887 *ptr = master;
1888 devres_add(dev, ptr);
1889 } else {
1890 devres_free(ptr);
1891 }
1892
1893 return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1896
1897 static int __unregister(struct device *dev, void *null)
1898 {
1899 spi_unregister_device(to_spi_device(dev));
1900 return 0;
1901 }
1902
1903 /**
1904 * spi_unregister_master - unregister SPI master controller
1905 * @master: the master being unregistered
1906 * Context: can sleep
1907 *
1908 * This call is used only by SPI master controller drivers, which are the
1909 * only ones directly touching chip registers.
1910 *
1911 * This must be called from context that can sleep.
1912 */
1913 void spi_unregister_master(struct spi_master *master)
1914 {
1915 int dummy;
1916
1917 if (master->queued) {
1918 if (spi_destroy_queue(master))
1919 dev_err(&master->dev, "queue remove failed\n");
1920 }
1921
1922 mutex_lock(&board_lock);
1923 list_del(&master->list);
1924 mutex_unlock(&board_lock);
1925
1926 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1927 device_unregister(&master->dev);
1928 }
1929 EXPORT_SYMBOL_GPL(spi_unregister_master);
1930
1931 int spi_master_suspend(struct spi_master *master)
1932 {
1933 int ret;
1934
1935 /* Basically no-ops for non-queued masters */
1936 if (!master->queued)
1937 return 0;
1938
1939 ret = spi_stop_queue(master);
1940 if (ret)
1941 dev_err(&master->dev, "queue stop failed\n");
1942
1943 return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(spi_master_suspend);
1946
1947 int spi_master_resume(struct spi_master *master)
1948 {
1949 int ret;
1950
1951 if (!master->queued)
1952 return 0;
1953
1954 ret = spi_start_queue(master);
1955 if (ret)
1956 dev_err(&master->dev, "queue restart failed\n");
1957
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(spi_master_resume);
1961
1962 static int __spi_master_match(struct device *dev, const void *data)
1963 {
1964 struct spi_master *m;
1965 const u16 *bus_num = data;
1966
1967 m = container_of(dev, struct spi_master, dev);
1968 return m->bus_num == *bus_num;
1969 }
1970
1971 /**
1972 * spi_busnum_to_master - look up master associated with bus_num
1973 * @bus_num: the master's bus number
1974 * Context: can sleep
1975 *
1976 * This call may be used with devices that are registered after
1977 * arch init time. It returns a refcounted pointer to the relevant
1978 * spi_master (which the caller must release), or NULL if there is
1979 * no such master registered.
1980 *
1981 * Return: the SPI master structure on success, else NULL.
1982 */
1983 struct spi_master *spi_busnum_to_master(u16 bus_num)
1984 {
1985 struct device *dev;
1986 struct spi_master *master = NULL;
1987
1988 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1989 __spi_master_match);
1990 if (dev)
1991 master = container_of(dev, struct spi_master, dev);
1992 /* reference got in class_find_device */
1993 return master;
1994 }
1995 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1996
1997
1998 /*-------------------------------------------------------------------------*/
1999
2000 /* Core methods for SPI master protocol drivers. Some of the
2001 * other core methods are currently defined as inline functions.
2002 */
2003
2004 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2005 {
2006 if (master->bits_per_word_mask) {
2007 /* Only 32 bits fit in the mask */
2008 if (bits_per_word > 32)
2009 return -EINVAL;
2010 if (!(master->bits_per_word_mask &
2011 SPI_BPW_MASK(bits_per_word)))
2012 return -EINVAL;
2013 }
2014
2015 return 0;
2016 }
2017
2018 /**
2019 * spi_setup - setup SPI mode and clock rate
2020 * @spi: the device whose settings are being modified
2021 * Context: can sleep, and no requests are queued to the device
2022 *
2023 * SPI protocol drivers may need to update the transfer mode if the
2024 * device doesn't work with its default. They may likewise need
2025 * to update clock rates or word sizes from initial values. This function
2026 * changes those settings, and must be called from a context that can sleep.
2027 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2028 * effect the next time the device is selected and data is transferred to
2029 * or from it. When this function returns, the spi device is deselected.
2030 *
2031 * Note that this call will fail if the protocol driver specifies an option
2032 * that the underlying controller or its driver does not support. For
2033 * example, not all hardware supports wire transfers using nine bit words,
2034 * LSB-first wire encoding, or active-high chipselects.
2035 *
2036 * Return: zero on success, else a negative error code.
2037 */
2038 int spi_setup(struct spi_device *spi)
2039 {
2040 unsigned bad_bits, ugly_bits;
2041 int status;
2042
2043 /* check mode to prevent that DUAL and QUAD set at the same time
2044 */
2045 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2046 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2047 dev_err(&spi->dev,
2048 "setup: can not select dual and quad at the same time\n");
2049 return -EINVAL;
2050 }
2051 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2052 */
2053 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2054 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2055 return -EINVAL;
2056 /* help drivers fail *cleanly* when they need options
2057 * that aren't supported with their current master
2058 */
2059 bad_bits = spi->mode & ~spi->master->mode_bits;
2060 ugly_bits = bad_bits &
2061 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2062 if (ugly_bits) {
2063 dev_warn(&spi->dev,
2064 "setup: ignoring unsupported mode bits %x\n",
2065 ugly_bits);
2066 spi->mode &= ~ugly_bits;
2067 bad_bits &= ~ugly_bits;
2068 }
2069 if (bad_bits) {
2070 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2071 bad_bits);
2072 return -EINVAL;
2073 }
2074
2075 if (!spi->bits_per_word)
2076 spi->bits_per_word = 8;
2077
2078 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2079 if (status)
2080 return status;
2081
2082 if (!spi->max_speed_hz)
2083 spi->max_speed_hz = spi->master->max_speed_hz;
2084
2085 if (spi->master->setup)
2086 status = spi->master->setup(spi);
2087
2088 spi_set_cs(spi, false);
2089
2090 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2091 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2092 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2093 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2094 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2095 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2096 spi->bits_per_word, spi->max_speed_hz,
2097 status);
2098
2099 return status;
2100 }
2101 EXPORT_SYMBOL_GPL(spi_setup);
2102
2103 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2104 {
2105 struct spi_master *master = spi->master;
2106 struct spi_transfer *xfer;
2107 int w_size;
2108
2109 if (list_empty(&message->transfers))
2110 return -EINVAL;
2111
2112 /* Half-duplex links include original MicroWire, and ones with
2113 * only one data pin like SPI_3WIRE (switches direction) or where
2114 * either MOSI or MISO is missing. They can also be caused by
2115 * software limitations.
2116 */
2117 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2118 || (spi->mode & SPI_3WIRE)) {
2119 unsigned flags = master->flags;
2120
2121 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2122 if (xfer->rx_buf && xfer->tx_buf)
2123 return -EINVAL;
2124 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2125 return -EINVAL;
2126 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2127 return -EINVAL;
2128 }
2129 }
2130
2131 /**
2132 * Set transfer bits_per_word and max speed as spi device default if
2133 * it is not set for this transfer.
2134 * Set transfer tx_nbits and rx_nbits as single transfer default
2135 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2136 */
2137 message->frame_length = 0;
2138 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2139 message->frame_length += xfer->len;
2140 if (!xfer->bits_per_word)
2141 xfer->bits_per_word = spi->bits_per_word;
2142
2143 if (!xfer->speed_hz)
2144 xfer->speed_hz = spi->max_speed_hz;
2145 if (!xfer->speed_hz)
2146 xfer->speed_hz = master->max_speed_hz;
2147
2148 if (master->max_speed_hz &&
2149 xfer->speed_hz > master->max_speed_hz)
2150 xfer->speed_hz = master->max_speed_hz;
2151
2152 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2153 return -EINVAL;
2154
2155 /*
2156 * SPI transfer length should be multiple of SPI word size
2157 * where SPI word size should be power-of-two multiple
2158 */
2159 if (xfer->bits_per_word <= 8)
2160 w_size = 1;
2161 else if (xfer->bits_per_word <= 16)
2162 w_size = 2;
2163 else
2164 w_size = 4;
2165
2166 /* No partial transfers accepted */
2167 if (xfer->len % w_size)
2168 return -EINVAL;
2169
2170 if (xfer->speed_hz && master->min_speed_hz &&
2171 xfer->speed_hz < master->min_speed_hz)
2172 return -EINVAL;
2173
2174 if (xfer->tx_buf && !xfer->tx_nbits)
2175 xfer->tx_nbits = SPI_NBITS_SINGLE;
2176 if (xfer->rx_buf && !xfer->rx_nbits)
2177 xfer->rx_nbits = SPI_NBITS_SINGLE;
2178 /* check transfer tx/rx_nbits:
2179 * 1. check the value matches one of single, dual and quad
2180 * 2. check tx/rx_nbits match the mode in spi_device
2181 */
2182 if (xfer->tx_buf) {
2183 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2184 xfer->tx_nbits != SPI_NBITS_DUAL &&
2185 xfer->tx_nbits != SPI_NBITS_QUAD)
2186 return -EINVAL;
2187 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2188 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2189 return -EINVAL;
2190 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2191 !(spi->mode & SPI_TX_QUAD))
2192 return -EINVAL;
2193 }
2194 /* check transfer rx_nbits */
2195 if (xfer->rx_buf) {
2196 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2197 xfer->rx_nbits != SPI_NBITS_DUAL &&
2198 xfer->rx_nbits != SPI_NBITS_QUAD)
2199 return -EINVAL;
2200 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2201 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2202 return -EINVAL;
2203 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2204 !(spi->mode & SPI_RX_QUAD))
2205 return -EINVAL;
2206 }
2207 }
2208
2209 message->status = -EINPROGRESS;
2210
2211 return 0;
2212 }
2213
2214 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2215 {
2216 struct spi_master *master = spi->master;
2217
2218 message->spi = spi;
2219
2220 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2221 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2222
2223 trace_spi_message_submit(message);
2224
2225 return master->transfer(spi, message);
2226 }
2227
2228 /**
2229 * spi_async - asynchronous SPI transfer
2230 * @spi: device with which data will be exchanged
2231 * @message: describes the data transfers, including completion callback
2232 * Context: any (irqs may be blocked, etc)
2233 *
2234 * This call may be used in_irq and other contexts which can't sleep,
2235 * as well as from task contexts which can sleep.
2236 *
2237 * The completion callback is invoked in a context which can't sleep.
2238 * Before that invocation, the value of message->status is undefined.
2239 * When the callback is issued, message->status holds either zero (to
2240 * indicate complete success) or a negative error code. After that
2241 * callback returns, the driver which issued the transfer request may
2242 * deallocate the associated memory; it's no longer in use by any SPI
2243 * core or controller driver code.
2244 *
2245 * Note that although all messages to a spi_device are handled in
2246 * FIFO order, messages may go to different devices in other orders.
2247 * Some device might be higher priority, or have various "hard" access
2248 * time requirements, for example.
2249 *
2250 * On detection of any fault during the transfer, processing of
2251 * the entire message is aborted, and the device is deselected.
2252 * Until returning from the associated message completion callback,
2253 * no other spi_message queued to that device will be processed.
2254 * (This rule applies equally to all the synchronous transfer calls,
2255 * which are wrappers around this core asynchronous primitive.)
2256 *
2257 * Return: zero on success, else a negative error code.
2258 */
2259 int spi_async(struct spi_device *spi, struct spi_message *message)
2260 {
2261 struct spi_master *master = spi->master;
2262 int ret;
2263 unsigned long flags;
2264
2265 ret = __spi_validate(spi, message);
2266 if (ret != 0)
2267 return ret;
2268
2269 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2270
2271 if (master->bus_lock_flag)
2272 ret = -EBUSY;
2273 else
2274 ret = __spi_async(spi, message);
2275
2276 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2277
2278 return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(spi_async);
2281
2282 /**
2283 * spi_async_locked - version of spi_async with exclusive bus usage
2284 * @spi: device with which data will be exchanged
2285 * @message: describes the data transfers, including completion callback
2286 * Context: any (irqs may be blocked, etc)
2287 *
2288 * This call may be used in_irq and other contexts which can't sleep,
2289 * as well as from task contexts which can sleep.
2290 *
2291 * The completion callback is invoked in a context which can't sleep.
2292 * Before that invocation, the value of message->status is undefined.
2293 * When the callback is issued, message->status holds either zero (to
2294 * indicate complete success) or a negative error code. After that
2295 * callback returns, the driver which issued the transfer request may
2296 * deallocate the associated memory; it's no longer in use by any SPI
2297 * core or controller driver code.
2298 *
2299 * Note that although all messages to a spi_device are handled in
2300 * FIFO order, messages may go to different devices in other orders.
2301 * Some device might be higher priority, or have various "hard" access
2302 * time requirements, for example.
2303 *
2304 * On detection of any fault during the transfer, processing of
2305 * the entire message is aborted, and the device is deselected.
2306 * Until returning from the associated message completion callback,
2307 * no other spi_message queued to that device will be processed.
2308 * (This rule applies equally to all the synchronous transfer calls,
2309 * which are wrappers around this core asynchronous primitive.)
2310 *
2311 * Return: zero on success, else a negative error code.
2312 */
2313 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2314 {
2315 struct spi_master *master = spi->master;
2316 int ret;
2317 unsigned long flags;
2318
2319 ret = __spi_validate(spi, message);
2320 if (ret != 0)
2321 return ret;
2322
2323 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2324
2325 ret = __spi_async(spi, message);
2326
2327 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2328
2329 return ret;
2330
2331 }
2332 EXPORT_SYMBOL_GPL(spi_async_locked);
2333
2334
2335 /*-------------------------------------------------------------------------*/
2336
2337 /* Utility methods for SPI master protocol drivers, layered on
2338 * top of the core. Some other utility methods are defined as
2339 * inline functions.
2340 */
2341
2342 static void spi_complete(void *arg)
2343 {
2344 complete(arg);
2345 }
2346
2347 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2348 int bus_locked)
2349 {
2350 DECLARE_COMPLETION_ONSTACK(done);
2351 int status;
2352 struct spi_master *master = spi->master;
2353 unsigned long flags;
2354
2355 status = __spi_validate(spi, message);
2356 if (status != 0)
2357 return status;
2358
2359 message->complete = spi_complete;
2360 message->context = &done;
2361 message->spi = spi;
2362
2363 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2364 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2365
2366 if (!bus_locked)
2367 mutex_lock(&master->bus_lock_mutex);
2368
2369 /* If we're not using the legacy transfer method then we will
2370 * try to transfer in the calling context so special case.
2371 * This code would be less tricky if we could remove the
2372 * support for driver implemented message queues.
2373 */
2374 if (master->transfer == spi_queued_transfer) {
2375 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2376
2377 trace_spi_message_submit(message);
2378
2379 status = __spi_queued_transfer(spi, message, false);
2380
2381 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2382 } else {
2383 status = spi_async_locked(spi, message);
2384 }
2385
2386 if (!bus_locked)
2387 mutex_unlock(&master->bus_lock_mutex);
2388
2389 if (status == 0) {
2390 /* Push out the messages in the calling context if we
2391 * can.
2392 */
2393 if (master->transfer == spi_queued_transfer) {
2394 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2395 spi_sync_immediate);
2396 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2397 spi_sync_immediate);
2398 __spi_pump_messages(master, false);
2399 }
2400
2401 wait_for_completion(&done);
2402 status = message->status;
2403 }
2404 message->context = NULL;
2405 return status;
2406 }
2407
2408 /**
2409 * spi_sync - blocking/synchronous SPI data transfers
2410 * @spi: device with which data will be exchanged
2411 * @message: describes the data transfers
2412 * Context: can sleep
2413 *
2414 * This call may only be used from a context that may sleep. The sleep
2415 * is non-interruptible, and has no timeout. Low-overhead controller
2416 * drivers may DMA directly into and out of the message buffers.
2417 *
2418 * Note that the SPI device's chip select is active during the message,
2419 * and then is normally disabled between messages. Drivers for some
2420 * frequently-used devices may want to minimize costs of selecting a chip,
2421 * by leaving it selected in anticipation that the next message will go
2422 * to the same chip. (That may increase power usage.)
2423 *
2424 * Also, the caller is guaranteeing that the memory associated with the
2425 * message will not be freed before this call returns.
2426 *
2427 * Return: zero on success, else a negative error code.
2428 */
2429 int spi_sync(struct spi_device *spi, struct spi_message *message)
2430 {
2431 return __spi_sync(spi, message, 0);
2432 }
2433 EXPORT_SYMBOL_GPL(spi_sync);
2434
2435 /**
2436 * spi_sync_locked - version of spi_sync with exclusive bus usage
2437 * @spi: device with which data will be exchanged
2438 * @message: describes the data transfers
2439 * Context: can sleep
2440 *
2441 * This call may only be used from a context that may sleep. The sleep
2442 * is non-interruptible, and has no timeout. Low-overhead controller
2443 * drivers may DMA directly into and out of the message buffers.
2444 *
2445 * This call should be used by drivers that require exclusive access to the
2446 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2447 * be released by a spi_bus_unlock call when the exclusive access is over.
2448 *
2449 * Return: zero on success, else a negative error code.
2450 */
2451 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2452 {
2453 return __spi_sync(spi, message, 1);
2454 }
2455 EXPORT_SYMBOL_GPL(spi_sync_locked);
2456
2457 /**
2458 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2459 * @master: SPI bus master that should be locked for exclusive bus access
2460 * Context: can sleep
2461 *
2462 * This call may only be used from a context that may sleep. The sleep
2463 * is non-interruptible, and has no timeout.
2464 *
2465 * This call should be used by drivers that require exclusive access to the
2466 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2467 * exclusive access is over. Data transfer must be done by spi_sync_locked
2468 * and spi_async_locked calls when the SPI bus lock is held.
2469 *
2470 * Return: always zero.
2471 */
2472 int spi_bus_lock(struct spi_master *master)
2473 {
2474 unsigned long flags;
2475
2476 mutex_lock(&master->bus_lock_mutex);
2477
2478 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2479 master->bus_lock_flag = 1;
2480 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2481
2482 /* mutex remains locked until spi_bus_unlock is called */
2483
2484 return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(spi_bus_lock);
2487
2488 /**
2489 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2490 * @master: SPI bus master that was locked for exclusive bus access
2491 * Context: can sleep
2492 *
2493 * This call may only be used from a context that may sleep. The sleep
2494 * is non-interruptible, and has no timeout.
2495 *
2496 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2497 * call.
2498 *
2499 * Return: always zero.
2500 */
2501 int spi_bus_unlock(struct spi_master *master)
2502 {
2503 master->bus_lock_flag = 0;
2504
2505 mutex_unlock(&master->bus_lock_mutex);
2506
2507 return 0;
2508 }
2509 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2510
2511 /* portable code must never pass more than 32 bytes */
2512 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2513
2514 static u8 *buf;
2515
2516 /**
2517 * spi_write_then_read - SPI synchronous write followed by read
2518 * @spi: device with which data will be exchanged
2519 * @txbuf: data to be written (need not be dma-safe)
2520 * @n_tx: size of txbuf, in bytes
2521 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2522 * @n_rx: size of rxbuf, in bytes
2523 * Context: can sleep
2524 *
2525 * This performs a half duplex MicroWire style transaction with the
2526 * device, sending txbuf and then reading rxbuf. The return value
2527 * is zero for success, else a negative errno status code.
2528 * This call may only be used from a context that may sleep.
2529 *
2530 * Parameters to this routine are always copied using a small buffer;
2531 * portable code should never use this for more than 32 bytes.
2532 * Performance-sensitive or bulk transfer code should instead use
2533 * spi_{async,sync}() calls with dma-safe buffers.
2534 *
2535 * Return: zero on success, else a negative error code.
2536 */
2537 int spi_write_then_read(struct spi_device *spi,
2538 const void *txbuf, unsigned n_tx,
2539 void *rxbuf, unsigned n_rx)
2540 {
2541 static DEFINE_MUTEX(lock);
2542
2543 int status;
2544 struct spi_message message;
2545 struct spi_transfer x[2];
2546 u8 *local_buf;
2547
2548 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2549 * copying here, (as a pure convenience thing), but we can
2550 * keep heap costs out of the hot path unless someone else is
2551 * using the pre-allocated buffer or the transfer is too large.
2552 */
2553 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2554 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2555 GFP_KERNEL | GFP_DMA);
2556 if (!local_buf)
2557 return -ENOMEM;
2558 } else {
2559 local_buf = buf;
2560 }
2561
2562 spi_message_init(&message);
2563 memset(x, 0, sizeof(x));
2564 if (n_tx) {
2565 x[0].len = n_tx;
2566 spi_message_add_tail(&x[0], &message);
2567 }
2568 if (n_rx) {
2569 x[1].len = n_rx;
2570 spi_message_add_tail(&x[1], &message);
2571 }
2572
2573 memcpy(local_buf, txbuf, n_tx);
2574 x[0].tx_buf = local_buf;
2575 x[1].rx_buf = local_buf + n_tx;
2576
2577 /* do the i/o */
2578 status = spi_sync(spi, &message);
2579 if (status == 0)
2580 memcpy(rxbuf, x[1].rx_buf, n_rx);
2581
2582 if (x[0].tx_buf == buf)
2583 mutex_unlock(&lock);
2584 else
2585 kfree(local_buf);
2586
2587 return status;
2588 }
2589 EXPORT_SYMBOL_GPL(spi_write_then_read);
2590
2591 /*-------------------------------------------------------------------------*/
2592
2593 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2594 static int __spi_of_device_match(struct device *dev, void *data)
2595 {
2596 return dev->of_node == data;
2597 }
2598
2599 /* must call put_device() when done with returned spi_device device */
2600 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2601 {
2602 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2603 __spi_of_device_match);
2604 return dev ? to_spi_device(dev) : NULL;
2605 }
2606
2607 static int __spi_of_master_match(struct device *dev, const void *data)
2608 {
2609 return dev->of_node == data;
2610 }
2611
2612 /* the spi masters are not using spi_bus, so we find it with another way */
2613 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2614 {
2615 struct device *dev;
2616
2617 dev = class_find_device(&spi_master_class, NULL, node,
2618 __spi_of_master_match);
2619 if (!dev)
2620 return NULL;
2621
2622 /* reference got in class_find_device */
2623 return container_of(dev, struct spi_master, dev);
2624 }
2625
2626 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2627 void *arg)
2628 {
2629 struct of_reconfig_data *rd = arg;
2630 struct spi_master *master;
2631 struct spi_device *spi;
2632
2633 switch (of_reconfig_get_state_change(action, arg)) {
2634 case OF_RECONFIG_CHANGE_ADD:
2635 master = of_find_spi_master_by_node(rd->dn->parent);
2636 if (master == NULL)
2637 return NOTIFY_OK; /* not for us */
2638
2639 spi = of_register_spi_device(master, rd->dn);
2640 put_device(&master->dev);
2641
2642 if (IS_ERR(spi)) {
2643 pr_err("%s: failed to create for '%s'\n",
2644 __func__, rd->dn->full_name);
2645 return notifier_from_errno(PTR_ERR(spi));
2646 }
2647 break;
2648
2649 case OF_RECONFIG_CHANGE_REMOVE:
2650 /* find our device by node */
2651 spi = of_find_spi_device_by_node(rd->dn);
2652 if (spi == NULL)
2653 return NOTIFY_OK; /* no? not meant for us */
2654
2655 /* unregister takes one ref away */
2656 spi_unregister_device(spi);
2657
2658 /* and put the reference of the find */
2659 put_device(&spi->dev);
2660 break;
2661 }
2662
2663 return NOTIFY_OK;
2664 }
2665
2666 static struct notifier_block spi_of_notifier = {
2667 .notifier_call = of_spi_notify,
2668 };
2669 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2670 extern struct notifier_block spi_of_notifier;
2671 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2672
2673 static int __init spi_init(void)
2674 {
2675 int status;
2676
2677 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2678 if (!buf) {
2679 status = -ENOMEM;
2680 goto err0;
2681 }
2682
2683 status = bus_register(&spi_bus_type);
2684 if (status < 0)
2685 goto err1;
2686
2687 status = class_register(&spi_master_class);
2688 if (status < 0)
2689 goto err2;
2690
2691 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2692 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2693
2694 return 0;
2695
2696 err2:
2697 bus_unregister(&spi_bus_type);
2698 err1:
2699 kfree(buf);
2700 buf = NULL;
2701 err0:
2702 return status;
2703 }
2704
2705 /* board_info is normally registered in arch_initcall(),
2706 * but even essential drivers wait till later
2707 *
2708 * REVISIT only boardinfo really needs static linking. the rest (device and
2709 * driver registration) _could_ be dynamically linked (modular) ... costs
2710 * include needing to have boardinfo data structures be much more public.
2711 */
2712 postcore_initcall(spi_init);
2713
This page took 0.116208 seconds and 5 git commands to generate.