spi/fsl-espi: Correct the maximum transaction length
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89 } \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98 { \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105 } \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 static struct attribute *spi_dev_attrs[] = {
148 &dev_attr_modalias.attr,
149 NULL,
150 };
151
152 static const struct attribute_group spi_dev_group = {
153 .attrs = spi_dev_attrs,
154 };
155
156 static struct attribute *spi_device_statistics_attrs[] = {
157 &dev_attr_spi_device_messages.attr,
158 &dev_attr_spi_device_transfers.attr,
159 &dev_attr_spi_device_errors.attr,
160 &dev_attr_spi_device_timedout.attr,
161 &dev_attr_spi_device_spi_sync.attr,
162 &dev_attr_spi_device_spi_sync_immediate.attr,
163 &dev_attr_spi_device_spi_async.attr,
164 &dev_attr_spi_device_bytes.attr,
165 &dev_attr_spi_device_bytes_rx.attr,
166 &dev_attr_spi_device_bytes_tx.attr,
167 &dev_attr_spi_device_transfer_bytes_histo0.attr,
168 &dev_attr_spi_device_transfer_bytes_histo1.attr,
169 &dev_attr_spi_device_transfer_bytes_histo2.attr,
170 &dev_attr_spi_device_transfer_bytes_histo3.attr,
171 &dev_attr_spi_device_transfer_bytes_histo4.attr,
172 &dev_attr_spi_device_transfer_bytes_histo5.attr,
173 &dev_attr_spi_device_transfer_bytes_histo6.attr,
174 &dev_attr_spi_device_transfer_bytes_histo7.attr,
175 &dev_attr_spi_device_transfer_bytes_histo8.attr,
176 &dev_attr_spi_device_transfer_bytes_histo9.attr,
177 &dev_attr_spi_device_transfer_bytes_histo10.attr,
178 &dev_attr_spi_device_transfer_bytes_histo11.attr,
179 &dev_attr_spi_device_transfer_bytes_histo12.attr,
180 &dev_attr_spi_device_transfer_bytes_histo13.attr,
181 &dev_attr_spi_device_transfer_bytes_histo14.attr,
182 &dev_attr_spi_device_transfer_bytes_histo15.attr,
183 &dev_attr_spi_device_transfer_bytes_histo16.attr,
184 NULL,
185 };
186
187 static const struct attribute_group spi_device_statistics_group = {
188 .name = "statistics",
189 .attrs = spi_device_statistics_attrs,
190 };
191
192 static const struct attribute_group *spi_dev_groups[] = {
193 &spi_dev_group,
194 &spi_device_statistics_group,
195 NULL,
196 };
197
198 static struct attribute *spi_master_statistics_attrs[] = {
199 &dev_attr_spi_master_messages.attr,
200 &dev_attr_spi_master_transfers.attr,
201 &dev_attr_spi_master_errors.attr,
202 &dev_attr_spi_master_timedout.attr,
203 &dev_attr_spi_master_spi_sync.attr,
204 &dev_attr_spi_master_spi_sync_immediate.attr,
205 &dev_attr_spi_master_spi_async.attr,
206 &dev_attr_spi_master_bytes.attr,
207 &dev_attr_spi_master_bytes_rx.attr,
208 &dev_attr_spi_master_bytes_tx.attr,
209 &dev_attr_spi_master_transfer_bytes_histo0.attr,
210 &dev_attr_spi_master_transfer_bytes_histo1.attr,
211 &dev_attr_spi_master_transfer_bytes_histo2.attr,
212 &dev_attr_spi_master_transfer_bytes_histo3.attr,
213 &dev_attr_spi_master_transfer_bytes_histo4.attr,
214 &dev_attr_spi_master_transfer_bytes_histo5.attr,
215 &dev_attr_spi_master_transfer_bytes_histo6.attr,
216 &dev_attr_spi_master_transfer_bytes_histo7.attr,
217 &dev_attr_spi_master_transfer_bytes_histo8.attr,
218 &dev_attr_spi_master_transfer_bytes_histo9.attr,
219 &dev_attr_spi_master_transfer_bytes_histo10.attr,
220 &dev_attr_spi_master_transfer_bytes_histo11.attr,
221 &dev_attr_spi_master_transfer_bytes_histo12.attr,
222 &dev_attr_spi_master_transfer_bytes_histo13.attr,
223 &dev_attr_spi_master_transfer_bytes_histo14.attr,
224 &dev_attr_spi_master_transfer_bytes_histo15.attr,
225 &dev_attr_spi_master_transfer_bytes_histo16.attr,
226 NULL,
227 };
228
229 static const struct attribute_group spi_master_statistics_group = {
230 .name = "statistics",
231 .attrs = spi_master_statistics_attrs,
232 };
233
234 static const struct attribute_group *spi_master_groups[] = {
235 &spi_master_statistics_group,
236 NULL,
237 };
238
239 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
240 struct spi_transfer *xfer,
241 struct spi_master *master)
242 {
243 unsigned long flags;
244 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
245
246 if (l2len < 0)
247 l2len = 0;
248
249 spin_lock_irqsave(&stats->lock, flags);
250
251 stats->transfers++;
252 stats->transfer_bytes_histo[l2len]++;
253
254 stats->bytes += xfer->len;
255 if ((xfer->tx_buf) &&
256 (xfer->tx_buf != master->dummy_tx))
257 stats->bytes_tx += xfer->len;
258 if ((xfer->rx_buf) &&
259 (xfer->rx_buf != master->dummy_rx))
260 stats->bytes_rx += xfer->len;
261
262 spin_unlock_irqrestore(&stats->lock, flags);
263 }
264 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
265
266 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
267 * and the sysfs version makes coldplug work too.
268 */
269
270 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
271 const struct spi_device *sdev)
272 {
273 while (id->name[0]) {
274 if (!strcmp(sdev->modalias, id->name))
275 return id;
276 id++;
277 }
278 return NULL;
279 }
280
281 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
282 {
283 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
284
285 return spi_match_id(sdrv->id_table, sdev);
286 }
287 EXPORT_SYMBOL_GPL(spi_get_device_id);
288
289 static int spi_match_device(struct device *dev, struct device_driver *drv)
290 {
291 const struct spi_device *spi = to_spi_device(dev);
292 const struct spi_driver *sdrv = to_spi_driver(drv);
293
294 /* Attempt an OF style match */
295 if (of_driver_match_device(dev, drv))
296 return 1;
297
298 /* Then try ACPI */
299 if (acpi_driver_match_device(dev, drv))
300 return 1;
301
302 if (sdrv->id_table)
303 return !!spi_match_id(sdrv->id_table, spi);
304
305 return strcmp(spi->modalias, drv->name) == 0;
306 }
307
308 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
309 {
310 const struct spi_device *spi = to_spi_device(dev);
311 int rc;
312
313 rc = acpi_device_uevent_modalias(dev, env);
314 if (rc != -ENODEV)
315 return rc;
316
317 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
318 return 0;
319 }
320
321 struct bus_type spi_bus_type = {
322 .name = "spi",
323 .dev_groups = spi_dev_groups,
324 .match = spi_match_device,
325 .uevent = spi_uevent,
326 };
327 EXPORT_SYMBOL_GPL(spi_bus_type);
328
329
330 static int spi_drv_probe(struct device *dev)
331 {
332 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
333 struct spi_device *spi = to_spi_device(dev);
334 int ret;
335
336 ret = of_clk_set_defaults(dev->of_node, false);
337 if (ret)
338 return ret;
339
340 if (dev->of_node) {
341 spi->irq = of_irq_get(dev->of_node, 0);
342 if (spi->irq == -EPROBE_DEFER)
343 return -EPROBE_DEFER;
344 if (spi->irq < 0)
345 spi->irq = 0;
346 }
347
348 ret = dev_pm_domain_attach(dev, true);
349 if (ret != -EPROBE_DEFER) {
350 ret = sdrv->probe(spi);
351 if (ret)
352 dev_pm_domain_detach(dev, true);
353 }
354
355 return ret;
356 }
357
358 static int spi_drv_remove(struct device *dev)
359 {
360 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
361 int ret;
362
363 ret = sdrv->remove(to_spi_device(dev));
364 dev_pm_domain_detach(dev, true);
365
366 return ret;
367 }
368
369 static void spi_drv_shutdown(struct device *dev)
370 {
371 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
372
373 sdrv->shutdown(to_spi_device(dev));
374 }
375
376 /**
377 * __spi_register_driver - register a SPI driver
378 * @owner: owner module of the driver to register
379 * @sdrv: the driver to register
380 * Context: can sleep
381 *
382 * Return: zero on success, else a negative error code.
383 */
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385 {
386 sdrv->driver.owner = owner;
387 sdrv->driver.bus = &spi_bus_type;
388 if (sdrv->probe)
389 sdrv->driver.probe = spi_drv_probe;
390 if (sdrv->remove)
391 sdrv->driver.remove = spi_drv_remove;
392 if (sdrv->shutdown)
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
395 }
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
397
398 /*-------------------------------------------------------------------------*/
399
400 /* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
404 */
405
406 struct boardinfo {
407 struct list_head list;
408 struct spi_board_info board_info;
409 };
410
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
413
414 /*
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
417 */
418 static DEFINE_MUTEX(board_lock);
419
420 /**
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
423 * Context: can sleep
424 *
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
429 *
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
434 *
435 * Return: a pointer to the new device, or NULL.
436 */
437 struct spi_device *spi_alloc_device(struct spi_master *master)
438 {
439 struct spi_device *spi;
440
441 if (!spi_master_get(master))
442 return NULL;
443
444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 if (!spi) {
446 spi_master_put(master);
447 return NULL;
448 }
449
450 spi->master = master;
451 spi->dev.parent = &master->dev;
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
454 spi->cs_gpio = -ENOENT;
455
456 spin_lock_init(&spi->statistics.lock);
457
458 device_initialize(&spi->dev);
459 return spi;
460 }
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
462
463 static void spi_dev_set_name(struct spi_device *spi)
464 {
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466
467 if (adev) {
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 return;
470 }
471
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 spi->chip_select);
474 }
475
476 static int spi_dev_check(struct device *dev, void *data)
477 {
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
480
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
483 return -EBUSY;
484 return 0;
485 }
486
487 /**
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
490 *
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
493 *
494 * Return: 0 on success; negative errno on failure
495 */
496 int spi_add_device(struct spi_device *spi)
497 {
498 static DEFINE_MUTEX(spi_add_lock);
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
501 int status;
502
503 /* Chipselects are numbered 0..max; validate. */
504 if (spi->chip_select >= master->num_chipselect) {
505 dev_err(dev, "cs%d >= max %d\n",
506 spi->chip_select,
507 master->num_chipselect);
508 return -EINVAL;
509 }
510
511 /* Set the bus ID string */
512 spi_dev_set_name(spi);
513
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
517 */
518 mutex_lock(&spi_add_lock);
519
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 if (status) {
522 dev_err(dev, "chipselect %d already in use\n",
523 spi->chip_select);
524 goto done;
525 }
526
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
529
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
533 */
534 status = spi_setup(spi);
535 if (status < 0) {
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
538 goto done;
539 }
540
541 /* Device may be bound to an active driver when this returns */
542 status = device_add(&spi->dev);
543 if (status < 0)
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
546 else
547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548
549 done:
550 mutex_unlock(&spi_add_lock);
551 return status;
552 }
553 EXPORT_SYMBOL_GPL(spi_add_device);
554
555 /**
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
559 * Context: can sleep
560 *
561 * On typical mainboards, this is purely internal; and it's not needed
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
566 *
567 * Return: the new device, or NULL.
568 */
569 struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
571 {
572 struct spi_device *proxy;
573 int status;
574
575 /* NOTE: caller did any chip->bus_num checks necessary.
576 *
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
580 */
581
582 proxy = spi_alloc_device(master);
583 if (!proxy)
584 return NULL;
585
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
590 proxy->mode = chip->mode;
591 proxy->irq = chip->irq;
592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
596
597 status = spi_add_device(proxy);
598 if (status < 0) {
599 spi_dev_put(proxy);
600 return NULL;
601 }
602
603 return proxy;
604 }
605 EXPORT_SYMBOL_GPL(spi_new_device);
606
607 /**
608 * spi_unregister_device - unregister a single SPI device
609 * @spi: spi_device to unregister
610 *
611 * Start making the passed SPI device vanish. Normally this would be handled
612 * by spi_unregister_master().
613 */
614 void spi_unregister_device(struct spi_device *spi)
615 {
616 if (!spi)
617 return;
618
619 if (spi->dev.of_node)
620 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
621 device_unregister(&spi->dev);
622 }
623 EXPORT_SYMBOL_GPL(spi_unregister_device);
624
625 static void spi_match_master_to_boardinfo(struct spi_master *master,
626 struct spi_board_info *bi)
627 {
628 struct spi_device *dev;
629
630 if (master->bus_num != bi->bus_num)
631 return;
632
633 dev = spi_new_device(master, bi);
634 if (!dev)
635 dev_err(master->dev.parent, "can't create new device for %s\n",
636 bi->modalias);
637 }
638
639 /**
640 * spi_register_board_info - register SPI devices for a given board
641 * @info: array of chip descriptors
642 * @n: how many descriptors are provided
643 * Context: can sleep
644 *
645 * Board-specific early init code calls this (probably during arch_initcall)
646 * with segments of the SPI device table. Any device nodes are created later,
647 * after the relevant parent SPI controller (bus_num) is defined. We keep
648 * this table of devices forever, so that reloading a controller driver will
649 * not make Linux forget about these hard-wired devices.
650 *
651 * Other code can also call this, e.g. a particular add-on board might provide
652 * SPI devices through its expansion connector, so code initializing that board
653 * would naturally declare its SPI devices.
654 *
655 * The board info passed can safely be __initdata ... but be careful of
656 * any embedded pointers (platform_data, etc), they're copied as-is.
657 *
658 * Return: zero on success, else a negative error code.
659 */
660 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
661 {
662 struct boardinfo *bi;
663 int i;
664
665 if (!n)
666 return -EINVAL;
667
668 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
669 if (!bi)
670 return -ENOMEM;
671
672 for (i = 0; i < n; i++, bi++, info++) {
673 struct spi_master *master;
674
675 memcpy(&bi->board_info, info, sizeof(*info));
676 mutex_lock(&board_lock);
677 list_add_tail(&bi->list, &board_list);
678 list_for_each_entry(master, &spi_master_list, list)
679 spi_match_master_to_boardinfo(master, &bi->board_info);
680 mutex_unlock(&board_lock);
681 }
682
683 return 0;
684 }
685
686 /*-------------------------------------------------------------------------*/
687
688 static void spi_set_cs(struct spi_device *spi, bool enable)
689 {
690 if (spi->mode & SPI_CS_HIGH)
691 enable = !enable;
692
693 if (gpio_is_valid(spi->cs_gpio))
694 gpio_set_value(spi->cs_gpio, !enable);
695 else if (spi->master->set_cs)
696 spi->master->set_cs(spi, !enable);
697 }
698
699 #ifdef CONFIG_HAS_DMA
700 static int spi_map_buf(struct spi_master *master, struct device *dev,
701 struct sg_table *sgt, void *buf, size_t len,
702 enum dma_data_direction dir)
703 {
704 const bool vmalloced_buf = is_vmalloc_addr(buf);
705 int desc_len;
706 int sgs;
707 struct page *vm_page;
708 void *sg_buf;
709 size_t min;
710 int i, ret;
711
712 if (vmalloced_buf) {
713 desc_len = PAGE_SIZE;
714 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
715 } else {
716 desc_len = master->max_dma_len;
717 sgs = DIV_ROUND_UP(len, desc_len);
718 }
719
720 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
721 if (ret != 0)
722 return ret;
723
724 for (i = 0; i < sgs; i++) {
725
726 if (vmalloced_buf) {
727 min = min_t(size_t,
728 len, desc_len - offset_in_page(buf));
729 vm_page = vmalloc_to_page(buf);
730 if (!vm_page) {
731 sg_free_table(sgt);
732 return -ENOMEM;
733 }
734 sg_set_page(&sgt->sgl[i], vm_page,
735 min, offset_in_page(buf));
736 } else {
737 min = min_t(size_t, len, desc_len);
738 sg_buf = buf;
739 sg_set_buf(&sgt->sgl[i], sg_buf, min);
740 }
741
742
743 buf += min;
744 len -= min;
745 }
746
747 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
748 if (!ret)
749 ret = -ENOMEM;
750 if (ret < 0) {
751 sg_free_table(sgt);
752 return ret;
753 }
754
755 sgt->nents = ret;
756
757 return 0;
758 }
759
760 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
761 struct sg_table *sgt, enum dma_data_direction dir)
762 {
763 if (sgt->orig_nents) {
764 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
765 sg_free_table(sgt);
766 }
767 }
768
769 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
770 {
771 struct device *tx_dev, *rx_dev;
772 struct spi_transfer *xfer;
773 int ret;
774
775 if (!master->can_dma)
776 return 0;
777
778 if (master->dma_tx)
779 tx_dev = master->dma_tx->device->dev;
780 else
781 tx_dev = &master->dev;
782
783 if (master->dma_rx)
784 rx_dev = master->dma_rx->device->dev;
785 else
786 rx_dev = &master->dev;
787
788 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
789 if (!master->can_dma(master, msg->spi, xfer))
790 continue;
791
792 if (xfer->tx_buf != NULL) {
793 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
794 (void *)xfer->tx_buf, xfer->len,
795 DMA_TO_DEVICE);
796 if (ret != 0)
797 return ret;
798 }
799
800 if (xfer->rx_buf != NULL) {
801 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
802 xfer->rx_buf, xfer->len,
803 DMA_FROM_DEVICE);
804 if (ret != 0) {
805 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
806 DMA_TO_DEVICE);
807 return ret;
808 }
809 }
810 }
811
812 master->cur_msg_mapped = true;
813
814 return 0;
815 }
816
817 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
818 {
819 struct spi_transfer *xfer;
820 struct device *tx_dev, *rx_dev;
821
822 if (!master->cur_msg_mapped || !master->can_dma)
823 return 0;
824
825 if (master->dma_tx)
826 tx_dev = master->dma_tx->device->dev;
827 else
828 tx_dev = &master->dev;
829
830 if (master->dma_rx)
831 rx_dev = master->dma_rx->device->dev;
832 else
833 rx_dev = &master->dev;
834
835 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
836 if (!master->can_dma(master, msg->spi, xfer))
837 continue;
838
839 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
840 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
841 }
842
843 return 0;
844 }
845 #else /* !CONFIG_HAS_DMA */
846 static inline int __spi_map_msg(struct spi_master *master,
847 struct spi_message *msg)
848 {
849 return 0;
850 }
851
852 static inline int __spi_unmap_msg(struct spi_master *master,
853 struct spi_message *msg)
854 {
855 return 0;
856 }
857 #endif /* !CONFIG_HAS_DMA */
858
859 static inline int spi_unmap_msg(struct spi_master *master,
860 struct spi_message *msg)
861 {
862 struct spi_transfer *xfer;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 /*
866 * Restore the original value of tx_buf or rx_buf if they are
867 * NULL.
868 */
869 if (xfer->tx_buf == master->dummy_tx)
870 xfer->tx_buf = NULL;
871 if (xfer->rx_buf == master->dummy_rx)
872 xfer->rx_buf = NULL;
873 }
874
875 return __spi_unmap_msg(master, msg);
876 }
877
878 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
879 {
880 struct spi_transfer *xfer;
881 void *tmp;
882 unsigned int max_tx, max_rx;
883
884 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
885 max_tx = 0;
886 max_rx = 0;
887
888 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
889 if ((master->flags & SPI_MASTER_MUST_TX) &&
890 !xfer->tx_buf)
891 max_tx = max(xfer->len, max_tx);
892 if ((master->flags & SPI_MASTER_MUST_RX) &&
893 !xfer->rx_buf)
894 max_rx = max(xfer->len, max_rx);
895 }
896
897 if (max_tx) {
898 tmp = krealloc(master->dummy_tx, max_tx,
899 GFP_KERNEL | GFP_DMA);
900 if (!tmp)
901 return -ENOMEM;
902 master->dummy_tx = tmp;
903 memset(tmp, 0, max_tx);
904 }
905
906 if (max_rx) {
907 tmp = krealloc(master->dummy_rx, max_rx,
908 GFP_KERNEL | GFP_DMA);
909 if (!tmp)
910 return -ENOMEM;
911 master->dummy_rx = tmp;
912 }
913
914 if (max_tx || max_rx) {
915 list_for_each_entry(xfer, &msg->transfers,
916 transfer_list) {
917 if (!xfer->tx_buf)
918 xfer->tx_buf = master->dummy_tx;
919 if (!xfer->rx_buf)
920 xfer->rx_buf = master->dummy_rx;
921 }
922 }
923 }
924
925 return __spi_map_msg(master, msg);
926 }
927
928 /*
929 * spi_transfer_one_message - Default implementation of transfer_one_message()
930 *
931 * This is a standard implementation of transfer_one_message() for
932 * drivers which impelment a transfer_one() operation. It provides
933 * standard handling of delays and chip select management.
934 */
935 static int spi_transfer_one_message(struct spi_master *master,
936 struct spi_message *msg)
937 {
938 struct spi_transfer *xfer;
939 bool keep_cs = false;
940 int ret = 0;
941 unsigned long ms = 1;
942 struct spi_statistics *statm = &master->statistics;
943 struct spi_statistics *stats = &msg->spi->statistics;
944
945 spi_set_cs(msg->spi, true);
946
947 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
948 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
949
950 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
951 trace_spi_transfer_start(msg, xfer);
952
953 spi_statistics_add_transfer_stats(statm, xfer, master);
954 spi_statistics_add_transfer_stats(stats, xfer, master);
955
956 if (xfer->tx_buf || xfer->rx_buf) {
957 reinit_completion(&master->xfer_completion);
958
959 ret = master->transfer_one(master, msg->spi, xfer);
960 if (ret < 0) {
961 SPI_STATISTICS_INCREMENT_FIELD(statm,
962 errors);
963 SPI_STATISTICS_INCREMENT_FIELD(stats,
964 errors);
965 dev_err(&msg->spi->dev,
966 "SPI transfer failed: %d\n", ret);
967 goto out;
968 }
969
970 if (ret > 0) {
971 ret = 0;
972 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
973 ms += ms + 100; /* some tolerance */
974
975 ms = wait_for_completion_timeout(&master->xfer_completion,
976 msecs_to_jiffies(ms));
977 }
978
979 if (ms == 0) {
980 SPI_STATISTICS_INCREMENT_FIELD(statm,
981 timedout);
982 SPI_STATISTICS_INCREMENT_FIELD(stats,
983 timedout);
984 dev_err(&msg->spi->dev,
985 "SPI transfer timed out\n");
986 msg->status = -ETIMEDOUT;
987 }
988 } else {
989 if (xfer->len)
990 dev_err(&msg->spi->dev,
991 "Bufferless transfer has length %u\n",
992 xfer->len);
993 }
994
995 trace_spi_transfer_stop(msg, xfer);
996
997 if (msg->status != -EINPROGRESS)
998 goto out;
999
1000 if (xfer->delay_usecs)
1001 udelay(xfer->delay_usecs);
1002
1003 if (xfer->cs_change) {
1004 if (list_is_last(&xfer->transfer_list,
1005 &msg->transfers)) {
1006 keep_cs = true;
1007 } else {
1008 spi_set_cs(msg->spi, false);
1009 udelay(10);
1010 spi_set_cs(msg->spi, true);
1011 }
1012 }
1013
1014 msg->actual_length += xfer->len;
1015 }
1016
1017 out:
1018 if (ret != 0 || !keep_cs)
1019 spi_set_cs(msg->spi, false);
1020
1021 if (msg->status == -EINPROGRESS)
1022 msg->status = ret;
1023
1024 if (msg->status && master->handle_err)
1025 master->handle_err(master, msg);
1026
1027 spi_finalize_current_message(master);
1028
1029 return ret;
1030 }
1031
1032 /**
1033 * spi_finalize_current_transfer - report completion of a transfer
1034 * @master: the master reporting completion
1035 *
1036 * Called by SPI drivers using the core transfer_one_message()
1037 * implementation to notify it that the current interrupt driven
1038 * transfer has finished and the next one may be scheduled.
1039 */
1040 void spi_finalize_current_transfer(struct spi_master *master)
1041 {
1042 complete(&master->xfer_completion);
1043 }
1044 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1045
1046 /**
1047 * __spi_pump_messages - function which processes spi message queue
1048 * @master: master to process queue for
1049 * @in_kthread: true if we are in the context of the message pump thread
1050 *
1051 * This function checks if there is any spi message in the queue that
1052 * needs processing and if so call out to the driver to initialize hardware
1053 * and transfer each message.
1054 *
1055 * Note that it is called both from the kthread itself and also from
1056 * inside spi_sync(); the queue extraction handling at the top of the
1057 * function should deal with this safely.
1058 */
1059 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1060 {
1061 unsigned long flags;
1062 bool was_busy = false;
1063 int ret;
1064
1065 /* Lock queue */
1066 spin_lock_irqsave(&master->queue_lock, flags);
1067
1068 /* Make sure we are not already running a message */
1069 if (master->cur_msg) {
1070 spin_unlock_irqrestore(&master->queue_lock, flags);
1071 return;
1072 }
1073
1074 /* If another context is idling the device then defer */
1075 if (master->idling) {
1076 queue_kthread_work(&master->kworker, &master->pump_messages);
1077 spin_unlock_irqrestore(&master->queue_lock, flags);
1078 return;
1079 }
1080
1081 /* Check if the queue is idle */
1082 if (list_empty(&master->queue) || !master->running) {
1083 if (!master->busy) {
1084 spin_unlock_irqrestore(&master->queue_lock, flags);
1085 return;
1086 }
1087
1088 /* Only do teardown in the thread */
1089 if (!in_kthread) {
1090 queue_kthread_work(&master->kworker,
1091 &master->pump_messages);
1092 spin_unlock_irqrestore(&master->queue_lock, flags);
1093 return;
1094 }
1095
1096 master->busy = false;
1097 master->idling = true;
1098 spin_unlock_irqrestore(&master->queue_lock, flags);
1099
1100 kfree(master->dummy_rx);
1101 master->dummy_rx = NULL;
1102 kfree(master->dummy_tx);
1103 master->dummy_tx = NULL;
1104 if (master->unprepare_transfer_hardware &&
1105 master->unprepare_transfer_hardware(master))
1106 dev_err(&master->dev,
1107 "failed to unprepare transfer hardware\n");
1108 if (master->auto_runtime_pm) {
1109 pm_runtime_mark_last_busy(master->dev.parent);
1110 pm_runtime_put_autosuspend(master->dev.parent);
1111 }
1112 trace_spi_master_idle(master);
1113
1114 spin_lock_irqsave(&master->queue_lock, flags);
1115 master->idling = false;
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117 return;
1118 }
1119
1120 /* Extract head of queue */
1121 master->cur_msg =
1122 list_first_entry(&master->queue, struct spi_message, queue);
1123
1124 list_del_init(&master->cur_msg->queue);
1125 if (master->busy)
1126 was_busy = true;
1127 else
1128 master->busy = true;
1129 spin_unlock_irqrestore(&master->queue_lock, flags);
1130
1131 if (!was_busy && master->auto_runtime_pm) {
1132 ret = pm_runtime_get_sync(master->dev.parent);
1133 if (ret < 0) {
1134 dev_err(&master->dev, "Failed to power device: %d\n",
1135 ret);
1136 return;
1137 }
1138 }
1139
1140 if (!was_busy)
1141 trace_spi_master_busy(master);
1142
1143 if (!was_busy && master->prepare_transfer_hardware) {
1144 ret = master->prepare_transfer_hardware(master);
1145 if (ret) {
1146 dev_err(&master->dev,
1147 "failed to prepare transfer hardware\n");
1148
1149 if (master->auto_runtime_pm)
1150 pm_runtime_put(master->dev.parent);
1151 return;
1152 }
1153 }
1154
1155 trace_spi_message_start(master->cur_msg);
1156
1157 if (master->prepare_message) {
1158 ret = master->prepare_message(master, master->cur_msg);
1159 if (ret) {
1160 dev_err(&master->dev,
1161 "failed to prepare message: %d\n", ret);
1162 master->cur_msg->status = ret;
1163 spi_finalize_current_message(master);
1164 return;
1165 }
1166 master->cur_msg_prepared = true;
1167 }
1168
1169 ret = spi_map_msg(master, master->cur_msg);
1170 if (ret) {
1171 master->cur_msg->status = ret;
1172 spi_finalize_current_message(master);
1173 return;
1174 }
1175
1176 ret = master->transfer_one_message(master, master->cur_msg);
1177 if (ret) {
1178 dev_err(&master->dev,
1179 "failed to transfer one message from queue\n");
1180 return;
1181 }
1182 }
1183
1184 /**
1185 * spi_pump_messages - kthread work function which processes spi message queue
1186 * @work: pointer to kthread work struct contained in the master struct
1187 */
1188 static void spi_pump_messages(struct kthread_work *work)
1189 {
1190 struct spi_master *master =
1191 container_of(work, struct spi_master, pump_messages);
1192
1193 __spi_pump_messages(master, true);
1194 }
1195
1196 static int spi_init_queue(struct spi_master *master)
1197 {
1198 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1199
1200 master->running = false;
1201 master->busy = false;
1202
1203 init_kthread_worker(&master->kworker);
1204 master->kworker_task = kthread_run(kthread_worker_fn,
1205 &master->kworker, "%s",
1206 dev_name(&master->dev));
1207 if (IS_ERR(master->kworker_task)) {
1208 dev_err(&master->dev, "failed to create message pump task\n");
1209 return PTR_ERR(master->kworker_task);
1210 }
1211 init_kthread_work(&master->pump_messages, spi_pump_messages);
1212
1213 /*
1214 * Master config will indicate if this controller should run the
1215 * message pump with high (realtime) priority to reduce the transfer
1216 * latency on the bus by minimising the delay between a transfer
1217 * request and the scheduling of the message pump thread. Without this
1218 * setting the message pump thread will remain at default priority.
1219 */
1220 if (master->rt) {
1221 dev_info(&master->dev,
1222 "will run message pump with realtime priority\n");
1223 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * spi_get_next_queued_message() - called by driver to check for queued
1231 * messages
1232 * @master: the master to check for queued messages
1233 *
1234 * If there are more messages in the queue, the next message is returned from
1235 * this call.
1236 *
1237 * Return: the next message in the queue, else NULL if the queue is empty.
1238 */
1239 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1240 {
1241 struct spi_message *next;
1242 unsigned long flags;
1243
1244 /* get a pointer to the next message, if any */
1245 spin_lock_irqsave(&master->queue_lock, flags);
1246 next = list_first_entry_or_null(&master->queue, struct spi_message,
1247 queue);
1248 spin_unlock_irqrestore(&master->queue_lock, flags);
1249
1250 return next;
1251 }
1252 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1253
1254 /**
1255 * spi_finalize_current_message() - the current message is complete
1256 * @master: the master to return the message to
1257 *
1258 * Called by the driver to notify the core that the message in the front of the
1259 * queue is complete and can be removed from the queue.
1260 */
1261 void spi_finalize_current_message(struct spi_master *master)
1262 {
1263 struct spi_message *mesg;
1264 unsigned long flags;
1265 int ret;
1266
1267 spin_lock_irqsave(&master->queue_lock, flags);
1268 mesg = master->cur_msg;
1269 spin_unlock_irqrestore(&master->queue_lock, flags);
1270
1271 spi_unmap_msg(master, mesg);
1272
1273 if (master->cur_msg_prepared && master->unprepare_message) {
1274 ret = master->unprepare_message(master, mesg);
1275 if (ret) {
1276 dev_err(&master->dev,
1277 "failed to unprepare message: %d\n", ret);
1278 }
1279 }
1280
1281 spin_lock_irqsave(&master->queue_lock, flags);
1282 master->cur_msg = NULL;
1283 master->cur_msg_prepared = false;
1284 queue_kthread_work(&master->kworker, &master->pump_messages);
1285 spin_unlock_irqrestore(&master->queue_lock, flags);
1286
1287 trace_spi_message_done(mesg);
1288
1289 mesg->state = NULL;
1290 if (mesg->complete)
1291 mesg->complete(mesg->context);
1292 }
1293 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1294
1295 static int spi_start_queue(struct spi_master *master)
1296 {
1297 unsigned long flags;
1298
1299 spin_lock_irqsave(&master->queue_lock, flags);
1300
1301 if (master->running || master->busy) {
1302 spin_unlock_irqrestore(&master->queue_lock, flags);
1303 return -EBUSY;
1304 }
1305
1306 master->running = true;
1307 master->cur_msg = NULL;
1308 spin_unlock_irqrestore(&master->queue_lock, flags);
1309
1310 queue_kthread_work(&master->kworker, &master->pump_messages);
1311
1312 return 0;
1313 }
1314
1315 static int spi_stop_queue(struct spi_master *master)
1316 {
1317 unsigned long flags;
1318 unsigned limit = 500;
1319 int ret = 0;
1320
1321 spin_lock_irqsave(&master->queue_lock, flags);
1322
1323 /*
1324 * This is a bit lame, but is optimized for the common execution path.
1325 * A wait_queue on the master->busy could be used, but then the common
1326 * execution path (pump_messages) would be required to call wake_up or
1327 * friends on every SPI message. Do this instead.
1328 */
1329 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1330 spin_unlock_irqrestore(&master->queue_lock, flags);
1331 usleep_range(10000, 11000);
1332 spin_lock_irqsave(&master->queue_lock, flags);
1333 }
1334
1335 if (!list_empty(&master->queue) || master->busy)
1336 ret = -EBUSY;
1337 else
1338 master->running = false;
1339
1340 spin_unlock_irqrestore(&master->queue_lock, flags);
1341
1342 if (ret) {
1343 dev_warn(&master->dev,
1344 "could not stop message queue\n");
1345 return ret;
1346 }
1347 return ret;
1348 }
1349
1350 static int spi_destroy_queue(struct spi_master *master)
1351 {
1352 int ret;
1353
1354 ret = spi_stop_queue(master);
1355
1356 /*
1357 * flush_kthread_worker will block until all work is done.
1358 * If the reason that stop_queue timed out is that the work will never
1359 * finish, then it does no good to call flush/stop thread, so
1360 * return anyway.
1361 */
1362 if (ret) {
1363 dev_err(&master->dev, "problem destroying queue\n");
1364 return ret;
1365 }
1366
1367 flush_kthread_worker(&master->kworker);
1368 kthread_stop(master->kworker_task);
1369
1370 return 0;
1371 }
1372
1373 static int __spi_queued_transfer(struct spi_device *spi,
1374 struct spi_message *msg,
1375 bool need_pump)
1376 {
1377 struct spi_master *master = spi->master;
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&master->queue_lock, flags);
1381
1382 if (!master->running) {
1383 spin_unlock_irqrestore(&master->queue_lock, flags);
1384 return -ESHUTDOWN;
1385 }
1386 msg->actual_length = 0;
1387 msg->status = -EINPROGRESS;
1388
1389 list_add_tail(&msg->queue, &master->queue);
1390 if (!master->busy && need_pump)
1391 queue_kthread_work(&master->kworker, &master->pump_messages);
1392
1393 spin_unlock_irqrestore(&master->queue_lock, flags);
1394 return 0;
1395 }
1396
1397 /**
1398 * spi_queued_transfer - transfer function for queued transfers
1399 * @spi: spi device which is requesting transfer
1400 * @msg: spi message which is to handled is queued to driver queue
1401 *
1402 * Return: zero on success, else a negative error code.
1403 */
1404 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1405 {
1406 return __spi_queued_transfer(spi, msg, true);
1407 }
1408
1409 static int spi_master_initialize_queue(struct spi_master *master)
1410 {
1411 int ret;
1412
1413 master->transfer = spi_queued_transfer;
1414 if (!master->transfer_one_message)
1415 master->transfer_one_message = spi_transfer_one_message;
1416
1417 /* Initialize and start queue */
1418 ret = spi_init_queue(master);
1419 if (ret) {
1420 dev_err(&master->dev, "problem initializing queue\n");
1421 goto err_init_queue;
1422 }
1423 master->queued = true;
1424 ret = spi_start_queue(master);
1425 if (ret) {
1426 dev_err(&master->dev, "problem starting queue\n");
1427 goto err_start_queue;
1428 }
1429
1430 return 0;
1431
1432 err_start_queue:
1433 spi_destroy_queue(master);
1434 err_init_queue:
1435 return ret;
1436 }
1437
1438 /*-------------------------------------------------------------------------*/
1439
1440 #if defined(CONFIG_OF)
1441 static struct spi_device *
1442 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1443 {
1444 struct spi_device *spi;
1445 int rc;
1446 u32 value;
1447
1448 /* Alloc an spi_device */
1449 spi = spi_alloc_device(master);
1450 if (!spi) {
1451 dev_err(&master->dev, "spi_device alloc error for %s\n",
1452 nc->full_name);
1453 rc = -ENOMEM;
1454 goto err_out;
1455 }
1456
1457 /* Select device driver */
1458 rc = of_modalias_node(nc, spi->modalias,
1459 sizeof(spi->modalias));
1460 if (rc < 0) {
1461 dev_err(&master->dev, "cannot find modalias for %s\n",
1462 nc->full_name);
1463 goto err_out;
1464 }
1465
1466 /* Device address */
1467 rc = of_property_read_u32(nc, "reg", &value);
1468 if (rc) {
1469 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1470 nc->full_name, rc);
1471 goto err_out;
1472 }
1473 spi->chip_select = value;
1474
1475 /* Mode (clock phase/polarity/etc.) */
1476 if (of_find_property(nc, "spi-cpha", NULL))
1477 spi->mode |= SPI_CPHA;
1478 if (of_find_property(nc, "spi-cpol", NULL))
1479 spi->mode |= SPI_CPOL;
1480 if (of_find_property(nc, "spi-cs-high", NULL))
1481 spi->mode |= SPI_CS_HIGH;
1482 if (of_find_property(nc, "spi-3wire", NULL))
1483 spi->mode |= SPI_3WIRE;
1484 if (of_find_property(nc, "spi-lsb-first", NULL))
1485 spi->mode |= SPI_LSB_FIRST;
1486
1487 /* Device DUAL/QUAD mode */
1488 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1489 switch (value) {
1490 case 1:
1491 break;
1492 case 2:
1493 spi->mode |= SPI_TX_DUAL;
1494 break;
1495 case 4:
1496 spi->mode |= SPI_TX_QUAD;
1497 break;
1498 default:
1499 dev_warn(&master->dev,
1500 "spi-tx-bus-width %d not supported\n",
1501 value);
1502 break;
1503 }
1504 }
1505
1506 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1507 switch (value) {
1508 case 1:
1509 break;
1510 case 2:
1511 spi->mode |= SPI_RX_DUAL;
1512 break;
1513 case 4:
1514 spi->mode |= SPI_RX_QUAD;
1515 break;
1516 default:
1517 dev_warn(&master->dev,
1518 "spi-rx-bus-width %d not supported\n",
1519 value);
1520 break;
1521 }
1522 }
1523
1524 /* Device speed */
1525 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1526 if (rc) {
1527 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1528 nc->full_name, rc);
1529 goto err_out;
1530 }
1531 spi->max_speed_hz = value;
1532
1533 /* Store a pointer to the node in the device structure */
1534 of_node_get(nc);
1535 spi->dev.of_node = nc;
1536
1537 /* Register the new device */
1538 rc = spi_add_device(spi);
1539 if (rc) {
1540 dev_err(&master->dev, "spi_device register error %s\n",
1541 nc->full_name);
1542 goto err_out;
1543 }
1544
1545 return spi;
1546
1547 err_out:
1548 spi_dev_put(spi);
1549 return ERR_PTR(rc);
1550 }
1551
1552 /**
1553 * of_register_spi_devices() - Register child devices onto the SPI bus
1554 * @master: Pointer to spi_master device
1555 *
1556 * Registers an spi_device for each child node of master node which has a 'reg'
1557 * property.
1558 */
1559 static void of_register_spi_devices(struct spi_master *master)
1560 {
1561 struct spi_device *spi;
1562 struct device_node *nc;
1563
1564 if (!master->dev.of_node)
1565 return;
1566
1567 for_each_available_child_of_node(master->dev.of_node, nc) {
1568 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1569 continue;
1570 spi = of_register_spi_device(master, nc);
1571 if (IS_ERR(spi))
1572 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1573 nc->full_name);
1574 }
1575 }
1576 #else
1577 static void of_register_spi_devices(struct spi_master *master) { }
1578 #endif
1579
1580 #ifdef CONFIG_ACPI
1581 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1582 {
1583 struct spi_device *spi = data;
1584
1585 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1586 struct acpi_resource_spi_serialbus *sb;
1587
1588 sb = &ares->data.spi_serial_bus;
1589 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1590 spi->chip_select = sb->device_selection;
1591 spi->max_speed_hz = sb->connection_speed;
1592
1593 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1594 spi->mode |= SPI_CPHA;
1595 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1596 spi->mode |= SPI_CPOL;
1597 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1598 spi->mode |= SPI_CS_HIGH;
1599 }
1600 } else if (spi->irq < 0) {
1601 struct resource r;
1602
1603 if (acpi_dev_resource_interrupt(ares, 0, &r))
1604 spi->irq = r.start;
1605 }
1606
1607 /* Always tell the ACPI core to skip this resource */
1608 return 1;
1609 }
1610
1611 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1612 void *data, void **return_value)
1613 {
1614 struct spi_master *master = data;
1615 struct list_head resource_list;
1616 struct acpi_device *adev;
1617 struct spi_device *spi;
1618 int ret;
1619
1620 if (acpi_bus_get_device(handle, &adev))
1621 return AE_OK;
1622 if (acpi_bus_get_status(adev) || !adev->status.present)
1623 return AE_OK;
1624
1625 spi = spi_alloc_device(master);
1626 if (!spi) {
1627 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1628 dev_name(&adev->dev));
1629 return AE_NO_MEMORY;
1630 }
1631
1632 ACPI_COMPANION_SET(&spi->dev, adev);
1633 spi->irq = -1;
1634
1635 INIT_LIST_HEAD(&resource_list);
1636 ret = acpi_dev_get_resources(adev, &resource_list,
1637 acpi_spi_add_resource, spi);
1638 acpi_dev_free_resource_list(&resource_list);
1639
1640 if (ret < 0 || !spi->max_speed_hz) {
1641 spi_dev_put(spi);
1642 return AE_OK;
1643 }
1644
1645 adev->power.flags.ignore_parent = true;
1646 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1647 if (spi_add_device(spi)) {
1648 adev->power.flags.ignore_parent = false;
1649 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1650 dev_name(&adev->dev));
1651 spi_dev_put(spi);
1652 }
1653
1654 return AE_OK;
1655 }
1656
1657 static void acpi_register_spi_devices(struct spi_master *master)
1658 {
1659 acpi_status status;
1660 acpi_handle handle;
1661
1662 handle = ACPI_HANDLE(master->dev.parent);
1663 if (!handle)
1664 return;
1665
1666 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1667 acpi_spi_add_device, NULL,
1668 master, NULL);
1669 if (ACPI_FAILURE(status))
1670 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1671 }
1672 #else
1673 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1674 #endif /* CONFIG_ACPI */
1675
1676 static void spi_master_release(struct device *dev)
1677 {
1678 struct spi_master *master;
1679
1680 master = container_of(dev, struct spi_master, dev);
1681 kfree(master);
1682 }
1683
1684 static struct class spi_master_class = {
1685 .name = "spi_master",
1686 .owner = THIS_MODULE,
1687 .dev_release = spi_master_release,
1688 .dev_groups = spi_master_groups,
1689 };
1690
1691
1692 /**
1693 * spi_alloc_master - allocate SPI master controller
1694 * @dev: the controller, possibly using the platform_bus
1695 * @size: how much zeroed driver-private data to allocate; the pointer to this
1696 * memory is in the driver_data field of the returned device,
1697 * accessible with spi_master_get_devdata().
1698 * Context: can sleep
1699 *
1700 * This call is used only by SPI master controller drivers, which are the
1701 * only ones directly touching chip registers. It's how they allocate
1702 * an spi_master structure, prior to calling spi_register_master().
1703 *
1704 * This must be called from context that can sleep.
1705 *
1706 * The caller is responsible for assigning the bus number and initializing
1707 * the master's methods before calling spi_register_master(); and (after errors
1708 * adding the device) calling spi_master_put() to prevent a memory leak.
1709 *
1710 * Return: the SPI master structure on success, else NULL.
1711 */
1712 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1713 {
1714 struct spi_master *master;
1715
1716 if (!dev)
1717 return NULL;
1718
1719 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1720 if (!master)
1721 return NULL;
1722
1723 device_initialize(&master->dev);
1724 master->bus_num = -1;
1725 master->num_chipselect = 1;
1726 master->dev.class = &spi_master_class;
1727 master->dev.parent = dev;
1728 spi_master_set_devdata(master, &master[1]);
1729
1730 return master;
1731 }
1732 EXPORT_SYMBOL_GPL(spi_alloc_master);
1733
1734 #ifdef CONFIG_OF
1735 static int of_spi_register_master(struct spi_master *master)
1736 {
1737 int nb, i, *cs;
1738 struct device_node *np = master->dev.of_node;
1739
1740 if (!np)
1741 return 0;
1742
1743 nb = of_gpio_named_count(np, "cs-gpios");
1744 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1745
1746 /* Return error only for an incorrectly formed cs-gpios property */
1747 if (nb == 0 || nb == -ENOENT)
1748 return 0;
1749 else if (nb < 0)
1750 return nb;
1751
1752 cs = devm_kzalloc(&master->dev,
1753 sizeof(int) * master->num_chipselect,
1754 GFP_KERNEL);
1755 master->cs_gpios = cs;
1756
1757 if (!master->cs_gpios)
1758 return -ENOMEM;
1759
1760 for (i = 0; i < master->num_chipselect; i++)
1761 cs[i] = -ENOENT;
1762
1763 for (i = 0; i < nb; i++)
1764 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1765
1766 return 0;
1767 }
1768 #else
1769 static int of_spi_register_master(struct spi_master *master)
1770 {
1771 return 0;
1772 }
1773 #endif
1774
1775 /**
1776 * spi_register_master - register SPI master controller
1777 * @master: initialized master, originally from spi_alloc_master()
1778 * Context: can sleep
1779 *
1780 * SPI master controllers connect to their drivers using some non-SPI bus,
1781 * such as the platform bus. The final stage of probe() in that code
1782 * includes calling spi_register_master() to hook up to this SPI bus glue.
1783 *
1784 * SPI controllers use board specific (often SOC specific) bus numbers,
1785 * and board-specific addressing for SPI devices combines those numbers
1786 * with chip select numbers. Since SPI does not directly support dynamic
1787 * device identification, boards need configuration tables telling which
1788 * chip is at which address.
1789 *
1790 * This must be called from context that can sleep. It returns zero on
1791 * success, else a negative error code (dropping the master's refcount).
1792 * After a successful return, the caller is responsible for calling
1793 * spi_unregister_master().
1794 *
1795 * Return: zero on success, else a negative error code.
1796 */
1797 int spi_register_master(struct spi_master *master)
1798 {
1799 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1800 struct device *dev = master->dev.parent;
1801 struct boardinfo *bi;
1802 int status = -ENODEV;
1803 int dynamic = 0;
1804
1805 if (!dev)
1806 return -ENODEV;
1807
1808 status = of_spi_register_master(master);
1809 if (status)
1810 return status;
1811
1812 /* even if it's just one always-selected device, there must
1813 * be at least one chipselect
1814 */
1815 if (master->num_chipselect == 0)
1816 return -EINVAL;
1817
1818 if ((master->bus_num < 0) && master->dev.of_node)
1819 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1820
1821 /* convention: dynamically assigned bus IDs count down from the max */
1822 if (master->bus_num < 0) {
1823 /* FIXME switch to an IDR based scheme, something like
1824 * I2C now uses, so we can't run out of "dynamic" IDs
1825 */
1826 master->bus_num = atomic_dec_return(&dyn_bus_id);
1827 dynamic = 1;
1828 }
1829
1830 INIT_LIST_HEAD(&master->queue);
1831 spin_lock_init(&master->queue_lock);
1832 spin_lock_init(&master->bus_lock_spinlock);
1833 mutex_init(&master->bus_lock_mutex);
1834 master->bus_lock_flag = 0;
1835 init_completion(&master->xfer_completion);
1836 if (!master->max_dma_len)
1837 master->max_dma_len = INT_MAX;
1838
1839 /* register the device, then userspace will see it.
1840 * registration fails if the bus ID is in use.
1841 */
1842 dev_set_name(&master->dev, "spi%u", master->bus_num);
1843 status = device_add(&master->dev);
1844 if (status < 0)
1845 goto done;
1846 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1847 dynamic ? " (dynamic)" : "");
1848
1849 /* If we're using a queued driver, start the queue */
1850 if (master->transfer)
1851 dev_info(dev, "master is unqueued, this is deprecated\n");
1852 else {
1853 status = spi_master_initialize_queue(master);
1854 if (status) {
1855 device_del(&master->dev);
1856 goto done;
1857 }
1858 }
1859 /* add statistics */
1860 spin_lock_init(&master->statistics.lock);
1861
1862 mutex_lock(&board_lock);
1863 list_add_tail(&master->list, &spi_master_list);
1864 list_for_each_entry(bi, &board_list, list)
1865 spi_match_master_to_boardinfo(master, &bi->board_info);
1866 mutex_unlock(&board_lock);
1867
1868 /* Register devices from the device tree and ACPI */
1869 of_register_spi_devices(master);
1870 acpi_register_spi_devices(master);
1871 done:
1872 return status;
1873 }
1874 EXPORT_SYMBOL_GPL(spi_register_master);
1875
1876 static void devm_spi_unregister(struct device *dev, void *res)
1877 {
1878 spi_unregister_master(*(struct spi_master **)res);
1879 }
1880
1881 /**
1882 * dev_spi_register_master - register managed SPI master controller
1883 * @dev: device managing SPI master
1884 * @master: initialized master, originally from spi_alloc_master()
1885 * Context: can sleep
1886 *
1887 * Register a SPI device as with spi_register_master() which will
1888 * automatically be unregister
1889 *
1890 * Return: zero on success, else a negative error code.
1891 */
1892 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1893 {
1894 struct spi_master **ptr;
1895 int ret;
1896
1897 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1898 if (!ptr)
1899 return -ENOMEM;
1900
1901 ret = spi_register_master(master);
1902 if (!ret) {
1903 *ptr = master;
1904 devres_add(dev, ptr);
1905 } else {
1906 devres_free(ptr);
1907 }
1908
1909 return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1912
1913 static int __unregister(struct device *dev, void *null)
1914 {
1915 spi_unregister_device(to_spi_device(dev));
1916 return 0;
1917 }
1918
1919 /**
1920 * spi_unregister_master - unregister SPI master controller
1921 * @master: the master being unregistered
1922 * Context: can sleep
1923 *
1924 * This call is used only by SPI master controller drivers, which are the
1925 * only ones directly touching chip registers.
1926 *
1927 * This must be called from context that can sleep.
1928 */
1929 void spi_unregister_master(struct spi_master *master)
1930 {
1931 int dummy;
1932
1933 if (master->queued) {
1934 if (spi_destroy_queue(master))
1935 dev_err(&master->dev, "queue remove failed\n");
1936 }
1937
1938 mutex_lock(&board_lock);
1939 list_del(&master->list);
1940 mutex_unlock(&board_lock);
1941
1942 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1943 device_unregister(&master->dev);
1944 }
1945 EXPORT_SYMBOL_GPL(spi_unregister_master);
1946
1947 int spi_master_suspend(struct spi_master *master)
1948 {
1949 int ret;
1950
1951 /* Basically no-ops for non-queued masters */
1952 if (!master->queued)
1953 return 0;
1954
1955 ret = spi_stop_queue(master);
1956 if (ret)
1957 dev_err(&master->dev, "queue stop failed\n");
1958
1959 return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(spi_master_suspend);
1962
1963 int spi_master_resume(struct spi_master *master)
1964 {
1965 int ret;
1966
1967 if (!master->queued)
1968 return 0;
1969
1970 ret = spi_start_queue(master);
1971 if (ret)
1972 dev_err(&master->dev, "queue restart failed\n");
1973
1974 return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(spi_master_resume);
1977
1978 static int __spi_master_match(struct device *dev, const void *data)
1979 {
1980 struct spi_master *m;
1981 const u16 *bus_num = data;
1982
1983 m = container_of(dev, struct spi_master, dev);
1984 return m->bus_num == *bus_num;
1985 }
1986
1987 /**
1988 * spi_busnum_to_master - look up master associated with bus_num
1989 * @bus_num: the master's bus number
1990 * Context: can sleep
1991 *
1992 * This call may be used with devices that are registered after
1993 * arch init time. It returns a refcounted pointer to the relevant
1994 * spi_master (which the caller must release), or NULL if there is
1995 * no such master registered.
1996 *
1997 * Return: the SPI master structure on success, else NULL.
1998 */
1999 struct spi_master *spi_busnum_to_master(u16 bus_num)
2000 {
2001 struct device *dev;
2002 struct spi_master *master = NULL;
2003
2004 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2005 __spi_master_match);
2006 if (dev)
2007 master = container_of(dev, struct spi_master, dev);
2008 /* reference got in class_find_device */
2009 return master;
2010 }
2011 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2012
2013
2014 /*-------------------------------------------------------------------------*/
2015
2016 /* Core methods for SPI master protocol drivers. Some of the
2017 * other core methods are currently defined as inline functions.
2018 */
2019
2020 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2021 {
2022 if (master->bits_per_word_mask) {
2023 /* Only 32 bits fit in the mask */
2024 if (bits_per_word > 32)
2025 return -EINVAL;
2026 if (!(master->bits_per_word_mask &
2027 SPI_BPW_MASK(bits_per_word)))
2028 return -EINVAL;
2029 }
2030
2031 return 0;
2032 }
2033
2034 /**
2035 * spi_setup - setup SPI mode and clock rate
2036 * @spi: the device whose settings are being modified
2037 * Context: can sleep, and no requests are queued to the device
2038 *
2039 * SPI protocol drivers may need to update the transfer mode if the
2040 * device doesn't work with its default. They may likewise need
2041 * to update clock rates or word sizes from initial values. This function
2042 * changes those settings, and must be called from a context that can sleep.
2043 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2044 * effect the next time the device is selected and data is transferred to
2045 * or from it. When this function returns, the spi device is deselected.
2046 *
2047 * Note that this call will fail if the protocol driver specifies an option
2048 * that the underlying controller or its driver does not support. For
2049 * example, not all hardware supports wire transfers using nine bit words,
2050 * LSB-first wire encoding, or active-high chipselects.
2051 *
2052 * Return: zero on success, else a negative error code.
2053 */
2054 int spi_setup(struct spi_device *spi)
2055 {
2056 unsigned bad_bits, ugly_bits;
2057 int status;
2058
2059 /* check mode to prevent that DUAL and QUAD set at the same time
2060 */
2061 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2062 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2063 dev_err(&spi->dev,
2064 "setup: can not select dual and quad at the same time\n");
2065 return -EINVAL;
2066 }
2067 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2068 */
2069 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2070 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2071 return -EINVAL;
2072 /* help drivers fail *cleanly* when they need options
2073 * that aren't supported with their current master
2074 */
2075 bad_bits = spi->mode & ~spi->master->mode_bits;
2076 ugly_bits = bad_bits &
2077 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2078 if (ugly_bits) {
2079 dev_warn(&spi->dev,
2080 "setup: ignoring unsupported mode bits %x\n",
2081 ugly_bits);
2082 spi->mode &= ~ugly_bits;
2083 bad_bits &= ~ugly_bits;
2084 }
2085 if (bad_bits) {
2086 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2087 bad_bits);
2088 return -EINVAL;
2089 }
2090
2091 if (!spi->bits_per_word)
2092 spi->bits_per_word = 8;
2093
2094 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2095 if (status)
2096 return status;
2097
2098 if (!spi->max_speed_hz)
2099 spi->max_speed_hz = spi->master->max_speed_hz;
2100
2101 if (spi->master->setup)
2102 status = spi->master->setup(spi);
2103
2104 spi_set_cs(spi, false);
2105
2106 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2107 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2108 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2109 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2110 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2111 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2112 spi->bits_per_word, spi->max_speed_hz,
2113 status);
2114
2115 return status;
2116 }
2117 EXPORT_SYMBOL_GPL(spi_setup);
2118
2119 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2120 {
2121 struct spi_master *master = spi->master;
2122 struct spi_transfer *xfer;
2123 int w_size;
2124
2125 if (list_empty(&message->transfers))
2126 return -EINVAL;
2127
2128 /* Half-duplex links include original MicroWire, and ones with
2129 * only one data pin like SPI_3WIRE (switches direction) or where
2130 * either MOSI or MISO is missing. They can also be caused by
2131 * software limitations.
2132 */
2133 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2134 || (spi->mode & SPI_3WIRE)) {
2135 unsigned flags = master->flags;
2136
2137 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2138 if (xfer->rx_buf && xfer->tx_buf)
2139 return -EINVAL;
2140 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2141 return -EINVAL;
2142 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2143 return -EINVAL;
2144 }
2145 }
2146
2147 /**
2148 * Set transfer bits_per_word and max speed as spi device default if
2149 * it is not set for this transfer.
2150 * Set transfer tx_nbits and rx_nbits as single transfer default
2151 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2152 */
2153 message->frame_length = 0;
2154 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2155 message->frame_length += xfer->len;
2156 if (!xfer->bits_per_word)
2157 xfer->bits_per_word = spi->bits_per_word;
2158
2159 if (!xfer->speed_hz)
2160 xfer->speed_hz = spi->max_speed_hz;
2161 if (!xfer->speed_hz)
2162 xfer->speed_hz = master->max_speed_hz;
2163
2164 if (master->max_speed_hz &&
2165 xfer->speed_hz > master->max_speed_hz)
2166 xfer->speed_hz = master->max_speed_hz;
2167
2168 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2169 return -EINVAL;
2170
2171 /*
2172 * SPI transfer length should be multiple of SPI word size
2173 * where SPI word size should be power-of-two multiple
2174 */
2175 if (xfer->bits_per_word <= 8)
2176 w_size = 1;
2177 else if (xfer->bits_per_word <= 16)
2178 w_size = 2;
2179 else
2180 w_size = 4;
2181
2182 /* No partial transfers accepted */
2183 if (xfer->len % w_size)
2184 return -EINVAL;
2185
2186 if (xfer->speed_hz && master->min_speed_hz &&
2187 xfer->speed_hz < master->min_speed_hz)
2188 return -EINVAL;
2189
2190 if (xfer->tx_buf && !xfer->tx_nbits)
2191 xfer->tx_nbits = SPI_NBITS_SINGLE;
2192 if (xfer->rx_buf && !xfer->rx_nbits)
2193 xfer->rx_nbits = SPI_NBITS_SINGLE;
2194 /* check transfer tx/rx_nbits:
2195 * 1. check the value matches one of single, dual and quad
2196 * 2. check tx/rx_nbits match the mode in spi_device
2197 */
2198 if (xfer->tx_buf) {
2199 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2200 xfer->tx_nbits != SPI_NBITS_DUAL &&
2201 xfer->tx_nbits != SPI_NBITS_QUAD)
2202 return -EINVAL;
2203 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2204 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2205 return -EINVAL;
2206 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2207 !(spi->mode & SPI_TX_QUAD))
2208 return -EINVAL;
2209 }
2210 /* check transfer rx_nbits */
2211 if (xfer->rx_buf) {
2212 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2213 xfer->rx_nbits != SPI_NBITS_DUAL &&
2214 xfer->rx_nbits != SPI_NBITS_QUAD)
2215 return -EINVAL;
2216 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2217 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2218 return -EINVAL;
2219 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2220 !(spi->mode & SPI_RX_QUAD))
2221 return -EINVAL;
2222 }
2223 }
2224
2225 message->status = -EINPROGRESS;
2226
2227 return 0;
2228 }
2229
2230 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2231 {
2232 struct spi_master *master = spi->master;
2233
2234 message->spi = spi;
2235
2236 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2237 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2238
2239 trace_spi_message_submit(message);
2240
2241 return master->transfer(spi, message);
2242 }
2243
2244 /**
2245 * spi_async - asynchronous SPI transfer
2246 * @spi: device with which data will be exchanged
2247 * @message: describes the data transfers, including completion callback
2248 * Context: any (irqs may be blocked, etc)
2249 *
2250 * This call may be used in_irq and other contexts which can't sleep,
2251 * as well as from task contexts which can sleep.
2252 *
2253 * The completion callback is invoked in a context which can't sleep.
2254 * Before that invocation, the value of message->status is undefined.
2255 * When the callback is issued, message->status holds either zero (to
2256 * indicate complete success) or a negative error code. After that
2257 * callback returns, the driver which issued the transfer request may
2258 * deallocate the associated memory; it's no longer in use by any SPI
2259 * core or controller driver code.
2260 *
2261 * Note that although all messages to a spi_device are handled in
2262 * FIFO order, messages may go to different devices in other orders.
2263 * Some device might be higher priority, or have various "hard" access
2264 * time requirements, for example.
2265 *
2266 * On detection of any fault during the transfer, processing of
2267 * the entire message is aborted, and the device is deselected.
2268 * Until returning from the associated message completion callback,
2269 * no other spi_message queued to that device will be processed.
2270 * (This rule applies equally to all the synchronous transfer calls,
2271 * which are wrappers around this core asynchronous primitive.)
2272 *
2273 * Return: zero on success, else a negative error code.
2274 */
2275 int spi_async(struct spi_device *spi, struct spi_message *message)
2276 {
2277 struct spi_master *master = spi->master;
2278 int ret;
2279 unsigned long flags;
2280
2281 ret = __spi_validate(spi, message);
2282 if (ret != 0)
2283 return ret;
2284
2285 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2286
2287 if (master->bus_lock_flag)
2288 ret = -EBUSY;
2289 else
2290 ret = __spi_async(spi, message);
2291
2292 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2293
2294 return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(spi_async);
2297
2298 /**
2299 * spi_async_locked - version of spi_async with exclusive bus usage
2300 * @spi: device with which data will be exchanged
2301 * @message: describes the data transfers, including completion callback
2302 * Context: any (irqs may be blocked, etc)
2303 *
2304 * This call may be used in_irq and other contexts which can't sleep,
2305 * as well as from task contexts which can sleep.
2306 *
2307 * The completion callback is invoked in a context which can't sleep.
2308 * Before that invocation, the value of message->status is undefined.
2309 * When the callback is issued, message->status holds either zero (to
2310 * indicate complete success) or a negative error code. After that
2311 * callback returns, the driver which issued the transfer request may
2312 * deallocate the associated memory; it's no longer in use by any SPI
2313 * core or controller driver code.
2314 *
2315 * Note that although all messages to a spi_device are handled in
2316 * FIFO order, messages may go to different devices in other orders.
2317 * Some device might be higher priority, or have various "hard" access
2318 * time requirements, for example.
2319 *
2320 * On detection of any fault during the transfer, processing of
2321 * the entire message is aborted, and the device is deselected.
2322 * Until returning from the associated message completion callback,
2323 * no other spi_message queued to that device will be processed.
2324 * (This rule applies equally to all the synchronous transfer calls,
2325 * which are wrappers around this core asynchronous primitive.)
2326 *
2327 * Return: zero on success, else a negative error code.
2328 */
2329 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2330 {
2331 struct spi_master *master = spi->master;
2332 int ret;
2333 unsigned long flags;
2334
2335 ret = __spi_validate(spi, message);
2336 if (ret != 0)
2337 return ret;
2338
2339 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2340
2341 ret = __spi_async(spi, message);
2342
2343 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2344
2345 return ret;
2346
2347 }
2348 EXPORT_SYMBOL_GPL(spi_async_locked);
2349
2350
2351 /*-------------------------------------------------------------------------*/
2352
2353 /* Utility methods for SPI master protocol drivers, layered on
2354 * top of the core. Some other utility methods are defined as
2355 * inline functions.
2356 */
2357
2358 static void spi_complete(void *arg)
2359 {
2360 complete(arg);
2361 }
2362
2363 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2364 int bus_locked)
2365 {
2366 DECLARE_COMPLETION_ONSTACK(done);
2367 int status;
2368 struct spi_master *master = spi->master;
2369 unsigned long flags;
2370
2371 status = __spi_validate(spi, message);
2372 if (status != 0)
2373 return status;
2374
2375 message->complete = spi_complete;
2376 message->context = &done;
2377 message->spi = spi;
2378
2379 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2380 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2381
2382 if (!bus_locked)
2383 mutex_lock(&master->bus_lock_mutex);
2384
2385 /* If we're not using the legacy transfer method then we will
2386 * try to transfer in the calling context so special case.
2387 * This code would be less tricky if we could remove the
2388 * support for driver implemented message queues.
2389 */
2390 if (master->transfer == spi_queued_transfer) {
2391 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2392
2393 trace_spi_message_submit(message);
2394
2395 status = __spi_queued_transfer(spi, message, false);
2396
2397 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2398 } else {
2399 status = spi_async_locked(spi, message);
2400 }
2401
2402 if (!bus_locked)
2403 mutex_unlock(&master->bus_lock_mutex);
2404
2405 if (status == 0) {
2406 /* Push out the messages in the calling context if we
2407 * can.
2408 */
2409 if (master->transfer == spi_queued_transfer) {
2410 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2411 spi_sync_immediate);
2412 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2413 spi_sync_immediate);
2414 __spi_pump_messages(master, false);
2415 }
2416
2417 wait_for_completion(&done);
2418 status = message->status;
2419 }
2420 message->context = NULL;
2421 return status;
2422 }
2423
2424 /**
2425 * spi_sync - blocking/synchronous SPI data transfers
2426 * @spi: device with which data will be exchanged
2427 * @message: describes the data transfers
2428 * Context: can sleep
2429 *
2430 * This call may only be used from a context that may sleep. The sleep
2431 * is non-interruptible, and has no timeout. Low-overhead controller
2432 * drivers may DMA directly into and out of the message buffers.
2433 *
2434 * Note that the SPI device's chip select is active during the message,
2435 * and then is normally disabled between messages. Drivers for some
2436 * frequently-used devices may want to minimize costs of selecting a chip,
2437 * by leaving it selected in anticipation that the next message will go
2438 * to the same chip. (That may increase power usage.)
2439 *
2440 * Also, the caller is guaranteeing that the memory associated with the
2441 * message will not be freed before this call returns.
2442 *
2443 * Return: zero on success, else a negative error code.
2444 */
2445 int spi_sync(struct spi_device *spi, struct spi_message *message)
2446 {
2447 return __spi_sync(spi, message, 0);
2448 }
2449 EXPORT_SYMBOL_GPL(spi_sync);
2450
2451 /**
2452 * spi_sync_locked - version of spi_sync with exclusive bus usage
2453 * @spi: device with which data will be exchanged
2454 * @message: describes the data transfers
2455 * Context: can sleep
2456 *
2457 * This call may only be used from a context that may sleep. The sleep
2458 * is non-interruptible, and has no timeout. Low-overhead controller
2459 * drivers may DMA directly into and out of the message buffers.
2460 *
2461 * This call should be used by drivers that require exclusive access to the
2462 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2463 * be released by a spi_bus_unlock call when the exclusive access is over.
2464 *
2465 * Return: zero on success, else a negative error code.
2466 */
2467 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2468 {
2469 return __spi_sync(spi, message, 1);
2470 }
2471 EXPORT_SYMBOL_GPL(spi_sync_locked);
2472
2473 /**
2474 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2475 * @master: SPI bus master that should be locked for exclusive bus access
2476 * Context: can sleep
2477 *
2478 * This call may only be used from a context that may sleep. The sleep
2479 * is non-interruptible, and has no timeout.
2480 *
2481 * This call should be used by drivers that require exclusive access to the
2482 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2483 * exclusive access is over. Data transfer must be done by spi_sync_locked
2484 * and spi_async_locked calls when the SPI bus lock is held.
2485 *
2486 * Return: always zero.
2487 */
2488 int spi_bus_lock(struct spi_master *master)
2489 {
2490 unsigned long flags;
2491
2492 mutex_lock(&master->bus_lock_mutex);
2493
2494 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2495 master->bus_lock_flag = 1;
2496 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2497
2498 /* mutex remains locked until spi_bus_unlock is called */
2499
2500 return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(spi_bus_lock);
2503
2504 /**
2505 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2506 * @master: SPI bus master that was locked for exclusive bus access
2507 * Context: can sleep
2508 *
2509 * This call may only be used from a context that may sleep. The sleep
2510 * is non-interruptible, and has no timeout.
2511 *
2512 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2513 * call.
2514 *
2515 * Return: always zero.
2516 */
2517 int spi_bus_unlock(struct spi_master *master)
2518 {
2519 master->bus_lock_flag = 0;
2520
2521 mutex_unlock(&master->bus_lock_mutex);
2522
2523 return 0;
2524 }
2525 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2526
2527 /* portable code must never pass more than 32 bytes */
2528 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2529
2530 static u8 *buf;
2531
2532 /**
2533 * spi_write_then_read - SPI synchronous write followed by read
2534 * @spi: device with which data will be exchanged
2535 * @txbuf: data to be written (need not be dma-safe)
2536 * @n_tx: size of txbuf, in bytes
2537 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2538 * @n_rx: size of rxbuf, in bytes
2539 * Context: can sleep
2540 *
2541 * This performs a half duplex MicroWire style transaction with the
2542 * device, sending txbuf and then reading rxbuf. The return value
2543 * is zero for success, else a negative errno status code.
2544 * This call may only be used from a context that may sleep.
2545 *
2546 * Parameters to this routine are always copied using a small buffer;
2547 * portable code should never use this for more than 32 bytes.
2548 * Performance-sensitive or bulk transfer code should instead use
2549 * spi_{async,sync}() calls with dma-safe buffers.
2550 *
2551 * Return: zero on success, else a negative error code.
2552 */
2553 int spi_write_then_read(struct spi_device *spi,
2554 const void *txbuf, unsigned n_tx,
2555 void *rxbuf, unsigned n_rx)
2556 {
2557 static DEFINE_MUTEX(lock);
2558
2559 int status;
2560 struct spi_message message;
2561 struct spi_transfer x[2];
2562 u8 *local_buf;
2563
2564 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2565 * copying here, (as a pure convenience thing), but we can
2566 * keep heap costs out of the hot path unless someone else is
2567 * using the pre-allocated buffer or the transfer is too large.
2568 */
2569 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2570 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2571 GFP_KERNEL | GFP_DMA);
2572 if (!local_buf)
2573 return -ENOMEM;
2574 } else {
2575 local_buf = buf;
2576 }
2577
2578 spi_message_init(&message);
2579 memset(x, 0, sizeof(x));
2580 if (n_tx) {
2581 x[0].len = n_tx;
2582 spi_message_add_tail(&x[0], &message);
2583 }
2584 if (n_rx) {
2585 x[1].len = n_rx;
2586 spi_message_add_tail(&x[1], &message);
2587 }
2588
2589 memcpy(local_buf, txbuf, n_tx);
2590 x[0].tx_buf = local_buf;
2591 x[1].rx_buf = local_buf + n_tx;
2592
2593 /* do the i/o */
2594 status = spi_sync(spi, &message);
2595 if (status == 0)
2596 memcpy(rxbuf, x[1].rx_buf, n_rx);
2597
2598 if (x[0].tx_buf == buf)
2599 mutex_unlock(&lock);
2600 else
2601 kfree(local_buf);
2602
2603 return status;
2604 }
2605 EXPORT_SYMBOL_GPL(spi_write_then_read);
2606
2607 /*-------------------------------------------------------------------------*/
2608
2609 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2610 static int __spi_of_device_match(struct device *dev, void *data)
2611 {
2612 return dev->of_node == data;
2613 }
2614
2615 /* must call put_device() when done with returned spi_device device */
2616 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2617 {
2618 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2619 __spi_of_device_match);
2620 return dev ? to_spi_device(dev) : NULL;
2621 }
2622
2623 static int __spi_of_master_match(struct device *dev, const void *data)
2624 {
2625 return dev->of_node == data;
2626 }
2627
2628 /* the spi masters are not using spi_bus, so we find it with another way */
2629 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2630 {
2631 struct device *dev;
2632
2633 dev = class_find_device(&spi_master_class, NULL, node,
2634 __spi_of_master_match);
2635 if (!dev)
2636 return NULL;
2637
2638 /* reference got in class_find_device */
2639 return container_of(dev, struct spi_master, dev);
2640 }
2641
2642 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2643 void *arg)
2644 {
2645 struct of_reconfig_data *rd = arg;
2646 struct spi_master *master;
2647 struct spi_device *spi;
2648
2649 switch (of_reconfig_get_state_change(action, arg)) {
2650 case OF_RECONFIG_CHANGE_ADD:
2651 master = of_find_spi_master_by_node(rd->dn->parent);
2652 if (master == NULL)
2653 return NOTIFY_OK; /* not for us */
2654
2655 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2656 put_device(&master->dev);
2657 return NOTIFY_OK;
2658 }
2659
2660 spi = of_register_spi_device(master, rd->dn);
2661 put_device(&master->dev);
2662
2663 if (IS_ERR(spi)) {
2664 pr_err("%s: failed to create for '%s'\n",
2665 __func__, rd->dn->full_name);
2666 return notifier_from_errno(PTR_ERR(spi));
2667 }
2668 break;
2669
2670 case OF_RECONFIG_CHANGE_REMOVE:
2671 /* already depopulated? */
2672 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2673 return NOTIFY_OK;
2674
2675 /* find our device by node */
2676 spi = of_find_spi_device_by_node(rd->dn);
2677 if (spi == NULL)
2678 return NOTIFY_OK; /* no? not meant for us */
2679
2680 /* unregister takes one ref away */
2681 spi_unregister_device(spi);
2682
2683 /* and put the reference of the find */
2684 put_device(&spi->dev);
2685 break;
2686 }
2687
2688 return NOTIFY_OK;
2689 }
2690
2691 static struct notifier_block spi_of_notifier = {
2692 .notifier_call = of_spi_notify,
2693 };
2694 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2695 extern struct notifier_block spi_of_notifier;
2696 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2697
2698 static int __init spi_init(void)
2699 {
2700 int status;
2701
2702 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2703 if (!buf) {
2704 status = -ENOMEM;
2705 goto err0;
2706 }
2707
2708 status = bus_register(&spi_bus_type);
2709 if (status < 0)
2710 goto err1;
2711
2712 status = class_register(&spi_master_class);
2713 if (status < 0)
2714 goto err2;
2715
2716 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2717 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2718
2719 return 0;
2720
2721 err2:
2722 bus_unregister(&spi_bus_type);
2723 err1:
2724 kfree(buf);
2725 buf = NULL;
2726 err0:
2727 return status;
2728 }
2729
2730 /* board_info is normally registered in arch_initcall(),
2731 * but even essential drivers wait till later
2732 *
2733 * REVISIT only boardinfo really needs static linking. the rest (device and
2734 * driver registration) _could_ be dynamically linked (modular) ... costs
2735 * include needing to have boardinfo data structures be much more public.
2736 */
2737 postcore_initcall(spi_init);
2738
This page took 0.122166 seconds and 5 git commands to generate.