iommu/exynos: Fix checkpatch warning
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/slab.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/spi/spi.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/export.h>
38 #include <linux/sched/rt.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46
47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 /* spi masters may cleanup for released devices */
52 if (spi->master->cleanup)
53 spi->master->cleanup(spi);
54
55 spi_master_put(spi->master);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static struct attribute *spi_dev_attrs[] = {
74 &dev_attr_modalias.attr,
75 NULL,
76 };
77 ATTRIBUTE_GROUPS(spi_dev);
78
79 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80 * and the sysfs version makes coldplug work too.
81 */
82
83 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 const struct spi_device *sdev)
85 {
86 while (id->name[0]) {
87 if (!strcmp(sdev->modalias, id->name))
88 return id;
89 id++;
90 }
91 return NULL;
92 }
93
94 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
95 {
96 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
97
98 return spi_match_id(sdrv->id_table, sdev);
99 }
100 EXPORT_SYMBOL_GPL(spi_get_device_id);
101
102 static int spi_match_device(struct device *dev, struct device_driver *drv)
103 {
104 const struct spi_device *spi = to_spi_device(dev);
105 const struct spi_driver *sdrv = to_spi_driver(drv);
106
107 /* Attempt an OF style match */
108 if (of_driver_match_device(dev, drv))
109 return 1;
110
111 /* Then try ACPI */
112 if (acpi_driver_match_device(dev, drv))
113 return 1;
114
115 if (sdrv->id_table)
116 return !!spi_match_id(sdrv->id_table, spi);
117
118 return strcmp(spi->modalias, drv->name) == 0;
119 }
120
121 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
122 {
123 const struct spi_device *spi = to_spi_device(dev);
124 int rc;
125
126 rc = acpi_device_uevent_modalias(dev, env);
127 if (rc != -ENODEV)
128 return rc;
129
130 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
131 return 0;
132 }
133
134 #ifdef CONFIG_PM_SLEEP
135 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
136 {
137 int value = 0;
138 struct spi_driver *drv = to_spi_driver(dev->driver);
139
140 /* suspend will stop irqs and dma; no more i/o */
141 if (drv) {
142 if (drv->suspend)
143 value = drv->suspend(to_spi_device(dev), message);
144 else
145 dev_dbg(dev, "... can't suspend\n");
146 }
147 return value;
148 }
149
150 static int spi_legacy_resume(struct device *dev)
151 {
152 int value = 0;
153 struct spi_driver *drv = to_spi_driver(dev->driver);
154
155 /* resume may restart the i/o queue */
156 if (drv) {
157 if (drv->resume)
158 value = drv->resume(to_spi_device(dev));
159 else
160 dev_dbg(dev, "... can't resume\n");
161 }
162 return value;
163 }
164
165 static int spi_pm_suspend(struct device *dev)
166 {
167 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168
169 if (pm)
170 return pm_generic_suspend(dev);
171 else
172 return spi_legacy_suspend(dev, PMSG_SUSPEND);
173 }
174
175 static int spi_pm_resume(struct device *dev)
176 {
177 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178
179 if (pm)
180 return pm_generic_resume(dev);
181 else
182 return spi_legacy_resume(dev);
183 }
184
185 static int spi_pm_freeze(struct device *dev)
186 {
187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188
189 if (pm)
190 return pm_generic_freeze(dev);
191 else
192 return spi_legacy_suspend(dev, PMSG_FREEZE);
193 }
194
195 static int spi_pm_thaw(struct device *dev)
196 {
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198
199 if (pm)
200 return pm_generic_thaw(dev);
201 else
202 return spi_legacy_resume(dev);
203 }
204
205 static int spi_pm_poweroff(struct device *dev)
206 {
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208
209 if (pm)
210 return pm_generic_poweroff(dev);
211 else
212 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213 }
214
215 static int spi_pm_restore(struct device *dev)
216 {
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218
219 if (pm)
220 return pm_generic_restore(dev);
221 else
222 return spi_legacy_resume(dev);
223 }
224 #else
225 #define spi_pm_suspend NULL
226 #define spi_pm_resume NULL
227 #define spi_pm_freeze NULL
228 #define spi_pm_thaw NULL
229 #define spi_pm_poweroff NULL
230 #define spi_pm_restore NULL
231 #endif
232
233 static const struct dev_pm_ops spi_pm = {
234 .suspend = spi_pm_suspend,
235 .resume = spi_pm_resume,
236 .freeze = spi_pm_freeze,
237 .thaw = spi_pm_thaw,
238 .poweroff = spi_pm_poweroff,
239 .restore = spi_pm_restore,
240 SET_RUNTIME_PM_OPS(
241 pm_generic_runtime_suspend,
242 pm_generic_runtime_resume,
243 NULL
244 )
245 };
246
247 struct bus_type spi_bus_type = {
248 .name = "spi",
249 .dev_groups = spi_dev_groups,
250 .match = spi_match_device,
251 .uevent = spi_uevent,
252 .pm = &spi_pm,
253 };
254 EXPORT_SYMBOL_GPL(spi_bus_type);
255
256
257 static int spi_drv_probe(struct device *dev)
258 {
259 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
260 int ret;
261
262 acpi_dev_pm_attach(dev, true);
263 ret = sdrv->probe(to_spi_device(dev));
264 if (ret)
265 acpi_dev_pm_detach(dev, true);
266
267 return ret;
268 }
269
270 static int spi_drv_remove(struct device *dev)
271 {
272 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
273 int ret;
274
275 ret = sdrv->remove(to_spi_device(dev));
276 acpi_dev_pm_detach(dev, true);
277
278 return ret;
279 }
280
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
284
285 sdrv->shutdown(to_spi_device(dev));
286 }
287
288 /**
289 * spi_register_driver - register a SPI driver
290 * @sdrv: the driver to register
291 * Context: can sleep
292 */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 sdrv->driver.bus = &spi_bus_type;
296 if (sdrv->probe)
297 sdrv->driver.probe = spi_drv_probe;
298 if (sdrv->remove)
299 sdrv->driver.remove = spi_drv_remove;
300 if (sdrv->shutdown)
301 sdrv->driver.shutdown = spi_drv_shutdown;
302 return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305
306 /*-------------------------------------------------------------------------*/
307
308 /* SPI devices should normally not be created by SPI device drivers; that
309 * would make them board-specific. Similarly with SPI master drivers.
310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
311 * with other readonly (flashable) information about mainboard devices.
312 */
313
314 struct boardinfo {
315 struct list_head list;
316 struct spi_board_info board_info;
317 };
318
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321
322 /*
323 * Used to protect add/del opertion for board_info list and
324 * spi_master list, and their matching process
325 */
326 static DEFINE_MUTEX(board_lock);
327
328 /**
329 * spi_alloc_device - Allocate a new SPI device
330 * @master: Controller to which device is connected
331 * Context: can sleep
332 *
333 * Allows a driver to allocate and initialize a spi_device without
334 * registering it immediately. This allows a driver to directly
335 * fill the spi_device with device parameters before calling
336 * spi_add_device() on it.
337 *
338 * Caller is responsible to call spi_add_device() on the returned
339 * spi_device structure to add it to the SPI master. If the caller
340 * needs to discard the spi_device without adding it, then it should
341 * call spi_dev_put() on it.
342 *
343 * Returns a pointer to the new device, or NULL.
344 */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 struct spi_device *spi;
348 struct device *dev = master->dev.parent;
349
350 if (!spi_master_get(master))
351 return NULL;
352
353 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 if (!spi) {
355 dev_err(dev, "cannot alloc spi_device\n");
356 spi_master_put(master);
357 return NULL;
358 }
359
360 spi->master = master;
361 spi->dev.parent = &master->dev;
362 spi->dev.bus = &spi_bus_type;
363 spi->dev.release = spidev_release;
364 spi->cs_gpio = -ENOENT;
365 device_initialize(&spi->dev);
366 return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373
374 if (adev) {
375 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 return;
377 }
378
379 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 spi->chip_select);
381 }
382
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 struct spi_device *spi = to_spi_device(dev);
386 struct spi_device *new_spi = data;
387
388 if (spi->master == new_spi->master &&
389 spi->chip_select == new_spi->chip_select)
390 return -EBUSY;
391 return 0;
392 }
393
394 /**
395 * spi_add_device - Add spi_device allocated with spi_alloc_device
396 * @spi: spi_device to register
397 *
398 * Companion function to spi_alloc_device. Devices allocated with
399 * spi_alloc_device can be added onto the spi bus with this function.
400 *
401 * Returns 0 on success; negative errno on failure
402 */
403 int spi_add_device(struct spi_device *spi)
404 {
405 static DEFINE_MUTEX(spi_add_lock);
406 struct spi_master *master = spi->master;
407 struct device *dev = master->dev.parent;
408 int status;
409
410 /* Chipselects are numbered 0..max; validate. */
411 if (spi->chip_select >= master->num_chipselect) {
412 dev_err(dev, "cs%d >= max %d\n",
413 spi->chip_select,
414 master->num_chipselect);
415 return -EINVAL;
416 }
417
418 /* Set the bus ID string */
419 spi_dev_set_name(spi);
420
421 /* We need to make sure there's no other device with this
422 * chipselect **BEFORE** we call setup(), else we'll trash
423 * its configuration. Lock against concurrent add() calls.
424 */
425 mutex_lock(&spi_add_lock);
426
427 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 if (status) {
429 dev_err(dev, "chipselect %d already in use\n",
430 spi->chip_select);
431 goto done;
432 }
433
434 if (master->cs_gpios)
435 spi->cs_gpio = master->cs_gpios[spi->chip_select];
436
437 /* Drivers may modify this initial i/o setup, but will
438 * normally rely on the device being setup. Devices
439 * using SPI_CS_HIGH can't coexist well otherwise...
440 */
441 status = spi_setup(spi);
442 if (status < 0) {
443 dev_err(dev, "can't setup %s, status %d\n",
444 dev_name(&spi->dev), status);
445 goto done;
446 }
447
448 /* Device may be bound to an active driver when this returns */
449 status = device_add(&spi->dev);
450 if (status < 0)
451 dev_err(dev, "can't add %s, status %d\n",
452 dev_name(&spi->dev), status);
453 else
454 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455
456 done:
457 mutex_unlock(&spi_add_lock);
458 return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461
462 /**
463 * spi_new_device - instantiate one new SPI device
464 * @master: Controller to which device is connected
465 * @chip: Describes the SPI device
466 * Context: can sleep
467 *
468 * On typical mainboards, this is purely internal; and it's not needed
469 * after board init creates the hard-wired devices. Some development
470 * platforms may not be able to use spi_register_board_info though, and
471 * this is exported so that for example a USB or parport based adapter
472 * driver could add devices (which it would learn about out-of-band).
473 *
474 * Returns the new device, or NULL.
475 */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 struct spi_board_info *chip)
478 {
479 struct spi_device *proxy;
480 int status;
481
482 /* NOTE: caller did any chip->bus_num checks necessary.
483 *
484 * Also, unless we change the return value convention to use
485 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 * suggests syslogged diagnostics are best here (ugh).
487 */
488
489 proxy = spi_alloc_device(master);
490 if (!proxy)
491 return NULL;
492
493 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494
495 proxy->chip_select = chip->chip_select;
496 proxy->max_speed_hz = chip->max_speed_hz;
497 proxy->mode = chip->mode;
498 proxy->irq = chip->irq;
499 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 proxy->dev.platform_data = (void *) chip->platform_data;
501 proxy->controller_data = chip->controller_data;
502 proxy->controller_state = NULL;
503
504 status = spi_add_device(proxy);
505 if (status < 0) {
506 spi_dev_put(proxy);
507 return NULL;
508 }
509
510 return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 struct spi_board_info *bi)
516 {
517 struct spi_device *dev;
518
519 if (master->bus_num != bi->bus_num)
520 return;
521
522 dev = spi_new_device(master, bi);
523 if (!dev)
524 dev_err(master->dev.parent, "can't create new device for %s\n",
525 bi->modalias);
526 }
527
528 /**
529 * spi_register_board_info - register SPI devices for a given board
530 * @info: array of chip descriptors
531 * @n: how many descriptors are provided
532 * Context: can sleep
533 *
534 * Board-specific early init code calls this (probably during arch_initcall)
535 * with segments of the SPI device table. Any device nodes are created later,
536 * after the relevant parent SPI controller (bus_num) is defined. We keep
537 * this table of devices forever, so that reloading a controller driver will
538 * not make Linux forget about these hard-wired devices.
539 *
540 * Other code can also call this, e.g. a particular add-on board might provide
541 * SPI devices through its expansion connector, so code initializing that board
542 * would naturally declare its SPI devices.
543 *
544 * The board info passed can safely be __initdata ... but be careful of
545 * any embedded pointers (platform_data, etc), they're copied as-is.
546 */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 struct boardinfo *bi;
550 int i;
551
552 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 if (!bi)
554 return -ENOMEM;
555
556 for (i = 0; i < n; i++, bi++, info++) {
557 struct spi_master *master;
558
559 memcpy(&bi->board_info, info, sizeof(*info));
560 mutex_lock(&board_lock);
561 list_add_tail(&bi->list, &board_list);
562 list_for_each_entry(master, &spi_master_list, list)
563 spi_match_master_to_boardinfo(master, &bi->board_info);
564 mutex_unlock(&board_lock);
565 }
566
567 return 0;
568 }
569
570 /*-------------------------------------------------------------------------*/
571
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 if (spi->mode & SPI_CS_HIGH)
575 enable = !enable;
576
577 if (spi->cs_gpio >= 0)
578 gpio_set_value(spi->cs_gpio, !enable);
579 else if (spi->master->set_cs)
580 spi->master->set_cs(spi, !enable);
581 }
582
583 static int spi_map_buf(struct spi_master *master, struct device *dev,
584 struct sg_table *sgt, void *buf, size_t len,
585 enum dma_data_direction dir)
586 {
587 const bool vmalloced_buf = is_vmalloc_addr(buf);
588 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
589 const int sgs = DIV_ROUND_UP(len, desc_len);
590 struct page *vm_page;
591 void *sg_buf;
592 size_t min;
593 int i, ret;
594
595 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
596 if (ret != 0)
597 return ret;
598
599 for (i = 0; i < sgs; i++) {
600 min = min_t(size_t, len, desc_len);
601
602 if (vmalloced_buf) {
603 vm_page = vmalloc_to_page(buf);
604 if (!vm_page) {
605 sg_free_table(sgt);
606 return -ENOMEM;
607 }
608 sg_buf = page_address(vm_page) +
609 ((size_t)buf & ~PAGE_MASK);
610 } else {
611 sg_buf = buf;
612 }
613
614 sg_set_buf(&sgt->sgl[i], sg_buf, min);
615
616 buf += min;
617 len -= min;
618 }
619
620 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
621 if (ret < 0) {
622 sg_free_table(sgt);
623 return ret;
624 }
625
626 sgt->nents = ret;
627
628 return 0;
629 }
630
631 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
632 struct sg_table *sgt, enum dma_data_direction dir)
633 {
634 if (sgt->orig_nents) {
635 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
636 sg_free_table(sgt);
637 }
638 }
639
640 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
641 {
642 struct device *tx_dev, *rx_dev;
643 struct spi_transfer *xfer;
644 void *tmp;
645 unsigned int max_tx, max_rx;
646 int ret;
647
648 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
649 max_tx = 0;
650 max_rx = 0;
651
652 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
653 if ((master->flags & SPI_MASTER_MUST_TX) &&
654 !xfer->tx_buf)
655 max_tx = max(xfer->len, max_tx);
656 if ((master->flags & SPI_MASTER_MUST_RX) &&
657 !xfer->rx_buf)
658 max_rx = max(xfer->len, max_rx);
659 }
660
661 if (max_tx) {
662 tmp = krealloc(master->dummy_tx, max_tx,
663 GFP_KERNEL | GFP_DMA);
664 if (!tmp)
665 return -ENOMEM;
666 master->dummy_tx = tmp;
667 memset(tmp, 0, max_tx);
668 }
669
670 if (max_rx) {
671 tmp = krealloc(master->dummy_rx, max_rx,
672 GFP_KERNEL | GFP_DMA);
673 if (!tmp)
674 return -ENOMEM;
675 master->dummy_rx = tmp;
676 }
677
678 if (max_tx || max_rx) {
679 list_for_each_entry(xfer, &msg->transfers,
680 transfer_list) {
681 if (!xfer->tx_buf)
682 xfer->tx_buf = master->dummy_tx;
683 if (!xfer->rx_buf)
684 xfer->rx_buf = master->dummy_rx;
685 }
686 }
687 }
688
689 if (!master->can_dma)
690 return 0;
691
692 tx_dev = &master->dma_tx->dev->device;
693 rx_dev = &master->dma_rx->dev->device;
694
695 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 if (!master->can_dma(master, msg->spi, xfer))
697 continue;
698
699 if (xfer->tx_buf != NULL) {
700 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
701 (void *)xfer->tx_buf, xfer->len,
702 DMA_TO_DEVICE);
703 if (ret != 0)
704 return ret;
705 }
706
707 if (xfer->rx_buf != NULL) {
708 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
709 xfer->rx_buf, xfer->len,
710 DMA_FROM_DEVICE);
711 if (ret != 0) {
712 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
713 DMA_TO_DEVICE);
714 return ret;
715 }
716 }
717 }
718
719 master->cur_msg_mapped = true;
720
721 return 0;
722 }
723
724 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
725 {
726 struct spi_transfer *xfer;
727 struct device *tx_dev, *rx_dev;
728
729 if (!master->cur_msg_mapped || !master->can_dma)
730 return 0;
731
732 tx_dev = &master->dma_tx->dev->device;
733 rx_dev = &master->dma_rx->dev->device;
734
735 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
736 if (!master->can_dma(master, msg->spi, xfer))
737 continue;
738
739 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
740 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
741 }
742
743 return 0;
744 }
745
746 /*
747 * spi_transfer_one_message - Default implementation of transfer_one_message()
748 *
749 * This is a standard implementation of transfer_one_message() for
750 * drivers which impelment a transfer_one() operation. It provides
751 * standard handling of delays and chip select management.
752 */
753 static int spi_transfer_one_message(struct spi_master *master,
754 struct spi_message *msg)
755 {
756 struct spi_transfer *xfer;
757 bool keep_cs = false;
758 int ret = 0;
759 int ms = 1;
760
761 spi_set_cs(msg->spi, true);
762
763 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
764 trace_spi_transfer_start(msg, xfer);
765
766 reinit_completion(&master->xfer_completion);
767
768 ret = master->transfer_one(master, msg->spi, xfer);
769 if (ret < 0) {
770 dev_err(&msg->spi->dev,
771 "SPI transfer failed: %d\n", ret);
772 goto out;
773 }
774
775 if (ret > 0) {
776 ret = 0;
777 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
778 ms += 10; /* some tolerance */
779
780 ms = wait_for_completion_timeout(&master->xfer_completion,
781 msecs_to_jiffies(ms));
782 }
783
784 if (ms == 0) {
785 dev_err(&msg->spi->dev, "SPI transfer timed out\n");
786 msg->status = -ETIMEDOUT;
787 }
788
789 trace_spi_transfer_stop(msg, xfer);
790
791 if (msg->status != -EINPROGRESS)
792 goto out;
793
794 if (xfer->delay_usecs)
795 udelay(xfer->delay_usecs);
796
797 if (xfer->cs_change) {
798 if (list_is_last(&xfer->transfer_list,
799 &msg->transfers)) {
800 keep_cs = true;
801 } else {
802 spi_set_cs(msg->spi, false);
803 udelay(10);
804 spi_set_cs(msg->spi, true);
805 }
806 }
807
808 msg->actual_length += xfer->len;
809 }
810
811 out:
812 if (ret != 0 || !keep_cs)
813 spi_set_cs(msg->spi, false);
814
815 if (msg->status == -EINPROGRESS)
816 msg->status = ret;
817
818 spi_finalize_current_message(master);
819
820 return ret;
821 }
822
823 /**
824 * spi_finalize_current_transfer - report completion of a transfer
825 *
826 * Called by SPI drivers using the core transfer_one_message()
827 * implementation to notify it that the current interrupt driven
828 * transfer has finished and the next one may be scheduled.
829 */
830 void spi_finalize_current_transfer(struct spi_master *master)
831 {
832 complete(&master->xfer_completion);
833 }
834 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
835
836 /**
837 * spi_pump_messages - kthread work function which processes spi message queue
838 * @work: pointer to kthread work struct contained in the master struct
839 *
840 * This function checks if there is any spi message in the queue that
841 * needs processing and if so call out to the driver to initialize hardware
842 * and transfer each message.
843 *
844 */
845 static void spi_pump_messages(struct kthread_work *work)
846 {
847 struct spi_master *master =
848 container_of(work, struct spi_master, pump_messages);
849 unsigned long flags;
850 bool was_busy = false;
851 int ret;
852
853 /* Lock queue and check for queue work */
854 spin_lock_irqsave(&master->queue_lock, flags);
855 if (list_empty(&master->queue) || !master->running) {
856 if (!master->busy) {
857 spin_unlock_irqrestore(&master->queue_lock, flags);
858 return;
859 }
860 master->busy = false;
861 spin_unlock_irqrestore(&master->queue_lock, flags);
862 kfree(master->dummy_rx);
863 master->dummy_rx = NULL;
864 kfree(master->dummy_tx);
865 master->dummy_tx = NULL;
866 if (master->unprepare_transfer_hardware &&
867 master->unprepare_transfer_hardware(master))
868 dev_err(&master->dev,
869 "failed to unprepare transfer hardware\n");
870 if (master->auto_runtime_pm) {
871 pm_runtime_mark_last_busy(master->dev.parent);
872 pm_runtime_put_autosuspend(master->dev.parent);
873 }
874 trace_spi_master_idle(master);
875 return;
876 }
877
878 /* Make sure we are not already running a message */
879 if (master->cur_msg) {
880 spin_unlock_irqrestore(&master->queue_lock, flags);
881 return;
882 }
883 /* Extract head of queue */
884 master->cur_msg =
885 list_first_entry(&master->queue, struct spi_message, queue);
886
887 list_del_init(&master->cur_msg->queue);
888 if (master->busy)
889 was_busy = true;
890 else
891 master->busy = true;
892 spin_unlock_irqrestore(&master->queue_lock, flags);
893
894 if (!was_busy && master->auto_runtime_pm) {
895 ret = pm_runtime_get_sync(master->dev.parent);
896 if (ret < 0) {
897 dev_err(&master->dev, "Failed to power device: %d\n",
898 ret);
899 return;
900 }
901 }
902
903 if (!was_busy)
904 trace_spi_master_busy(master);
905
906 if (!was_busy && master->prepare_transfer_hardware) {
907 ret = master->prepare_transfer_hardware(master);
908 if (ret) {
909 dev_err(&master->dev,
910 "failed to prepare transfer hardware\n");
911
912 if (master->auto_runtime_pm)
913 pm_runtime_put(master->dev.parent);
914 return;
915 }
916 }
917
918 trace_spi_message_start(master->cur_msg);
919
920 if (master->prepare_message) {
921 ret = master->prepare_message(master, master->cur_msg);
922 if (ret) {
923 dev_err(&master->dev,
924 "failed to prepare message: %d\n", ret);
925 master->cur_msg->status = ret;
926 spi_finalize_current_message(master);
927 return;
928 }
929 master->cur_msg_prepared = true;
930 }
931
932 ret = spi_map_msg(master, master->cur_msg);
933 if (ret) {
934 master->cur_msg->status = ret;
935 spi_finalize_current_message(master);
936 return;
937 }
938
939 ret = master->transfer_one_message(master, master->cur_msg);
940 if (ret) {
941 dev_err(&master->dev,
942 "failed to transfer one message from queue\n");
943 return;
944 }
945 }
946
947 static int spi_init_queue(struct spi_master *master)
948 {
949 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
950
951 INIT_LIST_HEAD(&master->queue);
952 spin_lock_init(&master->queue_lock);
953
954 master->running = false;
955 master->busy = false;
956
957 init_kthread_worker(&master->kworker);
958 master->kworker_task = kthread_run(kthread_worker_fn,
959 &master->kworker, "%s",
960 dev_name(&master->dev));
961 if (IS_ERR(master->kworker_task)) {
962 dev_err(&master->dev, "failed to create message pump task\n");
963 return -ENOMEM;
964 }
965 init_kthread_work(&master->pump_messages, spi_pump_messages);
966
967 /*
968 * Master config will indicate if this controller should run the
969 * message pump with high (realtime) priority to reduce the transfer
970 * latency on the bus by minimising the delay between a transfer
971 * request and the scheduling of the message pump thread. Without this
972 * setting the message pump thread will remain at default priority.
973 */
974 if (master->rt) {
975 dev_info(&master->dev,
976 "will run message pump with realtime priority\n");
977 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
978 }
979
980 return 0;
981 }
982
983 /**
984 * spi_get_next_queued_message() - called by driver to check for queued
985 * messages
986 * @master: the master to check for queued messages
987 *
988 * If there are more messages in the queue, the next message is returned from
989 * this call.
990 */
991 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
992 {
993 struct spi_message *next;
994 unsigned long flags;
995
996 /* get a pointer to the next message, if any */
997 spin_lock_irqsave(&master->queue_lock, flags);
998 next = list_first_entry_or_null(&master->queue, struct spi_message,
999 queue);
1000 spin_unlock_irqrestore(&master->queue_lock, flags);
1001
1002 return next;
1003 }
1004 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1005
1006 /**
1007 * spi_finalize_current_message() - the current message is complete
1008 * @master: the master to return the message to
1009 *
1010 * Called by the driver to notify the core that the message in the front of the
1011 * queue is complete and can be removed from the queue.
1012 */
1013 void spi_finalize_current_message(struct spi_master *master)
1014 {
1015 struct spi_message *mesg;
1016 unsigned long flags;
1017 int ret;
1018
1019 spin_lock_irqsave(&master->queue_lock, flags);
1020 mesg = master->cur_msg;
1021 master->cur_msg = NULL;
1022
1023 queue_kthread_work(&master->kworker, &master->pump_messages);
1024 spin_unlock_irqrestore(&master->queue_lock, flags);
1025
1026 spi_unmap_msg(master, mesg);
1027
1028 if (master->cur_msg_prepared && master->unprepare_message) {
1029 ret = master->unprepare_message(master, mesg);
1030 if (ret) {
1031 dev_err(&master->dev,
1032 "failed to unprepare message: %d\n", ret);
1033 }
1034 }
1035 master->cur_msg_prepared = false;
1036
1037 mesg->state = NULL;
1038 if (mesg->complete)
1039 mesg->complete(mesg->context);
1040
1041 trace_spi_message_done(mesg);
1042 }
1043 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1044
1045 static int spi_start_queue(struct spi_master *master)
1046 {
1047 unsigned long flags;
1048
1049 spin_lock_irqsave(&master->queue_lock, flags);
1050
1051 if (master->running || master->busy) {
1052 spin_unlock_irqrestore(&master->queue_lock, flags);
1053 return -EBUSY;
1054 }
1055
1056 master->running = true;
1057 master->cur_msg = NULL;
1058 spin_unlock_irqrestore(&master->queue_lock, flags);
1059
1060 queue_kthread_work(&master->kworker, &master->pump_messages);
1061
1062 return 0;
1063 }
1064
1065 static int spi_stop_queue(struct spi_master *master)
1066 {
1067 unsigned long flags;
1068 unsigned limit = 500;
1069 int ret = 0;
1070
1071 spin_lock_irqsave(&master->queue_lock, flags);
1072
1073 /*
1074 * This is a bit lame, but is optimized for the common execution path.
1075 * A wait_queue on the master->busy could be used, but then the common
1076 * execution path (pump_messages) would be required to call wake_up or
1077 * friends on every SPI message. Do this instead.
1078 */
1079 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1080 spin_unlock_irqrestore(&master->queue_lock, flags);
1081 usleep_range(10000, 11000);
1082 spin_lock_irqsave(&master->queue_lock, flags);
1083 }
1084
1085 if (!list_empty(&master->queue) || master->busy)
1086 ret = -EBUSY;
1087 else
1088 master->running = false;
1089
1090 spin_unlock_irqrestore(&master->queue_lock, flags);
1091
1092 if (ret) {
1093 dev_warn(&master->dev,
1094 "could not stop message queue\n");
1095 return ret;
1096 }
1097 return ret;
1098 }
1099
1100 static int spi_destroy_queue(struct spi_master *master)
1101 {
1102 int ret;
1103
1104 ret = spi_stop_queue(master);
1105
1106 /*
1107 * flush_kthread_worker will block until all work is done.
1108 * If the reason that stop_queue timed out is that the work will never
1109 * finish, then it does no good to call flush/stop thread, so
1110 * return anyway.
1111 */
1112 if (ret) {
1113 dev_err(&master->dev, "problem destroying queue\n");
1114 return ret;
1115 }
1116
1117 flush_kthread_worker(&master->kworker);
1118 kthread_stop(master->kworker_task);
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * spi_queued_transfer - transfer function for queued transfers
1125 * @spi: spi device which is requesting transfer
1126 * @msg: spi message which is to handled is queued to driver queue
1127 */
1128 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1129 {
1130 struct spi_master *master = spi->master;
1131 unsigned long flags;
1132
1133 spin_lock_irqsave(&master->queue_lock, flags);
1134
1135 if (!master->running) {
1136 spin_unlock_irqrestore(&master->queue_lock, flags);
1137 return -ESHUTDOWN;
1138 }
1139 msg->actual_length = 0;
1140 msg->status = -EINPROGRESS;
1141
1142 list_add_tail(&msg->queue, &master->queue);
1143 if (!master->busy)
1144 queue_kthread_work(&master->kworker, &master->pump_messages);
1145
1146 spin_unlock_irqrestore(&master->queue_lock, flags);
1147 return 0;
1148 }
1149
1150 static int spi_master_initialize_queue(struct spi_master *master)
1151 {
1152 int ret;
1153
1154 master->queued = true;
1155 master->transfer = spi_queued_transfer;
1156 if (!master->transfer_one_message)
1157 master->transfer_one_message = spi_transfer_one_message;
1158
1159 /* Initialize and start queue */
1160 ret = spi_init_queue(master);
1161 if (ret) {
1162 dev_err(&master->dev, "problem initializing queue\n");
1163 goto err_init_queue;
1164 }
1165 ret = spi_start_queue(master);
1166 if (ret) {
1167 dev_err(&master->dev, "problem starting queue\n");
1168 goto err_start_queue;
1169 }
1170
1171 return 0;
1172
1173 err_start_queue:
1174 err_init_queue:
1175 spi_destroy_queue(master);
1176 return ret;
1177 }
1178
1179 /*-------------------------------------------------------------------------*/
1180
1181 #if defined(CONFIG_OF)
1182 /**
1183 * of_register_spi_devices() - Register child devices onto the SPI bus
1184 * @master: Pointer to spi_master device
1185 *
1186 * Registers an spi_device for each child node of master node which has a 'reg'
1187 * property.
1188 */
1189 static void of_register_spi_devices(struct spi_master *master)
1190 {
1191 struct spi_device *spi;
1192 struct device_node *nc;
1193 int rc;
1194 u32 value;
1195
1196 if (!master->dev.of_node)
1197 return;
1198
1199 for_each_available_child_of_node(master->dev.of_node, nc) {
1200 /* Alloc an spi_device */
1201 spi = spi_alloc_device(master);
1202 if (!spi) {
1203 dev_err(&master->dev, "spi_device alloc error for %s\n",
1204 nc->full_name);
1205 spi_dev_put(spi);
1206 continue;
1207 }
1208
1209 /* Select device driver */
1210 if (of_modalias_node(nc, spi->modalias,
1211 sizeof(spi->modalias)) < 0) {
1212 dev_err(&master->dev, "cannot find modalias for %s\n",
1213 nc->full_name);
1214 spi_dev_put(spi);
1215 continue;
1216 }
1217
1218 /* Device address */
1219 rc = of_property_read_u32(nc, "reg", &value);
1220 if (rc) {
1221 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1222 nc->full_name, rc);
1223 spi_dev_put(spi);
1224 continue;
1225 }
1226 spi->chip_select = value;
1227
1228 /* Mode (clock phase/polarity/etc.) */
1229 if (of_find_property(nc, "spi-cpha", NULL))
1230 spi->mode |= SPI_CPHA;
1231 if (of_find_property(nc, "spi-cpol", NULL))
1232 spi->mode |= SPI_CPOL;
1233 if (of_find_property(nc, "spi-cs-high", NULL))
1234 spi->mode |= SPI_CS_HIGH;
1235 if (of_find_property(nc, "spi-3wire", NULL))
1236 spi->mode |= SPI_3WIRE;
1237
1238 /* Device DUAL/QUAD mode */
1239 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1240 switch (value) {
1241 case 1:
1242 break;
1243 case 2:
1244 spi->mode |= SPI_TX_DUAL;
1245 break;
1246 case 4:
1247 spi->mode |= SPI_TX_QUAD;
1248 break;
1249 default:
1250 dev_err(&master->dev,
1251 "spi-tx-bus-width %d not supported\n",
1252 value);
1253 spi_dev_put(spi);
1254 continue;
1255 }
1256 }
1257
1258 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1259 switch (value) {
1260 case 1:
1261 break;
1262 case 2:
1263 spi->mode |= SPI_RX_DUAL;
1264 break;
1265 case 4:
1266 spi->mode |= SPI_RX_QUAD;
1267 break;
1268 default:
1269 dev_err(&master->dev,
1270 "spi-rx-bus-width %d not supported\n",
1271 value);
1272 spi_dev_put(spi);
1273 continue;
1274 }
1275 }
1276
1277 /* Device speed */
1278 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1279 if (rc) {
1280 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1281 nc->full_name, rc);
1282 spi_dev_put(spi);
1283 continue;
1284 }
1285 spi->max_speed_hz = value;
1286
1287 /* IRQ */
1288 spi->irq = irq_of_parse_and_map(nc, 0);
1289
1290 /* Store a pointer to the node in the device structure */
1291 of_node_get(nc);
1292 spi->dev.of_node = nc;
1293
1294 /* Register the new device */
1295 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1296 rc = spi_add_device(spi);
1297 if (rc) {
1298 dev_err(&master->dev, "spi_device register error %s\n",
1299 nc->full_name);
1300 spi_dev_put(spi);
1301 }
1302
1303 }
1304 }
1305 #else
1306 static void of_register_spi_devices(struct spi_master *master) { }
1307 #endif
1308
1309 #ifdef CONFIG_ACPI
1310 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1311 {
1312 struct spi_device *spi = data;
1313
1314 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1315 struct acpi_resource_spi_serialbus *sb;
1316
1317 sb = &ares->data.spi_serial_bus;
1318 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1319 spi->chip_select = sb->device_selection;
1320 spi->max_speed_hz = sb->connection_speed;
1321
1322 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1323 spi->mode |= SPI_CPHA;
1324 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1325 spi->mode |= SPI_CPOL;
1326 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1327 spi->mode |= SPI_CS_HIGH;
1328 }
1329 } else if (spi->irq < 0) {
1330 struct resource r;
1331
1332 if (acpi_dev_resource_interrupt(ares, 0, &r))
1333 spi->irq = r.start;
1334 }
1335
1336 /* Always tell the ACPI core to skip this resource */
1337 return 1;
1338 }
1339
1340 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1341 void *data, void **return_value)
1342 {
1343 struct spi_master *master = data;
1344 struct list_head resource_list;
1345 struct acpi_device *adev;
1346 struct spi_device *spi;
1347 int ret;
1348
1349 if (acpi_bus_get_device(handle, &adev))
1350 return AE_OK;
1351 if (acpi_bus_get_status(adev) || !adev->status.present)
1352 return AE_OK;
1353
1354 spi = spi_alloc_device(master);
1355 if (!spi) {
1356 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1357 dev_name(&adev->dev));
1358 return AE_NO_MEMORY;
1359 }
1360
1361 ACPI_COMPANION_SET(&spi->dev, adev);
1362 spi->irq = -1;
1363
1364 INIT_LIST_HEAD(&resource_list);
1365 ret = acpi_dev_get_resources(adev, &resource_list,
1366 acpi_spi_add_resource, spi);
1367 acpi_dev_free_resource_list(&resource_list);
1368
1369 if (ret < 0 || !spi->max_speed_hz) {
1370 spi_dev_put(spi);
1371 return AE_OK;
1372 }
1373
1374 adev->power.flags.ignore_parent = true;
1375 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1376 if (spi_add_device(spi)) {
1377 adev->power.flags.ignore_parent = false;
1378 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1379 dev_name(&adev->dev));
1380 spi_dev_put(spi);
1381 }
1382
1383 return AE_OK;
1384 }
1385
1386 static void acpi_register_spi_devices(struct spi_master *master)
1387 {
1388 acpi_status status;
1389 acpi_handle handle;
1390
1391 handle = ACPI_HANDLE(master->dev.parent);
1392 if (!handle)
1393 return;
1394
1395 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1396 acpi_spi_add_device, NULL,
1397 master, NULL);
1398 if (ACPI_FAILURE(status))
1399 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1400 }
1401 #else
1402 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1403 #endif /* CONFIG_ACPI */
1404
1405 static void spi_master_release(struct device *dev)
1406 {
1407 struct spi_master *master;
1408
1409 master = container_of(dev, struct spi_master, dev);
1410 kfree(master);
1411 }
1412
1413 static struct class spi_master_class = {
1414 .name = "spi_master",
1415 .owner = THIS_MODULE,
1416 .dev_release = spi_master_release,
1417 };
1418
1419
1420
1421 /**
1422 * spi_alloc_master - allocate SPI master controller
1423 * @dev: the controller, possibly using the platform_bus
1424 * @size: how much zeroed driver-private data to allocate; the pointer to this
1425 * memory is in the driver_data field of the returned device,
1426 * accessible with spi_master_get_devdata().
1427 * Context: can sleep
1428 *
1429 * This call is used only by SPI master controller drivers, which are the
1430 * only ones directly touching chip registers. It's how they allocate
1431 * an spi_master structure, prior to calling spi_register_master().
1432 *
1433 * This must be called from context that can sleep. It returns the SPI
1434 * master structure on success, else NULL.
1435 *
1436 * The caller is responsible for assigning the bus number and initializing
1437 * the master's methods before calling spi_register_master(); and (after errors
1438 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1439 * leak.
1440 */
1441 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1442 {
1443 struct spi_master *master;
1444
1445 if (!dev)
1446 return NULL;
1447
1448 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1449 if (!master)
1450 return NULL;
1451
1452 device_initialize(&master->dev);
1453 master->bus_num = -1;
1454 master->num_chipselect = 1;
1455 master->dev.class = &spi_master_class;
1456 master->dev.parent = get_device(dev);
1457 spi_master_set_devdata(master, &master[1]);
1458
1459 return master;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_alloc_master);
1462
1463 #ifdef CONFIG_OF
1464 static int of_spi_register_master(struct spi_master *master)
1465 {
1466 int nb, i, *cs;
1467 struct device_node *np = master->dev.of_node;
1468
1469 if (!np)
1470 return 0;
1471
1472 nb = of_gpio_named_count(np, "cs-gpios");
1473 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1474
1475 /* Return error only for an incorrectly formed cs-gpios property */
1476 if (nb == 0 || nb == -ENOENT)
1477 return 0;
1478 else if (nb < 0)
1479 return nb;
1480
1481 cs = devm_kzalloc(&master->dev,
1482 sizeof(int) * master->num_chipselect,
1483 GFP_KERNEL);
1484 master->cs_gpios = cs;
1485
1486 if (!master->cs_gpios)
1487 return -ENOMEM;
1488
1489 for (i = 0; i < master->num_chipselect; i++)
1490 cs[i] = -ENOENT;
1491
1492 for (i = 0; i < nb; i++)
1493 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1494
1495 return 0;
1496 }
1497 #else
1498 static int of_spi_register_master(struct spi_master *master)
1499 {
1500 return 0;
1501 }
1502 #endif
1503
1504 /**
1505 * spi_register_master - register SPI master controller
1506 * @master: initialized master, originally from spi_alloc_master()
1507 * Context: can sleep
1508 *
1509 * SPI master controllers connect to their drivers using some non-SPI bus,
1510 * such as the platform bus. The final stage of probe() in that code
1511 * includes calling spi_register_master() to hook up to this SPI bus glue.
1512 *
1513 * SPI controllers use board specific (often SOC specific) bus numbers,
1514 * and board-specific addressing for SPI devices combines those numbers
1515 * with chip select numbers. Since SPI does not directly support dynamic
1516 * device identification, boards need configuration tables telling which
1517 * chip is at which address.
1518 *
1519 * This must be called from context that can sleep. It returns zero on
1520 * success, else a negative error code (dropping the master's refcount).
1521 * After a successful return, the caller is responsible for calling
1522 * spi_unregister_master().
1523 */
1524 int spi_register_master(struct spi_master *master)
1525 {
1526 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1527 struct device *dev = master->dev.parent;
1528 struct boardinfo *bi;
1529 int status = -ENODEV;
1530 int dynamic = 0;
1531
1532 if (!dev)
1533 return -ENODEV;
1534
1535 status = of_spi_register_master(master);
1536 if (status)
1537 return status;
1538
1539 /* even if it's just one always-selected device, there must
1540 * be at least one chipselect
1541 */
1542 if (master->num_chipselect == 0)
1543 return -EINVAL;
1544
1545 if ((master->bus_num < 0) && master->dev.of_node)
1546 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1547
1548 /* convention: dynamically assigned bus IDs count down from the max */
1549 if (master->bus_num < 0) {
1550 /* FIXME switch to an IDR based scheme, something like
1551 * I2C now uses, so we can't run out of "dynamic" IDs
1552 */
1553 master->bus_num = atomic_dec_return(&dyn_bus_id);
1554 dynamic = 1;
1555 }
1556
1557 spin_lock_init(&master->bus_lock_spinlock);
1558 mutex_init(&master->bus_lock_mutex);
1559 master->bus_lock_flag = 0;
1560 init_completion(&master->xfer_completion);
1561 if (!master->max_dma_len)
1562 master->max_dma_len = INT_MAX;
1563
1564 /* register the device, then userspace will see it.
1565 * registration fails if the bus ID is in use.
1566 */
1567 dev_set_name(&master->dev, "spi%u", master->bus_num);
1568 status = device_add(&master->dev);
1569 if (status < 0)
1570 goto done;
1571 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1572 dynamic ? " (dynamic)" : "");
1573
1574 /* If we're using a queued driver, start the queue */
1575 if (master->transfer)
1576 dev_info(dev, "master is unqueued, this is deprecated\n");
1577 else {
1578 status = spi_master_initialize_queue(master);
1579 if (status) {
1580 device_del(&master->dev);
1581 goto done;
1582 }
1583 }
1584
1585 mutex_lock(&board_lock);
1586 list_add_tail(&master->list, &spi_master_list);
1587 list_for_each_entry(bi, &board_list, list)
1588 spi_match_master_to_boardinfo(master, &bi->board_info);
1589 mutex_unlock(&board_lock);
1590
1591 /* Register devices from the device tree and ACPI */
1592 of_register_spi_devices(master);
1593 acpi_register_spi_devices(master);
1594 done:
1595 return status;
1596 }
1597 EXPORT_SYMBOL_GPL(spi_register_master);
1598
1599 static void devm_spi_unregister(struct device *dev, void *res)
1600 {
1601 spi_unregister_master(*(struct spi_master **)res);
1602 }
1603
1604 /**
1605 * dev_spi_register_master - register managed SPI master controller
1606 * @dev: device managing SPI master
1607 * @master: initialized master, originally from spi_alloc_master()
1608 * Context: can sleep
1609 *
1610 * Register a SPI device as with spi_register_master() which will
1611 * automatically be unregister
1612 */
1613 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1614 {
1615 struct spi_master **ptr;
1616 int ret;
1617
1618 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1619 if (!ptr)
1620 return -ENOMEM;
1621
1622 ret = spi_register_master(master);
1623 if (!ret) {
1624 *ptr = master;
1625 devres_add(dev, ptr);
1626 } else {
1627 devres_free(ptr);
1628 }
1629
1630 return ret;
1631 }
1632 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1633
1634 static int __unregister(struct device *dev, void *null)
1635 {
1636 spi_unregister_device(to_spi_device(dev));
1637 return 0;
1638 }
1639
1640 /**
1641 * spi_unregister_master - unregister SPI master controller
1642 * @master: the master being unregistered
1643 * Context: can sleep
1644 *
1645 * This call is used only by SPI master controller drivers, which are the
1646 * only ones directly touching chip registers.
1647 *
1648 * This must be called from context that can sleep.
1649 */
1650 void spi_unregister_master(struct spi_master *master)
1651 {
1652 int dummy;
1653
1654 if (master->queued) {
1655 if (spi_destroy_queue(master))
1656 dev_err(&master->dev, "queue remove failed\n");
1657 }
1658
1659 mutex_lock(&board_lock);
1660 list_del(&master->list);
1661 mutex_unlock(&board_lock);
1662
1663 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1664 device_unregister(&master->dev);
1665 }
1666 EXPORT_SYMBOL_GPL(spi_unregister_master);
1667
1668 int spi_master_suspend(struct spi_master *master)
1669 {
1670 int ret;
1671
1672 /* Basically no-ops for non-queued masters */
1673 if (!master->queued)
1674 return 0;
1675
1676 ret = spi_stop_queue(master);
1677 if (ret)
1678 dev_err(&master->dev, "queue stop failed\n");
1679
1680 return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(spi_master_suspend);
1683
1684 int spi_master_resume(struct spi_master *master)
1685 {
1686 int ret;
1687
1688 if (!master->queued)
1689 return 0;
1690
1691 ret = spi_start_queue(master);
1692 if (ret)
1693 dev_err(&master->dev, "queue restart failed\n");
1694
1695 return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(spi_master_resume);
1698
1699 static int __spi_master_match(struct device *dev, const void *data)
1700 {
1701 struct spi_master *m;
1702 const u16 *bus_num = data;
1703
1704 m = container_of(dev, struct spi_master, dev);
1705 return m->bus_num == *bus_num;
1706 }
1707
1708 /**
1709 * spi_busnum_to_master - look up master associated with bus_num
1710 * @bus_num: the master's bus number
1711 * Context: can sleep
1712 *
1713 * This call may be used with devices that are registered after
1714 * arch init time. It returns a refcounted pointer to the relevant
1715 * spi_master (which the caller must release), or NULL if there is
1716 * no such master registered.
1717 */
1718 struct spi_master *spi_busnum_to_master(u16 bus_num)
1719 {
1720 struct device *dev;
1721 struct spi_master *master = NULL;
1722
1723 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1724 __spi_master_match);
1725 if (dev)
1726 master = container_of(dev, struct spi_master, dev);
1727 /* reference got in class_find_device */
1728 return master;
1729 }
1730 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1731
1732
1733 /*-------------------------------------------------------------------------*/
1734
1735 /* Core methods for SPI master protocol drivers. Some of the
1736 * other core methods are currently defined as inline functions.
1737 */
1738
1739 /**
1740 * spi_setup - setup SPI mode and clock rate
1741 * @spi: the device whose settings are being modified
1742 * Context: can sleep, and no requests are queued to the device
1743 *
1744 * SPI protocol drivers may need to update the transfer mode if the
1745 * device doesn't work with its default. They may likewise need
1746 * to update clock rates or word sizes from initial values. This function
1747 * changes those settings, and must be called from a context that can sleep.
1748 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1749 * effect the next time the device is selected and data is transferred to
1750 * or from it. When this function returns, the spi device is deselected.
1751 *
1752 * Note that this call will fail if the protocol driver specifies an option
1753 * that the underlying controller or its driver does not support. For
1754 * example, not all hardware supports wire transfers using nine bit words,
1755 * LSB-first wire encoding, or active-high chipselects.
1756 */
1757 int spi_setup(struct spi_device *spi)
1758 {
1759 unsigned bad_bits;
1760 int status = 0;
1761
1762 /* check mode to prevent that DUAL and QUAD set at the same time
1763 */
1764 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1765 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1766 dev_err(&spi->dev,
1767 "setup: can not select dual and quad at the same time\n");
1768 return -EINVAL;
1769 }
1770 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1771 */
1772 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1773 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1774 return -EINVAL;
1775 /* help drivers fail *cleanly* when they need options
1776 * that aren't supported with their current master
1777 */
1778 bad_bits = spi->mode & ~spi->master->mode_bits;
1779 if (bad_bits) {
1780 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1781 bad_bits);
1782 return -EINVAL;
1783 }
1784
1785 if (!spi->bits_per_word)
1786 spi->bits_per_word = 8;
1787
1788 if (!spi->max_speed_hz)
1789 spi->max_speed_hz = spi->master->max_speed_hz;
1790
1791 if (spi->master->setup)
1792 status = spi->master->setup(spi);
1793
1794 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1795 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1796 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1797 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1798 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1799 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1800 spi->bits_per_word, spi->max_speed_hz,
1801 status);
1802
1803 return status;
1804 }
1805 EXPORT_SYMBOL_GPL(spi_setup);
1806
1807 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1808 {
1809 struct spi_master *master = spi->master;
1810 struct spi_transfer *xfer;
1811 int w_size;
1812
1813 if (list_empty(&message->transfers))
1814 return -EINVAL;
1815
1816 /* Half-duplex links include original MicroWire, and ones with
1817 * only one data pin like SPI_3WIRE (switches direction) or where
1818 * either MOSI or MISO is missing. They can also be caused by
1819 * software limitations.
1820 */
1821 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1822 || (spi->mode & SPI_3WIRE)) {
1823 unsigned flags = master->flags;
1824
1825 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1826 if (xfer->rx_buf && xfer->tx_buf)
1827 return -EINVAL;
1828 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1829 return -EINVAL;
1830 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1831 return -EINVAL;
1832 }
1833 }
1834
1835 /**
1836 * Set transfer bits_per_word and max speed as spi device default if
1837 * it is not set for this transfer.
1838 * Set transfer tx_nbits and rx_nbits as single transfer default
1839 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1840 */
1841 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1842 message->frame_length += xfer->len;
1843 if (!xfer->bits_per_word)
1844 xfer->bits_per_word = spi->bits_per_word;
1845
1846 if (!xfer->speed_hz)
1847 xfer->speed_hz = spi->max_speed_hz;
1848
1849 if (master->max_speed_hz &&
1850 xfer->speed_hz > master->max_speed_hz)
1851 xfer->speed_hz = master->max_speed_hz;
1852
1853 if (master->bits_per_word_mask) {
1854 /* Only 32 bits fit in the mask */
1855 if (xfer->bits_per_word > 32)
1856 return -EINVAL;
1857 if (!(master->bits_per_word_mask &
1858 BIT(xfer->bits_per_word - 1)))
1859 return -EINVAL;
1860 }
1861
1862 /*
1863 * SPI transfer length should be multiple of SPI word size
1864 * where SPI word size should be power-of-two multiple
1865 */
1866 if (xfer->bits_per_word <= 8)
1867 w_size = 1;
1868 else if (xfer->bits_per_word <= 16)
1869 w_size = 2;
1870 else
1871 w_size = 4;
1872
1873 /* No partial transfers accepted */
1874 if (xfer->len % w_size)
1875 return -EINVAL;
1876
1877 if (xfer->speed_hz && master->min_speed_hz &&
1878 xfer->speed_hz < master->min_speed_hz)
1879 return -EINVAL;
1880
1881 if (xfer->tx_buf && !xfer->tx_nbits)
1882 xfer->tx_nbits = SPI_NBITS_SINGLE;
1883 if (xfer->rx_buf && !xfer->rx_nbits)
1884 xfer->rx_nbits = SPI_NBITS_SINGLE;
1885 /* check transfer tx/rx_nbits:
1886 * 1. check the value matches one of single, dual and quad
1887 * 2. check tx/rx_nbits match the mode in spi_device
1888 */
1889 if (xfer->tx_buf) {
1890 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1891 xfer->tx_nbits != SPI_NBITS_DUAL &&
1892 xfer->tx_nbits != SPI_NBITS_QUAD)
1893 return -EINVAL;
1894 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1895 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1896 return -EINVAL;
1897 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1898 !(spi->mode & SPI_TX_QUAD))
1899 return -EINVAL;
1900 }
1901 /* check transfer rx_nbits */
1902 if (xfer->rx_buf) {
1903 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1904 xfer->rx_nbits != SPI_NBITS_DUAL &&
1905 xfer->rx_nbits != SPI_NBITS_QUAD)
1906 return -EINVAL;
1907 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1908 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1909 return -EINVAL;
1910 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1911 !(spi->mode & SPI_RX_QUAD))
1912 return -EINVAL;
1913 }
1914 }
1915
1916 message->status = -EINPROGRESS;
1917
1918 return 0;
1919 }
1920
1921 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1922 {
1923 struct spi_master *master = spi->master;
1924
1925 message->spi = spi;
1926
1927 trace_spi_message_submit(message);
1928
1929 return master->transfer(spi, message);
1930 }
1931
1932 /**
1933 * spi_async - asynchronous SPI transfer
1934 * @spi: device with which data will be exchanged
1935 * @message: describes the data transfers, including completion callback
1936 * Context: any (irqs may be blocked, etc)
1937 *
1938 * This call may be used in_irq and other contexts which can't sleep,
1939 * as well as from task contexts which can sleep.
1940 *
1941 * The completion callback is invoked in a context which can't sleep.
1942 * Before that invocation, the value of message->status is undefined.
1943 * When the callback is issued, message->status holds either zero (to
1944 * indicate complete success) or a negative error code. After that
1945 * callback returns, the driver which issued the transfer request may
1946 * deallocate the associated memory; it's no longer in use by any SPI
1947 * core or controller driver code.
1948 *
1949 * Note that although all messages to a spi_device are handled in
1950 * FIFO order, messages may go to different devices in other orders.
1951 * Some device might be higher priority, or have various "hard" access
1952 * time requirements, for example.
1953 *
1954 * On detection of any fault during the transfer, processing of
1955 * the entire message is aborted, and the device is deselected.
1956 * Until returning from the associated message completion callback,
1957 * no other spi_message queued to that device will be processed.
1958 * (This rule applies equally to all the synchronous transfer calls,
1959 * which are wrappers around this core asynchronous primitive.)
1960 */
1961 int spi_async(struct spi_device *spi, struct spi_message *message)
1962 {
1963 struct spi_master *master = spi->master;
1964 int ret;
1965 unsigned long flags;
1966
1967 ret = __spi_validate(spi, message);
1968 if (ret != 0)
1969 return ret;
1970
1971 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1972
1973 if (master->bus_lock_flag)
1974 ret = -EBUSY;
1975 else
1976 ret = __spi_async(spi, message);
1977
1978 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1979
1980 return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(spi_async);
1983
1984 /**
1985 * spi_async_locked - version of spi_async with exclusive bus usage
1986 * @spi: device with which data will be exchanged
1987 * @message: describes the data transfers, including completion callback
1988 * Context: any (irqs may be blocked, etc)
1989 *
1990 * This call may be used in_irq and other contexts which can't sleep,
1991 * as well as from task contexts which can sleep.
1992 *
1993 * The completion callback is invoked in a context which can't sleep.
1994 * Before that invocation, the value of message->status is undefined.
1995 * When the callback is issued, message->status holds either zero (to
1996 * indicate complete success) or a negative error code. After that
1997 * callback returns, the driver which issued the transfer request may
1998 * deallocate the associated memory; it's no longer in use by any SPI
1999 * core or controller driver code.
2000 *
2001 * Note that although all messages to a spi_device are handled in
2002 * FIFO order, messages may go to different devices in other orders.
2003 * Some device might be higher priority, or have various "hard" access
2004 * time requirements, for example.
2005 *
2006 * On detection of any fault during the transfer, processing of
2007 * the entire message is aborted, and the device is deselected.
2008 * Until returning from the associated message completion callback,
2009 * no other spi_message queued to that device will be processed.
2010 * (This rule applies equally to all the synchronous transfer calls,
2011 * which are wrappers around this core asynchronous primitive.)
2012 */
2013 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2014 {
2015 struct spi_master *master = spi->master;
2016 int ret;
2017 unsigned long flags;
2018
2019 ret = __spi_validate(spi, message);
2020 if (ret != 0)
2021 return ret;
2022
2023 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2024
2025 ret = __spi_async(spi, message);
2026
2027 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2028
2029 return ret;
2030
2031 }
2032 EXPORT_SYMBOL_GPL(spi_async_locked);
2033
2034
2035 /*-------------------------------------------------------------------------*/
2036
2037 /* Utility methods for SPI master protocol drivers, layered on
2038 * top of the core. Some other utility methods are defined as
2039 * inline functions.
2040 */
2041
2042 static void spi_complete(void *arg)
2043 {
2044 complete(arg);
2045 }
2046
2047 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2048 int bus_locked)
2049 {
2050 DECLARE_COMPLETION_ONSTACK(done);
2051 int status;
2052 struct spi_master *master = spi->master;
2053
2054 message->complete = spi_complete;
2055 message->context = &done;
2056
2057 if (!bus_locked)
2058 mutex_lock(&master->bus_lock_mutex);
2059
2060 status = spi_async_locked(spi, message);
2061
2062 if (!bus_locked)
2063 mutex_unlock(&master->bus_lock_mutex);
2064
2065 if (status == 0) {
2066 wait_for_completion(&done);
2067 status = message->status;
2068 }
2069 message->context = NULL;
2070 return status;
2071 }
2072
2073 /**
2074 * spi_sync - blocking/synchronous SPI data transfers
2075 * @spi: device with which data will be exchanged
2076 * @message: describes the data transfers
2077 * Context: can sleep
2078 *
2079 * This call may only be used from a context that may sleep. The sleep
2080 * is non-interruptible, and has no timeout. Low-overhead controller
2081 * drivers may DMA directly into and out of the message buffers.
2082 *
2083 * Note that the SPI device's chip select is active during the message,
2084 * and then is normally disabled between messages. Drivers for some
2085 * frequently-used devices may want to minimize costs of selecting a chip,
2086 * by leaving it selected in anticipation that the next message will go
2087 * to the same chip. (That may increase power usage.)
2088 *
2089 * Also, the caller is guaranteeing that the memory associated with the
2090 * message will not be freed before this call returns.
2091 *
2092 * It returns zero on success, else a negative error code.
2093 */
2094 int spi_sync(struct spi_device *spi, struct spi_message *message)
2095 {
2096 return __spi_sync(spi, message, 0);
2097 }
2098 EXPORT_SYMBOL_GPL(spi_sync);
2099
2100 /**
2101 * spi_sync_locked - version of spi_sync with exclusive bus usage
2102 * @spi: device with which data will be exchanged
2103 * @message: describes the data transfers
2104 * Context: can sleep
2105 *
2106 * This call may only be used from a context that may sleep. The sleep
2107 * is non-interruptible, and has no timeout. Low-overhead controller
2108 * drivers may DMA directly into and out of the message buffers.
2109 *
2110 * This call should be used by drivers that require exclusive access to the
2111 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2112 * be released by a spi_bus_unlock call when the exclusive access is over.
2113 *
2114 * It returns zero on success, else a negative error code.
2115 */
2116 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2117 {
2118 return __spi_sync(spi, message, 1);
2119 }
2120 EXPORT_SYMBOL_GPL(spi_sync_locked);
2121
2122 /**
2123 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2124 * @master: SPI bus master that should be locked for exclusive bus access
2125 * Context: can sleep
2126 *
2127 * This call may only be used from a context that may sleep. The sleep
2128 * is non-interruptible, and has no timeout.
2129 *
2130 * This call should be used by drivers that require exclusive access to the
2131 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2132 * exclusive access is over. Data transfer must be done by spi_sync_locked
2133 * and spi_async_locked calls when the SPI bus lock is held.
2134 *
2135 * It returns zero on success, else a negative error code.
2136 */
2137 int spi_bus_lock(struct spi_master *master)
2138 {
2139 unsigned long flags;
2140
2141 mutex_lock(&master->bus_lock_mutex);
2142
2143 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2144 master->bus_lock_flag = 1;
2145 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2146
2147 /* mutex remains locked until spi_bus_unlock is called */
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(spi_bus_lock);
2152
2153 /**
2154 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2155 * @master: SPI bus master that was locked for exclusive bus access
2156 * Context: can sleep
2157 *
2158 * This call may only be used from a context that may sleep. The sleep
2159 * is non-interruptible, and has no timeout.
2160 *
2161 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2162 * call.
2163 *
2164 * It returns zero on success, else a negative error code.
2165 */
2166 int spi_bus_unlock(struct spi_master *master)
2167 {
2168 master->bus_lock_flag = 0;
2169
2170 mutex_unlock(&master->bus_lock_mutex);
2171
2172 return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2175
2176 /* portable code must never pass more than 32 bytes */
2177 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2178
2179 static u8 *buf;
2180
2181 /**
2182 * spi_write_then_read - SPI synchronous write followed by read
2183 * @spi: device with which data will be exchanged
2184 * @txbuf: data to be written (need not be dma-safe)
2185 * @n_tx: size of txbuf, in bytes
2186 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2187 * @n_rx: size of rxbuf, in bytes
2188 * Context: can sleep
2189 *
2190 * This performs a half duplex MicroWire style transaction with the
2191 * device, sending txbuf and then reading rxbuf. The return value
2192 * is zero for success, else a negative errno status code.
2193 * This call may only be used from a context that may sleep.
2194 *
2195 * Parameters to this routine are always copied using a small buffer;
2196 * portable code should never use this for more than 32 bytes.
2197 * Performance-sensitive or bulk transfer code should instead use
2198 * spi_{async,sync}() calls with dma-safe buffers.
2199 */
2200 int spi_write_then_read(struct spi_device *spi,
2201 const void *txbuf, unsigned n_tx,
2202 void *rxbuf, unsigned n_rx)
2203 {
2204 static DEFINE_MUTEX(lock);
2205
2206 int status;
2207 struct spi_message message;
2208 struct spi_transfer x[2];
2209 u8 *local_buf;
2210
2211 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2212 * copying here, (as a pure convenience thing), but we can
2213 * keep heap costs out of the hot path unless someone else is
2214 * using the pre-allocated buffer or the transfer is too large.
2215 */
2216 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2217 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2218 GFP_KERNEL | GFP_DMA);
2219 if (!local_buf)
2220 return -ENOMEM;
2221 } else {
2222 local_buf = buf;
2223 }
2224
2225 spi_message_init(&message);
2226 memset(x, 0, sizeof(x));
2227 if (n_tx) {
2228 x[0].len = n_tx;
2229 spi_message_add_tail(&x[0], &message);
2230 }
2231 if (n_rx) {
2232 x[1].len = n_rx;
2233 spi_message_add_tail(&x[1], &message);
2234 }
2235
2236 memcpy(local_buf, txbuf, n_tx);
2237 x[0].tx_buf = local_buf;
2238 x[1].rx_buf = local_buf + n_tx;
2239
2240 /* do the i/o */
2241 status = spi_sync(spi, &message);
2242 if (status == 0)
2243 memcpy(rxbuf, x[1].rx_buf, n_rx);
2244
2245 if (x[0].tx_buf == buf)
2246 mutex_unlock(&lock);
2247 else
2248 kfree(local_buf);
2249
2250 return status;
2251 }
2252 EXPORT_SYMBOL_GPL(spi_write_then_read);
2253
2254 /*-------------------------------------------------------------------------*/
2255
2256 static int __init spi_init(void)
2257 {
2258 int status;
2259
2260 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2261 if (!buf) {
2262 status = -ENOMEM;
2263 goto err0;
2264 }
2265
2266 status = bus_register(&spi_bus_type);
2267 if (status < 0)
2268 goto err1;
2269
2270 status = class_register(&spi_master_class);
2271 if (status < 0)
2272 goto err2;
2273 return 0;
2274
2275 err2:
2276 bus_unregister(&spi_bus_type);
2277 err1:
2278 kfree(buf);
2279 buf = NULL;
2280 err0:
2281 return status;
2282 }
2283
2284 /* board_info is normally registered in arch_initcall(),
2285 * but even essential drivers wait till later
2286 *
2287 * REVISIT only boardinfo really needs static linking. the rest (device and
2288 * driver registration) _could_ be dynamically linked (modular) ... costs
2289 * include needing to have boardinfo data structures be much more public.
2290 */
2291 postcore_initcall(spi_init);
2292
This page took 0.079348 seconds and 5 git commands to generate.