net: s2io: simplify logical constraint
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89 } \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98 { \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105 } \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150 &dev_attr_modalias.attr,
151 NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155 .attrs = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159 &dev_attr_spi_device_messages.attr,
160 &dev_attr_spi_device_transfers.attr,
161 &dev_attr_spi_device_errors.attr,
162 &dev_attr_spi_device_timedout.attr,
163 &dev_attr_spi_device_spi_sync.attr,
164 &dev_attr_spi_device_spi_sync_immediate.attr,
165 &dev_attr_spi_device_spi_async.attr,
166 &dev_attr_spi_device_bytes.attr,
167 &dev_attr_spi_device_bytes_rx.attr,
168 &dev_attr_spi_device_bytes_tx.attr,
169 &dev_attr_spi_device_transfer_bytes_histo0.attr,
170 &dev_attr_spi_device_transfer_bytes_histo1.attr,
171 &dev_attr_spi_device_transfer_bytes_histo2.attr,
172 &dev_attr_spi_device_transfer_bytes_histo3.attr,
173 &dev_attr_spi_device_transfer_bytes_histo4.attr,
174 &dev_attr_spi_device_transfer_bytes_histo5.attr,
175 &dev_attr_spi_device_transfer_bytes_histo6.attr,
176 &dev_attr_spi_device_transfer_bytes_histo7.attr,
177 &dev_attr_spi_device_transfer_bytes_histo8.attr,
178 &dev_attr_spi_device_transfer_bytes_histo9.attr,
179 &dev_attr_spi_device_transfer_bytes_histo10.attr,
180 &dev_attr_spi_device_transfer_bytes_histo11.attr,
181 &dev_attr_spi_device_transfer_bytes_histo12.attr,
182 &dev_attr_spi_device_transfer_bytes_histo13.attr,
183 &dev_attr_spi_device_transfer_bytes_histo14.attr,
184 &dev_attr_spi_device_transfer_bytes_histo15.attr,
185 &dev_attr_spi_device_transfer_bytes_histo16.attr,
186 &dev_attr_spi_device_transfers_split_maxsize.attr,
187 NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191 .name = "statistics",
192 .attrs = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196 &spi_dev_group,
197 &spi_device_statistics_group,
198 NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202 &dev_attr_spi_master_messages.attr,
203 &dev_attr_spi_master_transfers.attr,
204 &dev_attr_spi_master_errors.attr,
205 &dev_attr_spi_master_timedout.attr,
206 &dev_attr_spi_master_spi_sync.attr,
207 &dev_attr_spi_master_spi_sync_immediate.attr,
208 &dev_attr_spi_master_spi_async.attr,
209 &dev_attr_spi_master_bytes.attr,
210 &dev_attr_spi_master_bytes_rx.attr,
211 &dev_attr_spi_master_bytes_tx.attr,
212 &dev_attr_spi_master_transfer_bytes_histo0.attr,
213 &dev_attr_spi_master_transfer_bytes_histo1.attr,
214 &dev_attr_spi_master_transfer_bytes_histo2.attr,
215 &dev_attr_spi_master_transfer_bytes_histo3.attr,
216 &dev_attr_spi_master_transfer_bytes_histo4.attr,
217 &dev_attr_spi_master_transfer_bytes_histo5.attr,
218 &dev_attr_spi_master_transfer_bytes_histo6.attr,
219 &dev_attr_spi_master_transfer_bytes_histo7.attr,
220 &dev_attr_spi_master_transfer_bytes_histo8.attr,
221 &dev_attr_spi_master_transfer_bytes_histo9.attr,
222 &dev_attr_spi_master_transfer_bytes_histo10.attr,
223 &dev_attr_spi_master_transfer_bytes_histo11.attr,
224 &dev_attr_spi_master_transfer_bytes_histo12.attr,
225 &dev_attr_spi_master_transfer_bytes_histo13.attr,
226 &dev_attr_spi_master_transfer_bytes_histo14.attr,
227 &dev_attr_spi_master_transfer_bytes_histo15.attr,
228 &dev_attr_spi_master_transfer_bytes_histo16.attr,
229 &dev_attr_spi_master_transfers_split_maxsize.attr,
230 NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234 .name = "statistics",
235 .attrs = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239 &spi_master_statistics_group,
240 NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 struct spi_transfer *xfer,
245 struct spi_master *master)
246 {
247 unsigned long flags;
248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250 if (l2len < 0)
251 l2len = 0;
252
253 spin_lock_irqsave(&stats->lock, flags);
254
255 stats->transfers++;
256 stats->transfer_bytes_histo[l2len]++;
257
258 stats->bytes += xfer->len;
259 if ((xfer->tx_buf) &&
260 (xfer->tx_buf != master->dummy_tx))
261 stats->bytes_tx += xfer->len;
262 if ((xfer->rx_buf) &&
263 (xfer->rx_buf != master->dummy_rx))
264 stats->bytes_rx += xfer->len;
265
266 spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271 * and the sysfs version makes coldplug work too.
272 */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 const struct spi_device *sdev)
276 {
277 while (id->name[0]) {
278 if (!strcmp(sdev->modalias, id->name))
279 return id;
280 id++;
281 }
282 return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289 return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 const struct spi_device *spi = to_spi_device(dev);
296 const struct spi_driver *sdrv = to_spi_driver(drv);
297
298 /* Attempt an OF style match */
299 if (of_driver_match_device(dev, drv))
300 return 1;
301
302 /* Then try ACPI */
303 if (acpi_driver_match_device(dev, drv))
304 return 1;
305
306 if (sdrv->id_table)
307 return !!spi_match_id(sdrv->id_table, spi);
308
309 return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 const struct spi_device *spi = to_spi_device(dev);
315 int rc;
316
317 rc = acpi_device_uevent_modalias(dev, env);
318 if (rc != -ENODEV)
319 return rc;
320
321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326 .name = "spi",
327 .dev_groups = spi_dev_groups,
328 .match = spi_match_device,
329 .uevent = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
337 struct spi_device *spi = to_spi_device(dev);
338 int ret;
339
340 ret = of_clk_set_defaults(dev->of_node, false);
341 if (ret)
342 return ret;
343
344 if (dev->of_node) {
345 spi->irq = of_irq_get(dev->of_node, 0);
346 if (spi->irq == -EPROBE_DEFER)
347 return -EPROBE_DEFER;
348 if (spi->irq < 0)
349 spi->irq = 0;
350 }
351
352 ret = dev_pm_domain_attach(dev, true);
353 if (ret != -EPROBE_DEFER) {
354 ret = sdrv->probe(spi);
355 if (ret)
356 dev_pm_domain_detach(dev, true);
357 }
358
359 return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
365 int ret;
366
367 ret = sdrv->remove(to_spi_device(dev));
368 dev_pm_domain_detach(dev, true);
369
370 return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
376
377 sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381 * __spi_register_driver - register a SPI driver
382 * @owner: owner module of the driver to register
383 * @sdrv: the driver to register
384 * Context: can sleep
385 *
386 * Return: zero on success, else a negative error code.
387 */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 sdrv->driver.owner = owner;
391 sdrv->driver.bus = &spi_bus_type;
392 if (sdrv->probe)
393 sdrv->driver.probe = spi_drv_probe;
394 if (sdrv->remove)
395 sdrv->driver.remove = spi_drv_remove;
396 if (sdrv->shutdown)
397 sdrv->driver.shutdown = spi_drv_shutdown;
398 return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405 * would make them board-specific. Similarly with SPI master drivers.
406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
407 * with other readonly (flashable) information about mainboard devices.
408 */
409
410 struct boardinfo {
411 struct list_head list;
412 struct spi_board_info board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419 * Used to protect add/del opertion for board_info list and
420 * spi_master list, and their matching process
421 */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425 * spi_alloc_device - Allocate a new SPI device
426 * @master: Controller to which device is connected
427 * Context: can sleep
428 *
429 * Allows a driver to allocate and initialize a spi_device without
430 * registering it immediately. This allows a driver to directly
431 * fill the spi_device with device parameters before calling
432 * spi_add_device() on it.
433 *
434 * Caller is responsible to call spi_add_device() on the returned
435 * spi_device structure to add it to the SPI master. If the caller
436 * needs to discard the spi_device without adding it, then it should
437 * call spi_dev_put() on it.
438 *
439 * Return: a pointer to the new device, or NULL.
440 */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 struct spi_device *spi;
444
445 if (!spi_master_get(master))
446 return NULL;
447
448 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 if (!spi) {
450 spi_master_put(master);
451 return NULL;
452 }
453
454 spi->master = master;
455 spi->dev.parent = &master->dev;
456 spi->dev.bus = &spi_bus_type;
457 spi->dev.release = spidev_release;
458 spi->cs_gpio = -ENOENT;
459
460 spin_lock_init(&spi->statistics.lock);
461
462 device_initialize(&spi->dev);
463 return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471 if (adev) {
472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 return;
474 }
475
476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 struct spi_device *spi = to_spi_device(dev);
483 struct spi_device *new_spi = data;
484
485 if (spi->master == new_spi->master &&
486 spi->chip_select == new_spi->chip_select)
487 return -EBUSY;
488 return 0;
489 }
490
491 /**
492 * spi_add_device - Add spi_device allocated with spi_alloc_device
493 * @spi: spi_device to register
494 *
495 * Companion function to spi_alloc_device. Devices allocated with
496 * spi_alloc_device can be added onto the spi bus with this function.
497 *
498 * Return: 0 on success; negative errno on failure
499 */
500 int spi_add_device(struct spi_device *spi)
501 {
502 static DEFINE_MUTEX(spi_add_lock);
503 struct spi_master *master = spi->master;
504 struct device *dev = master->dev.parent;
505 int status;
506
507 /* Chipselects are numbered 0..max; validate. */
508 if (spi->chip_select >= master->num_chipselect) {
509 dev_err(dev, "cs%d >= max %d\n",
510 spi->chip_select,
511 master->num_chipselect);
512 return -EINVAL;
513 }
514
515 /* Set the bus ID string */
516 spi_dev_set_name(spi);
517
518 /* We need to make sure there's no other device with this
519 * chipselect **BEFORE** we call setup(), else we'll trash
520 * its configuration. Lock against concurrent add() calls.
521 */
522 mutex_lock(&spi_add_lock);
523
524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 if (status) {
526 dev_err(dev, "chipselect %d already in use\n",
527 spi->chip_select);
528 goto done;
529 }
530
531 if (master->cs_gpios)
532 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534 /* Drivers may modify this initial i/o setup, but will
535 * normally rely on the device being setup. Devices
536 * using SPI_CS_HIGH can't coexist well otherwise...
537 */
538 status = spi_setup(spi);
539 if (status < 0) {
540 dev_err(dev, "can't setup %s, status %d\n",
541 dev_name(&spi->dev), status);
542 goto done;
543 }
544
545 /* Device may be bound to an active driver when this returns */
546 status = device_add(&spi->dev);
547 if (status < 0)
548 dev_err(dev, "can't add %s, status %d\n",
549 dev_name(&spi->dev), status);
550 else
551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554 mutex_unlock(&spi_add_lock);
555 return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560 * spi_new_device - instantiate one new SPI device
561 * @master: Controller to which device is connected
562 * @chip: Describes the SPI device
563 * Context: can sleep
564 *
565 * On typical mainboards, this is purely internal; and it's not needed
566 * after board init creates the hard-wired devices. Some development
567 * platforms may not be able to use spi_register_board_info though, and
568 * this is exported so that for example a USB or parport based adapter
569 * driver could add devices (which it would learn about out-of-band).
570 *
571 * Return: the new device, or NULL.
572 */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 struct spi_board_info *chip)
575 {
576 struct spi_device *proxy;
577 int status;
578
579 /* NOTE: caller did any chip->bus_num checks necessary.
580 *
581 * Also, unless we change the return value convention to use
582 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 * suggests syslogged diagnostics are best here (ugh).
584 */
585
586 proxy = spi_alloc_device(master);
587 if (!proxy)
588 return NULL;
589
590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592 proxy->chip_select = chip->chip_select;
593 proxy->max_speed_hz = chip->max_speed_hz;
594 proxy->mode = chip->mode;
595 proxy->irq = chip->irq;
596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 proxy->dev.platform_data = (void *) chip->platform_data;
598 proxy->controller_data = chip->controller_data;
599 proxy->controller_state = NULL;
600
601 status = spi_add_device(proxy);
602 if (status < 0) {
603 spi_dev_put(proxy);
604 return NULL;
605 }
606
607 return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612 * spi_unregister_device - unregister a single SPI device
613 * @spi: spi_device to unregister
614 *
615 * Start making the passed SPI device vanish. Normally this would be handled
616 * by spi_unregister_master().
617 */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 if (!spi)
621 return;
622
623 if (spi->dev.of_node)
624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 if (ACPI_COMPANION(&spi->dev))
626 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
627 device_unregister(&spi->dev);
628 }
629 EXPORT_SYMBOL_GPL(spi_unregister_device);
630
631 static void spi_match_master_to_boardinfo(struct spi_master *master,
632 struct spi_board_info *bi)
633 {
634 struct spi_device *dev;
635
636 if (master->bus_num != bi->bus_num)
637 return;
638
639 dev = spi_new_device(master, bi);
640 if (!dev)
641 dev_err(master->dev.parent, "can't create new device for %s\n",
642 bi->modalias);
643 }
644
645 /**
646 * spi_register_board_info - register SPI devices for a given board
647 * @info: array of chip descriptors
648 * @n: how many descriptors are provided
649 * Context: can sleep
650 *
651 * Board-specific early init code calls this (probably during arch_initcall)
652 * with segments of the SPI device table. Any device nodes are created later,
653 * after the relevant parent SPI controller (bus_num) is defined. We keep
654 * this table of devices forever, so that reloading a controller driver will
655 * not make Linux forget about these hard-wired devices.
656 *
657 * Other code can also call this, e.g. a particular add-on board might provide
658 * SPI devices through its expansion connector, so code initializing that board
659 * would naturally declare its SPI devices.
660 *
661 * The board info passed can safely be __initdata ... but be careful of
662 * any embedded pointers (platform_data, etc), they're copied as-is.
663 *
664 * Return: zero on success, else a negative error code.
665 */
666 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
667 {
668 struct boardinfo *bi;
669 int i;
670
671 if (!n)
672 return -EINVAL;
673
674 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
675 if (!bi)
676 return -ENOMEM;
677
678 for (i = 0; i < n; i++, bi++, info++) {
679 struct spi_master *master;
680
681 memcpy(&bi->board_info, info, sizeof(*info));
682 mutex_lock(&board_lock);
683 list_add_tail(&bi->list, &board_list);
684 list_for_each_entry(master, &spi_master_list, list)
685 spi_match_master_to_boardinfo(master, &bi->board_info);
686 mutex_unlock(&board_lock);
687 }
688
689 return 0;
690 }
691
692 /*-------------------------------------------------------------------------*/
693
694 static void spi_set_cs(struct spi_device *spi, bool enable)
695 {
696 if (spi->mode & SPI_CS_HIGH)
697 enable = !enable;
698
699 if (gpio_is_valid(spi->cs_gpio))
700 gpio_set_value(spi->cs_gpio, !enable);
701 else if (spi->master->set_cs)
702 spi->master->set_cs(spi, !enable);
703 }
704
705 #ifdef CONFIG_HAS_DMA
706 static int spi_map_buf(struct spi_master *master, struct device *dev,
707 struct sg_table *sgt, void *buf, size_t len,
708 enum dma_data_direction dir)
709 {
710 const bool vmalloced_buf = is_vmalloc_addr(buf);
711 unsigned int max_seg_size = dma_get_max_seg_size(dev);
712 int desc_len;
713 int sgs;
714 struct page *vm_page;
715 void *sg_buf;
716 size_t min;
717 int i, ret;
718
719 if (vmalloced_buf) {
720 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
721 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
722 } else if (virt_addr_valid(buf)) {
723 desc_len = min_t(int, max_seg_size, master->max_dma_len);
724 sgs = DIV_ROUND_UP(len, desc_len);
725 } else {
726 return -EINVAL;
727 }
728
729 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
730 if (ret != 0)
731 return ret;
732
733 for (i = 0; i < sgs; i++) {
734
735 if (vmalloced_buf) {
736 min = min_t(size_t,
737 len, desc_len - offset_in_page(buf));
738 vm_page = vmalloc_to_page(buf);
739 if (!vm_page) {
740 sg_free_table(sgt);
741 return -ENOMEM;
742 }
743 sg_set_page(&sgt->sgl[i], vm_page,
744 min, offset_in_page(buf));
745 } else {
746 min = min_t(size_t, len, desc_len);
747 sg_buf = buf;
748 sg_set_buf(&sgt->sgl[i], sg_buf, min);
749 }
750
751 buf += min;
752 len -= min;
753 }
754
755 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
756 if (!ret)
757 ret = -ENOMEM;
758 if (ret < 0) {
759 sg_free_table(sgt);
760 return ret;
761 }
762
763 sgt->nents = ret;
764
765 return 0;
766 }
767
768 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
769 struct sg_table *sgt, enum dma_data_direction dir)
770 {
771 if (sgt->orig_nents) {
772 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
773 sg_free_table(sgt);
774 }
775 }
776
777 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
778 {
779 struct device *tx_dev, *rx_dev;
780 struct spi_transfer *xfer;
781 int ret;
782
783 if (!master->can_dma)
784 return 0;
785
786 if (master->dma_tx)
787 tx_dev = master->dma_tx->device->dev;
788 else
789 tx_dev = &master->dev;
790
791 if (master->dma_rx)
792 rx_dev = master->dma_rx->device->dev;
793 else
794 rx_dev = &master->dev;
795
796 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
797 if (!master->can_dma(master, msg->spi, xfer))
798 continue;
799
800 if (xfer->tx_buf != NULL) {
801 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
802 (void *)xfer->tx_buf, xfer->len,
803 DMA_TO_DEVICE);
804 if (ret != 0)
805 return ret;
806 }
807
808 if (xfer->rx_buf != NULL) {
809 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
810 xfer->rx_buf, xfer->len,
811 DMA_FROM_DEVICE);
812 if (ret != 0) {
813 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
814 DMA_TO_DEVICE);
815 return ret;
816 }
817 }
818 }
819
820 master->cur_msg_mapped = true;
821
822 return 0;
823 }
824
825 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
826 {
827 struct spi_transfer *xfer;
828 struct device *tx_dev, *rx_dev;
829
830 if (!master->cur_msg_mapped || !master->can_dma)
831 return 0;
832
833 if (master->dma_tx)
834 tx_dev = master->dma_tx->device->dev;
835 else
836 tx_dev = &master->dev;
837
838 if (master->dma_rx)
839 rx_dev = master->dma_rx->device->dev;
840 else
841 rx_dev = &master->dev;
842
843 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
844 if (!master->can_dma(master, msg->spi, xfer))
845 continue;
846
847 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
848 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
849 }
850
851 return 0;
852 }
853 #else /* !CONFIG_HAS_DMA */
854 static inline int spi_map_buf(struct spi_master *master,
855 struct device *dev, struct sg_table *sgt,
856 void *buf, size_t len,
857 enum dma_data_direction dir)
858 {
859 return -EINVAL;
860 }
861
862 static inline void spi_unmap_buf(struct spi_master *master,
863 struct device *dev, struct sg_table *sgt,
864 enum dma_data_direction dir)
865 {
866 }
867
868 static inline int __spi_map_msg(struct spi_master *master,
869 struct spi_message *msg)
870 {
871 return 0;
872 }
873
874 static inline int __spi_unmap_msg(struct spi_master *master,
875 struct spi_message *msg)
876 {
877 return 0;
878 }
879 #endif /* !CONFIG_HAS_DMA */
880
881 static inline int spi_unmap_msg(struct spi_master *master,
882 struct spi_message *msg)
883 {
884 struct spi_transfer *xfer;
885
886 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
887 /*
888 * Restore the original value of tx_buf or rx_buf if they are
889 * NULL.
890 */
891 if (xfer->tx_buf == master->dummy_tx)
892 xfer->tx_buf = NULL;
893 if (xfer->rx_buf == master->dummy_rx)
894 xfer->rx_buf = NULL;
895 }
896
897 return __spi_unmap_msg(master, msg);
898 }
899
900 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
901 {
902 struct spi_transfer *xfer;
903 void *tmp;
904 unsigned int max_tx, max_rx;
905
906 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
907 max_tx = 0;
908 max_rx = 0;
909
910 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
911 if ((master->flags & SPI_MASTER_MUST_TX) &&
912 !xfer->tx_buf)
913 max_tx = max(xfer->len, max_tx);
914 if ((master->flags & SPI_MASTER_MUST_RX) &&
915 !xfer->rx_buf)
916 max_rx = max(xfer->len, max_rx);
917 }
918
919 if (max_tx) {
920 tmp = krealloc(master->dummy_tx, max_tx,
921 GFP_KERNEL | GFP_DMA);
922 if (!tmp)
923 return -ENOMEM;
924 master->dummy_tx = tmp;
925 memset(tmp, 0, max_tx);
926 }
927
928 if (max_rx) {
929 tmp = krealloc(master->dummy_rx, max_rx,
930 GFP_KERNEL | GFP_DMA);
931 if (!tmp)
932 return -ENOMEM;
933 master->dummy_rx = tmp;
934 }
935
936 if (max_tx || max_rx) {
937 list_for_each_entry(xfer, &msg->transfers,
938 transfer_list) {
939 if (!xfer->tx_buf)
940 xfer->tx_buf = master->dummy_tx;
941 if (!xfer->rx_buf)
942 xfer->rx_buf = master->dummy_rx;
943 }
944 }
945 }
946
947 return __spi_map_msg(master, msg);
948 }
949
950 /*
951 * spi_transfer_one_message - Default implementation of transfer_one_message()
952 *
953 * This is a standard implementation of transfer_one_message() for
954 * drivers which implement a transfer_one() operation. It provides
955 * standard handling of delays and chip select management.
956 */
957 static int spi_transfer_one_message(struct spi_master *master,
958 struct spi_message *msg)
959 {
960 struct spi_transfer *xfer;
961 bool keep_cs = false;
962 int ret = 0;
963 unsigned long ms = 1;
964 struct spi_statistics *statm = &master->statistics;
965 struct spi_statistics *stats = &msg->spi->statistics;
966
967 spi_set_cs(msg->spi, true);
968
969 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
970 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
971
972 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
973 trace_spi_transfer_start(msg, xfer);
974
975 spi_statistics_add_transfer_stats(statm, xfer, master);
976 spi_statistics_add_transfer_stats(stats, xfer, master);
977
978 if (xfer->tx_buf || xfer->rx_buf) {
979 reinit_completion(&master->xfer_completion);
980
981 ret = master->transfer_one(master, msg->spi, xfer);
982 if (ret < 0) {
983 SPI_STATISTICS_INCREMENT_FIELD(statm,
984 errors);
985 SPI_STATISTICS_INCREMENT_FIELD(stats,
986 errors);
987 dev_err(&msg->spi->dev,
988 "SPI transfer failed: %d\n", ret);
989 goto out;
990 }
991
992 if (ret > 0) {
993 ret = 0;
994 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
995 ms += ms + 100; /* some tolerance */
996
997 ms = wait_for_completion_timeout(&master->xfer_completion,
998 msecs_to_jiffies(ms));
999 }
1000
1001 if (ms == 0) {
1002 SPI_STATISTICS_INCREMENT_FIELD(statm,
1003 timedout);
1004 SPI_STATISTICS_INCREMENT_FIELD(stats,
1005 timedout);
1006 dev_err(&msg->spi->dev,
1007 "SPI transfer timed out\n");
1008 msg->status = -ETIMEDOUT;
1009 }
1010 } else {
1011 if (xfer->len)
1012 dev_err(&msg->spi->dev,
1013 "Bufferless transfer has length %u\n",
1014 xfer->len);
1015 }
1016
1017 trace_spi_transfer_stop(msg, xfer);
1018
1019 if (msg->status != -EINPROGRESS)
1020 goto out;
1021
1022 if (xfer->delay_usecs)
1023 udelay(xfer->delay_usecs);
1024
1025 if (xfer->cs_change) {
1026 if (list_is_last(&xfer->transfer_list,
1027 &msg->transfers)) {
1028 keep_cs = true;
1029 } else {
1030 spi_set_cs(msg->spi, false);
1031 udelay(10);
1032 spi_set_cs(msg->spi, true);
1033 }
1034 }
1035
1036 msg->actual_length += xfer->len;
1037 }
1038
1039 out:
1040 if (ret != 0 || !keep_cs)
1041 spi_set_cs(msg->spi, false);
1042
1043 if (msg->status == -EINPROGRESS)
1044 msg->status = ret;
1045
1046 if (msg->status && master->handle_err)
1047 master->handle_err(master, msg);
1048
1049 spi_res_release(master, msg);
1050
1051 spi_finalize_current_message(master);
1052
1053 return ret;
1054 }
1055
1056 /**
1057 * spi_finalize_current_transfer - report completion of a transfer
1058 * @master: the master reporting completion
1059 *
1060 * Called by SPI drivers using the core transfer_one_message()
1061 * implementation to notify it that the current interrupt driven
1062 * transfer has finished and the next one may be scheduled.
1063 */
1064 void spi_finalize_current_transfer(struct spi_master *master)
1065 {
1066 complete(&master->xfer_completion);
1067 }
1068 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1069
1070 /**
1071 * __spi_pump_messages - function which processes spi message queue
1072 * @master: master to process queue for
1073 * @in_kthread: true if we are in the context of the message pump thread
1074 *
1075 * This function checks if there is any spi message in the queue that
1076 * needs processing and if so call out to the driver to initialize hardware
1077 * and transfer each message.
1078 *
1079 * Note that it is called both from the kthread itself and also from
1080 * inside spi_sync(); the queue extraction handling at the top of the
1081 * function should deal with this safely.
1082 */
1083 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1084 {
1085 unsigned long flags;
1086 bool was_busy = false;
1087 int ret;
1088
1089 /* Lock queue */
1090 spin_lock_irqsave(&master->queue_lock, flags);
1091
1092 /* Make sure we are not already running a message */
1093 if (master->cur_msg) {
1094 spin_unlock_irqrestore(&master->queue_lock, flags);
1095 return;
1096 }
1097
1098 /* If another context is idling the device then defer */
1099 if (master->idling) {
1100 queue_kthread_work(&master->kworker, &master->pump_messages);
1101 spin_unlock_irqrestore(&master->queue_lock, flags);
1102 return;
1103 }
1104
1105 /* Check if the queue is idle */
1106 if (list_empty(&master->queue) || !master->running) {
1107 if (!master->busy) {
1108 spin_unlock_irqrestore(&master->queue_lock, flags);
1109 return;
1110 }
1111
1112 /* Only do teardown in the thread */
1113 if (!in_kthread) {
1114 queue_kthread_work(&master->kworker,
1115 &master->pump_messages);
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117 return;
1118 }
1119
1120 master->busy = false;
1121 master->idling = true;
1122 spin_unlock_irqrestore(&master->queue_lock, flags);
1123
1124 kfree(master->dummy_rx);
1125 master->dummy_rx = NULL;
1126 kfree(master->dummy_tx);
1127 master->dummy_tx = NULL;
1128 if (master->unprepare_transfer_hardware &&
1129 master->unprepare_transfer_hardware(master))
1130 dev_err(&master->dev,
1131 "failed to unprepare transfer hardware\n");
1132 if (master->auto_runtime_pm) {
1133 pm_runtime_mark_last_busy(master->dev.parent);
1134 pm_runtime_put_autosuspend(master->dev.parent);
1135 }
1136 trace_spi_master_idle(master);
1137
1138 spin_lock_irqsave(&master->queue_lock, flags);
1139 master->idling = false;
1140 spin_unlock_irqrestore(&master->queue_lock, flags);
1141 return;
1142 }
1143
1144 /* Extract head of queue */
1145 master->cur_msg =
1146 list_first_entry(&master->queue, struct spi_message, queue);
1147
1148 list_del_init(&master->cur_msg->queue);
1149 if (master->busy)
1150 was_busy = true;
1151 else
1152 master->busy = true;
1153 spin_unlock_irqrestore(&master->queue_lock, flags);
1154
1155 mutex_lock(&master->io_mutex);
1156
1157 if (!was_busy && master->auto_runtime_pm) {
1158 ret = pm_runtime_get_sync(master->dev.parent);
1159 if (ret < 0) {
1160 dev_err(&master->dev, "Failed to power device: %d\n",
1161 ret);
1162 return;
1163 }
1164 }
1165
1166 if (!was_busy)
1167 trace_spi_master_busy(master);
1168
1169 if (!was_busy && master->prepare_transfer_hardware) {
1170 ret = master->prepare_transfer_hardware(master);
1171 if (ret) {
1172 dev_err(&master->dev,
1173 "failed to prepare transfer hardware\n");
1174
1175 if (master->auto_runtime_pm)
1176 pm_runtime_put(master->dev.parent);
1177 return;
1178 }
1179 }
1180
1181 trace_spi_message_start(master->cur_msg);
1182
1183 if (master->prepare_message) {
1184 ret = master->prepare_message(master, master->cur_msg);
1185 if (ret) {
1186 dev_err(&master->dev,
1187 "failed to prepare message: %d\n", ret);
1188 master->cur_msg->status = ret;
1189 spi_finalize_current_message(master);
1190 goto out;
1191 }
1192 master->cur_msg_prepared = true;
1193 }
1194
1195 ret = spi_map_msg(master, master->cur_msg);
1196 if (ret) {
1197 master->cur_msg->status = ret;
1198 spi_finalize_current_message(master);
1199 goto out;
1200 }
1201
1202 ret = master->transfer_one_message(master, master->cur_msg);
1203 if (ret) {
1204 dev_err(&master->dev,
1205 "failed to transfer one message from queue\n");
1206 goto out;
1207 }
1208
1209 out:
1210 mutex_unlock(&master->io_mutex);
1211
1212 /* Prod the scheduler in case transfer_one() was busy waiting */
1213 if (!ret)
1214 cond_resched();
1215 }
1216
1217 /**
1218 * spi_pump_messages - kthread work function which processes spi message queue
1219 * @work: pointer to kthread work struct contained in the master struct
1220 */
1221 static void spi_pump_messages(struct kthread_work *work)
1222 {
1223 struct spi_master *master =
1224 container_of(work, struct spi_master, pump_messages);
1225
1226 __spi_pump_messages(master, true);
1227 }
1228
1229 static int spi_init_queue(struct spi_master *master)
1230 {
1231 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1232
1233 master->running = false;
1234 master->busy = false;
1235
1236 init_kthread_worker(&master->kworker);
1237 master->kworker_task = kthread_run(kthread_worker_fn,
1238 &master->kworker, "%s",
1239 dev_name(&master->dev));
1240 if (IS_ERR(master->kworker_task)) {
1241 dev_err(&master->dev, "failed to create message pump task\n");
1242 return PTR_ERR(master->kworker_task);
1243 }
1244 init_kthread_work(&master->pump_messages, spi_pump_messages);
1245
1246 /*
1247 * Master config will indicate if this controller should run the
1248 * message pump with high (realtime) priority to reduce the transfer
1249 * latency on the bus by minimising the delay between a transfer
1250 * request and the scheduling of the message pump thread. Without this
1251 * setting the message pump thread will remain at default priority.
1252 */
1253 if (master->rt) {
1254 dev_info(&master->dev,
1255 "will run message pump with realtime priority\n");
1256 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1257 }
1258
1259 return 0;
1260 }
1261
1262 /**
1263 * spi_get_next_queued_message() - called by driver to check for queued
1264 * messages
1265 * @master: the master to check for queued messages
1266 *
1267 * If there are more messages in the queue, the next message is returned from
1268 * this call.
1269 *
1270 * Return: the next message in the queue, else NULL if the queue is empty.
1271 */
1272 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1273 {
1274 struct spi_message *next;
1275 unsigned long flags;
1276
1277 /* get a pointer to the next message, if any */
1278 spin_lock_irqsave(&master->queue_lock, flags);
1279 next = list_first_entry_or_null(&master->queue, struct spi_message,
1280 queue);
1281 spin_unlock_irqrestore(&master->queue_lock, flags);
1282
1283 return next;
1284 }
1285 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1286
1287 /**
1288 * spi_finalize_current_message() - the current message is complete
1289 * @master: the master to return the message to
1290 *
1291 * Called by the driver to notify the core that the message in the front of the
1292 * queue is complete and can be removed from the queue.
1293 */
1294 void spi_finalize_current_message(struct spi_master *master)
1295 {
1296 struct spi_message *mesg;
1297 unsigned long flags;
1298 int ret;
1299
1300 spin_lock_irqsave(&master->queue_lock, flags);
1301 mesg = master->cur_msg;
1302 spin_unlock_irqrestore(&master->queue_lock, flags);
1303
1304 spi_unmap_msg(master, mesg);
1305
1306 if (master->cur_msg_prepared && master->unprepare_message) {
1307 ret = master->unprepare_message(master, mesg);
1308 if (ret) {
1309 dev_err(&master->dev,
1310 "failed to unprepare message: %d\n", ret);
1311 }
1312 }
1313
1314 spin_lock_irqsave(&master->queue_lock, flags);
1315 master->cur_msg = NULL;
1316 master->cur_msg_prepared = false;
1317 queue_kthread_work(&master->kworker, &master->pump_messages);
1318 spin_unlock_irqrestore(&master->queue_lock, flags);
1319
1320 trace_spi_message_done(mesg);
1321
1322 mesg->state = NULL;
1323 if (mesg->complete)
1324 mesg->complete(mesg->context);
1325 }
1326 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1327
1328 static int spi_start_queue(struct spi_master *master)
1329 {
1330 unsigned long flags;
1331
1332 spin_lock_irqsave(&master->queue_lock, flags);
1333
1334 if (master->running || master->busy) {
1335 spin_unlock_irqrestore(&master->queue_lock, flags);
1336 return -EBUSY;
1337 }
1338
1339 master->running = true;
1340 master->cur_msg = NULL;
1341 spin_unlock_irqrestore(&master->queue_lock, flags);
1342
1343 queue_kthread_work(&master->kworker, &master->pump_messages);
1344
1345 return 0;
1346 }
1347
1348 static int spi_stop_queue(struct spi_master *master)
1349 {
1350 unsigned long flags;
1351 unsigned limit = 500;
1352 int ret = 0;
1353
1354 spin_lock_irqsave(&master->queue_lock, flags);
1355
1356 /*
1357 * This is a bit lame, but is optimized for the common execution path.
1358 * A wait_queue on the master->busy could be used, but then the common
1359 * execution path (pump_messages) would be required to call wake_up or
1360 * friends on every SPI message. Do this instead.
1361 */
1362 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1363 spin_unlock_irqrestore(&master->queue_lock, flags);
1364 usleep_range(10000, 11000);
1365 spin_lock_irqsave(&master->queue_lock, flags);
1366 }
1367
1368 if (!list_empty(&master->queue) || master->busy)
1369 ret = -EBUSY;
1370 else
1371 master->running = false;
1372
1373 spin_unlock_irqrestore(&master->queue_lock, flags);
1374
1375 if (ret) {
1376 dev_warn(&master->dev,
1377 "could not stop message queue\n");
1378 return ret;
1379 }
1380 return ret;
1381 }
1382
1383 static int spi_destroy_queue(struct spi_master *master)
1384 {
1385 int ret;
1386
1387 ret = spi_stop_queue(master);
1388
1389 /*
1390 * flush_kthread_worker will block until all work is done.
1391 * If the reason that stop_queue timed out is that the work will never
1392 * finish, then it does no good to call flush/stop thread, so
1393 * return anyway.
1394 */
1395 if (ret) {
1396 dev_err(&master->dev, "problem destroying queue\n");
1397 return ret;
1398 }
1399
1400 flush_kthread_worker(&master->kworker);
1401 kthread_stop(master->kworker_task);
1402
1403 return 0;
1404 }
1405
1406 static int __spi_queued_transfer(struct spi_device *spi,
1407 struct spi_message *msg,
1408 bool need_pump)
1409 {
1410 struct spi_master *master = spi->master;
1411 unsigned long flags;
1412
1413 spin_lock_irqsave(&master->queue_lock, flags);
1414
1415 if (!master->running) {
1416 spin_unlock_irqrestore(&master->queue_lock, flags);
1417 return -ESHUTDOWN;
1418 }
1419 msg->actual_length = 0;
1420 msg->status = -EINPROGRESS;
1421
1422 list_add_tail(&msg->queue, &master->queue);
1423 if (!master->busy && need_pump)
1424 queue_kthread_work(&master->kworker, &master->pump_messages);
1425
1426 spin_unlock_irqrestore(&master->queue_lock, flags);
1427 return 0;
1428 }
1429
1430 /**
1431 * spi_queued_transfer - transfer function for queued transfers
1432 * @spi: spi device which is requesting transfer
1433 * @msg: spi message which is to handled is queued to driver queue
1434 *
1435 * Return: zero on success, else a negative error code.
1436 */
1437 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1438 {
1439 return __spi_queued_transfer(spi, msg, true);
1440 }
1441
1442 static int spi_master_initialize_queue(struct spi_master *master)
1443 {
1444 int ret;
1445
1446 master->transfer = spi_queued_transfer;
1447 if (!master->transfer_one_message)
1448 master->transfer_one_message = spi_transfer_one_message;
1449
1450 /* Initialize and start queue */
1451 ret = spi_init_queue(master);
1452 if (ret) {
1453 dev_err(&master->dev, "problem initializing queue\n");
1454 goto err_init_queue;
1455 }
1456 master->queued = true;
1457 ret = spi_start_queue(master);
1458 if (ret) {
1459 dev_err(&master->dev, "problem starting queue\n");
1460 goto err_start_queue;
1461 }
1462
1463 return 0;
1464
1465 err_start_queue:
1466 spi_destroy_queue(master);
1467 err_init_queue:
1468 return ret;
1469 }
1470
1471 /*-------------------------------------------------------------------------*/
1472
1473 #if defined(CONFIG_OF)
1474 static struct spi_device *
1475 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1476 {
1477 struct spi_device *spi;
1478 int rc;
1479 u32 value;
1480
1481 /* Alloc an spi_device */
1482 spi = spi_alloc_device(master);
1483 if (!spi) {
1484 dev_err(&master->dev, "spi_device alloc error for %s\n",
1485 nc->full_name);
1486 rc = -ENOMEM;
1487 goto err_out;
1488 }
1489
1490 /* Select device driver */
1491 rc = of_modalias_node(nc, spi->modalias,
1492 sizeof(spi->modalias));
1493 if (rc < 0) {
1494 dev_err(&master->dev, "cannot find modalias for %s\n",
1495 nc->full_name);
1496 goto err_out;
1497 }
1498
1499 /* Device address */
1500 rc = of_property_read_u32(nc, "reg", &value);
1501 if (rc) {
1502 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1503 nc->full_name, rc);
1504 goto err_out;
1505 }
1506 spi->chip_select = value;
1507
1508 /* Mode (clock phase/polarity/etc.) */
1509 if (of_find_property(nc, "spi-cpha", NULL))
1510 spi->mode |= SPI_CPHA;
1511 if (of_find_property(nc, "spi-cpol", NULL))
1512 spi->mode |= SPI_CPOL;
1513 if (of_find_property(nc, "spi-cs-high", NULL))
1514 spi->mode |= SPI_CS_HIGH;
1515 if (of_find_property(nc, "spi-3wire", NULL))
1516 spi->mode |= SPI_3WIRE;
1517 if (of_find_property(nc, "spi-lsb-first", NULL))
1518 spi->mode |= SPI_LSB_FIRST;
1519
1520 /* Device DUAL/QUAD mode */
1521 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1522 switch (value) {
1523 case 1:
1524 break;
1525 case 2:
1526 spi->mode |= SPI_TX_DUAL;
1527 break;
1528 case 4:
1529 spi->mode |= SPI_TX_QUAD;
1530 break;
1531 default:
1532 dev_warn(&master->dev,
1533 "spi-tx-bus-width %d not supported\n",
1534 value);
1535 break;
1536 }
1537 }
1538
1539 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1540 switch (value) {
1541 case 1:
1542 break;
1543 case 2:
1544 spi->mode |= SPI_RX_DUAL;
1545 break;
1546 case 4:
1547 spi->mode |= SPI_RX_QUAD;
1548 break;
1549 default:
1550 dev_warn(&master->dev,
1551 "spi-rx-bus-width %d not supported\n",
1552 value);
1553 break;
1554 }
1555 }
1556
1557 /* Device speed */
1558 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1559 if (rc) {
1560 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1561 nc->full_name, rc);
1562 goto err_out;
1563 }
1564 spi->max_speed_hz = value;
1565
1566 /* Store a pointer to the node in the device structure */
1567 of_node_get(nc);
1568 spi->dev.of_node = nc;
1569
1570 /* Register the new device */
1571 rc = spi_add_device(spi);
1572 if (rc) {
1573 dev_err(&master->dev, "spi_device register error %s\n",
1574 nc->full_name);
1575 goto err_out;
1576 }
1577
1578 return spi;
1579
1580 err_out:
1581 spi_dev_put(spi);
1582 return ERR_PTR(rc);
1583 }
1584
1585 /**
1586 * of_register_spi_devices() - Register child devices onto the SPI bus
1587 * @master: Pointer to spi_master device
1588 *
1589 * Registers an spi_device for each child node of master node which has a 'reg'
1590 * property.
1591 */
1592 static void of_register_spi_devices(struct spi_master *master)
1593 {
1594 struct spi_device *spi;
1595 struct device_node *nc;
1596
1597 if (!master->dev.of_node)
1598 return;
1599
1600 for_each_available_child_of_node(master->dev.of_node, nc) {
1601 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1602 continue;
1603 spi = of_register_spi_device(master, nc);
1604 if (IS_ERR(spi))
1605 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1606 nc->full_name);
1607 }
1608 }
1609 #else
1610 static void of_register_spi_devices(struct spi_master *master) { }
1611 #endif
1612
1613 #ifdef CONFIG_ACPI
1614 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1615 {
1616 struct spi_device *spi = data;
1617 struct spi_master *master = spi->master;
1618
1619 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1620 struct acpi_resource_spi_serialbus *sb;
1621
1622 sb = &ares->data.spi_serial_bus;
1623 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1624 /*
1625 * ACPI DeviceSelection numbering is handled by the
1626 * host controller driver in Windows and can vary
1627 * from driver to driver. In Linux we always expect
1628 * 0 .. max - 1 so we need to ask the driver to
1629 * translate between the two schemes.
1630 */
1631 if (master->fw_translate_cs) {
1632 int cs = master->fw_translate_cs(master,
1633 sb->device_selection);
1634 if (cs < 0)
1635 return cs;
1636 spi->chip_select = cs;
1637 } else {
1638 spi->chip_select = sb->device_selection;
1639 }
1640
1641 spi->max_speed_hz = sb->connection_speed;
1642
1643 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1644 spi->mode |= SPI_CPHA;
1645 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1646 spi->mode |= SPI_CPOL;
1647 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1648 spi->mode |= SPI_CS_HIGH;
1649 }
1650 } else if (spi->irq < 0) {
1651 struct resource r;
1652
1653 if (acpi_dev_resource_interrupt(ares, 0, &r))
1654 spi->irq = r.start;
1655 }
1656
1657 /* Always tell the ACPI core to skip this resource */
1658 return 1;
1659 }
1660
1661 static acpi_status acpi_register_spi_device(struct spi_master *master,
1662 struct acpi_device *adev)
1663 {
1664 struct list_head resource_list;
1665 struct spi_device *spi;
1666 int ret;
1667
1668 if (acpi_bus_get_status(adev) || !adev->status.present ||
1669 acpi_device_enumerated(adev))
1670 return AE_OK;
1671
1672 spi = spi_alloc_device(master);
1673 if (!spi) {
1674 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1675 dev_name(&adev->dev));
1676 return AE_NO_MEMORY;
1677 }
1678
1679 ACPI_COMPANION_SET(&spi->dev, adev);
1680 spi->irq = -1;
1681
1682 INIT_LIST_HEAD(&resource_list);
1683 ret = acpi_dev_get_resources(adev, &resource_list,
1684 acpi_spi_add_resource, spi);
1685 acpi_dev_free_resource_list(&resource_list);
1686
1687 if (ret < 0 || !spi->max_speed_hz) {
1688 spi_dev_put(spi);
1689 return AE_OK;
1690 }
1691
1692 if (spi->irq < 0)
1693 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1694
1695 acpi_device_set_enumerated(adev);
1696
1697 adev->power.flags.ignore_parent = true;
1698 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1699 if (spi_add_device(spi)) {
1700 adev->power.flags.ignore_parent = false;
1701 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1702 dev_name(&adev->dev));
1703 spi_dev_put(spi);
1704 }
1705
1706 return AE_OK;
1707 }
1708
1709 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1710 void *data, void **return_value)
1711 {
1712 struct spi_master *master = data;
1713 struct acpi_device *adev;
1714
1715 if (acpi_bus_get_device(handle, &adev))
1716 return AE_OK;
1717
1718 return acpi_register_spi_device(master, adev);
1719 }
1720
1721 static void acpi_register_spi_devices(struct spi_master *master)
1722 {
1723 acpi_status status;
1724 acpi_handle handle;
1725
1726 handle = ACPI_HANDLE(master->dev.parent);
1727 if (!handle)
1728 return;
1729
1730 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1731 acpi_spi_add_device, NULL,
1732 master, NULL);
1733 if (ACPI_FAILURE(status))
1734 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1735 }
1736 #else
1737 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1738 #endif /* CONFIG_ACPI */
1739
1740 static void spi_master_release(struct device *dev)
1741 {
1742 struct spi_master *master;
1743
1744 master = container_of(dev, struct spi_master, dev);
1745 kfree(master);
1746 }
1747
1748 static struct class spi_master_class = {
1749 .name = "spi_master",
1750 .owner = THIS_MODULE,
1751 .dev_release = spi_master_release,
1752 .dev_groups = spi_master_groups,
1753 };
1754
1755
1756 /**
1757 * spi_alloc_master - allocate SPI master controller
1758 * @dev: the controller, possibly using the platform_bus
1759 * @size: how much zeroed driver-private data to allocate; the pointer to this
1760 * memory is in the driver_data field of the returned device,
1761 * accessible with spi_master_get_devdata().
1762 * Context: can sleep
1763 *
1764 * This call is used only by SPI master controller drivers, which are the
1765 * only ones directly touching chip registers. It's how they allocate
1766 * an spi_master structure, prior to calling spi_register_master().
1767 *
1768 * This must be called from context that can sleep.
1769 *
1770 * The caller is responsible for assigning the bus number and initializing
1771 * the master's methods before calling spi_register_master(); and (after errors
1772 * adding the device) calling spi_master_put() to prevent a memory leak.
1773 *
1774 * Return: the SPI master structure on success, else NULL.
1775 */
1776 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1777 {
1778 struct spi_master *master;
1779
1780 if (!dev)
1781 return NULL;
1782
1783 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1784 if (!master)
1785 return NULL;
1786
1787 device_initialize(&master->dev);
1788 master->bus_num = -1;
1789 master->num_chipselect = 1;
1790 master->dev.class = &spi_master_class;
1791 master->dev.parent = dev;
1792 pm_suspend_ignore_children(&master->dev, true);
1793 spi_master_set_devdata(master, &master[1]);
1794
1795 return master;
1796 }
1797 EXPORT_SYMBOL_GPL(spi_alloc_master);
1798
1799 #ifdef CONFIG_OF
1800 static int of_spi_register_master(struct spi_master *master)
1801 {
1802 int nb, i, *cs;
1803 struct device_node *np = master->dev.of_node;
1804
1805 if (!np)
1806 return 0;
1807
1808 nb = of_gpio_named_count(np, "cs-gpios");
1809 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1810
1811 /* Return error only for an incorrectly formed cs-gpios property */
1812 if (nb == 0 || nb == -ENOENT)
1813 return 0;
1814 else if (nb < 0)
1815 return nb;
1816
1817 cs = devm_kzalloc(&master->dev,
1818 sizeof(int) * master->num_chipselect,
1819 GFP_KERNEL);
1820 master->cs_gpios = cs;
1821
1822 if (!master->cs_gpios)
1823 return -ENOMEM;
1824
1825 for (i = 0; i < master->num_chipselect; i++)
1826 cs[i] = -ENOENT;
1827
1828 for (i = 0; i < nb; i++)
1829 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1830
1831 return 0;
1832 }
1833 #else
1834 static int of_spi_register_master(struct spi_master *master)
1835 {
1836 return 0;
1837 }
1838 #endif
1839
1840 /**
1841 * spi_register_master - register SPI master controller
1842 * @master: initialized master, originally from spi_alloc_master()
1843 * Context: can sleep
1844 *
1845 * SPI master controllers connect to their drivers using some non-SPI bus,
1846 * such as the platform bus. The final stage of probe() in that code
1847 * includes calling spi_register_master() to hook up to this SPI bus glue.
1848 *
1849 * SPI controllers use board specific (often SOC specific) bus numbers,
1850 * and board-specific addressing for SPI devices combines those numbers
1851 * with chip select numbers. Since SPI does not directly support dynamic
1852 * device identification, boards need configuration tables telling which
1853 * chip is at which address.
1854 *
1855 * This must be called from context that can sleep. It returns zero on
1856 * success, else a negative error code (dropping the master's refcount).
1857 * After a successful return, the caller is responsible for calling
1858 * spi_unregister_master().
1859 *
1860 * Return: zero on success, else a negative error code.
1861 */
1862 int spi_register_master(struct spi_master *master)
1863 {
1864 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1865 struct device *dev = master->dev.parent;
1866 struct boardinfo *bi;
1867 int status = -ENODEV;
1868 int dynamic = 0;
1869
1870 if (!dev)
1871 return -ENODEV;
1872
1873 status = of_spi_register_master(master);
1874 if (status)
1875 return status;
1876
1877 /* even if it's just one always-selected device, there must
1878 * be at least one chipselect
1879 */
1880 if (master->num_chipselect == 0)
1881 return -EINVAL;
1882
1883 if ((master->bus_num < 0) && master->dev.of_node)
1884 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1885
1886 /* convention: dynamically assigned bus IDs count down from the max */
1887 if (master->bus_num < 0) {
1888 /* FIXME switch to an IDR based scheme, something like
1889 * I2C now uses, so we can't run out of "dynamic" IDs
1890 */
1891 master->bus_num = atomic_dec_return(&dyn_bus_id);
1892 dynamic = 1;
1893 }
1894
1895 INIT_LIST_HEAD(&master->queue);
1896 spin_lock_init(&master->queue_lock);
1897 spin_lock_init(&master->bus_lock_spinlock);
1898 mutex_init(&master->bus_lock_mutex);
1899 mutex_init(&master->io_mutex);
1900 master->bus_lock_flag = 0;
1901 init_completion(&master->xfer_completion);
1902 if (!master->max_dma_len)
1903 master->max_dma_len = INT_MAX;
1904
1905 /* register the device, then userspace will see it.
1906 * registration fails if the bus ID is in use.
1907 */
1908 dev_set_name(&master->dev, "spi%u", master->bus_num);
1909 status = device_add(&master->dev);
1910 if (status < 0)
1911 goto done;
1912 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1913 dynamic ? " (dynamic)" : "");
1914
1915 /* If we're using a queued driver, start the queue */
1916 if (master->transfer)
1917 dev_info(dev, "master is unqueued, this is deprecated\n");
1918 else {
1919 status = spi_master_initialize_queue(master);
1920 if (status) {
1921 device_del(&master->dev);
1922 goto done;
1923 }
1924 }
1925 /* add statistics */
1926 spin_lock_init(&master->statistics.lock);
1927
1928 mutex_lock(&board_lock);
1929 list_add_tail(&master->list, &spi_master_list);
1930 list_for_each_entry(bi, &board_list, list)
1931 spi_match_master_to_boardinfo(master, &bi->board_info);
1932 mutex_unlock(&board_lock);
1933
1934 /* Register devices from the device tree and ACPI */
1935 of_register_spi_devices(master);
1936 acpi_register_spi_devices(master);
1937 done:
1938 return status;
1939 }
1940 EXPORT_SYMBOL_GPL(spi_register_master);
1941
1942 static void devm_spi_unregister(struct device *dev, void *res)
1943 {
1944 spi_unregister_master(*(struct spi_master **)res);
1945 }
1946
1947 /**
1948 * dev_spi_register_master - register managed SPI master controller
1949 * @dev: device managing SPI master
1950 * @master: initialized master, originally from spi_alloc_master()
1951 * Context: can sleep
1952 *
1953 * Register a SPI device as with spi_register_master() which will
1954 * automatically be unregister
1955 *
1956 * Return: zero on success, else a negative error code.
1957 */
1958 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1959 {
1960 struct spi_master **ptr;
1961 int ret;
1962
1963 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1964 if (!ptr)
1965 return -ENOMEM;
1966
1967 ret = spi_register_master(master);
1968 if (!ret) {
1969 *ptr = master;
1970 devres_add(dev, ptr);
1971 } else {
1972 devres_free(ptr);
1973 }
1974
1975 return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1978
1979 static int __unregister(struct device *dev, void *null)
1980 {
1981 spi_unregister_device(to_spi_device(dev));
1982 return 0;
1983 }
1984
1985 /**
1986 * spi_unregister_master - unregister SPI master controller
1987 * @master: the master being unregistered
1988 * Context: can sleep
1989 *
1990 * This call is used only by SPI master controller drivers, which are the
1991 * only ones directly touching chip registers.
1992 *
1993 * This must be called from context that can sleep.
1994 */
1995 void spi_unregister_master(struct spi_master *master)
1996 {
1997 int dummy;
1998
1999 if (master->queued) {
2000 if (spi_destroy_queue(master))
2001 dev_err(&master->dev, "queue remove failed\n");
2002 }
2003
2004 mutex_lock(&board_lock);
2005 list_del(&master->list);
2006 mutex_unlock(&board_lock);
2007
2008 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2009 device_unregister(&master->dev);
2010 }
2011 EXPORT_SYMBOL_GPL(spi_unregister_master);
2012
2013 int spi_master_suspend(struct spi_master *master)
2014 {
2015 int ret;
2016
2017 /* Basically no-ops for non-queued masters */
2018 if (!master->queued)
2019 return 0;
2020
2021 ret = spi_stop_queue(master);
2022 if (ret)
2023 dev_err(&master->dev, "queue stop failed\n");
2024
2025 return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(spi_master_suspend);
2028
2029 int spi_master_resume(struct spi_master *master)
2030 {
2031 int ret;
2032
2033 if (!master->queued)
2034 return 0;
2035
2036 ret = spi_start_queue(master);
2037 if (ret)
2038 dev_err(&master->dev, "queue restart failed\n");
2039
2040 return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(spi_master_resume);
2043
2044 static int __spi_master_match(struct device *dev, const void *data)
2045 {
2046 struct spi_master *m;
2047 const u16 *bus_num = data;
2048
2049 m = container_of(dev, struct spi_master, dev);
2050 return m->bus_num == *bus_num;
2051 }
2052
2053 /**
2054 * spi_busnum_to_master - look up master associated with bus_num
2055 * @bus_num: the master's bus number
2056 * Context: can sleep
2057 *
2058 * This call may be used with devices that are registered after
2059 * arch init time. It returns a refcounted pointer to the relevant
2060 * spi_master (which the caller must release), or NULL if there is
2061 * no such master registered.
2062 *
2063 * Return: the SPI master structure on success, else NULL.
2064 */
2065 struct spi_master *spi_busnum_to_master(u16 bus_num)
2066 {
2067 struct device *dev;
2068 struct spi_master *master = NULL;
2069
2070 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2071 __spi_master_match);
2072 if (dev)
2073 master = container_of(dev, struct spi_master, dev);
2074 /* reference got in class_find_device */
2075 return master;
2076 }
2077 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2078
2079 /*-------------------------------------------------------------------------*/
2080
2081 /* Core methods for SPI resource management */
2082
2083 /**
2084 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2085 * during the processing of a spi_message while using
2086 * spi_transfer_one
2087 * @spi: the spi device for which we allocate memory
2088 * @release: the release code to execute for this resource
2089 * @size: size to alloc and return
2090 * @gfp: GFP allocation flags
2091 *
2092 * Return: the pointer to the allocated data
2093 *
2094 * This may get enhanced in the future to allocate from a memory pool
2095 * of the @spi_device or @spi_master to avoid repeated allocations.
2096 */
2097 void *spi_res_alloc(struct spi_device *spi,
2098 spi_res_release_t release,
2099 size_t size, gfp_t gfp)
2100 {
2101 struct spi_res *sres;
2102
2103 sres = kzalloc(sizeof(*sres) + size, gfp);
2104 if (!sres)
2105 return NULL;
2106
2107 INIT_LIST_HEAD(&sres->entry);
2108 sres->release = release;
2109
2110 return sres->data;
2111 }
2112 EXPORT_SYMBOL_GPL(spi_res_alloc);
2113
2114 /**
2115 * spi_res_free - free an spi resource
2116 * @res: pointer to the custom data of a resource
2117 *
2118 */
2119 void spi_res_free(void *res)
2120 {
2121 struct spi_res *sres = container_of(res, struct spi_res, data);
2122
2123 if (!res)
2124 return;
2125
2126 WARN_ON(!list_empty(&sres->entry));
2127 kfree(sres);
2128 }
2129 EXPORT_SYMBOL_GPL(spi_res_free);
2130
2131 /**
2132 * spi_res_add - add a spi_res to the spi_message
2133 * @message: the spi message
2134 * @res: the spi_resource
2135 */
2136 void spi_res_add(struct spi_message *message, void *res)
2137 {
2138 struct spi_res *sres = container_of(res, struct spi_res, data);
2139
2140 WARN_ON(!list_empty(&sres->entry));
2141 list_add_tail(&sres->entry, &message->resources);
2142 }
2143 EXPORT_SYMBOL_GPL(spi_res_add);
2144
2145 /**
2146 * spi_res_release - release all spi resources for this message
2147 * @master: the @spi_master
2148 * @message: the @spi_message
2149 */
2150 void spi_res_release(struct spi_master *master,
2151 struct spi_message *message)
2152 {
2153 struct spi_res *res;
2154
2155 while (!list_empty(&message->resources)) {
2156 res = list_last_entry(&message->resources,
2157 struct spi_res, entry);
2158
2159 if (res->release)
2160 res->release(master, message, res->data);
2161
2162 list_del(&res->entry);
2163
2164 kfree(res);
2165 }
2166 }
2167 EXPORT_SYMBOL_GPL(spi_res_release);
2168
2169 /*-------------------------------------------------------------------------*/
2170
2171 /* Core methods for spi_message alterations */
2172
2173 static void __spi_replace_transfers_release(struct spi_master *master,
2174 struct spi_message *msg,
2175 void *res)
2176 {
2177 struct spi_replaced_transfers *rxfer = res;
2178 size_t i;
2179
2180 /* call extra callback if requested */
2181 if (rxfer->release)
2182 rxfer->release(master, msg, res);
2183
2184 /* insert replaced transfers back into the message */
2185 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2186
2187 /* remove the formerly inserted entries */
2188 for (i = 0; i < rxfer->inserted; i++)
2189 list_del(&rxfer->inserted_transfers[i].transfer_list);
2190 }
2191
2192 /**
2193 * spi_replace_transfers - replace transfers with several transfers
2194 * and register change with spi_message.resources
2195 * @msg: the spi_message we work upon
2196 * @xfer_first: the first spi_transfer we want to replace
2197 * @remove: number of transfers to remove
2198 * @insert: the number of transfers we want to insert instead
2199 * @release: extra release code necessary in some circumstances
2200 * @extradatasize: extra data to allocate (with alignment guarantees
2201 * of struct @spi_transfer)
2202 * @gfp: gfp flags
2203 *
2204 * Returns: pointer to @spi_replaced_transfers,
2205 * PTR_ERR(...) in case of errors.
2206 */
2207 struct spi_replaced_transfers *spi_replace_transfers(
2208 struct spi_message *msg,
2209 struct spi_transfer *xfer_first,
2210 size_t remove,
2211 size_t insert,
2212 spi_replaced_release_t release,
2213 size_t extradatasize,
2214 gfp_t gfp)
2215 {
2216 struct spi_replaced_transfers *rxfer;
2217 struct spi_transfer *xfer;
2218 size_t i;
2219
2220 /* allocate the structure using spi_res */
2221 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2222 insert * sizeof(struct spi_transfer)
2223 + sizeof(struct spi_replaced_transfers)
2224 + extradatasize,
2225 gfp);
2226 if (!rxfer)
2227 return ERR_PTR(-ENOMEM);
2228
2229 /* the release code to invoke before running the generic release */
2230 rxfer->release = release;
2231
2232 /* assign extradata */
2233 if (extradatasize)
2234 rxfer->extradata =
2235 &rxfer->inserted_transfers[insert];
2236
2237 /* init the replaced_transfers list */
2238 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2239
2240 /* assign the list_entry after which we should reinsert
2241 * the @replaced_transfers - it may be spi_message.messages!
2242 */
2243 rxfer->replaced_after = xfer_first->transfer_list.prev;
2244
2245 /* remove the requested number of transfers */
2246 for (i = 0; i < remove; i++) {
2247 /* if the entry after replaced_after it is msg->transfers
2248 * then we have been requested to remove more transfers
2249 * than are in the list
2250 */
2251 if (rxfer->replaced_after->next == &msg->transfers) {
2252 dev_err(&msg->spi->dev,
2253 "requested to remove more spi_transfers than are available\n");
2254 /* insert replaced transfers back into the message */
2255 list_splice(&rxfer->replaced_transfers,
2256 rxfer->replaced_after);
2257
2258 /* free the spi_replace_transfer structure */
2259 spi_res_free(rxfer);
2260
2261 /* and return with an error */
2262 return ERR_PTR(-EINVAL);
2263 }
2264
2265 /* remove the entry after replaced_after from list of
2266 * transfers and add it to list of replaced_transfers
2267 */
2268 list_move_tail(rxfer->replaced_after->next,
2269 &rxfer->replaced_transfers);
2270 }
2271
2272 /* create copy of the given xfer with identical settings
2273 * based on the first transfer to get removed
2274 */
2275 for (i = 0; i < insert; i++) {
2276 /* we need to run in reverse order */
2277 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2278
2279 /* copy all spi_transfer data */
2280 memcpy(xfer, xfer_first, sizeof(*xfer));
2281
2282 /* add to list */
2283 list_add(&xfer->transfer_list, rxfer->replaced_after);
2284
2285 /* clear cs_change and delay_usecs for all but the last */
2286 if (i) {
2287 xfer->cs_change = false;
2288 xfer->delay_usecs = 0;
2289 }
2290 }
2291
2292 /* set up inserted */
2293 rxfer->inserted = insert;
2294
2295 /* and register it with spi_res/spi_message */
2296 spi_res_add(msg, rxfer);
2297
2298 return rxfer;
2299 }
2300 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2301
2302 static int __spi_split_transfer_maxsize(struct spi_master *master,
2303 struct spi_message *msg,
2304 struct spi_transfer **xferp,
2305 size_t maxsize,
2306 gfp_t gfp)
2307 {
2308 struct spi_transfer *xfer = *xferp, *xfers;
2309 struct spi_replaced_transfers *srt;
2310 size_t offset;
2311 size_t count, i;
2312
2313 /* warn once about this fact that we are splitting a transfer */
2314 dev_warn_once(&msg->spi->dev,
2315 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2316 xfer->len, maxsize);
2317
2318 /* calculate how many we have to replace */
2319 count = DIV_ROUND_UP(xfer->len, maxsize);
2320
2321 /* create replacement */
2322 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2323 if (IS_ERR(srt))
2324 return PTR_ERR(srt);
2325 xfers = srt->inserted_transfers;
2326
2327 /* now handle each of those newly inserted spi_transfers
2328 * note that the replacements spi_transfers all are preset
2329 * to the same values as *xferp, so tx_buf, rx_buf and len
2330 * are all identical (as well as most others)
2331 * so we just have to fix up len and the pointers.
2332 *
2333 * this also includes support for the depreciated
2334 * spi_message.is_dma_mapped interface
2335 */
2336
2337 /* the first transfer just needs the length modified, so we
2338 * run it outside the loop
2339 */
2340 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2341
2342 /* all the others need rx_buf/tx_buf also set */
2343 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2344 /* update rx_buf, tx_buf and dma */
2345 if (xfers[i].rx_buf)
2346 xfers[i].rx_buf += offset;
2347 if (xfers[i].rx_dma)
2348 xfers[i].rx_dma += offset;
2349 if (xfers[i].tx_buf)
2350 xfers[i].tx_buf += offset;
2351 if (xfers[i].tx_dma)
2352 xfers[i].tx_dma += offset;
2353
2354 /* update length */
2355 xfers[i].len = min(maxsize, xfers[i].len - offset);
2356 }
2357
2358 /* we set up xferp to the last entry we have inserted,
2359 * so that we skip those already split transfers
2360 */
2361 *xferp = &xfers[count - 1];
2362
2363 /* increment statistics counters */
2364 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2365 transfers_split_maxsize);
2366 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2367 transfers_split_maxsize);
2368
2369 return 0;
2370 }
2371
2372 /**
2373 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2374 * when an individual transfer exceeds a
2375 * certain size
2376 * @master: the @spi_master for this transfer
2377 * @msg: the @spi_message to transform
2378 * @maxsize: the maximum when to apply this
2379 * @gfp: GFP allocation flags
2380 *
2381 * Return: status of transformation
2382 */
2383 int spi_split_transfers_maxsize(struct spi_master *master,
2384 struct spi_message *msg,
2385 size_t maxsize,
2386 gfp_t gfp)
2387 {
2388 struct spi_transfer *xfer;
2389 int ret;
2390
2391 /* iterate over the transfer_list,
2392 * but note that xfer is advanced to the last transfer inserted
2393 * to avoid checking sizes again unnecessarily (also xfer does
2394 * potentiall belong to a different list by the time the
2395 * replacement has happened
2396 */
2397 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2398 if (xfer->len > maxsize) {
2399 ret = __spi_split_transfer_maxsize(
2400 master, msg, &xfer, maxsize, gfp);
2401 if (ret)
2402 return ret;
2403 }
2404 }
2405
2406 return 0;
2407 }
2408 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2409
2410 /*-------------------------------------------------------------------------*/
2411
2412 /* Core methods for SPI master protocol drivers. Some of the
2413 * other core methods are currently defined as inline functions.
2414 */
2415
2416 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2417 {
2418 if (master->bits_per_word_mask) {
2419 /* Only 32 bits fit in the mask */
2420 if (bits_per_word > 32)
2421 return -EINVAL;
2422 if (!(master->bits_per_word_mask &
2423 SPI_BPW_MASK(bits_per_word)))
2424 return -EINVAL;
2425 }
2426
2427 return 0;
2428 }
2429
2430 /**
2431 * spi_setup - setup SPI mode and clock rate
2432 * @spi: the device whose settings are being modified
2433 * Context: can sleep, and no requests are queued to the device
2434 *
2435 * SPI protocol drivers may need to update the transfer mode if the
2436 * device doesn't work with its default. They may likewise need
2437 * to update clock rates or word sizes from initial values. This function
2438 * changes those settings, and must be called from a context that can sleep.
2439 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2440 * effect the next time the device is selected and data is transferred to
2441 * or from it. When this function returns, the spi device is deselected.
2442 *
2443 * Note that this call will fail if the protocol driver specifies an option
2444 * that the underlying controller or its driver does not support. For
2445 * example, not all hardware supports wire transfers using nine bit words,
2446 * LSB-first wire encoding, or active-high chipselects.
2447 *
2448 * Return: zero on success, else a negative error code.
2449 */
2450 int spi_setup(struct spi_device *spi)
2451 {
2452 unsigned bad_bits, ugly_bits;
2453 int status;
2454
2455 /* check mode to prevent that DUAL and QUAD set at the same time
2456 */
2457 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2458 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2459 dev_err(&spi->dev,
2460 "setup: can not select dual and quad at the same time\n");
2461 return -EINVAL;
2462 }
2463 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2464 */
2465 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2466 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2467 return -EINVAL;
2468 /* help drivers fail *cleanly* when they need options
2469 * that aren't supported with their current master
2470 */
2471 bad_bits = spi->mode & ~spi->master->mode_bits;
2472 ugly_bits = bad_bits &
2473 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2474 if (ugly_bits) {
2475 dev_warn(&spi->dev,
2476 "setup: ignoring unsupported mode bits %x\n",
2477 ugly_bits);
2478 spi->mode &= ~ugly_bits;
2479 bad_bits &= ~ugly_bits;
2480 }
2481 if (bad_bits) {
2482 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2483 bad_bits);
2484 return -EINVAL;
2485 }
2486
2487 if (!spi->bits_per_word)
2488 spi->bits_per_word = 8;
2489
2490 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2491 if (status)
2492 return status;
2493
2494 if (!spi->max_speed_hz)
2495 spi->max_speed_hz = spi->master->max_speed_hz;
2496
2497 if (spi->master->setup)
2498 status = spi->master->setup(spi);
2499
2500 spi_set_cs(spi, false);
2501
2502 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2503 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2504 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2505 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2506 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2507 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2508 spi->bits_per_word, spi->max_speed_hz,
2509 status);
2510
2511 return status;
2512 }
2513 EXPORT_SYMBOL_GPL(spi_setup);
2514
2515 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2516 {
2517 struct spi_master *master = spi->master;
2518 struct spi_transfer *xfer;
2519 int w_size;
2520
2521 if (list_empty(&message->transfers))
2522 return -EINVAL;
2523
2524 /* Half-duplex links include original MicroWire, and ones with
2525 * only one data pin like SPI_3WIRE (switches direction) or where
2526 * either MOSI or MISO is missing. They can also be caused by
2527 * software limitations.
2528 */
2529 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2530 || (spi->mode & SPI_3WIRE)) {
2531 unsigned flags = master->flags;
2532
2533 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2534 if (xfer->rx_buf && xfer->tx_buf)
2535 return -EINVAL;
2536 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2537 return -EINVAL;
2538 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2539 return -EINVAL;
2540 }
2541 }
2542
2543 /**
2544 * Set transfer bits_per_word and max speed as spi device default if
2545 * it is not set for this transfer.
2546 * Set transfer tx_nbits and rx_nbits as single transfer default
2547 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2548 */
2549 message->frame_length = 0;
2550 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2551 message->frame_length += xfer->len;
2552 if (!xfer->bits_per_word)
2553 xfer->bits_per_word = spi->bits_per_word;
2554
2555 if (!xfer->speed_hz)
2556 xfer->speed_hz = spi->max_speed_hz;
2557 if (!xfer->speed_hz)
2558 xfer->speed_hz = master->max_speed_hz;
2559
2560 if (master->max_speed_hz &&
2561 xfer->speed_hz > master->max_speed_hz)
2562 xfer->speed_hz = master->max_speed_hz;
2563
2564 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2565 return -EINVAL;
2566
2567 /*
2568 * SPI transfer length should be multiple of SPI word size
2569 * where SPI word size should be power-of-two multiple
2570 */
2571 if (xfer->bits_per_word <= 8)
2572 w_size = 1;
2573 else if (xfer->bits_per_word <= 16)
2574 w_size = 2;
2575 else
2576 w_size = 4;
2577
2578 /* No partial transfers accepted */
2579 if (xfer->len % w_size)
2580 return -EINVAL;
2581
2582 if (xfer->speed_hz && master->min_speed_hz &&
2583 xfer->speed_hz < master->min_speed_hz)
2584 return -EINVAL;
2585
2586 if (xfer->tx_buf && !xfer->tx_nbits)
2587 xfer->tx_nbits = SPI_NBITS_SINGLE;
2588 if (xfer->rx_buf && !xfer->rx_nbits)
2589 xfer->rx_nbits = SPI_NBITS_SINGLE;
2590 /* check transfer tx/rx_nbits:
2591 * 1. check the value matches one of single, dual and quad
2592 * 2. check tx/rx_nbits match the mode in spi_device
2593 */
2594 if (xfer->tx_buf) {
2595 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2596 xfer->tx_nbits != SPI_NBITS_DUAL &&
2597 xfer->tx_nbits != SPI_NBITS_QUAD)
2598 return -EINVAL;
2599 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2600 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2601 return -EINVAL;
2602 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2603 !(spi->mode & SPI_TX_QUAD))
2604 return -EINVAL;
2605 }
2606 /* check transfer rx_nbits */
2607 if (xfer->rx_buf) {
2608 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2609 xfer->rx_nbits != SPI_NBITS_DUAL &&
2610 xfer->rx_nbits != SPI_NBITS_QUAD)
2611 return -EINVAL;
2612 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2613 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2614 return -EINVAL;
2615 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2616 !(spi->mode & SPI_RX_QUAD))
2617 return -EINVAL;
2618 }
2619 }
2620
2621 message->status = -EINPROGRESS;
2622
2623 return 0;
2624 }
2625
2626 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2627 {
2628 struct spi_master *master = spi->master;
2629
2630 message->spi = spi;
2631
2632 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2633 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2634
2635 trace_spi_message_submit(message);
2636
2637 return master->transfer(spi, message);
2638 }
2639
2640 /**
2641 * spi_async - asynchronous SPI transfer
2642 * @spi: device with which data will be exchanged
2643 * @message: describes the data transfers, including completion callback
2644 * Context: any (irqs may be blocked, etc)
2645 *
2646 * This call may be used in_irq and other contexts which can't sleep,
2647 * as well as from task contexts which can sleep.
2648 *
2649 * The completion callback is invoked in a context which can't sleep.
2650 * Before that invocation, the value of message->status is undefined.
2651 * When the callback is issued, message->status holds either zero (to
2652 * indicate complete success) or a negative error code. After that
2653 * callback returns, the driver which issued the transfer request may
2654 * deallocate the associated memory; it's no longer in use by any SPI
2655 * core or controller driver code.
2656 *
2657 * Note that although all messages to a spi_device are handled in
2658 * FIFO order, messages may go to different devices in other orders.
2659 * Some device might be higher priority, or have various "hard" access
2660 * time requirements, for example.
2661 *
2662 * On detection of any fault during the transfer, processing of
2663 * the entire message is aborted, and the device is deselected.
2664 * Until returning from the associated message completion callback,
2665 * no other spi_message queued to that device will be processed.
2666 * (This rule applies equally to all the synchronous transfer calls,
2667 * which are wrappers around this core asynchronous primitive.)
2668 *
2669 * Return: zero on success, else a negative error code.
2670 */
2671 int spi_async(struct spi_device *spi, struct spi_message *message)
2672 {
2673 struct spi_master *master = spi->master;
2674 int ret;
2675 unsigned long flags;
2676
2677 ret = __spi_validate(spi, message);
2678 if (ret != 0)
2679 return ret;
2680
2681 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2682
2683 if (master->bus_lock_flag)
2684 ret = -EBUSY;
2685 else
2686 ret = __spi_async(spi, message);
2687
2688 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2689
2690 return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(spi_async);
2693
2694 /**
2695 * spi_async_locked - version of spi_async with exclusive bus usage
2696 * @spi: device with which data will be exchanged
2697 * @message: describes the data transfers, including completion callback
2698 * Context: any (irqs may be blocked, etc)
2699 *
2700 * This call may be used in_irq and other contexts which can't sleep,
2701 * as well as from task contexts which can sleep.
2702 *
2703 * The completion callback is invoked in a context which can't sleep.
2704 * Before that invocation, the value of message->status is undefined.
2705 * When the callback is issued, message->status holds either zero (to
2706 * indicate complete success) or a negative error code. After that
2707 * callback returns, the driver which issued the transfer request may
2708 * deallocate the associated memory; it's no longer in use by any SPI
2709 * core or controller driver code.
2710 *
2711 * Note that although all messages to a spi_device are handled in
2712 * FIFO order, messages may go to different devices in other orders.
2713 * Some device might be higher priority, or have various "hard" access
2714 * time requirements, for example.
2715 *
2716 * On detection of any fault during the transfer, processing of
2717 * the entire message is aborted, and the device is deselected.
2718 * Until returning from the associated message completion callback,
2719 * no other spi_message queued to that device will be processed.
2720 * (This rule applies equally to all the synchronous transfer calls,
2721 * which are wrappers around this core asynchronous primitive.)
2722 *
2723 * Return: zero on success, else a negative error code.
2724 */
2725 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2726 {
2727 struct spi_master *master = spi->master;
2728 int ret;
2729 unsigned long flags;
2730
2731 ret = __spi_validate(spi, message);
2732 if (ret != 0)
2733 return ret;
2734
2735 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2736
2737 ret = __spi_async(spi, message);
2738
2739 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2740
2741 return ret;
2742
2743 }
2744 EXPORT_SYMBOL_GPL(spi_async_locked);
2745
2746
2747 int spi_flash_read(struct spi_device *spi,
2748 struct spi_flash_read_message *msg)
2749
2750 {
2751 struct spi_master *master = spi->master;
2752 struct device *rx_dev = NULL;
2753 int ret;
2754
2755 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2756 msg->addr_nbits == SPI_NBITS_DUAL) &&
2757 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2758 return -EINVAL;
2759 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2760 msg->addr_nbits == SPI_NBITS_QUAD) &&
2761 !(spi->mode & SPI_TX_QUAD))
2762 return -EINVAL;
2763 if (msg->data_nbits == SPI_NBITS_DUAL &&
2764 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2765 return -EINVAL;
2766 if (msg->data_nbits == SPI_NBITS_QUAD &&
2767 !(spi->mode & SPI_RX_QUAD))
2768 return -EINVAL;
2769
2770 if (master->auto_runtime_pm) {
2771 ret = pm_runtime_get_sync(master->dev.parent);
2772 if (ret < 0) {
2773 dev_err(&master->dev, "Failed to power device: %d\n",
2774 ret);
2775 return ret;
2776 }
2777 }
2778
2779 mutex_lock(&master->bus_lock_mutex);
2780 mutex_lock(&master->io_mutex);
2781 if (master->dma_rx) {
2782 rx_dev = master->dma_rx->device->dev;
2783 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2784 msg->buf, msg->len,
2785 DMA_FROM_DEVICE);
2786 if (!ret)
2787 msg->cur_msg_mapped = true;
2788 }
2789 ret = master->spi_flash_read(spi, msg);
2790 if (msg->cur_msg_mapped)
2791 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2792 DMA_FROM_DEVICE);
2793 mutex_unlock(&master->io_mutex);
2794 mutex_unlock(&master->bus_lock_mutex);
2795
2796 if (master->auto_runtime_pm)
2797 pm_runtime_put(master->dev.parent);
2798
2799 return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(spi_flash_read);
2802
2803 /*-------------------------------------------------------------------------*/
2804
2805 /* Utility methods for SPI master protocol drivers, layered on
2806 * top of the core. Some other utility methods are defined as
2807 * inline functions.
2808 */
2809
2810 static void spi_complete(void *arg)
2811 {
2812 complete(arg);
2813 }
2814
2815 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2816 {
2817 DECLARE_COMPLETION_ONSTACK(done);
2818 int status;
2819 struct spi_master *master = spi->master;
2820 unsigned long flags;
2821
2822 status = __spi_validate(spi, message);
2823 if (status != 0)
2824 return status;
2825
2826 message->complete = spi_complete;
2827 message->context = &done;
2828 message->spi = spi;
2829
2830 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2831 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2832
2833 /* If we're not using the legacy transfer method then we will
2834 * try to transfer in the calling context so special case.
2835 * This code would be less tricky if we could remove the
2836 * support for driver implemented message queues.
2837 */
2838 if (master->transfer == spi_queued_transfer) {
2839 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2840
2841 trace_spi_message_submit(message);
2842
2843 status = __spi_queued_transfer(spi, message, false);
2844
2845 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2846 } else {
2847 status = spi_async_locked(spi, message);
2848 }
2849
2850 if (status == 0) {
2851 /* Push out the messages in the calling context if we
2852 * can.
2853 */
2854 if (master->transfer == spi_queued_transfer) {
2855 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2856 spi_sync_immediate);
2857 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2858 spi_sync_immediate);
2859 __spi_pump_messages(master, false);
2860 }
2861
2862 wait_for_completion(&done);
2863 status = message->status;
2864 }
2865 message->context = NULL;
2866 return status;
2867 }
2868
2869 /**
2870 * spi_sync - blocking/synchronous SPI data transfers
2871 * @spi: device with which data will be exchanged
2872 * @message: describes the data transfers
2873 * Context: can sleep
2874 *
2875 * This call may only be used from a context that may sleep. The sleep
2876 * is non-interruptible, and has no timeout. Low-overhead controller
2877 * drivers may DMA directly into and out of the message buffers.
2878 *
2879 * Note that the SPI device's chip select is active during the message,
2880 * and then is normally disabled between messages. Drivers for some
2881 * frequently-used devices may want to minimize costs of selecting a chip,
2882 * by leaving it selected in anticipation that the next message will go
2883 * to the same chip. (That may increase power usage.)
2884 *
2885 * Also, the caller is guaranteeing that the memory associated with the
2886 * message will not be freed before this call returns.
2887 *
2888 * Return: zero on success, else a negative error code.
2889 */
2890 int spi_sync(struct spi_device *spi, struct spi_message *message)
2891 {
2892 int ret;
2893
2894 mutex_lock(&spi->master->bus_lock_mutex);
2895 ret = __spi_sync(spi, message);
2896 mutex_unlock(&spi->master->bus_lock_mutex);
2897
2898 return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(spi_sync);
2901
2902 /**
2903 * spi_sync_locked - version of spi_sync with exclusive bus usage
2904 * @spi: device with which data will be exchanged
2905 * @message: describes the data transfers
2906 * Context: can sleep
2907 *
2908 * This call may only be used from a context that may sleep. The sleep
2909 * is non-interruptible, and has no timeout. Low-overhead controller
2910 * drivers may DMA directly into and out of the message buffers.
2911 *
2912 * This call should be used by drivers that require exclusive access to the
2913 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2914 * be released by a spi_bus_unlock call when the exclusive access is over.
2915 *
2916 * Return: zero on success, else a negative error code.
2917 */
2918 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2919 {
2920 return __spi_sync(spi, message);
2921 }
2922 EXPORT_SYMBOL_GPL(spi_sync_locked);
2923
2924 /**
2925 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2926 * @master: SPI bus master that should be locked for exclusive bus access
2927 * Context: can sleep
2928 *
2929 * This call may only be used from a context that may sleep. The sleep
2930 * is non-interruptible, and has no timeout.
2931 *
2932 * This call should be used by drivers that require exclusive access to the
2933 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2934 * exclusive access is over. Data transfer must be done by spi_sync_locked
2935 * and spi_async_locked calls when the SPI bus lock is held.
2936 *
2937 * Return: always zero.
2938 */
2939 int spi_bus_lock(struct spi_master *master)
2940 {
2941 unsigned long flags;
2942
2943 mutex_lock(&master->bus_lock_mutex);
2944
2945 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2946 master->bus_lock_flag = 1;
2947 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2948
2949 /* mutex remains locked until spi_bus_unlock is called */
2950
2951 return 0;
2952 }
2953 EXPORT_SYMBOL_GPL(spi_bus_lock);
2954
2955 /**
2956 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2957 * @master: SPI bus master that was locked for exclusive bus access
2958 * Context: can sleep
2959 *
2960 * This call may only be used from a context that may sleep. The sleep
2961 * is non-interruptible, and has no timeout.
2962 *
2963 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2964 * call.
2965 *
2966 * Return: always zero.
2967 */
2968 int spi_bus_unlock(struct spi_master *master)
2969 {
2970 master->bus_lock_flag = 0;
2971
2972 mutex_unlock(&master->bus_lock_mutex);
2973
2974 return 0;
2975 }
2976 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2977
2978 /* portable code must never pass more than 32 bytes */
2979 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2980
2981 static u8 *buf;
2982
2983 /**
2984 * spi_write_then_read - SPI synchronous write followed by read
2985 * @spi: device with which data will be exchanged
2986 * @txbuf: data to be written (need not be dma-safe)
2987 * @n_tx: size of txbuf, in bytes
2988 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2989 * @n_rx: size of rxbuf, in bytes
2990 * Context: can sleep
2991 *
2992 * This performs a half duplex MicroWire style transaction with the
2993 * device, sending txbuf and then reading rxbuf. The return value
2994 * is zero for success, else a negative errno status code.
2995 * This call may only be used from a context that may sleep.
2996 *
2997 * Parameters to this routine are always copied using a small buffer;
2998 * portable code should never use this for more than 32 bytes.
2999 * Performance-sensitive or bulk transfer code should instead use
3000 * spi_{async,sync}() calls with dma-safe buffers.
3001 *
3002 * Return: zero on success, else a negative error code.
3003 */
3004 int spi_write_then_read(struct spi_device *spi,
3005 const void *txbuf, unsigned n_tx,
3006 void *rxbuf, unsigned n_rx)
3007 {
3008 static DEFINE_MUTEX(lock);
3009
3010 int status;
3011 struct spi_message message;
3012 struct spi_transfer x[2];
3013 u8 *local_buf;
3014
3015 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3016 * copying here, (as a pure convenience thing), but we can
3017 * keep heap costs out of the hot path unless someone else is
3018 * using the pre-allocated buffer or the transfer is too large.
3019 */
3020 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3021 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3022 GFP_KERNEL | GFP_DMA);
3023 if (!local_buf)
3024 return -ENOMEM;
3025 } else {
3026 local_buf = buf;
3027 }
3028
3029 spi_message_init(&message);
3030 memset(x, 0, sizeof(x));
3031 if (n_tx) {
3032 x[0].len = n_tx;
3033 spi_message_add_tail(&x[0], &message);
3034 }
3035 if (n_rx) {
3036 x[1].len = n_rx;
3037 spi_message_add_tail(&x[1], &message);
3038 }
3039
3040 memcpy(local_buf, txbuf, n_tx);
3041 x[0].tx_buf = local_buf;
3042 x[1].rx_buf = local_buf + n_tx;
3043
3044 /* do the i/o */
3045 status = spi_sync(spi, &message);
3046 if (status == 0)
3047 memcpy(rxbuf, x[1].rx_buf, n_rx);
3048
3049 if (x[0].tx_buf == buf)
3050 mutex_unlock(&lock);
3051 else
3052 kfree(local_buf);
3053
3054 return status;
3055 }
3056 EXPORT_SYMBOL_GPL(spi_write_then_read);
3057
3058 /*-------------------------------------------------------------------------*/
3059
3060 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3061 static int __spi_of_device_match(struct device *dev, void *data)
3062 {
3063 return dev->of_node == data;
3064 }
3065
3066 /* must call put_device() when done with returned spi_device device */
3067 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3068 {
3069 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3070 __spi_of_device_match);
3071 return dev ? to_spi_device(dev) : NULL;
3072 }
3073
3074 static int __spi_of_master_match(struct device *dev, const void *data)
3075 {
3076 return dev->of_node == data;
3077 }
3078
3079 /* the spi masters are not using spi_bus, so we find it with another way */
3080 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3081 {
3082 struct device *dev;
3083
3084 dev = class_find_device(&spi_master_class, NULL, node,
3085 __spi_of_master_match);
3086 if (!dev)
3087 return NULL;
3088
3089 /* reference got in class_find_device */
3090 return container_of(dev, struct spi_master, dev);
3091 }
3092
3093 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3094 void *arg)
3095 {
3096 struct of_reconfig_data *rd = arg;
3097 struct spi_master *master;
3098 struct spi_device *spi;
3099
3100 switch (of_reconfig_get_state_change(action, arg)) {
3101 case OF_RECONFIG_CHANGE_ADD:
3102 master = of_find_spi_master_by_node(rd->dn->parent);
3103 if (master == NULL)
3104 return NOTIFY_OK; /* not for us */
3105
3106 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3107 put_device(&master->dev);
3108 return NOTIFY_OK;
3109 }
3110
3111 spi = of_register_spi_device(master, rd->dn);
3112 put_device(&master->dev);
3113
3114 if (IS_ERR(spi)) {
3115 pr_err("%s: failed to create for '%s'\n",
3116 __func__, rd->dn->full_name);
3117 return notifier_from_errno(PTR_ERR(spi));
3118 }
3119 break;
3120
3121 case OF_RECONFIG_CHANGE_REMOVE:
3122 /* already depopulated? */
3123 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3124 return NOTIFY_OK;
3125
3126 /* find our device by node */
3127 spi = of_find_spi_device_by_node(rd->dn);
3128 if (spi == NULL)
3129 return NOTIFY_OK; /* no? not meant for us */
3130
3131 /* unregister takes one ref away */
3132 spi_unregister_device(spi);
3133
3134 /* and put the reference of the find */
3135 put_device(&spi->dev);
3136 break;
3137 }
3138
3139 return NOTIFY_OK;
3140 }
3141
3142 static struct notifier_block spi_of_notifier = {
3143 .notifier_call = of_spi_notify,
3144 };
3145 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3146 extern struct notifier_block spi_of_notifier;
3147 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3148
3149 #if IS_ENABLED(CONFIG_ACPI)
3150 static int spi_acpi_master_match(struct device *dev, const void *data)
3151 {
3152 return ACPI_COMPANION(dev->parent) == data;
3153 }
3154
3155 static int spi_acpi_device_match(struct device *dev, void *data)
3156 {
3157 return ACPI_COMPANION(dev) == data;
3158 }
3159
3160 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3161 {
3162 struct device *dev;
3163
3164 dev = class_find_device(&spi_master_class, NULL, adev,
3165 spi_acpi_master_match);
3166 if (!dev)
3167 return NULL;
3168
3169 return container_of(dev, struct spi_master, dev);
3170 }
3171
3172 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3173 {
3174 struct device *dev;
3175
3176 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3177
3178 return dev ? to_spi_device(dev) : NULL;
3179 }
3180
3181 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3182 void *arg)
3183 {
3184 struct acpi_device *adev = arg;
3185 struct spi_master *master;
3186 struct spi_device *spi;
3187
3188 switch (value) {
3189 case ACPI_RECONFIG_DEVICE_ADD:
3190 master = acpi_spi_find_master_by_adev(adev->parent);
3191 if (!master)
3192 break;
3193
3194 acpi_register_spi_device(master, adev);
3195 put_device(&master->dev);
3196 break;
3197 case ACPI_RECONFIG_DEVICE_REMOVE:
3198 if (!acpi_device_enumerated(adev))
3199 break;
3200
3201 spi = acpi_spi_find_device_by_adev(adev);
3202 if (!spi)
3203 break;
3204
3205 spi_unregister_device(spi);
3206 put_device(&spi->dev);
3207 break;
3208 }
3209
3210 return NOTIFY_OK;
3211 }
3212
3213 static struct notifier_block spi_acpi_notifier = {
3214 .notifier_call = acpi_spi_notify,
3215 };
3216 #else
3217 extern struct notifier_block spi_acpi_notifier;
3218 #endif
3219
3220 static int __init spi_init(void)
3221 {
3222 int status;
3223
3224 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3225 if (!buf) {
3226 status = -ENOMEM;
3227 goto err0;
3228 }
3229
3230 status = bus_register(&spi_bus_type);
3231 if (status < 0)
3232 goto err1;
3233
3234 status = class_register(&spi_master_class);
3235 if (status < 0)
3236 goto err2;
3237
3238 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3239 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3240 if (IS_ENABLED(CONFIG_ACPI))
3241 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3242
3243 return 0;
3244
3245 err2:
3246 bus_unregister(&spi_bus_type);
3247 err1:
3248 kfree(buf);
3249 buf = NULL;
3250 err0:
3251 return status;
3252 }
3253
3254 /* board_info is normally registered in arch_initcall(),
3255 * but even essential drivers wait till later
3256 *
3257 * REVISIT only boardinfo really needs static linking. the rest (device and
3258 * driver registration) _could_ be dynamically linked (modular) ... costs
3259 * include needing to have boardinfo data structures be much more public.
3260 */
3261 postcore_initcall(spi_init);
3262
This page took 0.100679 seconds and 5 git commands to generate.