Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger...
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pm_domain.h>
39 #include <linux/export.h>
40 #include <linux/sched/rt.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/ioport.h>
44 #include <linux/acpi.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48
49 static void spidev_release(struct device *dev)
50 {
51 struct spi_device *spi = to_spi_device(dev);
52
53 /* spi masters may cleanup for released devices */
54 if (spi->master->cleanup)
55 spi->master->cleanup(spi);
56
57 spi_master_put(spi->master);
58 kfree(spi);
59 }
60
61 static ssize_t
62 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
63 {
64 const struct spi_device *spi = to_spi_device(dev);
65 int len;
66
67 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
68 if (len != -ENODEV)
69 return len;
70
71 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
72 }
73 static DEVICE_ATTR_RO(modalias);
74
75 static struct attribute *spi_dev_attrs[] = {
76 &dev_attr_modalias.attr,
77 NULL,
78 };
79 ATTRIBUTE_GROUPS(spi_dev);
80
81 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
82 * and the sysfs version makes coldplug work too.
83 */
84
85 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
86 const struct spi_device *sdev)
87 {
88 while (id->name[0]) {
89 if (!strcmp(sdev->modalias, id->name))
90 return id;
91 id++;
92 }
93 return NULL;
94 }
95
96 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
97 {
98 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
99
100 return spi_match_id(sdrv->id_table, sdev);
101 }
102 EXPORT_SYMBOL_GPL(spi_get_device_id);
103
104 static int spi_match_device(struct device *dev, struct device_driver *drv)
105 {
106 const struct spi_device *spi = to_spi_device(dev);
107 const struct spi_driver *sdrv = to_spi_driver(drv);
108
109 /* Attempt an OF style match */
110 if (of_driver_match_device(dev, drv))
111 return 1;
112
113 /* Then try ACPI */
114 if (acpi_driver_match_device(dev, drv))
115 return 1;
116
117 if (sdrv->id_table)
118 return !!spi_match_id(sdrv->id_table, spi);
119
120 return strcmp(spi->modalias, drv->name) == 0;
121 }
122
123 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
124 {
125 const struct spi_device *spi = to_spi_device(dev);
126 int rc;
127
128 rc = acpi_device_uevent_modalias(dev, env);
129 if (rc != -ENODEV)
130 return rc;
131
132 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
133 return 0;
134 }
135
136 #ifdef CONFIG_PM_SLEEP
137 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
138 {
139 int value = 0;
140 struct spi_driver *drv = to_spi_driver(dev->driver);
141
142 /* suspend will stop irqs and dma; no more i/o */
143 if (drv) {
144 if (drv->suspend)
145 value = drv->suspend(to_spi_device(dev), message);
146 else
147 dev_dbg(dev, "... can't suspend\n");
148 }
149 return value;
150 }
151
152 static int spi_legacy_resume(struct device *dev)
153 {
154 int value = 0;
155 struct spi_driver *drv = to_spi_driver(dev->driver);
156
157 /* resume may restart the i/o queue */
158 if (drv) {
159 if (drv->resume)
160 value = drv->resume(to_spi_device(dev));
161 else
162 dev_dbg(dev, "... can't resume\n");
163 }
164 return value;
165 }
166
167 static int spi_pm_suspend(struct device *dev)
168 {
169 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170
171 if (pm)
172 return pm_generic_suspend(dev);
173 else
174 return spi_legacy_suspend(dev, PMSG_SUSPEND);
175 }
176
177 static int spi_pm_resume(struct device *dev)
178 {
179 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180
181 if (pm)
182 return pm_generic_resume(dev);
183 else
184 return spi_legacy_resume(dev);
185 }
186
187 static int spi_pm_freeze(struct device *dev)
188 {
189 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190
191 if (pm)
192 return pm_generic_freeze(dev);
193 else
194 return spi_legacy_suspend(dev, PMSG_FREEZE);
195 }
196
197 static int spi_pm_thaw(struct device *dev)
198 {
199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200
201 if (pm)
202 return pm_generic_thaw(dev);
203 else
204 return spi_legacy_resume(dev);
205 }
206
207 static int spi_pm_poweroff(struct device *dev)
208 {
209 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210
211 if (pm)
212 return pm_generic_poweroff(dev);
213 else
214 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215 }
216
217 static int spi_pm_restore(struct device *dev)
218 {
219 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220
221 if (pm)
222 return pm_generic_restore(dev);
223 else
224 return spi_legacy_resume(dev);
225 }
226 #else
227 #define spi_pm_suspend NULL
228 #define spi_pm_resume NULL
229 #define spi_pm_freeze NULL
230 #define spi_pm_thaw NULL
231 #define spi_pm_poweroff NULL
232 #define spi_pm_restore NULL
233 #endif
234
235 static const struct dev_pm_ops spi_pm = {
236 .suspend = spi_pm_suspend,
237 .resume = spi_pm_resume,
238 .freeze = spi_pm_freeze,
239 .thaw = spi_pm_thaw,
240 .poweroff = spi_pm_poweroff,
241 .restore = spi_pm_restore,
242 SET_RUNTIME_PM_OPS(
243 pm_generic_runtime_suspend,
244 pm_generic_runtime_resume,
245 NULL
246 )
247 };
248
249 struct bus_type spi_bus_type = {
250 .name = "spi",
251 .dev_groups = spi_dev_groups,
252 .match = spi_match_device,
253 .uevent = spi_uevent,
254 .pm = &spi_pm,
255 };
256 EXPORT_SYMBOL_GPL(spi_bus_type);
257
258
259 static int spi_drv_probe(struct device *dev)
260 {
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
262 int ret;
263
264 ret = of_clk_set_defaults(dev->of_node, false);
265 if (ret)
266 return ret;
267
268 ret = dev_pm_domain_attach(dev, true);
269 if (ret != -EPROBE_DEFER) {
270 ret = sdrv->probe(to_spi_device(dev));
271 if (ret)
272 dev_pm_domain_detach(dev, true);
273 }
274
275 return ret;
276 }
277
278 static int spi_drv_remove(struct device *dev)
279 {
280 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
281 int ret;
282
283 ret = sdrv->remove(to_spi_device(dev));
284 dev_pm_domain_detach(dev, true);
285
286 return ret;
287 }
288
289 static void spi_drv_shutdown(struct device *dev)
290 {
291 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
292
293 sdrv->shutdown(to_spi_device(dev));
294 }
295
296 /**
297 * spi_register_driver - register a SPI driver
298 * @sdrv: the driver to register
299 * Context: can sleep
300 */
301 int spi_register_driver(struct spi_driver *sdrv)
302 {
303 sdrv->driver.bus = &spi_bus_type;
304 if (sdrv->probe)
305 sdrv->driver.probe = spi_drv_probe;
306 if (sdrv->remove)
307 sdrv->driver.remove = spi_drv_remove;
308 if (sdrv->shutdown)
309 sdrv->driver.shutdown = spi_drv_shutdown;
310 return driver_register(&sdrv->driver);
311 }
312 EXPORT_SYMBOL_GPL(spi_register_driver);
313
314 /*-------------------------------------------------------------------------*/
315
316 /* SPI devices should normally not be created by SPI device drivers; that
317 * would make them board-specific. Similarly with SPI master drivers.
318 * Device registration normally goes into like arch/.../mach.../board-YYY.c
319 * with other readonly (flashable) information about mainboard devices.
320 */
321
322 struct boardinfo {
323 struct list_head list;
324 struct spi_board_info board_info;
325 };
326
327 static LIST_HEAD(board_list);
328 static LIST_HEAD(spi_master_list);
329
330 /*
331 * Used to protect add/del opertion for board_info list and
332 * spi_master list, and their matching process
333 */
334 static DEFINE_MUTEX(board_lock);
335
336 /**
337 * spi_alloc_device - Allocate a new SPI device
338 * @master: Controller to which device is connected
339 * Context: can sleep
340 *
341 * Allows a driver to allocate and initialize a spi_device without
342 * registering it immediately. This allows a driver to directly
343 * fill the spi_device with device parameters before calling
344 * spi_add_device() on it.
345 *
346 * Caller is responsible to call spi_add_device() on the returned
347 * spi_device structure to add it to the SPI master. If the caller
348 * needs to discard the spi_device without adding it, then it should
349 * call spi_dev_put() on it.
350 *
351 * Returns a pointer to the new device, or NULL.
352 */
353 struct spi_device *spi_alloc_device(struct spi_master *master)
354 {
355 struct spi_device *spi;
356
357 if (!spi_master_get(master))
358 return NULL;
359
360 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
361 if (!spi) {
362 spi_master_put(master);
363 return NULL;
364 }
365
366 spi->master = master;
367 spi->dev.parent = &master->dev;
368 spi->dev.bus = &spi_bus_type;
369 spi->dev.release = spidev_release;
370 spi->cs_gpio = -ENOENT;
371 device_initialize(&spi->dev);
372 return spi;
373 }
374 EXPORT_SYMBOL_GPL(spi_alloc_device);
375
376 static void spi_dev_set_name(struct spi_device *spi)
377 {
378 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
379
380 if (adev) {
381 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
382 return;
383 }
384
385 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
386 spi->chip_select);
387 }
388
389 static int spi_dev_check(struct device *dev, void *data)
390 {
391 struct spi_device *spi = to_spi_device(dev);
392 struct spi_device *new_spi = data;
393
394 if (spi->master == new_spi->master &&
395 spi->chip_select == new_spi->chip_select)
396 return -EBUSY;
397 return 0;
398 }
399
400 /**
401 * spi_add_device - Add spi_device allocated with spi_alloc_device
402 * @spi: spi_device to register
403 *
404 * Companion function to spi_alloc_device. Devices allocated with
405 * spi_alloc_device can be added onto the spi bus with this function.
406 *
407 * Returns 0 on success; negative errno on failure
408 */
409 int spi_add_device(struct spi_device *spi)
410 {
411 static DEFINE_MUTEX(spi_add_lock);
412 struct spi_master *master = spi->master;
413 struct device *dev = master->dev.parent;
414 int status;
415
416 /* Chipselects are numbered 0..max; validate. */
417 if (spi->chip_select >= master->num_chipselect) {
418 dev_err(dev, "cs%d >= max %d\n",
419 spi->chip_select,
420 master->num_chipselect);
421 return -EINVAL;
422 }
423
424 /* Set the bus ID string */
425 spi_dev_set_name(spi);
426
427 /* We need to make sure there's no other device with this
428 * chipselect **BEFORE** we call setup(), else we'll trash
429 * its configuration. Lock against concurrent add() calls.
430 */
431 mutex_lock(&spi_add_lock);
432
433 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
434 if (status) {
435 dev_err(dev, "chipselect %d already in use\n",
436 spi->chip_select);
437 goto done;
438 }
439
440 if (master->cs_gpios)
441 spi->cs_gpio = master->cs_gpios[spi->chip_select];
442
443 /* Drivers may modify this initial i/o setup, but will
444 * normally rely on the device being setup. Devices
445 * using SPI_CS_HIGH can't coexist well otherwise...
446 */
447 status = spi_setup(spi);
448 if (status < 0) {
449 dev_err(dev, "can't setup %s, status %d\n",
450 dev_name(&spi->dev), status);
451 goto done;
452 }
453
454 /* Device may be bound to an active driver when this returns */
455 status = device_add(&spi->dev);
456 if (status < 0)
457 dev_err(dev, "can't add %s, status %d\n",
458 dev_name(&spi->dev), status);
459 else
460 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
461
462 done:
463 mutex_unlock(&spi_add_lock);
464 return status;
465 }
466 EXPORT_SYMBOL_GPL(spi_add_device);
467
468 /**
469 * spi_new_device - instantiate one new SPI device
470 * @master: Controller to which device is connected
471 * @chip: Describes the SPI device
472 * Context: can sleep
473 *
474 * On typical mainboards, this is purely internal; and it's not needed
475 * after board init creates the hard-wired devices. Some development
476 * platforms may not be able to use spi_register_board_info though, and
477 * this is exported so that for example a USB or parport based adapter
478 * driver could add devices (which it would learn about out-of-band).
479 *
480 * Returns the new device, or NULL.
481 */
482 struct spi_device *spi_new_device(struct spi_master *master,
483 struct spi_board_info *chip)
484 {
485 struct spi_device *proxy;
486 int status;
487
488 /* NOTE: caller did any chip->bus_num checks necessary.
489 *
490 * Also, unless we change the return value convention to use
491 * error-or-pointer (not NULL-or-pointer), troubleshootability
492 * suggests syslogged diagnostics are best here (ugh).
493 */
494
495 proxy = spi_alloc_device(master);
496 if (!proxy)
497 return NULL;
498
499 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
500
501 proxy->chip_select = chip->chip_select;
502 proxy->max_speed_hz = chip->max_speed_hz;
503 proxy->mode = chip->mode;
504 proxy->irq = chip->irq;
505 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
506 proxy->dev.platform_data = (void *) chip->platform_data;
507 proxy->controller_data = chip->controller_data;
508 proxy->controller_state = NULL;
509
510 status = spi_add_device(proxy);
511 if (status < 0) {
512 spi_dev_put(proxy);
513 return NULL;
514 }
515
516 return proxy;
517 }
518 EXPORT_SYMBOL_GPL(spi_new_device);
519
520 static void spi_match_master_to_boardinfo(struct spi_master *master,
521 struct spi_board_info *bi)
522 {
523 struct spi_device *dev;
524
525 if (master->bus_num != bi->bus_num)
526 return;
527
528 dev = spi_new_device(master, bi);
529 if (!dev)
530 dev_err(master->dev.parent, "can't create new device for %s\n",
531 bi->modalias);
532 }
533
534 /**
535 * spi_register_board_info - register SPI devices for a given board
536 * @info: array of chip descriptors
537 * @n: how many descriptors are provided
538 * Context: can sleep
539 *
540 * Board-specific early init code calls this (probably during arch_initcall)
541 * with segments of the SPI device table. Any device nodes are created later,
542 * after the relevant parent SPI controller (bus_num) is defined. We keep
543 * this table of devices forever, so that reloading a controller driver will
544 * not make Linux forget about these hard-wired devices.
545 *
546 * Other code can also call this, e.g. a particular add-on board might provide
547 * SPI devices through its expansion connector, so code initializing that board
548 * would naturally declare its SPI devices.
549 *
550 * The board info passed can safely be __initdata ... but be careful of
551 * any embedded pointers (platform_data, etc), they're copied as-is.
552 */
553 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
554 {
555 struct boardinfo *bi;
556 int i;
557
558 if (!n)
559 return -EINVAL;
560
561 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
562 if (!bi)
563 return -ENOMEM;
564
565 for (i = 0; i < n; i++, bi++, info++) {
566 struct spi_master *master;
567
568 memcpy(&bi->board_info, info, sizeof(*info));
569 mutex_lock(&board_lock);
570 list_add_tail(&bi->list, &board_list);
571 list_for_each_entry(master, &spi_master_list, list)
572 spi_match_master_to_boardinfo(master, &bi->board_info);
573 mutex_unlock(&board_lock);
574 }
575
576 return 0;
577 }
578
579 /*-------------------------------------------------------------------------*/
580
581 static void spi_set_cs(struct spi_device *spi, bool enable)
582 {
583 if (spi->mode & SPI_CS_HIGH)
584 enable = !enable;
585
586 if (spi->cs_gpio >= 0)
587 gpio_set_value(spi->cs_gpio, !enable);
588 else if (spi->master->set_cs)
589 spi->master->set_cs(spi, !enable);
590 }
591
592 #ifdef CONFIG_HAS_DMA
593 static int spi_map_buf(struct spi_master *master, struct device *dev,
594 struct sg_table *sgt, void *buf, size_t len,
595 enum dma_data_direction dir)
596 {
597 const bool vmalloced_buf = is_vmalloc_addr(buf);
598 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
599 const int sgs = DIV_ROUND_UP(len, desc_len);
600 struct page *vm_page;
601 void *sg_buf;
602 size_t min;
603 int i, ret;
604
605 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
606 if (ret != 0)
607 return ret;
608
609 for (i = 0; i < sgs; i++) {
610 min = min_t(size_t, len, desc_len);
611
612 if (vmalloced_buf) {
613 vm_page = vmalloc_to_page(buf);
614 if (!vm_page) {
615 sg_free_table(sgt);
616 return -ENOMEM;
617 }
618 sg_set_page(&sgt->sgl[i], vm_page,
619 min, offset_in_page(buf));
620 } else {
621 sg_buf = buf;
622 sg_set_buf(&sgt->sgl[i], sg_buf, min);
623 }
624
625
626 buf += min;
627 len -= min;
628 }
629
630 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
631 if (!ret)
632 ret = -ENOMEM;
633 if (ret < 0) {
634 sg_free_table(sgt);
635 return ret;
636 }
637
638 sgt->nents = ret;
639
640 return 0;
641 }
642
643 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
644 struct sg_table *sgt, enum dma_data_direction dir)
645 {
646 if (sgt->orig_nents) {
647 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
648 sg_free_table(sgt);
649 }
650 }
651
652 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
653 {
654 struct device *tx_dev, *rx_dev;
655 struct spi_transfer *xfer;
656 int ret;
657
658 if (!master->can_dma)
659 return 0;
660
661 tx_dev = master->dma_tx->device->dev;
662 rx_dev = master->dma_rx->device->dev;
663
664 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
665 if (!master->can_dma(master, msg->spi, xfer))
666 continue;
667
668 if (xfer->tx_buf != NULL) {
669 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
670 (void *)xfer->tx_buf, xfer->len,
671 DMA_TO_DEVICE);
672 if (ret != 0)
673 return ret;
674 }
675
676 if (xfer->rx_buf != NULL) {
677 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
678 xfer->rx_buf, xfer->len,
679 DMA_FROM_DEVICE);
680 if (ret != 0) {
681 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
682 DMA_TO_DEVICE);
683 return ret;
684 }
685 }
686 }
687
688 master->cur_msg_mapped = true;
689
690 return 0;
691 }
692
693 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
694 {
695 struct spi_transfer *xfer;
696 struct device *tx_dev, *rx_dev;
697
698 if (!master->cur_msg_mapped || !master->can_dma)
699 return 0;
700
701 tx_dev = master->dma_tx->device->dev;
702 rx_dev = master->dma_rx->device->dev;
703
704 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705 if (!master->can_dma(master, msg->spi, xfer))
706 continue;
707
708 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
709 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
710 }
711
712 return 0;
713 }
714 #else /* !CONFIG_HAS_DMA */
715 static inline int __spi_map_msg(struct spi_master *master,
716 struct spi_message *msg)
717 {
718 return 0;
719 }
720
721 static inline int spi_unmap_msg(struct spi_master *master,
722 struct spi_message *msg)
723 {
724 return 0;
725 }
726 #endif /* !CONFIG_HAS_DMA */
727
728 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
729 {
730 struct spi_transfer *xfer;
731 void *tmp;
732 unsigned int max_tx, max_rx;
733
734 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
735 max_tx = 0;
736 max_rx = 0;
737
738 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
739 if ((master->flags & SPI_MASTER_MUST_TX) &&
740 !xfer->tx_buf)
741 max_tx = max(xfer->len, max_tx);
742 if ((master->flags & SPI_MASTER_MUST_RX) &&
743 !xfer->rx_buf)
744 max_rx = max(xfer->len, max_rx);
745 }
746
747 if (max_tx) {
748 tmp = krealloc(master->dummy_tx, max_tx,
749 GFP_KERNEL | GFP_DMA);
750 if (!tmp)
751 return -ENOMEM;
752 master->dummy_tx = tmp;
753 memset(tmp, 0, max_tx);
754 }
755
756 if (max_rx) {
757 tmp = krealloc(master->dummy_rx, max_rx,
758 GFP_KERNEL | GFP_DMA);
759 if (!tmp)
760 return -ENOMEM;
761 master->dummy_rx = tmp;
762 }
763
764 if (max_tx || max_rx) {
765 list_for_each_entry(xfer, &msg->transfers,
766 transfer_list) {
767 if (!xfer->tx_buf)
768 xfer->tx_buf = master->dummy_tx;
769 if (!xfer->rx_buf)
770 xfer->rx_buf = master->dummy_rx;
771 }
772 }
773 }
774
775 return __spi_map_msg(master, msg);
776 }
777
778 /*
779 * spi_transfer_one_message - Default implementation of transfer_one_message()
780 *
781 * This is a standard implementation of transfer_one_message() for
782 * drivers which impelment a transfer_one() operation. It provides
783 * standard handling of delays and chip select management.
784 */
785 static int spi_transfer_one_message(struct spi_master *master,
786 struct spi_message *msg)
787 {
788 struct spi_transfer *xfer;
789 bool keep_cs = false;
790 int ret = 0;
791 int ms = 1;
792
793 spi_set_cs(msg->spi, true);
794
795 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796 trace_spi_transfer_start(msg, xfer);
797
798 if (xfer->tx_buf || xfer->rx_buf) {
799 reinit_completion(&master->xfer_completion);
800
801 ret = master->transfer_one(master, msg->spi, xfer);
802 if (ret < 0) {
803 dev_err(&msg->spi->dev,
804 "SPI transfer failed: %d\n", ret);
805 goto out;
806 }
807
808 if (ret > 0) {
809 ret = 0;
810 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
811 ms += ms + 100; /* some tolerance */
812
813 ms = wait_for_completion_timeout(&master->xfer_completion,
814 msecs_to_jiffies(ms));
815 }
816
817 if (ms == 0) {
818 dev_err(&msg->spi->dev,
819 "SPI transfer timed out\n");
820 msg->status = -ETIMEDOUT;
821 }
822 } else {
823 if (xfer->len)
824 dev_err(&msg->spi->dev,
825 "Bufferless transfer has length %u\n",
826 xfer->len);
827 }
828
829 trace_spi_transfer_stop(msg, xfer);
830
831 if (msg->status != -EINPROGRESS)
832 goto out;
833
834 if (xfer->delay_usecs)
835 udelay(xfer->delay_usecs);
836
837 if (xfer->cs_change) {
838 if (list_is_last(&xfer->transfer_list,
839 &msg->transfers)) {
840 keep_cs = true;
841 } else {
842 spi_set_cs(msg->spi, false);
843 udelay(10);
844 spi_set_cs(msg->spi, true);
845 }
846 }
847
848 msg->actual_length += xfer->len;
849 }
850
851 out:
852 if (ret != 0 || !keep_cs)
853 spi_set_cs(msg->spi, false);
854
855 if (msg->status == -EINPROGRESS)
856 msg->status = ret;
857
858 spi_finalize_current_message(master);
859
860 return ret;
861 }
862
863 /**
864 * spi_finalize_current_transfer - report completion of a transfer
865 * @master: the master reporting completion
866 *
867 * Called by SPI drivers using the core transfer_one_message()
868 * implementation to notify it that the current interrupt driven
869 * transfer has finished and the next one may be scheduled.
870 */
871 void spi_finalize_current_transfer(struct spi_master *master)
872 {
873 complete(&master->xfer_completion);
874 }
875 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
876
877 /**
878 * spi_pump_messages - kthread work function which processes spi message queue
879 * @work: pointer to kthread work struct contained in the master struct
880 *
881 * This function checks if there is any spi message in the queue that
882 * needs processing and if so call out to the driver to initialize hardware
883 * and transfer each message.
884 *
885 */
886 static void spi_pump_messages(struct kthread_work *work)
887 {
888 struct spi_master *master =
889 container_of(work, struct spi_master, pump_messages);
890 unsigned long flags;
891 bool was_busy = false;
892 int ret;
893
894 /* Lock queue and check for queue work */
895 spin_lock_irqsave(&master->queue_lock, flags);
896 if (list_empty(&master->queue) || !master->running) {
897 if (!master->busy) {
898 spin_unlock_irqrestore(&master->queue_lock, flags);
899 return;
900 }
901 master->busy = false;
902 spin_unlock_irqrestore(&master->queue_lock, flags);
903 kfree(master->dummy_rx);
904 master->dummy_rx = NULL;
905 kfree(master->dummy_tx);
906 master->dummy_tx = NULL;
907 if (master->unprepare_transfer_hardware &&
908 master->unprepare_transfer_hardware(master))
909 dev_err(&master->dev,
910 "failed to unprepare transfer hardware\n");
911 if (master->auto_runtime_pm) {
912 pm_runtime_mark_last_busy(master->dev.parent);
913 pm_runtime_put_autosuspend(master->dev.parent);
914 }
915 trace_spi_master_idle(master);
916 return;
917 }
918
919 /* Make sure we are not already running a message */
920 if (master->cur_msg) {
921 spin_unlock_irqrestore(&master->queue_lock, flags);
922 return;
923 }
924 /* Extract head of queue */
925 master->cur_msg =
926 list_first_entry(&master->queue, struct spi_message, queue);
927
928 list_del_init(&master->cur_msg->queue);
929 if (master->busy)
930 was_busy = true;
931 else
932 master->busy = true;
933 spin_unlock_irqrestore(&master->queue_lock, flags);
934
935 if (!was_busy && master->auto_runtime_pm) {
936 ret = pm_runtime_get_sync(master->dev.parent);
937 if (ret < 0) {
938 dev_err(&master->dev, "Failed to power device: %d\n",
939 ret);
940 return;
941 }
942 }
943
944 if (!was_busy)
945 trace_spi_master_busy(master);
946
947 if (!was_busy && master->prepare_transfer_hardware) {
948 ret = master->prepare_transfer_hardware(master);
949 if (ret) {
950 dev_err(&master->dev,
951 "failed to prepare transfer hardware\n");
952
953 if (master->auto_runtime_pm)
954 pm_runtime_put(master->dev.parent);
955 return;
956 }
957 }
958
959 trace_spi_message_start(master->cur_msg);
960
961 if (master->prepare_message) {
962 ret = master->prepare_message(master, master->cur_msg);
963 if (ret) {
964 dev_err(&master->dev,
965 "failed to prepare message: %d\n", ret);
966 master->cur_msg->status = ret;
967 spi_finalize_current_message(master);
968 return;
969 }
970 master->cur_msg_prepared = true;
971 }
972
973 ret = spi_map_msg(master, master->cur_msg);
974 if (ret) {
975 master->cur_msg->status = ret;
976 spi_finalize_current_message(master);
977 return;
978 }
979
980 ret = master->transfer_one_message(master, master->cur_msg);
981 if (ret) {
982 dev_err(&master->dev,
983 "failed to transfer one message from queue\n");
984 return;
985 }
986 }
987
988 static int spi_init_queue(struct spi_master *master)
989 {
990 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
991
992 INIT_LIST_HEAD(&master->queue);
993 spin_lock_init(&master->queue_lock);
994
995 master->running = false;
996 master->busy = false;
997
998 init_kthread_worker(&master->kworker);
999 master->kworker_task = kthread_run(kthread_worker_fn,
1000 &master->kworker, "%s",
1001 dev_name(&master->dev));
1002 if (IS_ERR(master->kworker_task)) {
1003 dev_err(&master->dev, "failed to create message pump task\n");
1004 return PTR_ERR(master->kworker_task);
1005 }
1006 init_kthread_work(&master->pump_messages, spi_pump_messages);
1007
1008 /*
1009 * Master config will indicate if this controller should run the
1010 * message pump with high (realtime) priority to reduce the transfer
1011 * latency on the bus by minimising the delay between a transfer
1012 * request and the scheduling of the message pump thread. Without this
1013 * setting the message pump thread will remain at default priority.
1014 */
1015 if (master->rt) {
1016 dev_info(&master->dev,
1017 "will run message pump with realtime priority\n");
1018 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1019 }
1020
1021 return 0;
1022 }
1023
1024 /**
1025 * spi_get_next_queued_message() - called by driver to check for queued
1026 * messages
1027 * @master: the master to check for queued messages
1028 *
1029 * If there are more messages in the queue, the next message is returned from
1030 * this call.
1031 */
1032 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1033 {
1034 struct spi_message *next;
1035 unsigned long flags;
1036
1037 /* get a pointer to the next message, if any */
1038 spin_lock_irqsave(&master->queue_lock, flags);
1039 next = list_first_entry_or_null(&master->queue, struct spi_message,
1040 queue);
1041 spin_unlock_irqrestore(&master->queue_lock, flags);
1042
1043 return next;
1044 }
1045 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1046
1047 /**
1048 * spi_finalize_current_message() - the current message is complete
1049 * @master: the master to return the message to
1050 *
1051 * Called by the driver to notify the core that the message in the front of the
1052 * queue is complete and can be removed from the queue.
1053 */
1054 void spi_finalize_current_message(struct spi_master *master)
1055 {
1056 struct spi_message *mesg;
1057 unsigned long flags;
1058 int ret;
1059
1060 spin_lock_irqsave(&master->queue_lock, flags);
1061 mesg = master->cur_msg;
1062 master->cur_msg = NULL;
1063
1064 queue_kthread_work(&master->kworker, &master->pump_messages);
1065 spin_unlock_irqrestore(&master->queue_lock, flags);
1066
1067 spi_unmap_msg(master, mesg);
1068
1069 if (master->cur_msg_prepared && master->unprepare_message) {
1070 ret = master->unprepare_message(master, mesg);
1071 if (ret) {
1072 dev_err(&master->dev,
1073 "failed to unprepare message: %d\n", ret);
1074 }
1075 }
1076 master->cur_msg_prepared = false;
1077
1078 mesg->state = NULL;
1079 if (mesg->complete)
1080 mesg->complete(mesg->context);
1081
1082 trace_spi_message_done(mesg);
1083 }
1084 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1085
1086 static int spi_start_queue(struct spi_master *master)
1087 {
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&master->queue_lock, flags);
1091
1092 if (master->running || master->busy) {
1093 spin_unlock_irqrestore(&master->queue_lock, flags);
1094 return -EBUSY;
1095 }
1096
1097 master->running = true;
1098 master->cur_msg = NULL;
1099 spin_unlock_irqrestore(&master->queue_lock, flags);
1100
1101 queue_kthread_work(&master->kworker, &master->pump_messages);
1102
1103 return 0;
1104 }
1105
1106 static int spi_stop_queue(struct spi_master *master)
1107 {
1108 unsigned long flags;
1109 unsigned limit = 500;
1110 int ret = 0;
1111
1112 spin_lock_irqsave(&master->queue_lock, flags);
1113
1114 /*
1115 * This is a bit lame, but is optimized for the common execution path.
1116 * A wait_queue on the master->busy could be used, but then the common
1117 * execution path (pump_messages) would be required to call wake_up or
1118 * friends on every SPI message. Do this instead.
1119 */
1120 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1121 spin_unlock_irqrestore(&master->queue_lock, flags);
1122 usleep_range(10000, 11000);
1123 spin_lock_irqsave(&master->queue_lock, flags);
1124 }
1125
1126 if (!list_empty(&master->queue) || master->busy)
1127 ret = -EBUSY;
1128 else
1129 master->running = false;
1130
1131 spin_unlock_irqrestore(&master->queue_lock, flags);
1132
1133 if (ret) {
1134 dev_warn(&master->dev,
1135 "could not stop message queue\n");
1136 return ret;
1137 }
1138 return ret;
1139 }
1140
1141 static int spi_destroy_queue(struct spi_master *master)
1142 {
1143 int ret;
1144
1145 ret = spi_stop_queue(master);
1146
1147 /*
1148 * flush_kthread_worker will block until all work is done.
1149 * If the reason that stop_queue timed out is that the work will never
1150 * finish, then it does no good to call flush/stop thread, so
1151 * return anyway.
1152 */
1153 if (ret) {
1154 dev_err(&master->dev, "problem destroying queue\n");
1155 return ret;
1156 }
1157
1158 flush_kthread_worker(&master->kworker);
1159 kthread_stop(master->kworker_task);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * spi_queued_transfer - transfer function for queued transfers
1166 * @spi: spi device which is requesting transfer
1167 * @msg: spi message which is to handled is queued to driver queue
1168 */
1169 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1170 {
1171 struct spi_master *master = spi->master;
1172 unsigned long flags;
1173
1174 spin_lock_irqsave(&master->queue_lock, flags);
1175
1176 if (!master->running) {
1177 spin_unlock_irqrestore(&master->queue_lock, flags);
1178 return -ESHUTDOWN;
1179 }
1180 msg->actual_length = 0;
1181 msg->status = -EINPROGRESS;
1182
1183 list_add_tail(&msg->queue, &master->queue);
1184 if (!master->busy)
1185 queue_kthread_work(&master->kworker, &master->pump_messages);
1186
1187 spin_unlock_irqrestore(&master->queue_lock, flags);
1188 return 0;
1189 }
1190
1191 static int spi_master_initialize_queue(struct spi_master *master)
1192 {
1193 int ret;
1194
1195 master->transfer = spi_queued_transfer;
1196 if (!master->transfer_one_message)
1197 master->transfer_one_message = spi_transfer_one_message;
1198
1199 /* Initialize and start queue */
1200 ret = spi_init_queue(master);
1201 if (ret) {
1202 dev_err(&master->dev, "problem initializing queue\n");
1203 goto err_init_queue;
1204 }
1205 master->queued = true;
1206 ret = spi_start_queue(master);
1207 if (ret) {
1208 dev_err(&master->dev, "problem starting queue\n");
1209 goto err_start_queue;
1210 }
1211
1212 return 0;
1213
1214 err_start_queue:
1215 spi_destroy_queue(master);
1216 err_init_queue:
1217 return ret;
1218 }
1219
1220 /*-------------------------------------------------------------------------*/
1221
1222 #if defined(CONFIG_OF)
1223 static struct spi_device *
1224 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1225 {
1226 struct spi_device *spi;
1227 int rc;
1228 u32 value;
1229
1230 /* Alloc an spi_device */
1231 spi = spi_alloc_device(master);
1232 if (!spi) {
1233 dev_err(&master->dev, "spi_device alloc error for %s\n",
1234 nc->full_name);
1235 rc = -ENOMEM;
1236 goto err_out;
1237 }
1238
1239 /* Select device driver */
1240 rc = of_modalias_node(nc, spi->modalias,
1241 sizeof(spi->modalias));
1242 if (rc < 0) {
1243 dev_err(&master->dev, "cannot find modalias for %s\n",
1244 nc->full_name);
1245 goto err_out;
1246 }
1247
1248 /* Device address */
1249 rc = of_property_read_u32(nc, "reg", &value);
1250 if (rc) {
1251 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1252 nc->full_name, rc);
1253 goto err_out;
1254 }
1255 spi->chip_select = value;
1256
1257 /* Mode (clock phase/polarity/etc.) */
1258 if (of_find_property(nc, "spi-cpha", NULL))
1259 spi->mode |= SPI_CPHA;
1260 if (of_find_property(nc, "spi-cpol", NULL))
1261 spi->mode |= SPI_CPOL;
1262 if (of_find_property(nc, "spi-cs-high", NULL))
1263 spi->mode |= SPI_CS_HIGH;
1264 if (of_find_property(nc, "spi-3wire", NULL))
1265 spi->mode |= SPI_3WIRE;
1266 if (of_find_property(nc, "spi-lsb-first", NULL))
1267 spi->mode |= SPI_LSB_FIRST;
1268
1269 /* Device DUAL/QUAD mode */
1270 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1271 switch (value) {
1272 case 1:
1273 break;
1274 case 2:
1275 spi->mode |= SPI_TX_DUAL;
1276 break;
1277 case 4:
1278 spi->mode |= SPI_TX_QUAD;
1279 break;
1280 default:
1281 dev_warn(&master->dev,
1282 "spi-tx-bus-width %d not supported\n",
1283 value);
1284 break;
1285 }
1286 }
1287
1288 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1289 switch (value) {
1290 case 1:
1291 break;
1292 case 2:
1293 spi->mode |= SPI_RX_DUAL;
1294 break;
1295 case 4:
1296 spi->mode |= SPI_RX_QUAD;
1297 break;
1298 default:
1299 dev_warn(&master->dev,
1300 "spi-rx-bus-width %d not supported\n",
1301 value);
1302 break;
1303 }
1304 }
1305
1306 /* Device speed */
1307 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1308 if (rc) {
1309 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1310 nc->full_name, rc);
1311 goto err_out;
1312 }
1313 spi->max_speed_hz = value;
1314
1315 /* IRQ */
1316 spi->irq = irq_of_parse_and_map(nc, 0);
1317
1318 /* Store a pointer to the node in the device structure */
1319 of_node_get(nc);
1320 spi->dev.of_node = nc;
1321
1322 /* Register the new device */
1323 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1324 rc = spi_add_device(spi);
1325 if (rc) {
1326 dev_err(&master->dev, "spi_device register error %s\n",
1327 nc->full_name);
1328 goto err_out;
1329 }
1330
1331 return spi;
1332
1333 err_out:
1334 spi_dev_put(spi);
1335 return ERR_PTR(rc);
1336 }
1337
1338 /**
1339 * of_register_spi_devices() - Register child devices onto the SPI bus
1340 * @master: Pointer to spi_master device
1341 *
1342 * Registers an spi_device for each child node of master node which has a 'reg'
1343 * property.
1344 */
1345 static void of_register_spi_devices(struct spi_master *master)
1346 {
1347 struct spi_device *spi;
1348 struct device_node *nc;
1349
1350 if (!master->dev.of_node)
1351 return;
1352
1353 for_each_available_child_of_node(master->dev.of_node, nc) {
1354 spi = of_register_spi_device(master, nc);
1355 if (IS_ERR(spi))
1356 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1357 nc->full_name);
1358 }
1359 }
1360 #else
1361 static void of_register_spi_devices(struct spi_master *master) { }
1362 #endif
1363
1364 #ifdef CONFIG_ACPI
1365 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1366 {
1367 struct spi_device *spi = data;
1368
1369 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1370 struct acpi_resource_spi_serialbus *sb;
1371
1372 sb = &ares->data.spi_serial_bus;
1373 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1374 spi->chip_select = sb->device_selection;
1375 spi->max_speed_hz = sb->connection_speed;
1376
1377 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1378 spi->mode |= SPI_CPHA;
1379 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1380 spi->mode |= SPI_CPOL;
1381 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1382 spi->mode |= SPI_CS_HIGH;
1383 }
1384 } else if (spi->irq < 0) {
1385 struct resource r;
1386
1387 if (acpi_dev_resource_interrupt(ares, 0, &r))
1388 spi->irq = r.start;
1389 }
1390
1391 /* Always tell the ACPI core to skip this resource */
1392 return 1;
1393 }
1394
1395 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1396 void *data, void **return_value)
1397 {
1398 struct spi_master *master = data;
1399 struct list_head resource_list;
1400 struct acpi_device *adev;
1401 struct spi_device *spi;
1402 int ret;
1403
1404 if (acpi_bus_get_device(handle, &adev))
1405 return AE_OK;
1406 if (acpi_bus_get_status(adev) || !adev->status.present)
1407 return AE_OK;
1408
1409 spi = spi_alloc_device(master);
1410 if (!spi) {
1411 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1412 dev_name(&adev->dev));
1413 return AE_NO_MEMORY;
1414 }
1415
1416 ACPI_COMPANION_SET(&spi->dev, adev);
1417 spi->irq = -1;
1418
1419 INIT_LIST_HEAD(&resource_list);
1420 ret = acpi_dev_get_resources(adev, &resource_list,
1421 acpi_spi_add_resource, spi);
1422 acpi_dev_free_resource_list(&resource_list);
1423
1424 if (ret < 0 || !spi->max_speed_hz) {
1425 spi_dev_put(spi);
1426 return AE_OK;
1427 }
1428
1429 adev->power.flags.ignore_parent = true;
1430 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1431 if (spi_add_device(spi)) {
1432 adev->power.flags.ignore_parent = false;
1433 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1434 dev_name(&adev->dev));
1435 spi_dev_put(spi);
1436 }
1437
1438 return AE_OK;
1439 }
1440
1441 static void acpi_register_spi_devices(struct spi_master *master)
1442 {
1443 acpi_status status;
1444 acpi_handle handle;
1445
1446 handle = ACPI_HANDLE(master->dev.parent);
1447 if (!handle)
1448 return;
1449
1450 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1451 acpi_spi_add_device, NULL,
1452 master, NULL);
1453 if (ACPI_FAILURE(status))
1454 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1455 }
1456 #else
1457 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1458 #endif /* CONFIG_ACPI */
1459
1460 static void spi_master_release(struct device *dev)
1461 {
1462 struct spi_master *master;
1463
1464 master = container_of(dev, struct spi_master, dev);
1465 kfree(master);
1466 }
1467
1468 static struct class spi_master_class = {
1469 .name = "spi_master",
1470 .owner = THIS_MODULE,
1471 .dev_release = spi_master_release,
1472 };
1473
1474
1475
1476 /**
1477 * spi_alloc_master - allocate SPI master controller
1478 * @dev: the controller, possibly using the platform_bus
1479 * @size: how much zeroed driver-private data to allocate; the pointer to this
1480 * memory is in the driver_data field of the returned device,
1481 * accessible with spi_master_get_devdata().
1482 * Context: can sleep
1483 *
1484 * This call is used only by SPI master controller drivers, which are the
1485 * only ones directly touching chip registers. It's how they allocate
1486 * an spi_master structure, prior to calling spi_register_master().
1487 *
1488 * This must be called from context that can sleep. It returns the SPI
1489 * master structure on success, else NULL.
1490 *
1491 * The caller is responsible for assigning the bus number and initializing
1492 * the master's methods before calling spi_register_master(); and (after errors
1493 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1494 * leak.
1495 */
1496 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1497 {
1498 struct spi_master *master;
1499
1500 if (!dev)
1501 return NULL;
1502
1503 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1504 if (!master)
1505 return NULL;
1506
1507 device_initialize(&master->dev);
1508 master->bus_num = -1;
1509 master->num_chipselect = 1;
1510 master->dev.class = &spi_master_class;
1511 master->dev.parent = get_device(dev);
1512 spi_master_set_devdata(master, &master[1]);
1513
1514 return master;
1515 }
1516 EXPORT_SYMBOL_GPL(spi_alloc_master);
1517
1518 #ifdef CONFIG_OF
1519 static int of_spi_register_master(struct spi_master *master)
1520 {
1521 int nb, i, *cs;
1522 struct device_node *np = master->dev.of_node;
1523
1524 if (!np)
1525 return 0;
1526
1527 nb = of_gpio_named_count(np, "cs-gpios");
1528 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1529
1530 /* Return error only for an incorrectly formed cs-gpios property */
1531 if (nb == 0 || nb == -ENOENT)
1532 return 0;
1533 else if (nb < 0)
1534 return nb;
1535
1536 cs = devm_kzalloc(&master->dev,
1537 sizeof(int) * master->num_chipselect,
1538 GFP_KERNEL);
1539 master->cs_gpios = cs;
1540
1541 if (!master->cs_gpios)
1542 return -ENOMEM;
1543
1544 for (i = 0; i < master->num_chipselect; i++)
1545 cs[i] = -ENOENT;
1546
1547 for (i = 0; i < nb; i++)
1548 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1549
1550 return 0;
1551 }
1552 #else
1553 static int of_spi_register_master(struct spi_master *master)
1554 {
1555 return 0;
1556 }
1557 #endif
1558
1559 /**
1560 * spi_register_master - register SPI master controller
1561 * @master: initialized master, originally from spi_alloc_master()
1562 * Context: can sleep
1563 *
1564 * SPI master controllers connect to their drivers using some non-SPI bus,
1565 * such as the platform bus. The final stage of probe() in that code
1566 * includes calling spi_register_master() to hook up to this SPI bus glue.
1567 *
1568 * SPI controllers use board specific (often SOC specific) bus numbers,
1569 * and board-specific addressing for SPI devices combines those numbers
1570 * with chip select numbers. Since SPI does not directly support dynamic
1571 * device identification, boards need configuration tables telling which
1572 * chip is at which address.
1573 *
1574 * This must be called from context that can sleep. It returns zero on
1575 * success, else a negative error code (dropping the master's refcount).
1576 * After a successful return, the caller is responsible for calling
1577 * spi_unregister_master().
1578 */
1579 int spi_register_master(struct spi_master *master)
1580 {
1581 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1582 struct device *dev = master->dev.parent;
1583 struct boardinfo *bi;
1584 int status = -ENODEV;
1585 int dynamic = 0;
1586
1587 if (!dev)
1588 return -ENODEV;
1589
1590 status = of_spi_register_master(master);
1591 if (status)
1592 return status;
1593
1594 /* even if it's just one always-selected device, there must
1595 * be at least one chipselect
1596 */
1597 if (master->num_chipselect == 0)
1598 return -EINVAL;
1599
1600 if ((master->bus_num < 0) && master->dev.of_node)
1601 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1602
1603 /* convention: dynamically assigned bus IDs count down from the max */
1604 if (master->bus_num < 0) {
1605 /* FIXME switch to an IDR based scheme, something like
1606 * I2C now uses, so we can't run out of "dynamic" IDs
1607 */
1608 master->bus_num = atomic_dec_return(&dyn_bus_id);
1609 dynamic = 1;
1610 }
1611
1612 spin_lock_init(&master->bus_lock_spinlock);
1613 mutex_init(&master->bus_lock_mutex);
1614 master->bus_lock_flag = 0;
1615 init_completion(&master->xfer_completion);
1616 if (!master->max_dma_len)
1617 master->max_dma_len = INT_MAX;
1618
1619 /* register the device, then userspace will see it.
1620 * registration fails if the bus ID is in use.
1621 */
1622 dev_set_name(&master->dev, "spi%u", master->bus_num);
1623 status = device_add(&master->dev);
1624 if (status < 0)
1625 goto done;
1626 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1627 dynamic ? " (dynamic)" : "");
1628
1629 /* If we're using a queued driver, start the queue */
1630 if (master->transfer)
1631 dev_info(dev, "master is unqueued, this is deprecated\n");
1632 else {
1633 status = spi_master_initialize_queue(master);
1634 if (status) {
1635 device_del(&master->dev);
1636 goto done;
1637 }
1638 }
1639
1640 mutex_lock(&board_lock);
1641 list_add_tail(&master->list, &spi_master_list);
1642 list_for_each_entry(bi, &board_list, list)
1643 spi_match_master_to_boardinfo(master, &bi->board_info);
1644 mutex_unlock(&board_lock);
1645
1646 /* Register devices from the device tree and ACPI */
1647 of_register_spi_devices(master);
1648 acpi_register_spi_devices(master);
1649 done:
1650 return status;
1651 }
1652 EXPORT_SYMBOL_GPL(spi_register_master);
1653
1654 static void devm_spi_unregister(struct device *dev, void *res)
1655 {
1656 spi_unregister_master(*(struct spi_master **)res);
1657 }
1658
1659 /**
1660 * dev_spi_register_master - register managed SPI master controller
1661 * @dev: device managing SPI master
1662 * @master: initialized master, originally from spi_alloc_master()
1663 * Context: can sleep
1664 *
1665 * Register a SPI device as with spi_register_master() which will
1666 * automatically be unregister
1667 */
1668 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1669 {
1670 struct spi_master **ptr;
1671 int ret;
1672
1673 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1674 if (!ptr)
1675 return -ENOMEM;
1676
1677 ret = spi_register_master(master);
1678 if (!ret) {
1679 *ptr = master;
1680 devres_add(dev, ptr);
1681 } else {
1682 devres_free(ptr);
1683 }
1684
1685 return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1688
1689 static int __unregister(struct device *dev, void *null)
1690 {
1691 spi_unregister_device(to_spi_device(dev));
1692 return 0;
1693 }
1694
1695 /**
1696 * spi_unregister_master - unregister SPI master controller
1697 * @master: the master being unregistered
1698 * Context: can sleep
1699 *
1700 * This call is used only by SPI master controller drivers, which are the
1701 * only ones directly touching chip registers.
1702 *
1703 * This must be called from context that can sleep.
1704 */
1705 void spi_unregister_master(struct spi_master *master)
1706 {
1707 int dummy;
1708
1709 if (master->queued) {
1710 if (spi_destroy_queue(master))
1711 dev_err(&master->dev, "queue remove failed\n");
1712 }
1713
1714 mutex_lock(&board_lock);
1715 list_del(&master->list);
1716 mutex_unlock(&board_lock);
1717
1718 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1719 device_unregister(&master->dev);
1720 }
1721 EXPORT_SYMBOL_GPL(spi_unregister_master);
1722
1723 int spi_master_suspend(struct spi_master *master)
1724 {
1725 int ret;
1726
1727 /* Basically no-ops for non-queued masters */
1728 if (!master->queued)
1729 return 0;
1730
1731 ret = spi_stop_queue(master);
1732 if (ret)
1733 dev_err(&master->dev, "queue stop failed\n");
1734
1735 return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(spi_master_suspend);
1738
1739 int spi_master_resume(struct spi_master *master)
1740 {
1741 int ret;
1742
1743 if (!master->queued)
1744 return 0;
1745
1746 ret = spi_start_queue(master);
1747 if (ret)
1748 dev_err(&master->dev, "queue restart failed\n");
1749
1750 return ret;
1751 }
1752 EXPORT_SYMBOL_GPL(spi_master_resume);
1753
1754 static int __spi_master_match(struct device *dev, const void *data)
1755 {
1756 struct spi_master *m;
1757 const u16 *bus_num = data;
1758
1759 m = container_of(dev, struct spi_master, dev);
1760 return m->bus_num == *bus_num;
1761 }
1762
1763 /**
1764 * spi_busnum_to_master - look up master associated with bus_num
1765 * @bus_num: the master's bus number
1766 * Context: can sleep
1767 *
1768 * This call may be used with devices that are registered after
1769 * arch init time. It returns a refcounted pointer to the relevant
1770 * spi_master (which the caller must release), or NULL if there is
1771 * no such master registered.
1772 */
1773 struct spi_master *spi_busnum_to_master(u16 bus_num)
1774 {
1775 struct device *dev;
1776 struct spi_master *master = NULL;
1777
1778 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1779 __spi_master_match);
1780 if (dev)
1781 master = container_of(dev, struct spi_master, dev);
1782 /* reference got in class_find_device */
1783 return master;
1784 }
1785 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1786
1787
1788 /*-------------------------------------------------------------------------*/
1789
1790 /* Core methods for SPI master protocol drivers. Some of the
1791 * other core methods are currently defined as inline functions.
1792 */
1793
1794 /**
1795 * spi_setup - setup SPI mode and clock rate
1796 * @spi: the device whose settings are being modified
1797 * Context: can sleep, and no requests are queued to the device
1798 *
1799 * SPI protocol drivers may need to update the transfer mode if the
1800 * device doesn't work with its default. They may likewise need
1801 * to update clock rates or word sizes from initial values. This function
1802 * changes those settings, and must be called from a context that can sleep.
1803 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1804 * effect the next time the device is selected and data is transferred to
1805 * or from it. When this function returns, the spi device is deselected.
1806 *
1807 * Note that this call will fail if the protocol driver specifies an option
1808 * that the underlying controller or its driver does not support. For
1809 * example, not all hardware supports wire transfers using nine bit words,
1810 * LSB-first wire encoding, or active-high chipselects.
1811 */
1812 int spi_setup(struct spi_device *spi)
1813 {
1814 unsigned bad_bits, ugly_bits;
1815 int status = 0;
1816
1817 /* check mode to prevent that DUAL and QUAD set at the same time
1818 */
1819 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1820 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1821 dev_err(&spi->dev,
1822 "setup: can not select dual and quad at the same time\n");
1823 return -EINVAL;
1824 }
1825 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1826 */
1827 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1828 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1829 return -EINVAL;
1830 /* help drivers fail *cleanly* when they need options
1831 * that aren't supported with their current master
1832 */
1833 bad_bits = spi->mode & ~spi->master->mode_bits;
1834 ugly_bits = bad_bits &
1835 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1836 if (ugly_bits) {
1837 dev_warn(&spi->dev,
1838 "setup: ignoring unsupported mode bits %x\n",
1839 ugly_bits);
1840 spi->mode &= ~ugly_bits;
1841 bad_bits &= ~ugly_bits;
1842 }
1843 if (bad_bits) {
1844 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1845 bad_bits);
1846 return -EINVAL;
1847 }
1848
1849 if (!spi->bits_per_word)
1850 spi->bits_per_word = 8;
1851
1852 if (!spi->max_speed_hz)
1853 spi->max_speed_hz = spi->master->max_speed_hz;
1854
1855 if (spi->master->setup)
1856 status = spi->master->setup(spi);
1857
1858 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1859 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1860 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1861 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1862 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1863 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1864 spi->bits_per_word, spi->max_speed_hz,
1865 status);
1866
1867 return status;
1868 }
1869 EXPORT_SYMBOL_GPL(spi_setup);
1870
1871 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1872 {
1873 struct spi_master *master = spi->master;
1874 struct spi_transfer *xfer;
1875 int w_size;
1876
1877 if (list_empty(&message->transfers))
1878 return -EINVAL;
1879
1880 /* Half-duplex links include original MicroWire, and ones with
1881 * only one data pin like SPI_3WIRE (switches direction) or where
1882 * either MOSI or MISO is missing. They can also be caused by
1883 * software limitations.
1884 */
1885 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1886 || (spi->mode & SPI_3WIRE)) {
1887 unsigned flags = master->flags;
1888
1889 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1890 if (xfer->rx_buf && xfer->tx_buf)
1891 return -EINVAL;
1892 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1893 return -EINVAL;
1894 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1895 return -EINVAL;
1896 }
1897 }
1898
1899 /**
1900 * Set transfer bits_per_word and max speed as spi device default if
1901 * it is not set for this transfer.
1902 * Set transfer tx_nbits and rx_nbits as single transfer default
1903 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1904 */
1905 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1906 message->frame_length += xfer->len;
1907 if (!xfer->bits_per_word)
1908 xfer->bits_per_word = spi->bits_per_word;
1909
1910 if (!xfer->speed_hz)
1911 xfer->speed_hz = spi->max_speed_hz;
1912
1913 if (master->max_speed_hz &&
1914 xfer->speed_hz > master->max_speed_hz)
1915 xfer->speed_hz = master->max_speed_hz;
1916
1917 if (master->bits_per_word_mask) {
1918 /* Only 32 bits fit in the mask */
1919 if (xfer->bits_per_word > 32)
1920 return -EINVAL;
1921 if (!(master->bits_per_word_mask &
1922 BIT(xfer->bits_per_word - 1)))
1923 return -EINVAL;
1924 }
1925
1926 /*
1927 * SPI transfer length should be multiple of SPI word size
1928 * where SPI word size should be power-of-two multiple
1929 */
1930 if (xfer->bits_per_word <= 8)
1931 w_size = 1;
1932 else if (xfer->bits_per_word <= 16)
1933 w_size = 2;
1934 else
1935 w_size = 4;
1936
1937 /* No partial transfers accepted */
1938 if (xfer->len % w_size)
1939 return -EINVAL;
1940
1941 if (xfer->speed_hz && master->min_speed_hz &&
1942 xfer->speed_hz < master->min_speed_hz)
1943 return -EINVAL;
1944
1945 if (xfer->tx_buf && !xfer->tx_nbits)
1946 xfer->tx_nbits = SPI_NBITS_SINGLE;
1947 if (xfer->rx_buf && !xfer->rx_nbits)
1948 xfer->rx_nbits = SPI_NBITS_SINGLE;
1949 /* check transfer tx/rx_nbits:
1950 * 1. check the value matches one of single, dual and quad
1951 * 2. check tx/rx_nbits match the mode in spi_device
1952 */
1953 if (xfer->tx_buf) {
1954 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1955 xfer->tx_nbits != SPI_NBITS_DUAL &&
1956 xfer->tx_nbits != SPI_NBITS_QUAD)
1957 return -EINVAL;
1958 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1959 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1960 return -EINVAL;
1961 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1962 !(spi->mode & SPI_TX_QUAD))
1963 return -EINVAL;
1964 }
1965 /* check transfer rx_nbits */
1966 if (xfer->rx_buf) {
1967 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1968 xfer->rx_nbits != SPI_NBITS_DUAL &&
1969 xfer->rx_nbits != SPI_NBITS_QUAD)
1970 return -EINVAL;
1971 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1972 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1973 return -EINVAL;
1974 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1975 !(spi->mode & SPI_RX_QUAD))
1976 return -EINVAL;
1977 }
1978 }
1979
1980 message->status = -EINPROGRESS;
1981
1982 return 0;
1983 }
1984
1985 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1986 {
1987 struct spi_master *master = spi->master;
1988
1989 message->spi = spi;
1990
1991 trace_spi_message_submit(message);
1992
1993 return master->transfer(spi, message);
1994 }
1995
1996 /**
1997 * spi_async - asynchronous SPI transfer
1998 * @spi: device with which data will be exchanged
1999 * @message: describes the data transfers, including completion callback
2000 * Context: any (irqs may be blocked, etc)
2001 *
2002 * This call may be used in_irq and other contexts which can't sleep,
2003 * as well as from task contexts which can sleep.
2004 *
2005 * The completion callback is invoked in a context which can't sleep.
2006 * Before that invocation, the value of message->status is undefined.
2007 * When the callback is issued, message->status holds either zero (to
2008 * indicate complete success) or a negative error code. After that
2009 * callback returns, the driver which issued the transfer request may
2010 * deallocate the associated memory; it's no longer in use by any SPI
2011 * core or controller driver code.
2012 *
2013 * Note that although all messages to a spi_device are handled in
2014 * FIFO order, messages may go to different devices in other orders.
2015 * Some device might be higher priority, or have various "hard" access
2016 * time requirements, for example.
2017 *
2018 * On detection of any fault during the transfer, processing of
2019 * the entire message is aborted, and the device is deselected.
2020 * Until returning from the associated message completion callback,
2021 * no other spi_message queued to that device will be processed.
2022 * (This rule applies equally to all the synchronous transfer calls,
2023 * which are wrappers around this core asynchronous primitive.)
2024 */
2025 int spi_async(struct spi_device *spi, struct spi_message *message)
2026 {
2027 struct spi_master *master = spi->master;
2028 int ret;
2029 unsigned long flags;
2030
2031 ret = __spi_validate(spi, message);
2032 if (ret != 0)
2033 return ret;
2034
2035 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2036
2037 if (master->bus_lock_flag)
2038 ret = -EBUSY;
2039 else
2040 ret = __spi_async(spi, message);
2041
2042 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2043
2044 return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(spi_async);
2047
2048 /**
2049 * spi_async_locked - version of spi_async with exclusive bus usage
2050 * @spi: device with which data will be exchanged
2051 * @message: describes the data transfers, including completion callback
2052 * Context: any (irqs may be blocked, etc)
2053 *
2054 * This call may be used in_irq and other contexts which can't sleep,
2055 * as well as from task contexts which can sleep.
2056 *
2057 * The completion callback is invoked in a context which can't sleep.
2058 * Before that invocation, the value of message->status is undefined.
2059 * When the callback is issued, message->status holds either zero (to
2060 * indicate complete success) or a negative error code. After that
2061 * callback returns, the driver which issued the transfer request may
2062 * deallocate the associated memory; it's no longer in use by any SPI
2063 * core or controller driver code.
2064 *
2065 * Note that although all messages to a spi_device are handled in
2066 * FIFO order, messages may go to different devices in other orders.
2067 * Some device might be higher priority, or have various "hard" access
2068 * time requirements, for example.
2069 *
2070 * On detection of any fault during the transfer, processing of
2071 * the entire message is aborted, and the device is deselected.
2072 * Until returning from the associated message completion callback,
2073 * no other spi_message queued to that device will be processed.
2074 * (This rule applies equally to all the synchronous transfer calls,
2075 * which are wrappers around this core asynchronous primitive.)
2076 */
2077 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2078 {
2079 struct spi_master *master = spi->master;
2080 int ret;
2081 unsigned long flags;
2082
2083 ret = __spi_validate(spi, message);
2084 if (ret != 0)
2085 return ret;
2086
2087 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2088
2089 ret = __spi_async(spi, message);
2090
2091 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2092
2093 return ret;
2094
2095 }
2096 EXPORT_SYMBOL_GPL(spi_async_locked);
2097
2098
2099 /*-------------------------------------------------------------------------*/
2100
2101 /* Utility methods for SPI master protocol drivers, layered on
2102 * top of the core. Some other utility methods are defined as
2103 * inline functions.
2104 */
2105
2106 static void spi_complete(void *arg)
2107 {
2108 complete(arg);
2109 }
2110
2111 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2112 int bus_locked)
2113 {
2114 DECLARE_COMPLETION_ONSTACK(done);
2115 int status;
2116 struct spi_master *master = spi->master;
2117
2118 message->complete = spi_complete;
2119 message->context = &done;
2120
2121 if (!bus_locked)
2122 mutex_lock(&master->bus_lock_mutex);
2123
2124 status = spi_async_locked(spi, message);
2125
2126 if (!bus_locked)
2127 mutex_unlock(&master->bus_lock_mutex);
2128
2129 if (status == 0) {
2130 wait_for_completion(&done);
2131 status = message->status;
2132 }
2133 message->context = NULL;
2134 return status;
2135 }
2136
2137 /**
2138 * spi_sync - blocking/synchronous SPI data transfers
2139 * @spi: device with which data will be exchanged
2140 * @message: describes the data transfers
2141 * Context: can sleep
2142 *
2143 * This call may only be used from a context that may sleep. The sleep
2144 * is non-interruptible, and has no timeout. Low-overhead controller
2145 * drivers may DMA directly into and out of the message buffers.
2146 *
2147 * Note that the SPI device's chip select is active during the message,
2148 * and then is normally disabled between messages. Drivers for some
2149 * frequently-used devices may want to minimize costs of selecting a chip,
2150 * by leaving it selected in anticipation that the next message will go
2151 * to the same chip. (That may increase power usage.)
2152 *
2153 * Also, the caller is guaranteeing that the memory associated with the
2154 * message will not be freed before this call returns.
2155 *
2156 * It returns zero on success, else a negative error code.
2157 */
2158 int spi_sync(struct spi_device *spi, struct spi_message *message)
2159 {
2160 return __spi_sync(spi, message, 0);
2161 }
2162 EXPORT_SYMBOL_GPL(spi_sync);
2163
2164 /**
2165 * spi_sync_locked - version of spi_sync with exclusive bus usage
2166 * @spi: device with which data will be exchanged
2167 * @message: describes the data transfers
2168 * Context: can sleep
2169 *
2170 * This call may only be used from a context that may sleep. The sleep
2171 * is non-interruptible, and has no timeout. Low-overhead controller
2172 * drivers may DMA directly into and out of the message buffers.
2173 *
2174 * This call should be used by drivers that require exclusive access to the
2175 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2176 * be released by a spi_bus_unlock call when the exclusive access is over.
2177 *
2178 * It returns zero on success, else a negative error code.
2179 */
2180 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2181 {
2182 return __spi_sync(spi, message, 1);
2183 }
2184 EXPORT_SYMBOL_GPL(spi_sync_locked);
2185
2186 /**
2187 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2188 * @master: SPI bus master that should be locked for exclusive bus access
2189 * Context: can sleep
2190 *
2191 * This call may only be used from a context that may sleep. The sleep
2192 * is non-interruptible, and has no timeout.
2193 *
2194 * This call should be used by drivers that require exclusive access to the
2195 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2196 * exclusive access is over. Data transfer must be done by spi_sync_locked
2197 * and spi_async_locked calls when the SPI bus lock is held.
2198 *
2199 * It returns zero on success, else a negative error code.
2200 */
2201 int spi_bus_lock(struct spi_master *master)
2202 {
2203 unsigned long flags;
2204
2205 mutex_lock(&master->bus_lock_mutex);
2206
2207 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2208 master->bus_lock_flag = 1;
2209 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2210
2211 /* mutex remains locked until spi_bus_unlock is called */
2212
2213 return 0;
2214 }
2215 EXPORT_SYMBOL_GPL(spi_bus_lock);
2216
2217 /**
2218 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2219 * @master: SPI bus master that was locked for exclusive bus access
2220 * Context: can sleep
2221 *
2222 * This call may only be used from a context that may sleep. The sleep
2223 * is non-interruptible, and has no timeout.
2224 *
2225 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2226 * call.
2227 *
2228 * It returns zero on success, else a negative error code.
2229 */
2230 int spi_bus_unlock(struct spi_master *master)
2231 {
2232 master->bus_lock_flag = 0;
2233
2234 mutex_unlock(&master->bus_lock_mutex);
2235
2236 return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2239
2240 /* portable code must never pass more than 32 bytes */
2241 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2242
2243 static u8 *buf;
2244
2245 /**
2246 * spi_write_then_read - SPI synchronous write followed by read
2247 * @spi: device with which data will be exchanged
2248 * @txbuf: data to be written (need not be dma-safe)
2249 * @n_tx: size of txbuf, in bytes
2250 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2251 * @n_rx: size of rxbuf, in bytes
2252 * Context: can sleep
2253 *
2254 * This performs a half duplex MicroWire style transaction with the
2255 * device, sending txbuf and then reading rxbuf. The return value
2256 * is zero for success, else a negative errno status code.
2257 * This call may only be used from a context that may sleep.
2258 *
2259 * Parameters to this routine are always copied using a small buffer;
2260 * portable code should never use this for more than 32 bytes.
2261 * Performance-sensitive or bulk transfer code should instead use
2262 * spi_{async,sync}() calls with dma-safe buffers.
2263 */
2264 int spi_write_then_read(struct spi_device *spi,
2265 const void *txbuf, unsigned n_tx,
2266 void *rxbuf, unsigned n_rx)
2267 {
2268 static DEFINE_MUTEX(lock);
2269
2270 int status;
2271 struct spi_message message;
2272 struct spi_transfer x[2];
2273 u8 *local_buf;
2274
2275 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2276 * copying here, (as a pure convenience thing), but we can
2277 * keep heap costs out of the hot path unless someone else is
2278 * using the pre-allocated buffer or the transfer is too large.
2279 */
2280 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2281 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2282 GFP_KERNEL | GFP_DMA);
2283 if (!local_buf)
2284 return -ENOMEM;
2285 } else {
2286 local_buf = buf;
2287 }
2288
2289 spi_message_init(&message);
2290 memset(x, 0, sizeof(x));
2291 if (n_tx) {
2292 x[0].len = n_tx;
2293 spi_message_add_tail(&x[0], &message);
2294 }
2295 if (n_rx) {
2296 x[1].len = n_rx;
2297 spi_message_add_tail(&x[1], &message);
2298 }
2299
2300 memcpy(local_buf, txbuf, n_tx);
2301 x[0].tx_buf = local_buf;
2302 x[1].rx_buf = local_buf + n_tx;
2303
2304 /* do the i/o */
2305 status = spi_sync(spi, &message);
2306 if (status == 0)
2307 memcpy(rxbuf, x[1].rx_buf, n_rx);
2308
2309 if (x[0].tx_buf == buf)
2310 mutex_unlock(&lock);
2311 else
2312 kfree(local_buf);
2313
2314 return status;
2315 }
2316 EXPORT_SYMBOL_GPL(spi_write_then_read);
2317
2318 /*-------------------------------------------------------------------------*/
2319
2320 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2321 static int __spi_of_device_match(struct device *dev, void *data)
2322 {
2323 return dev->of_node == data;
2324 }
2325
2326 /* must call put_device() when done with returned spi_device device */
2327 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2328 {
2329 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2330 __spi_of_device_match);
2331 return dev ? to_spi_device(dev) : NULL;
2332 }
2333
2334 static int __spi_of_master_match(struct device *dev, const void *data)
2335 {
2336 return dev->of_node == data;
2337 }
2338
2339 /* the spi masters are not using spi_bus, so we find it with another way */
2340 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2341 {
2342 struct device *dev;
2343
2344 dev = class_find_device(&spi_master_class, NULL, node,
2345 __spi_of_master_match);
2346 if (!dev)
2347 return NULL;
2348
2349 /* reference got in class_find_device */
2350 return container_of(dev, struct spi_master, dev);
2351 }
2352
2353 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2354 void *arg)
2355 {
2356 struct of_reconfig_data *rd = arg;
2357 struct spi_master *master;
2358 struct spi_device *spi;
2359
2360 switch (of_reconfig_get_state_change(action, arg)) {
2361 case OF_RECONFIG_CHANGE_ADD:
2362 master = of_find_spi_master_by_node(rd->dn->parent);
2363 if (master == NULL)
2364 return NOTIFY_OK; /* not for us */
2365
2366 spi = of_register_spi_device(master, rd->dn);
2367 put_device(&master->dev);
2368
2369 if (IS_ERR(spi)) {
2370 pr_err("%s: failed to create for '%s'\n",
2371 __func__, rd->dn->full_name);
2372 return notifier_from_errno(PTR_ERR(spi));
2373 }
2374 break;
2375
2376 case OF_RECONFIG_CHANGE_REMOVE:
2377 /* find our device by node */
2378 spi = of_find_spi_device_by_node(rd->dn);
2379 if (spi == NULL)
2380 return NOTIFY_OK; /* no? not meant for us */
2381
2382 /* unregister takes one ref away */
2383 spi_unregister_device(spi);
2384
2385 /* and put the reference of the find */
2386 put_device(&spi->dev);
2387 break;
2388 }
2389
2390 return NOTIFY_OK;
2391 }
2392
2393 static struct notifier_block spi_of_notifier = {
2394 .notifier_call = of_spi_notify,
2395 };
2396 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2397 extern struct notifier_block spi_of_notifier;
2398 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2399
2400 static int __init spi_init(void)
2401 {
2402 int status;
2403
2404 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2405 if (!buf) {
2406 status = -ENOMEM;
2407 goto err0;
2408 }
2409
2410 status = bus_register(&spi_bus_type);
2411 if (status < 0)
2412 goto err1;
2413
2414 status = class_register(&spi_master_class);
2415 if (status < 0)
2416 goto err2;
2417
2418 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2419 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2420
2421 return 0;
2422
2423 err2:
2424 bus_unregister(&spi_bus_type);
2425 err1:
2426 kfree(buf);
2427 buf = NULL;
2428 err0:
2429 return status;
2430 }
2431
2432 /* board_info is normally registered in arch_initcall(),
2433 * but even essential drivers wait till later
2434 *
2435 * REVISIT only boardinfo really needs static linking. the rest (device and
2436 * driver registration) _could_ be dynamically linked (modular) ... costs
2437 * include needing to have boardinfo data structures be much more public.
2438 */
2439 postcore_initcall(spi_init);
2440
This page took 0.093242 seconds and 5 git commands to generate.