8518a6eb63f32c9ba932d40e9118dcefcc908eb5
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * spi.c - SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
27
28
29 /* SPI bustype and spi_master class are registered after board init code
30 * provides the SPI device tables, ensuring that both are present by the
31 * time controller driver registration causes spi_devices to "enumerate".
32 */
33 static void spidev_release(struct device *dev)
34 {
35 struct spi_device *spi = to_spi_device(dev);
36
37 /* spi masters may cleanup for released devices */
38 if (spi->master->cleanup)
39 spi->master->cleanup(spi);
40
41 spi_master_put(spi->master);
42 kfree(dev);
43 }
44
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 const struct spi_device *spi = to_spi_device(dev);
49
50 return sprintf(buf, "%s\n", spi->modalias);
51 }
52
53 static struct device_attribute spi_dev_attrs[] = {
54 __ATTR_RO(modalias),
55 __ATTR_NULL,
56 };
57
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59 * and the sysfs version makes coldplug work too.
60 */
61
62 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
63 const struct spi_device *sdev)
64 {
65 while (id->name[0]) {
66 if (!strcmp(sdev->modalias, id->name))
67 return id;
68 id++;
69 }
70 return NULL;
71 }
72
73 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
74 {
75 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
76
77 return spi_match_id(sdrv->id_table, sdev);
78 }
79 EXPORT_SYMBOL_GPL(spi_get_device_id);
80
81 static int spi_match_device(struct device *dev, struct device_driver *drv)
82 {
83 const struct spi_device *spi = to_spi_device(dev);
84 const struct spi_driver *sdrv = to_spi_driver(drv);
85
86 if (sdrv->id_table)
87 return !!spi_match_id(sdrv->id_table, spi);
88
89 return strcmp(spi->modalias, drv->name) == 0;
90 }
91
92 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
93 {
94 const struct spi_device *spi = to_spi_device(dev);
95
96 add_uevent_var(env, "MODALIAS=%s", spi->modalias);
97 return 0;
98 }
99
100 #ifdef CONFIG_PM
101
102 static int spi_suspend(struct device *dev, pm_message_t message)
103 {
104 int value = 0;
105 struct spi_driver *drv = to_spi_driver(dev->driver);
106
107 /* suspend will stop irqs and dma; no more i/o */
108 if (drv) {
109 if (drv->suspend)
110 value = drv->suspend(to_spi_device(dev), message);
111 else
112 dev_dbg(dev, "... can't suspend\n");
113 }
114 return value;
115 }
116
117 static int spi_resume(struct device *dev)
118 {
119 int value = 0;
120 struct spi_driver *drv = to_spi_driver(dev->driver);
121
122 /* resume may restart the i/o queue */
123 if (drv) {
124 if (drv->resume)
125 value = drv->resume(to_spi_device(dev));
126 else
127 dev_dbg(dev, "... can't resume\n");
128 }
129 return value;
130 }
131
132 #else
133 #define spi_suspend NULL
134 #define spi_resume NULL
135 #endif
136
137 struct bus_type spi_bus_type = {
138 .name = "spi",
139 .dev_attrs = spi_dev_attrs,
140 .match = spi_match_device,
141 .uevent = spi_uevent,
142 .suspend = spi_suspend,
143 .resume = spi_resume,
144 };
145 EXPORT_SYMBOL_GPL(spi_bus_type);
146
147
148 static int spi_drv_probe(struct device *dev)
149 {
150 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
151
152 return sdrv->probe(to_spi_device(dev));
153 }
154
155 static int spi_drv_remove(struct device *dev)
156 {
157 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
158
159 return sdrv->remove(to_spi_device(dev));
160 }
161
162 static void spi_drv_shutdown(struct device *dev)
163 {
164 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
165
166 sdrv->shutdown(to_spi_device(dev));
167 }
168
169 /**
170 * spi_register_driver - register a SPI driver
171 * @sdrv: the driver to register
172 * Context: can sleep
173 */
174 int spi_register_driver(struct spi_driver *sdrv)
175 {
176 sdrv->driver.bus = &spi_bus_type;
177 if (sdrv->probe)
178 sdrv->driver.probe = spi_drv_probe;
179 if (sdrv->remove)
180 sdrv->driver.remove = spi_drv_remove;
181 if (sdrv->shutdown)
182 sdrv->driver.shutdown = spi_drv_shutdown;
183 return driver_register(&sdrv->driver);
184 }
185 EXPORT_SYMBOL_GPL(spi_register_driver);
186
187 /*-------------------------------------------------------------------------*/
188
189 /* SPI devices should normally not be created by SPI device drivers; that
190 * would make them board-specific. Similarly with SPI master drivers.
191 * Device registration normally goes into like arch/.../mach.../board-YYY.c
192 * with other readonly (flashable) information about mainboard devices.
193 */
194
195 struct boardinfo {
196 struct list_head list;
197 unsigned n_board_info;
198 struct spi_board_info board_info[0];
199 };
200
201 static LIST_HEAD(board_list);
202 static DEFINE_MUTEX(board_lock);
203
204 /**
205 * spi_alloc_device - Allocate a new SPI device
206 * @master: Controller to which device is connected
207 * Context: can sleep
208 *
209 * Allows a driver to allocate and initialize a spi_device without
210 * registering it immediately. This allows a driver to directly
211 * fill the spi_device with device parameters before calling
212 * spi_add_device() on it.
213 *
214 * Caller is responsible to call spi_add_device() on the returned
215 * spi_device structure to add it to the SPI master. If the caller
216 * needs to discard the spi_device without adding it, then it should
217 * call spi_dev_put() on it.
218 *
219 * Returns a pointer to the new device, or NULL.
220 */
221 struct spi_device *spi_alloc_device(struct spi_master *master)
222 {
223 struct spi_device *spi;
224 struct device *dev = master->dev.parent;
225
226 if (!spi_master_get(master))
227 return NULL;
228
229 spi = kzalloc(sizeof *spi, GFP_KERNEL);
230 if (!spi) {
231 dev_err(dev, "cannot alloc spi_device\n");
232 spi_master_put(master);
233 return NULL;
234 }
235
236 spi->master = master;
237 spi->dev.parent = dev;
238 spi->dev.bus = &spi_bus_type;
239 spi->dev.release = spidev_release;
240 device_initialize(&spi->dev);
241 return spi;
242 }
243 EXPORT_SYMBOL_GPL(spi_alloc_device);
244
245 /**
246 * spi_add_device - Add spi_device allocated with spi_alloc_device
247 * @spi: spi_device to register
248 *
249 * Companion function to spi_alloc_device. Devices allocated with
250 * spi_alloc_device can be added onto the spi bus with this function.
251 *
252 * Returns 0 on success; negative errno on failure
253 */
254 int spi_add_device(struct spi_device *spi)
255 {
256 static DEFINE_MUTEX(spi_add_lock);
257 struct device *dev = spi->master->dev.parent;
258 int status;
259
260 /* Chipselects are numbered 0..max; validate. */
261 if (spi->chip_select >= spi->master->num_chipselect) {
262 dev_err(dev, "cs%d >= max %d\n",
263 spi->chip_select,
264 spi->master->num_chipselect);
265 return -EINVAL;
266 }
267
268 /* Set the bus ID string */
269 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
270 spi->chip_select);
271
272
273 /* We need to make sure there's no other device with this
274 * chipselect **BEFORE** we call setup(), else we'll trash
275 * its configuration. Lock against concurrent add() calls.
276 */
277 mutex_lock(&spi_add_lock);
278
279 if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
280 != NULL) {
281 dev_err(dev, "chipselect %d already in use\n",
282 spi->chip_select);
283 status = -EBUSY;
284 goto done;
285 }
286
287 /* Drivers may modify this initial i/o setup, but will
288 * normally rely on the device being setup. Devices
289 * using SPI_CS_HIGH can't coexist well otherwise...
290 */
291 status = spi_setup(spi);
292 if (status < 0) {
293 dev_err(dev, "can't %s %s, status %d\n",
294 "setup", dev_name(&spi->dev), status);
295 goto done;
296 }
297
298 /* Device may be bound to an active driver when this returns */
299 status = device_add(&spi->dev);
300 if (status < 0)
301 dev_err(dev, "can't %s %s, status %d\n",
302 "add", dev_name(&spi->dev), status);
303 else
304 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
305
306 done:
307 mutex_unlock(&spi_add_lock);
308 return status;
309 }
310 EXPORT_SYMBOL_GPL(spi_add_device);
311
312 /**
313 * spi_new_device - instantiate one new SPI device
314 * @master: Controller to which device is connected
315 * @chip: Describes the SPI device
316 * Context: can sleep
317 *
318 * On typical mainboards, this is purely internal; and it's not needed
319 * after board init creates the hard-wired devices. Some development
320 * platforms may not be able to use spi_register_board_info though, and
321 * this is exported so that for example a USB or parport based adapter
322 * driver could add devices (which it would learn about out-of-band).
323 *
324 * Returns the new device, or NULL.
325 */
326 struct spi_device *spi_new_device(struct spi_master *master,
327 struct spi_board_info *chip)
328 {
329 struct spi_device *proxy;
330 int status;
331
332 /* NOTE: caller did any chip->bus_num checks necessary.
333 *
334 * Also, unless we change the return value convention to use
335 * error-or-pointer (not NULL-or-pointer), troubleshootability
336 * suggests syslogged diagnostics are best here (ugh).
337 */
338
339 proxy = spi_alloc_device(master);
340 if (!proxy)
341 return NULL;
342
343 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
344
345 proxy->chip_select = chip->chip_select;
346 proxy->max_speed_hz = chip->max_speed_hz;
347 proxy->mode = chip->mode;
348 proxy->irq = chip->irq;
349 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
350 proxy->dev.platform_data = (void *) chip->platform_data;
351 proxy->controller_data = chip->controller_data;
352 proxy->controller_state = NULL;
353
354 status = spi_add_device(proxy);
355 if (status < 0) {
356 spi_dev_put(proxy);
357 return NULL;
358 }
359
360 return proxy;
361 }
362 EXPORT_SYMBOL_GPL(spi_new_device);
363
364 /**
365 * spi_register_board_info - register SPI devices for a given board
366 * @info: array of chip descriptors
367 * @n: how many descriptors are provided
368 * Context: can sleep
369 *
370 * Board-specific early init code calls this (probably during arch_initcall)
371 * with segments of the SPI device table. Any device nodes are created later,
372 * after the relevant parent SPI controller (bus_num) is defined. We keep
373 * this table of devices forever, so that reloading a controller driver will
374 * not make Linux forget about these hard-wired devices.
375 *
376 * Other code can also call this, e.g. a particular add-on board might provide
377 * SPI devices through its expansion connector, so code initializing that board
378 * would naturally declare its SPI devices.
379 *
380 * The board info passed can safely be __initdata ... but be careful of
381 * any embedded pointers (platform_data, etc), they're copied as-is.
382 */
383 int __init
384 spi_register_board_info(struct spi_board_info const *info, unsigned n)
385 {
386 struct boardinfo *bi;
387
388 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
389 if (!bi)
390 return -ENOMEM;
391 bi->n_board_info = n;
392 memcpy(bi->board_info, info, n * sizeof *info);
393
394 mutex_lock(&board_lock);
395 list_add_tail(&bi->list, &board_list);
396 mutex_unlock(&board_lock);
397 return 0;
398 }
399
400 /* FIXME someone should add support for a __setup("spi", ...) that
401 * creates board info from kernel command lines
402 */
403
404 static void scan_boardinfo(struct spi_master *master)
405 {
406 struct boardinfo *bi;
407
408 mutex_lock(&board_lock);
409 list_for_each_entry(bi, &board_list, list) {
410 struct spi_board_info *chip = bi->board_info;
411 unsigned n;
412
413 for (n = bi->n_board_info; n > 0; n--, chip++) {
414 if (chip->bus_num != master->bus_num)
415 continue;
416 /* NOTE: this relies on spi_new_device to
417 * issue diagnostics when given bogus inputs
418 */
419 (void) spi_new_device(master, chip);
420 }
421 }
422 mutex_unlock(&board_lock);
423 }
424
425 /*-------------------------------------------------------------------------*/
426
427 static void spi_master_release(struct device *dev)
428 {
429 struct spi_master *master;
430
431 master = container_of(dev, struct spi_master, dev);
432 kfree(master);
433 }
434
435 static struct class spi_master_class = {
436 .name = "spi_master",
437 .owner = THIS_MODULE,
438 .dev_release = spi_master_release,
439 };
440
441
442 /**
443 * spi_alloc_master - allocate SPI master controller
444 * @dev: the controller, possibly using the platform_bus
445 * @size: how much zeroed driver-private data to allocate; the pointer to this
446 * memory is in the driver_data field of the returned device,
447 * accessible with spi_master_get_devdata().
448 * Context: can sleep
449 *
450 * This call is used only by SPI master controller drivers, which are the
451 * only ones directly touching chip registers. It's how they allocate
452 * an spi_master structure, prior to calling spi_register_master().
453 *
454 * This must be called from context that can sleep. It returns the SPI
455 * master structure on success, else NULL.
456 *
457 * The caller is responsible for assigning the bus number and initializing
458 * the master's methods before calling spi_register_master(); and (after errors
459 * adding the device) calling spi_master_put() to prevent a memory leak.
460 */
461 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
462 {
463 struct spi_master *master;
464
465 if (!dev)
466 return NULL;
467
468 master = kzalloc(size + sizeof *master, GFP_KERNEL);
469 if (!master)
470 return NULL;
471
472 device_initialize(&master->dev);
473 master->dev.class = &spi_master_class;
474 master->dev.parent = get_device(dev);
475 spi_master_set_devdata(master, &master[1]);
476
477 return master;
478 }
479 EXPORT_SYMBOL_GPL(spi_alloc_master);
480
481 /**
482 * spi_register_master - register SPI master controller
483 * @master: initialized master, originally from spi_alloc_master()
484 * Context: can sleep
485 *
486 * SPI master controllers connect to their drivers using some non-SPI bus,
487 * such as the platform bus. The final stage of probe() in that code
488 * includes calling spi_register_master() to hook up to this SPI bus glue.
489 *
490 * SPI controllers use board specific (often SOC specific) bus numbers,
491 * and board-specific addressing for SPI devices combines those numbers
492 * with chip select numbers. Since SPI does not directly support dynamic
493 * device identification, boards need configuration tables telling which
494 * chip is at which address.
495 *
496 * This must be called from context that can sleep. It returns zero on
497 * success, else a negative error code (dropping the master's refcount).
498 * After a successful return, the caller is responsible for calling
499 * spi_unregister_master().
500 */
501 int spi_register_master(struct spi_master *master)
502 {
503 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
504 struct device *dev = master->dev.parent;
505 int status = -ENODEV;
506 int dynamic = 0;
507
508 if (!dev)
509 return -ENODEV;
510
511 /* even if it's just one always-selected device, there must
512 * be at least one chipselect
513 */
514 if (master->num_chipselect == 0)
515 return -EINVAL;
516
517 /* convention: dynamically assigned bus IDs count down from the max */
518 if (master->bus_num < 0) {
519 /* FIXME switch to an IDR based scheme, something like
520 * I2C now uses, so we can't run out of "dynamic" IDs
521 */
522 master->bus_num = atomic_dec_return(&dyn_bus_id);
523 dynamic = 1;
524 }
525
526 /* register the device, then userspace will see it.
527 * registration fails if the bus ID is in use.
528 */
529 dev_set_name(&master->dev, "spi%u", master->bus_num);
530 status = device_add(&master->dev);
531 if (status < 0)
532 goto done;
533 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
534 dynamic ? " (dynamic)" : "");
535
536 /* populate children from any spi device tables */
537 scan_boardinfo(master);
538 status = 0;
539 done:
540 return status;
541 }
542 EXPORT_SYMBOL_GPL(spi_register_master);
543
544
545 static int __unregister(struct device *dev, void *master_dev)
546 {
547 /* note: before about 2.6.14-rc1 this would corrupt memory: */
548 if (dev != master_dev)
549 spi_unregister_device(to_spi_device(dev));
550 return 0;
551 }
552
553 /**
554 * spi_unregister_master - unregister SPI master controller
555 * @master: the master being unregistered
556 * Context: can sleep
557 *
558 * This call is used only by SPI master controller drivers, which are the
559 * only ones directly touching chip registers.
560 *
561 * This must be called from context that can sleep.
562 */
563 void spi_unregister_master(struct spi_master *master)
564 {
565 int dummy;
566
567 dummy = device_for_each_child(master->dev.parent, &master->dev,
568 __unregister);
569 device_unregister(&master->dev);
570 }
571 EXPORT_SYMBOL_GPL(spi_unregister_master);
572
573 static int __spi_master_match(struct device *dev, void *data)
574 {
575 struct spi_master *m;
576 u16 *bus_num = data;
577
578 m = container_of(dev, struct spi_master, dev);
579 return m->bus_num == *bus_num;
580 }
581
582 /**
583 * spi_busnum_to_master - look up master associated with bus_num
584 * @bus_num: the master's bus number
585 * Context: can sleep
586 *
587 * This call may be used with devices that are registered after
588 * arch init time. It returns a refcounted pointer to the relevant
589 * spi_master (which the caller must release), or NULL if there is
590 * no such master registered.
591 */
592 struct spi_master *spi_busnum_to_master(u16 bus_num)
593 {
594 struct device *dev;
595 struct spi_master *master = NULL;
596
597 dev = class_find_device(&spi_master_class, NULL, &bus_num,
598 __spi_master_match);
599 if (dev)
600 master = container_of(dev, struct spi_master, dev);
601 /* reference got in class_find_device */
602 return master;
603 }
604 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
605
606
607 /*-------------------------------------------------------------------------*/
608
609 /* Core methods for SPI master protocol drivers. Some of the
610 * other core methods are currently defined as inline functions.
611 */
612
613 /**
614 * spi_setup - setup SPI mode and clock rate
615 * @spi: the device whose settings are being modified
616 * Context: can sleep, and no requests are queued to the device
617 *
618 * SPI protocol drivers may need to update the transfer mode if the
619 * device doesn't work with its default. They may likewise need
620 * to update clock rates or word sizes from initial values. This function
621 * changes those settings, and must be called from a context that can sleep.
622 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
623 * effect the next time the device is selected and data is transferred to
624 * or from it. When this function returns, the spi device is deselected.
625 *
626 * Note that this call will fail if the protocol driver specifies an option
627 * that the underlying controller or its driver does not support. For
628 * example, not all hardware supports wire transfers using nine bit words,
629 * LSB-first wire encoding, or active-high chipselects.
630 */
631 int spi_setup(struct spi_device *spi)
632 {
633 unsigned bad_bits;
634 int status;
635
636 /* help drivers fail *cleanly* when they need options
637 * that aren't supported with their current master
638 */
639 bad_bits = spi->mode & ~spi->master->mode_bits;
640 if (bad_bits) {
641 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
642 bad_bits);
643 return -EINVAL;
644 }
645
646 if (!spi->bits_per_word)
647 spi->bits_per_word = 8;
648
649 status = spi->master->setup(spi);
650
651 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
652 "%u bits/w, %u Hz max --> %d\n",
653 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
654 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
655 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
656 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
657 (spi->mode & SPI_LOOP) ? "loopback, " : "",
658 spi->bits_per_word, spi->max_speed_hz,
659 status);
660
661 return status;
662 }
663 EXPORT_SYMBOL_GPL(spi_setup);
664
665
666 /*-------------------------------------------------------------------------*/
667
668 /* Utility methods for SPI master protocol drivers, layered on
669 * top of the core. Some other utility methods are defined as
670 * inline functions.
671 */
672
673 static void spi_complete(void *arg)
674 {
675 complete(arg);
676 }
677
678 /**
679 * spi_sync - blocking/synchronous SPI data transfers
680 * @spi: device with which data will be exchanged
681 * @message: describes the data transfers
682 * Context: can sleep
683 *
684 * This call may only be used from a context that may sleep. The sleep
685 * is non-interruptible, and has no timeout. Low-overhead controller
686 * drivers may DMA directly into and out of the message buffers.
687 *
688 * Note that the SPI device's chip select is active during the message,
689 * and then is normally disabled between messages. Drivers for some
690 * frequently-used devices may want to minimize costs of selecting a chip,
691 * by leaving it selected in anticipation that the next message will go
692 * to the same chip. (That may increase power usage.)
693 *
694 * Also, the caller is guaranteeing that the memory associated with the
695 * message will not be freed before this call returns.
696 *
697 * It returns zero on success, else a negative error code.
698 */
699 int spi_sync(struct spi_device *spi, struct spi_message *message)
700 {
701 DECLARE_COMPLETION_ONSTACK(done);
702 int status;
703
704 message->complete = spi_complete;
705 message->context = &done;
706 status = spi_async(spi, message);
707 if (status == 0) {
708 wait_for_completion(&done);
709 status = message->status;
710 }
711 message->context = NULL;
712 return status;
713 }
714 EXPORT_SYMBOL_GPL(spi_sync);
715
716 /* portable code must never pass more than 32 bytes */
717 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
718
719 static u8 *buf;
720
721 /**
722 * spi_write_then_read - SPI synchronous write followed by read
723 * @spi: device with which data will be exchanged
724 * @txbuf: data to be written (need not be dma-safe)
725 * @n_tx: size of txbuf, in bytes
726 * @rxbuf: buffer into which data will be read (need not be dma-safe)
727 * @n_rx: size of rxbuf, in bytes
728 * Context: can sleep
729 *
730 * This performs a half duplex MicroWire style transaction with the
731 * device, sending txbuf and then reading rxbuf. The return value
732 * is zero for success, else a negative errno status code.
733 * This call may only be used from a context that may sleep.
734 *
735 * Parameters to this routine are always copied using a small buffer;
736 * portable code should never use this for more than 32 bytes.
737 * Performance-sensitive or bulk transfer code should instead use
738 * spi_{async,sync}() calls with dma-safe buffers.
739 */
740 int spi_write_then_read(struct spi_device *spi,
741 const u8 *txbuf, unsigned n_tx,
742 u8 *rxbuf, unsigned n_rx)
743 {
744 static DEFINE_MUTEX(lock);
745
746 int status;
747 struct spi_message message;
748 struct spi_transfer x[2];
749 u8 *local_buf;
750
751 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
752 * (as a pure convenience thing), but we can keep heap costs
753 * out of the hot path ...
754 */
755 if ((n_tx + n_rx) > SPI_BUFSIZ)
756 return -EINVAL;
757
758 spi_message_init(&message);
759 memset(x, 0, sizeof x);
760 if (n_tx) {
761 x[0].len = n_tx;
762 spi_message_add_tail(&x[0], &message);
763 }
764 if (n_rx) {
765 x[1].len = n_rx;
766 spi_message_add_tail(&x[1], &message);
767 }
768
769 /* ... unless someone else is using the pre-allocated buffer */
770 if (!mutex_trylock(&lock)) {
771 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
772 if (!local_buf)
773 return -ENOMEM;
774 } else
775 local_buf = buf;
776
777 memcpy(local_buf, txbuf, n_tx);
778 x[0].tx_buf = local_buf;
779 x[1].rx_buf = local_buf + n_tx;
780
781 /* do the i/o */
782 status = spi_sync(spi, &message);
783 if (status == 0)
784 memcpy(rxbuf, x[1].rx_buf, n_rx);
785
786 if (x[0].tx_buf == buf)
787 mutex_unlock(&lock);
788 else
789 kfree(local_buf);
790
791 return status;
792 }
793 EXPORT_SYMBOL_GPL(spi_write_then_read);
794
795 /*-------------------------------------------------------------------------*/
796
797 static int __init spi_init(void)
798 {
799 int status;
800
801 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
802 if (!buf) {
803 status = -ENOMEM;
804 goto err0;
805 }
806
807 status = bus_register(&spi_bus_type);
808 if (status < 0)
809 goto err1;
810
811 status = class_register(&spi_master_class);
812 if (status < 0)
813 goto err2;
814 return 0;
815
816 err2:
817 bus_unregister(&spi_bus_type);
818 err1:
819 kfree(buf);
820 buf = NULL;
821 err0:
822 return status;
823 }
824
825 /* board_info is normally registered in arch_initcall(),
826 * but even essential drivers wait till later
827 *
828 * REVISIT only boardinfo really needs static linking. the rest (device and
829 * driver registration) _could_ be dynamically linked (modular) ... costs
830 * include needing to have boardinfo data structures be much more public.
831 */
832 postcore_initcall(spi_init);
833
This page took 0.046284 seconds and 4 git commands to generate.