sparc64: Set CRYPTO_TFM_REQ_MAY_SLEEP consistently in DES code.
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
42 static void spidev_release(struct device *dev)
43 {
44 struct spi_device *spi = to_spi_device(dev);
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
50 spi_master_put(spi->master);
51 kfree(spi);
52 }
53
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 const struct spi_device *spi = to_spi_device(dev);
58
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65 };
66
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73 {
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80 }
81
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
105
106 return strcmp(spi->modalias, drv->name) == 0;
107 }
108
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 const struct spi_device *spi = to_spi_device(dev);
112
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
115 }
116
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
122
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
130 return value;
131 }
132
133 static int spi_legacy_resume(struct device *dev)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
145 return value;
146 }
147
148 static int spi_pm_suspend(struct device *dev)
149 {
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157
158 static int spi_pm_resume(struct device *dev)
159 {
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166 }
167
168 static int spi_pm_freeze(struct device *dev)
169 {
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177
178 static int spi_pm_thaw(struct device *dev)
179 {
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186 }
187
188 static int spi_pm_poweroff(struct device *dev)
189 {
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197
198 static int spi_pm_restore(struct device *dev)
199 {
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
215
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
227 )
228 };
229
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238
239
240 static int spi_drv_probe(struct device *dev)
241 {
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245 }
246
247 static int spi_drv_remove(struct device *dev)
248 {
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252 }
253
254 static void spi_drv_shutdown(struct device *dev)
255 {
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259 }
260
261 /**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278
279 /*-------------------------------------------------------------------------*/
280
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
290 };
291
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294
295 /*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
299 static DEFINE_MUTEX(board_lock);
300
301 /**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -EINVAL;
338 device_initialize(&spi->dev);
339 return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343 /**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
350 * Returns 0 on success; negative errno on failure
351 */
352 int spi_add_device(struct spi_device *spi)
353 {
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
386 }
387
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
400 }
401
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415
416 /**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
427 *
428 * Returns the new device, or NULL.
429 */
430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
432 {
433 struct spi_device *proxy;
434 int status;
435
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
446
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
457
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
462 }
463
464 return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470 {
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480 }
481
482 /**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 struct boardinfo *bi;
504 int i;
505
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
509
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
512
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
519 }
520
521 return 0;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526 /**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (master->busy && master->unprepare_transfer_hardware) {
547 ret = master->unprepare_transfer_hardware(master);
548 if (ret) {
549 spin_unlock_irqrestore(&master->queue_lock, flags);
550 dev_err(&master->dev,
551 "failed to unprepare transfer hardware\n");
552 return;
553 }
554 }
555 master->busy = false;
556 spin_unlock_irqrestore(&master->queue_lock, flags);
557 return;
558 }
559
560 /* Make sure we are not already running a message */
561 if (master->cur_msg) {
562 spin_unlock_irqrestore(&master->queue_lock, flags);
563 return;
564 }
565 /* Extract head of queue */
566 master->cur_msg =
567 list_entry(master->queue.next, struct spi_message, queue);
568
569 list_del_init(&master->cur_msg->queue);
570 if (master->busy)
571 was_busy = true;
572 else
573 master->busy = true;
574 spin_unlock_irqrestore(&master->queue_lock, flags);
575
576 if (!was_busy && master->prepare_transfer_hardware) {
577 ret = master->prepare_transfer_hardware(master);
578 if (ret) {
579 dev_err(&master->dev,
580 "failed to prepare transfer hardware\n");
581 return;
582 }
583 }
584
585 ret = master->transfer_one_message(master, master->cur_msg);
586 if (ret) {
587 dev_err(&master->dev,
588 "failed to transfer one message from queue\n");
589 return;
590 }
591 }
592
593 static int spi_init_queue(struct spi_master *master)
594 {
595 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
596
597 INIT_LIST_HEAD(&master->queue);
598 spin_lock_init(&master->queue_lock);
599
600 master->running = false;
601 master->busy = false;
602
603 init_kthread_worker(&master->kworker);
604 master->kworker_task = kthread_run(kthread_worker_fn,
605 &master->kworker,
606 dev_name(&master->dev));
607 if (IS_ERR(master->kworker_task)) {
608 dev_err(&master->dev, "failed to create message pump task\n");
609 return -ENOMEM;
610 }
611 init_kthread_work(&master->pump_messages, spi_pump_messages);
612
613 /*
614 * Master config will indicate if this controller should run the
615 * message pump with high (realtime) priority to reduce the transfer
616 * latency on the bus by minimising the delay between a transfer
617 * request and the scheduling of the message pump thread. Without this
618 * setting the message pump thread will remain at default priority.
619 */
620 if (master->rt) {
621 dev_info(&master->dev,
622 "will run message pump with realtime priority\n");
623 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
624 }
625
626 return 0;
627 }
628
629 /**
630 * spi_get_next_queued_message() - called by driver to check for queued
631 * messages
632 * @master: the master to check for queued messages
633 *
634 * If there are more messages in the queue, the next message is returned from
635 * this call.
636 */
637 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
638 {
639 struct spi_message *next;
640 unsigned long flags;
641
642 /* get a pointer to the next message, if any */
643 spin_lock_irqsave(&master->queue_lock, flags);
644 if (list_empty(&master->queue))
645 next = NULL;
646 else
647 next = list_entry(master->queue.next,
648 struct spi_message, queue);
649 spin_unlock_irqrestore(&master->queue_lock, flags);
650
651 return next;
652 }
653 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
654
655 /**
656 * spi_finalize_current_message() - the current message is complete
657 * @master: the master to return the message to
658 *
659 * Called by the driver to notify the core that the message in the front of the
660 * queue is complete and can be removed from the queue.
661 */
662 void spi_finalize_current_message(struct spi_master *master)
663 {
664 struct spi_message *mesg;
665 unsigned long flags;
666
667 spin_lock_irqsave(&master->queue_lock, flags);
668 mesg = master->cur_msg;
669 master->cur_msg = NULL;
670
671 queue_kthread_work(&master->kworker, &master->pump_messages);
672 spin_unlock_irqrestore(&master->queue_lock, flags);
673
674 mesg->state = NULL;
675 if (mesg->complete)
676 mesg->complete(mesg->context);
677 }
678 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
679
680 static int spi_start_queue(struct spi_master *master)
681 {
682 unsigned long flags;
683
684 spin_lock_irqsave(&master->queue_lock, flags);
685
686 if (master->running || master->busy) {
687 spin_unlock_irqrestore(&master->queue_lock, flags);
688 return -EBUSY;
689 }
690
691 master->running = true;
692 master->cur_msg = NULL;
693 spin_unlock_irqrestore(&master->queue_lock, flags);
694
695 queue_kthread_work(&master->kworker, &master->pump_messages);
696
697 return 0;
698 }
699
700 static int spi_stop_queue(struct spi_master *master)
701 {
702 unsigned long flags;
703 unsigned limit = 500;
704 int ret = 0;
705
706 spin_lock_irqsave(&master->queue_lock, flags);
707
708 /*
709 * This is a bit lame, but is optimized for the common execution path.
710 * A wait_queue on the master->busy could be used, but then the common
711 * execution path (pump_messages) would be required to call wake_up or
712 * friends on every SPI message. Do this instead.
713 */
714 while ((!list_empty(&master->queue) || master->busy) && limit--) {
715 spin_unlock_irqrestore(&master->queue_lock, flags);
716 msleep(10);
717 spin_lock_irqsave(&master->queue_lock, flags);
718 }
719
720 if (!list_empty(&master->queue) || master->busy)
721 ret = -EBUSY;
722 else
723 master->running = false;
724
725 spin_unlock_irqrestore(&master->queue_lock, flags);
726
727 if (ret) {
728 dev_warn(&master->dev,
729 "could not stop message queue\n");
730 return ret;
731 }
732 return ret;
733 }
734
735 static int spi_destroy_queue(struct spi_master *master)
736 {
737 int ret;
738
739 ret = spi_stop_queue(master);
740
741 /*
742 * flush_kthread_worker will block until all work is done.
743 * If the reason that stop_queue timed out is that the work will never
744 * finish, then it does no good to call flush/stop thread, so
745 * return anyway.
746 */
747 if (ret) {
748 dev_err(&master->dev, "problem destroying queue\n");
749 return ret;
750 }
751
752 flush_kthread_worker(&master->kworker);
753 kthread_stop(master->kworker_task);
754
755 return 0;
756 }
757
758 /**
759 * spi_queued_transfer - transfer function for queued transfers
760 * @spi: spi device which is requesting transfer
761 * @msg: spi message which is to handled is queued to driver queue
762 */
763 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
764 {
765 struct spi_master *master = spi->master;
766 unsigned long flags;
767
768 spin_lock_irqsave(&master->queue_lock, flags);
769
770 if (!master->running) {
771 spin_unlock_irqrestore(&master->queue_lock, flags);
772 return -ESHUTDOWN;
773 }
774 msg->actual_length = 0;
775 msg->status = -EINPROGRESS;
776
777 list_add_tail(&msg->queue, &master->queue);
778 if (master->running && !master->busy)
779 queue_kthread_work(&master->kworker, &master->pump_messages);
780
781 spin_unlock_irqrestore(&master->queue_lock, flags);
782 return 0;
783 }
784
785 static int spi_master_initialize_queue(struct spi_master *master)
786 {
787 int ret;
788
789 master->queued = true;
790 master->transfer = spi_queued_transfer;
791
792 /* Initialize and start queue */
793 ret = spi_init_queue(master);
794 if (ret) {
795 dev_err(&master->dev, "problem initializing queue\n");
796 goto err_init_queue;
797 }
798 ret = spi_start_queue(master);
799 if (ret) {
800 dev_err(&master->dev, "problem starting queue\n");
801 goto err_start_queue;
802 }
803
804 return 0;
805
806 err_start_queue:
807 err_init_queue:
808 spi_destroy_queue(master);
809 return ret;
810 }
811
812 /*-------------------------------------------------------------------------*/
813
814 #if defined(CONFIG_OF)
815 /**
816 * of_register_spi_devices() - Register child devices onto the SPI bus
817 * @master: Pointer to spi_master device
818 *
819 * Registers an spi_device for each child node of master node which has a 'reg'
820 * property.
821 */
822 static void of_register_spi_devices(struct spi_master *master)
823 {
824 struct spi_device *spi;
825 struct device_node *nc;
826 const __be32 *prop;
827 int rc;
828 int len;
829
830 if (!master->dev.of_node)
831 return;
832
833 for_each_available_child_of_node(master->dev.of_node, nc) {
834 /* Alloc an spi_device */
835 spi = spi_alloc_device(master);
836 if (!spi) {
837 dev_err(&master->dev, "spi_device alloc error for %s\n",
838 nc->full_name);
839 spi_dev_put(spi);
840 continue;
841 }
842
843 /* Select device driver */
844 if (of_modalias_node(nc, spi->modalias,
845 sizeof(spi->modalias)) < 0) {
846 dev_err(&master->dev, "cannot find modalias for %s\n",
847 nc->full_name);
848 spi_dev_put(spi);
849 continue;
850 }
851
852 /* Device address */
853 prop = of_get_property(nc, "reg", &len);
854 if (!prop || len < sizeof(*prop)) {
855 dev_err(&master->dev, "%s has no 'reg' property\n",
856 nc->full_name);
857 spi_dev_put(spi);
858 continue;
859 }
860 spi->chip_select = be32_to_cpup(prop);
861
862 /* Mode (clock phase/polarity/etc.) */
863 if (of_find_property(nc, "spi-cpha", NULL))
864 spi->mode |= SPI_CPHA;
865 if (of_find_property(nc, "spi-cpol", NULL))
866 spi->mode |= SPI_CPOL;
867 if (of_find_property(nc, "spi-cs-high", NULL))
868 spi->mode |= SPI_CS_HIGH;
869 if (of_find_property(nc, "spi-3wire", NULL))
870 spi->mode |= SPI_3WIRE;
871
872 /* Device speed */
873 prop = of_get_property(nc, "spi-max-frequency", &len);
874 if (!prop || len < sizeof(*prop)) {
875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
876 nc->full_name);
877 spi_dev_put(spi);
878 continue;
879 }
880 spi->max_speed_hz = be32_to_cpup(prop);
881
882 /* IRQ */
883 spi->irq = irq_of_parse_and_map(nc, 0);
884
885 /* Store a pointer to the node in the device structure */
886 of_node_get(nc);
887 spi->dev.of_node = nc;
888
889 /* Register the new device */
890 request_module(spi->modalias);
891 rc = spi_add_device(spi);
892 if (rc) {
893 dev_err(&master->dev, "spi_device register error %s\n",
894 nc->full_name);
895 spi_dev_put(spi);
896 }
897
898 }
899 }
900 #else
901 static void of_register_spi_devices(struct spi_master *master) { }
902 #endif
903
904 #ifdef CONFIG_ACPI
905 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
906 {
907 struct spi_device *spi = data;
908
909 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
910 struct acpi_resource_spi_serialbus *sb;
911
912 sb = &ares->data.spi_serial_bus;
913 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
914 spi->chip_select = sb->device_selection;
915 spi->max_speed_hz = sb->connection_speed;
916
917 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
918 spi->mode |= SPI_CPHA;
919 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
920 spi->mode |= SPI_CPOL;
921 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
922 spi->mode |= SPI_CS_HIGH;
923 }
924 } else if (spi->irq < 0) {
925 struct resource r;
926
927 if (acpi_dev_resource_interrupt(ares, 0, &r))
928 spi->irq = r.start;
929 }
930
931 /* Always tell the ACPI core to skip this resource */
932 return 1;
933 }
934
935 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
936 void *data, void **return_value)
937 {
938 struct spi_master *master = data;
939 struct list_head resource_list;
940 struct acpi_device *adev;
941 struct spi_device *spi;
942 int ret;
943
944 if (acpi_bus_get_device(handle, &adev))
945 return AE_OK;
946 if (acpi_bus_get_status(adev) || !adev->status.present)
947 return AE_OK;
948
949 spi = spi_alloc_device(master);
950 if (!spi) {
951 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
952 dev_name(&adev->dev));
953 return AE_NO_MEMORY;
954 }
955
956 ACPI_HANDLE_SET(&spi->dev, handle);
957 spi->irq = -1;
958
959 INIT_LIST_HEAD(&resource_list);
960 ret = acpi_dev_get_resources(adev, &resource_list,
961 acpi_spi_add_resource, spi);
962 acpi_dev_free_resource_list(&resource_list);
963
964 if (ret < 0 || !spi->max_speed_hz) {
965 spi_dev_put(spi);
966 return AE_OK;
967 }
968
969 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
970 if (spi_add_device(spi)) {
971 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
972 dev_name(&adev->dev));
973 spi_dev_put(spi);
974 }
975
976 return AE_OK;
977 }
978
979 static void acpi_register_spi_devices(struct spi_master *master)
980 {
981 acpi_status status;
982 acpi_handle handle;
983
984 handle = ACPI_HANDLE(&master->dev);
985 if (!handle)
986 return;
987
988 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
989 acpi_spi_add_device, NULL,
990 master, NULL);
991 if (ACPI_FAILURE(status))
992 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
993 }
994 #else
995 static inline void acpi_register_spi_devices(struct spi_master *master) {}
996 #endif /* CONFIG_ACPI */
997
998 static void spi_master_release(struct device *dev)
999 {
1000 struct spi_master *master;
1001
1002 master = container_of(dev, struct spi_master, dev);
1003 kfree(master);
1004 }
1005
1006 static struct class spi_master_class = {
1007 .name = "spi_master",
1008 .owner = THIS_MODULE,
1009 .dev_release = spi_master_release,
1010 };
1011
1012
1013
1014 /**
1015 * spi_alloc_master - allocate SPI master controller
1016 * @dev: the controller, possibly using the platform_bus
1017 * @size: how much zeroed driver-private data to allocate; the pointer to this
1018 * memory is in the driver_data field of the returned device,
1019 * accessible with spi_master_get_devdata().
1020 * Context: can sleep
1021 *
1022 * This call is used only by SPI master controller drivers, which are the
1023 * only ones directly touching chip registers. It's how they allocate
1024 * an spi_master structure, prior to calling spi_register_master().
1025 *
1026 * This must be called from context that can sleep. It returns the SPI
1027 * master structure on success, else NULL.
1028 *
1029 * The caller is responsible for assigning the bus number and initializing
1030 * the master's methods before calling spi_register_master(); and (after errors
1031 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1032 * leak.
1033 */
1034 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1035 {
1036 struct spi_master *master;
1037
1038 if (!dev)
1039 return NULL;
1040
1041 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1042 if (!master)
1043 return NULL;
1044
1045 device_initialize(&master->dev);
1046 master->bus_num = -1;
1047 master->num_chipselect = 1;
1048 master->dev.class = &spi_master_class;
1049 master->dev.parent = get_device(dev);
1050 spi_master_set_devdata(master, &master[1]);
1051
1052 return master;
1053 }
1054 EXPORT_SYMBOL_GPL(spi_alloc_master);
1055
1056 #ifdef CONFIG_OF
1057 static int of_spi_register_master(struct spi_master *master)
1058 {
1059 u16 nb;
1060 int i, *cs;
1061 struct device_node *np = master->dev.of_node;
1062
1063 if (!np)
1064 return 0;
1065
1066 nb = of_gpio_named_count(np, "cs-gpios");
1067 master->num_chipselect = max(nb, master->num_chipselect);
1068
1069 if (nb < 1)
1070 return 0;
1071
1072 cs = devm_kzalloc(&master->dev,
1073 sizeof(int) * master->num_chipselect,
1074 GFP_KERNEL);
1075 master->cs_gpios = cs;
1076
1077 if (!master->cs_gpios)
1078 return -ENOMEM;
1079
1080 memset(cs, -EINVAL, master->num_chipselect);
1081
1082 for (i = 0; i < nb; i++)
1083 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1084
1085 return 0;
1086 }
1087 #else
1088 static int of_spi_register_master(struct spi_master *master)
1089 {
1090 return 0;
1091 }
1092 #endif
1093
1094 /**
1095 * spi_register_master - register SPI master controller
1096 * @master: initialized master, originally from spi_alloc_master()
1097 * Context: can sleep
1098 *
1099 * SPI master controllers connect to their drivers using some non-SPI bus,
1100 * such as the platform bus. The final stage of probe() in that code
1101 * includes calling spi_register_master() to hook up to this SPI bus glue.
1102 *
1103 * SPI controllers use board specific (often SOC specific) bus numbers,
1104 * and board-specific addressing for SPI devices combines those numbers
1105 * with chip select numbers. Since SPI does not directly support dynamic
1106 * device identification, boards need configuration tables telling which
1107 * chip is at which address.
1108 *
1109 * This must be called from context that can sleep. It returns zero on
1110 * success, else a negative error code (dropping the master's refcount).
1111 * After a successful return, the caller is responsible for calling
1112 * spi_unregister_master().
1113 */
1114 int spi_register_master(struct spi_master *master)
1115 {
1116 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1117 struct device *dev = master->dev.parent;
1118 struct boardinfo *bi;
1119 int status = -ENODEV;
1120 int dynamic = 0;
1121
1122 if (!dev)
1123 return -ENODEV;
1124
1125 status = of_spi_register_master(master);
1126 if (status)
1127 return status;
1128
1129 /* even if it's just one always-selected device, there must
1130 * be at least one chipselect
1131 */
1132 if (master->num_chipselect == 0)
1133 return -EINVAL;
1134
1135 /* convention: dynamically assigned bus IDs count down from the max */
1136 if (master->bus_num < 0) {
1137 /* FIXME switch to an IDR based scheme, something like
1138 * I2C now uses, so we can't run out of "dynamic" IDs
1139 */
1140 master->bus_num = atomic_dec_return(&dyn_bus_id);
1141 dynamic = 1;
1142 }
1143
1144 spin_lock_init(&master->bus_lock_spinlock);
1145 mutex_init(&master->bus_lock_mutex);
1146 master->bus_lock_flag = 0;
1147
1148 /* register the device, then userspace will see it.
1149 * registration fails if the bus ID is in use.
1150 */
1151 dev_set_name(&master->dev, "spi%u", master->bus_num);
1152 status = device_add(&master->dev);
1153 if (status < 0)
1154 goto done;
1155 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1156 dynamic ? " (dynamic)" : "");
1157
1158 /* If we're using a queued driver, start the queue */
1159 if (master->transfer)
1160 dev_info(dev, "master is unqueued, this is deprecated\n");
1161 else {
1162 status = spi_master_initialize_queue(master);
1163 if (status) {
1164 device_unregister(&master->dev);
1165 goto done;
1166 }
1167 }
1168
1169 mutex_lock(&board_lock);
1170 list_add_tail(&master->list, &spi_master_list);
1171 list_for_each_entry(bi, &board_list, list)
1172 spi_match_master_to_boardinfo(master, &bi->board_info);
1173 mutex_unlock(&board_lock);
1174
1175 /* Register devices from the device tree and ACPI */
1176 of_register_spi_devices(master);
1177 acpi_register_spi_devices(master);
1178 done:
1179 return status;
1180 }
1181 EXPORT_SYMBOL_GPL(spi_register_master);
1182
1183 static int __unregister(struct device *dev, void *null)
1184 {
1185 spi_unregister_device(to_spi_device(dev));
1186 return 0;
1187 }
1188
1189 /**
1190 * spi_unregister_master - unregister SPI master controller
1191 * @master: the master being unregistered
1192 * Context: can sleep
1193 *
1194 * This call is used only by SPI master controller drivers, which are the
1195 * only ones directly touching chip registers.
1196 *
1197 * This must be called from context that can sleep.
1198 */
1199 void spi_unregister_master(struct spi_master *master)
1200 {
1201 int dummy;
1202
1203 if (master->queued) {
1204 if (spi_destroy_queue(master))
1205 dev_err(&master->dev, "queue remove failed\n");
1206 }
1207
1208 mutex_lock(&board_lock);
1209 list_del(&master->list);
1210 mutex_unlock(&board_lock);
1211
1212 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1213 device_unregister(&master->dev);
1214 }
1215 EXPORT_SYMBOL_GPL(spi_unregister_master);
1216
1217 int spi_master_suspend(struct spi_master *master)
1218 {
1219 int ret;
1220
1221 /* Basically no-ops for non-queued masters */
1222 if (!master->queued)
1223 return 0;
1224
1225 ret = spi_stop_queue(master);
1226 if (ret)
1227 dev_err(&master->dev, "queue stop failed\n");
1228
1229 return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(spi_master_suspend);
1232
1233 int spi_master_resume(struct spi_master *master)
1234 {
1235 int ret;
1236
1237 if (!master->queued)
1238 return 0;
1239
1240 ret = spi_start_queue(master);
1241 if (ret)
1242 dev_err(&master->dev, "queue restart failed\n");
1243
1244 return ret;
1245 }
1246 EXPORT_SYMBOL_GPL(spi_master_resume);
1247
1248 static int __spi_master_match(struct device *dev, void *data)
1249 {
1250 struct spi_master *m;
1251 u16 *bus_num = data;
1252
1253 m = container_of(dev, struct spi_master, dev);
1254 return m->bus_num == *bus_num;
1255 }
1256
1257 /**
1258 * spi_busnum_to_master - look up master associated with bus_num
1259 * @bus_num: the master's bus number
1260 * Context: can sleep
1261 *
1262 * This call may be used with devices that are registered after
1263 * arch init time. It returns a refcounted pointer to the relevant
1264 * spi_master (which the caller must release), or NULL if there is
1265 * no such master registered.
1266 */
1267 struct spi_master *spi_busnum_to_master(u16 bus_num)
1268 {
1269 struct device *dev;
1270 struct spi_master *master = NULL;
1271
1272 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1273 __spi_master_match);
1274 if (dev)
1275 master = container_of(dev, struct spi_master, dev);
1276 /* reference got in class_find_device */
1277 return master;
1278 }
1279 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1280
1281
1282 /*-------------------------------------------------------------------------*/
1283
1284 /* Core methods for SPI master protocol drivers. Some of the
1285 * other core methods are currently defined as inline functions.
1286 */
1287
1288 /**
1289 * spi_setup - setup SPI mode and clock rate
1290 * @spi: the device whose settings are being modified
1291 * Context: can sleep, and no requests are queued to the device
1292 *
1293 * SPI protocol drivers may need to update the transfer mode if the
1294 * device doesn't work with its default. They may likewise need
1295 * to update clock rates or word sizes from initial values. This function
1296 * changes those settings, and must be called from a context that can sleep.
1297 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1298 * effect the next time the device is selected and data is transferred to
1299 * or from it. When this function returns, the spi device is deselected.
1300 *
1301 * Note that this call will fail if the protocol driver specifies an option
1302 * that the underlying controller or its driver does not support. For
1303 * example, not all hardware supports wire transfers using nine bit words,
1304 * LSB-first wire encoding, or active-high chipselects.
1305 */
1306 int spi_setup(struct spi_device *spi)
1307 {
1308 unsigned bad_bits;
1309 int status = 0;
1310
1311 /* help drivers fail *cleanly* when they need options
1312 * that aren't supported with their current master
1313 */
1314 bad_bits = spi->mode & ~spi->master->mode_bits;
1315 if (bad_bits) {
1316 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1317 bad_bits);
1318 return -EINVAL;
1319 }
1320
1321 if (!spi->bits_per_word)
1322 spi->bits_per_word = 8;
1323
1324 if (spi->master->setup)
1325 status = spi->master->setup(spi);
1326
1327 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1328 "%u bits/w, %u Hz max --> %d\n",
1329 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1330 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1331 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1332 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1333 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1334 spi->bits_per_word, spi->max_speed_hz,
1335 status);
1336
1337 return status;
1338 }
1339 EXPORT_SYMBOL_GPL(spi_setup);
1340
1341 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1342 {
1343 struct spi_master *master = spi->master;
1344 struct spi_transfer *xfer;
1345
1346 /* Half-duplex links include original MicroWire, and ones with
1347 * only one data pin like SPI_3WIRE (switches direction) or where
1348 * either MOSI or MISO is missing. They can also be caused by
1349 * software limitations.
1350 */
1351 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1352 || (spi->mode & SPI_3WIRE)) {
1353 unsigned flags = master->flags;
1354
1355 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1356 if (xfer->rx_buf && xfer->tx_buf)
1357 return -EINVAL;
1358 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1359 return -EINVAL;
1360 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1361 return -EINVAL;
1362 }
1363 }
1364
1365 /**
1366 * Set transfer bits_per_word as spi device default if it is not
1367 * set for this transfer.
1368 */
1369 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1370 if (!xfer->bits_per_word)
1371 xfer->bits_per_word = spi->bits_per_word;
1372 }
1373
1374 message->spi = spi;
1375 message->status = -EINPROGRESS;
1376 return master->transfer(spi, message);
1377 }
1378
1379 /**
1380 * spi_async - asynchronous SPI transfer
1381 * @spi: device with which data will be exchanged
1382 * @message: describes the data transfers, including completion callback
1383 * Context: any (irqs may be blocked, etc)
1384 *
1385 * This call may be used in_irq and other contexts which can't sleep,
1386 * as well as from task contexts which can sleep.
1387 *
1388 * The completion callback is invoked in a context which can't sleep.
1389 * Before that invocation, the value of message->status is undefined.
1390 * When the callback is issued, message->status holds either zero (to
1391 * indicate complete success) or a negative error code. After that
1392 * callback returns, the driver which issued the transfer request may
1393 * deallocate the associated memory; it's no longer in use by any SPI
1394 * core or controller driver code.
1395 *
1396 * Note that although all messages to a spi_device are handled in
1397 * FIFO order, messages may go to different devices in other orders.
1398 * Some device might be higher priority, or have various "hard" access
1399 * time requirements, for example.
1400 *
1401 * On detection of any fault during the transfer, processing of
1402 * the entire message is aborted, and the device is deselected.
1403 * Until returning from the associated message completion callback,
1404 * no other spi_message queued to that device will be processed.
1405 * (This rule applies equally to all the synchronous transfer calls,
1406 * which are wrappers around this core asynchronous primitive.)
1407 */
1408 int spi_async(struct spi_device *spi, struct spi_message *message)
1409 {
1410 struct spi_master *master = spi->master;
1411 int ret;
1412 unsigned long flags;
1413
1414 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1415
1416 if (master->bus_lock_flag)
1417 ret = -EBUSY;
1418 else
1419 ret = __spi_async(spi, message);
1420
1421 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1422
1423 return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(spi_async);
1426
1427 /**
1428 * spi_async_locked - version of spi_async with exclusive bus usage
1429 * @spi: device with which data will be exchanged
1430 * @message: describes the data transfers, including completion callback
1431 * Context: any (irqs may be blocked, etc)
1432 *
1433 * This call may be used in_irq and other contexts which can't sleep,
1434 * as well as from task contexts which can sleep.
1435 *
1436 * The completion callback is invoked in a context which can't sleep.
1437 * Before that invocation, the value of message->status is undefined.
1438 * When the callback is issued, message->status holds either zero (to
1439 * indicate complete success) or a negative error code. After that
1440 * callback returns, the driver which issued the transfer request may
1441 * deallocate the associated memory; it's no longer in use by any SPI
1442 * core or controller driver code.
1443 *
1444 * Note that although all messages to a spi_device are handled in
1445 * FIFO order, messages may go to different devices in other orders.
1446 * Some device might be higher priority, or have various "hard" access
1447 * time requirements, for example.
1448 *
1449 * On detection of any fault during the transfer, processing of
1450 * the entire message is aborted, and the device is deselected.
1451 * Until returning from the associated message completion callback,
1452 * no other spi_message queued to that device will be processed.
1453 * (This rule applies equally to all the synchronous transfer calls,
1454 * which are wrappers around this core asynchronous primitive.)
1455 */
1456 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1457 {
1458 struct spi_master *master = spi->master;
1459 int ret;
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1463
1464 ret = __spi_async(spi, message);
1465
1466 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1467
1468 return ret;
1469
1470 }
1471 EXPORT_SYMBOL_GPL(spi_async_locked);
1472
1473
1474 /*-------------------------------------------------------------------------*/
1475
1476 /* Utility methods for SPI master protocol drivers, layered on
1477 * top of the core. Some other utility methods are defined as
1478 * inline functions.
1479 */
1480
1481 static void spi_complete(void *arg)
1482 {
1483 complete(arg);
1484 }
1485
1486 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1487 int bus_locked)
1488 {
1489 DECLARE_COMPLETION_ONSTACK(done);
1490 int status;
1491 struct spi_master *master = spi->master;
1492
1493 message->complete = spi_complete;
1494 message->context = &done;
1495
1496 if (!bus_locked)
1497 mutex_lock(&master->bus_lock_mutex);
1498
1499 status = spi_async_locked(spi, message);
1500
1501 if (!bus_locked)
1502 mutex_unlock(&master->bus_lock_mutex);
1503
1504 if (status == 0) {
1505 wait_for_completion(&done);
1506 status = message->status;
1507 }
1508 message->context = NULL;
1509 return status;
1510 }
1511
1512 /**
1513 * spi_sync - blocking/synchronous SPI data transfers
1514 * @spi: device with which data will be exchanged
1515 * @message: describes the data transfers
1516 * Context: can sleep
1517 *
1518 * This call may only be used from a context that may sleep. The sleep
1519 * is non-interruptible, and has no timeout. Low-overhead controller
1520 * drivers may DMA directly into and out of the message buffers.
1521 *
1522 * Note that the SPI device's chip select is active during the message,
1523 * and then is normally disabled between messages. Drivers for some
1524 * frequently-used devices may want to minimize costs of selecting a chip,
1525 * by leaving it selected in anticipation that the next message will go
1526 * to the same chip. (That may increase power usage.)
1527 *
1528 * Also, the caller is guaranteeing that the memory associated with the
1529 * message will not be freed before this call returns.
1530 *
1531 * It returns zero on success, else a negative error code.
1532 */
1533 int spi_sync(struct spi_device *spi, struct spi_message *message)
1534 {
1535 return __spi_sync(spi, message, 0);
1536 }
1537 EXPORT_SYMBOL_GPL(spi_sync);
1538
1539 /**
1540 * spi_sync_locked - version of spi_sync with exclusive bus usage
1541 * @spi: device with which data will be exchanged
1542 * @message: describes the data transfers
1543 * Context: can sleep
1544 *
1545 * This call may only be used from a context that may sleep. The sleep
1546 * is non-interruptible, and has no timeout. Low-overhead controller
1547 * drivers may DMA directly into and out of the message buffers.
1548 *
1549 * This call should be used by drivers that require exclusive access to the
1550 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1551 * be released by a spi_bus_unlock call when the exclusive access is over.
1552 *
1553 * It returns zero on success, else a negative error code.
1554 */
1555 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1556 {
1557 return __spi_sync(spi, message, 1);
1558 }
1559 EXPORT_SYMBOL_GPL(spi_sync_locked);
1560
1561 /**
1562 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1563 * @master: SPI bus master that should be locked for exclusive bus access
1564 * Context: can sleep
1565 *
1566 * This call may only be used from a context that may sleep. The sleep
1567 * is non-interruptible, and has no timeout.
1568 *
1569 * This call should be used by drivers that require exclusive access to the
1570 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1571 * exclusive access is over. Data transfer must be done by spi_sync_locked
1572 * and spi_async_locked calls when the SPI bus lock is held.
1573 *
1574 * It returns zero on success, else a negative error code.
1575 */
1576 int spi_bus_lock(struct spi_master *master)
1577 {
1578 unsigned long flags;
1579
1580 mutex_lock(&master->bus_lock_mutex);
1581
1582 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1583 master->bus_lock_flag = 1;
1584 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1585
1586 /* mutex remains locked until spi_bus_unlock is called */
1587
1588 return 0;
1589 }
1590 EXPORT_SYMBOL_GPL(spi_bus_lock);
1591
1592 /**
1593 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1594 * @master: SPI bus master that was locked for exclusive bus access
1595 * Context: can sleep
1596 *
1597 * This call may only be used from a context that may sleep. The sleep
1598 * is non-interruptible, and has no timeout.
1599 *
1600 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1601 * call.
1602 *
1603 * It returns zero on success, else a negative error code.
1604 */
1605 int spi_bus_unlock(struct spi_master *master)
1606 {
1607 master->bus_lock_flag = 0;
1608
1609 mutex_unlock(&master->bus_lock_mutex);
1610
1611 return 0;
1612 }
1613 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1614
1615 /* portable code must never pass more than 32 bytes */
1616 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1617
1618 static u8 *buf;
1619
1620 /**
1621 * spi_write_then_read - SPI synchronous write followed by read
1622 * @spi: device with which data will be exchanged
1623 * @txbuf: data to be written (need not be dma-safe)
1624 * @n_tx: size of txbuf, in bytes
1625 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1626 * @n_rx: size of rxbuf, in bytes
1627 * Context: can sleep
1628 *
1629 * This performs a half duplex MicroWire style transaction with the
1630 * device, sending txbuf and then reading rxbuf. The return value
1631 * is zero for success, else a negative errno status code.
1632 * This call may only be used from a context that may sleep.
1633 *
1634 * Parameters to this routine are always copied using a small buffer;
1635 * portable code should never use this for more than 32 bytes.
1636 * Performance-sensitive or bulk transfer code should instead use
1637 * spi_{async,sync}() calls with dma-safe buffers.
1638 */
1639 int spi_write_then_read(struct spi_device *spi,
1640 const void *txbuf, unsigned n_tx,
1641 void *rxbuf, unsigned n_rx)
1642 {
1643 static DEFINE_MUTEX(lock);
1644
1645 int status;
1646 struct spi_message message;
1647 struct spi_transfer x[2];
1648 u8 *local_buf;
1649
1650 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1651 * copying here, (as a pure convenience thing), but we can
1652 * keep heap costs out of the hot path unless someone else is
1653 * using the pre-allocated buffer or the transfer is too large.
1654 */
1655 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1656 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), GFP_KERNEL);
1657 if (!local_buf)
1658 return -ENOMEM;
1659 } else {
1660 local_buf = buf;
1661 }
1662
1663 spi_message_init(&message);
1664 memset(x, 0, sizeof x);
1665 if (n_tx) {
1666 x[0].len = n_tx;
1667 spi_message_add_tail(&x[0], &message);
1668 }
1669 if (n_rx) {
1670 x[1].len = n_rx;
1671 spi_message_add_tail(&x[1], &message);
1672 }
1673
1674 memcpy(local_buf, txbuf, n_tx);
1675 x[0].tx_buf = local_buf;
1676 x[1].rx_buf = local_buf + n_tx;
1677
1678 /* do the i/o */
1679 status = spi_sync(spi, &message);
1680 if (status == 0)
1681 memcpy(rxbuf, x[1].rx_buf, n_rx);
1682
1683 if (x[0].tx_buf == buf)
1684 mutex_unlock(&lock);
1685 else
1686 kfree(local_buf);
1687
1688 return status;
1689 }
1690 EXPORT_SYMBOL_GPL(spi_write_then_read);
1691
1692 /*-------------------------------------------------------------------------*/
1693
1694 static int __init spi_init(void)
1695 {
1696 int status;
1697
1698 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1699 if (!buf) {
1700 status = -ENOMEM;
1701 goto err0;
1702 }
1703
1704 status = bus_register(&spi_bus_type);
1705 if (status < 0)
1706 goto err1;
1707
1708 status = class_register(&spi_master_class);
1709 if (status < 0)
1710 goto err2;
1711 return 0;
1712
1713 err2:
1714 bus_unregister(&spi_bus_type);
1715 err1:
1716 kfree(buf);
1717 buf = NULL;
1718 err0:
1719 return status;
1720 }
1721
1722 /* board_info is normally registered in arch_initcall(),
1723 * but even essential drivers wait till later
1724 *
1725 * REVISIT only boardinfo really needs static linking. the rest (device and
1726 * driver registration) _could_ be dynamically linked (modular) ... costs
1727 * include needing to have boardinfo data structures be much more public.
1728 */
1729 postcore_initcall(spi_init);
1730
This page took 0.065258 seconds and 5 git commands to generate.