gfs2: Simplify the seq file code for "sbstats"
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 static struct attribute *spi_dev_attrs[] = {
71 &dev_attr_modalias.attr,
72 NULL,
73 };
74 ATTRIBUTE_GROUPS(spi_dev);
75
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
78 */
79
80 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 const struct spi_device *sdev)
82 {
83 while (id->name[0]) {
84 if (!strcmp(sdev->modalias, id->name))
85 return id;
86 id++;
87 }
88 return NULL;
89 }
90
91 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92 {
93 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94
95 return spi_match_id(sdrv->id_table, sdev);
96 }
97 EXPORT_SYMBOL_GPL(spi_get_device_id);
98
99 static int spi_match_device(struct device *dev, struct device_driver *drv)
100 {
101 const struct spi_device *spi = to_spi_device(dev);
102 const struct spi_driver *sdrv = to_spi_driver(drv);
103
104 /* Attempt an OF style match */
105 if (of_driver_match_device(dev, drv))
106 return 1;
107
108 /* Then try ACPI */
109 if (acpi_driver_match_device(dev, drv))
110 return 1;
111
112 if (sdrv->id_table)
113 return !!spi_match_id(sdrv->id_table, spi);
114
115 return strcmp(spi->modalias, drv->name) == 0;
116 }
117
118 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119 {
120 const struct spi_device *spi = to_spi_device(dev);
121 int rc;
122
123 rc = acpi_device_uevent_modalias(dev, env);
124 if (rc != -ENODEV)
125 return rc;
126
127 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128 return 0;
129 }
130
131 struct bus_type spi_bus_type = {
132 .name = "spi",
133 .dev_groups = spi_dev_groups,
134 .match = spi_match_device,
135 .uevent = spi_uevent,
136 };
137 EXPORT_SYMBOL_GPL(spi_bus_type);
138
139
140 static int spi_drv_probe(struct device *dev)
141 {
142 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
143 int ret;
144
145 ret = of_clk_set_defaults(dev->of_node, false);
146 if (ret)
147 return ret;
148
149 ret = dev_pm_domain_attach(dev, true);
150 if (ret != -EPROBE_DEFER) {
151 ret = sdrv->probe(to_spi_device(dev));
152 if (ret)
153 dev_pm_domain_detach(dev, true);
154 }
155
156 return ret;
157 }
158
159 static int spi_drv_remove(struct device *dev)
160 {
161 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
162 int ret;
163
164 ret = sdrv->remove(to_spi_device(dev));
165 dev_pm_domain_detach(dev, true);
166
167 return ret;
168 }
169
170 static void spi_drv_shutdown(struct device *dev)
171 {
172 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
173
174 sdrv->shutdown(to_spi_device(dev));
175 }
176
177 /**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
182 int spi_register_driver(struct spi_driver *sdrv)
183 {
184 sdrv->driver.bus = &spi_bus_type;
185 if (sdrv->probe)
186 sdrv->driver.probe = spi_drv_probe;
187 if (sdrv->remove)
188 sdrv->driver.remove = spi_drv_remove;
189 if (sdrv->shutdown)
190 sdrv->driver.shutdown = spi_drv_shutdown;
191 return driver_register(&sdrv->driver);
192 }
193 EXPORT_SYMBOL_GPL(spi_register_driver);
194
195 /*-------------------------------------------------------------------------*/
196
197 /* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203 struct boardinfo {
204 struct list_head list;
205 struct spi_board_info board_info;
206 };
207
208 static LIST_HEAD(board_list);
209 static LIST_HEAD(spi_master_list);
210
211 /*
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
214 */
215 static DEFINE_MUTEX(board_lock);
216
217 /**
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
220 * Context: can sleep
221 *
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately. This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
226 *
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master. If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
231 *
232 * Returns a pointer to the new device, or NULL.
233 */
234 struct spi_device *spi_alloc_device(struct spi_master *master)
235 {
236 struct spi_device *spi;
237
238 if (!spi_master_get(master))
239 return NULL;
240
241 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242 if (!spi) {
243 spi_master_put(master);
244 return NULL;
245 }
246
247 spi->master = master;
248 spi->dev.parent = &master->dev;
249 spi->dev.bus = &spi_bus_type;
250 spi->dev.release = spidev_release;
251 spi->cs_gpio = -ENOENT;
252 device_initialize(&spi->dev);
253 return spi;
254 }
255 EXPORT_SYMBOL_GPL(spi_alloc_device);
256
257 static void spi_dev_set_name(struct spi_device *spi)
258 {
259 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260
261 if (adev) {
262 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 return;
264 }
265
266 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 spi->chip_select);
268 }
269
270 static int spi_dev_check(struct device *dev, void *data)
271 {
272 struct spi_device *spi = to_spi_device(dev);
273 struct spi_device *new_spi = data;
274
275 if (spi->master == new_spi->master &&
276 spi->chip_select == new_spi->chip_select)
277 return -EBUSY;
278 return 0;
279 }
280
281 /**
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
284 *
285 * Companion function to spi_alloc_device. Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
287 *
288 * Returns 0 on success; negative errno on failure
289 */
290 int spi_add_device(struct spi_device *spi)
291 {
292 static DEFINE_MUTEX(spi_add_lock);
293 struct spi_master *master = spi->master;
294 struct device *dev = master->dev.parent;
295 int status;
296
297 /* Chipselects are numbered 0..max; validate. */
298 if (spi->chip_select >= master->num_chipselect) {
299 dev_err(dev, "cs%d >= max %d\n",
300 spi->chip_select,
301 master->num_chipselect);
302 return -EINVAL;
303 }
304
305 /* Set the bus ID string */
306 spi_dev_set_name(spi);
307
308 /* We need to make sure there's no other device with this
309 * chipselect **BEFORE** we call setup(), else we'll trash
310 * its configuration. Lock against concurrent add() calls.
311 */
312 mutex_lock(&spi_add_lock);
313
314 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 if (status) {
316 dev_err(dev, "chipselect %d already in use\n",
317 spi->chip_select);
318 goto done;
319 }
320
321 if (master->cs_gpios)
322 spi->cs_gpio = master->cs_gpios[spi->chip_select];
323
324 /* Drivers may modify this initial i/o setup, but will
325 * normally rely on the device being setup. Devices
326 * using SPI_CS_HIGH can't coexist well otherwise...
327 */
328 status = spi_setup(spi);
329 if (status < 0) {
330 dev_err(dev, "can't setup %s, status %d\n",
331 dev_name(&spi->dev), status);
332 goto done;
333 }
334
335 /* Device may be bound to an active driver when this returns */
336 status = device_add(&spi->dev);
337 if (status < 0)
338 dev_err(dev, "can't add %s, status %d\n",
339 dev_name(&spi->dev), status);
340 else
341 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342
343 done:
344 mutex_unlock(&spi_add_lock);
345 return status;
346 }
347 EXPORT_SYMBOL_GPL(spi_add_device);
348
349 /**
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
353 * Context: can sleep
354 *
355 * On typical mainboards, this is purely internal; and it's not needed
356 * after board init creates the hard-wired devices. Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
360 *
361 * Returns the new device, or NULL.
362 */
363 struct spi_device *spi_new_device(struct spi_master *master,
364 struct spi_board_info *chip)
365 {
366 struct spi_device *proxy;
367 int status;
368
369 /* NOTE: caller did any chip->bus_num checks necessary.
370 *
371 * Also, unless we change the return value convention to use
372 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 * suggests syslogged diagnostics are best here (ugh).
374 */
375
376 proxy = spi_alloc_device(master);
377 if (!proxy)
378 return NULL;
379
380 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381
382 proxy->chip_select = chip->chip_select;
383 proxy->max_speed_hz = chip->max_speed_hz;
384 proxy->mode = chip->mode;
385 proxy->irq = chip->irq;
386 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387 proxy->dev.platform_data = (void *) chip->platform_data;
388 proxy->controller_data = chip->controller_data;
389 proxy->controller_state = NULL;
390
391 status = spi_add_device(proxy);
392 if (status < 0) {
393 spi_dev_put(proxy);
394 return NULL;
395 }
396
397 return proxy;
398 }
399 EXPORT_SYMBOL_GPL(spi_new_device);
400
401 static void spi_match_master_to_boardinfo(struct spi_master *master,
402 struct spi_board_info *bi)
403 {
404 struct spi_device *dev;
405
406 if (master->bus_num != bi->bus_num)
407 return;
408
409 dev = spi_new_device(master, bi);
410 if (!dev)
411 dev_err(master->dev.parent, "can't create new device for %s\n",
412 bi->modalias);
413 }
414
415 /**
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
419 * Context: can sleep
420 *
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table. Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined. We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
426 *
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
430 *
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
433 */
434 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435 {
436 struct boardinfo *bi;
437 int i;
438
439 if (!n)
440 return -EINVAL;
441
442 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443 if (!bi)
444 return -ENOMEM;
445
446 for (i = 0; i < n; i++, bi++, info++) {
447 struct spi_master *master;
448
449 memcpy(&bi->board_info, info, sizeof(*info));
450 mutex_lock(&board_lock);
451 list_add_tail(&bi->list, &board_list);
452 list_for_each_entry(master, &spi_master_list, list)
453 spi_match_master_to_boardinfo(master, &bi->board_info);
454 mutex_unlock(&board_lock);
455 }
456
457 return 0;
458 }
459
460 /*-------------------------------------------------------------------------*/
461
462 static void spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 if (spi->mode & SPI_CS_HIGH)
465 enable = !enable;
466
467 if (spi->cs_gpio >= 0)
468 gpio_set_value(spi->cs_gpio, !enable);
469 else if (spi->master->set_cs)
470 spi->master->set_cs(spi, !enable);
471 }
472
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master *master, struct device *dev,
475 struct sg_table *sgt, void *buf, size_t len,
476 enum dma_data_direction dir)
477 {
478 const bool vmalloced_buf = is_vmalloc_addr(buf);
479 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 const int sgs = DIV_ROUND_UP(len, desc_len);
481 struct page *vm_page;
482 void *sg_buf;
483 size_t min;
484 int i, ret;
485
486 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 if (ret != 0)
488 return ret;
489
490 for (i = 0; i < sgs; i++) {
491 min = min_t(size_t, len, desc_len);
492
493 if (vmalloced_buf) {
494 vm_page = vmalloc_to_page(buf);
495 if (!vm_page) {
496 sg_free_table(sgt);
497 return -ENOMEM;
498 }
499 sg_set_page(&sgt->sgl[i], vm_page,
500 min, offset_in_page(buf));
501 } else {
502 sg_buf = buf;
503 sg_set_buf(&sgt->sgl[i], sg_buf, min);
504 }
505
506
507 buf += min;
508 len -= min;
509 }
510
511 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512 if (!ret)
513 ret = -ENOMEM;
514 if (ret < 0) {
515 sg_free_table(sgt);
516 return ret;
517 }
518
519 sgt->nents = ret;
520
521 return 0;
522 }
523
524 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 struct sg_table *sgt, enum dma_data_direction dir)
526 {
527 if (sgt->orig_nents) {
528 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 sg_free_table(sgt);
530 }
531 }
532
533 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534 {
535 struct device *tx_dev, *rx_dev;
536 struct spi_transfer *xfer;
537 int ret;
538
539 if (!master->can_dma)
540 return 0;
541
542 tx_dev = master->dma_tx->device->dev;
543 rx_dev = master->dma_rx->device->dev;
544
545 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 if (!master->can_dma(master, msg->spi, xfer))
547 continue;
548
549 if (xfer->tx_buf != NULL) {
550 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 (void *)xfer->tx_buf, xfer->len,
552 DMA_TO_DEVICE);
553 if (ret != 0)
554 return ret;
555 }
556
557 if (xfer->rx_buf != NULL) {
558 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 xfer->rx_buf, xfer->len,
560 DMA_FROM_DEVICE);
561 if (ret != 0) {
562 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 DMA_TO_DEVICE);
564 return ret;
565 }
566 }
567 }
568
569 master->cur_msg_mapped = true;
570
571 return 0;
572 }
573
574 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575 {
576 struct spi_transfer *xfer;
577 struct device *tx_dev, *rx_dev;
578
579 if (!master->cur_msg_mapped || !master->can_dma)
580 return 0;
581
582 tx_dev = master->dma_tx->device->dev;
583 rx_dev = master->dma_rx->device->dev;
584
585 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586 if (!master->can_dma(master, msg->spi, xfer))
587 continue;
588
589 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
590 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
591 }
592
593 return 0;
594 }
595 #else /* !CONFIG_HAS_DMA */
596 static inline int __spi_map_msg(struct spi_master *master,
597 struct spi_message *msg)
598 {
599 return 0;
600 }
601
602 static inline int __spi_unmap_msg(struct spi_master *master,
603 struct spi_message *msg)
604 {
605 return 0;
606 }
607 #endif /* !CONFIG_HAS_DMA */
608
609 static inline int spi_unmap_msg(struct spi_master *master,
610 struct spi_message *msg)
611 {
612 struct spi_transfer *xfer;
613
614 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
615 /*
616 * Restore the original value of tx_buf or rx_buf if they are
617 * NULL.
618 */
619 if (xfer->tx_buf == master->dummy_tx)
620 xfer->tx_buf = NULL;
621 if (xfer->rx_buf == master->dummy_rx)
622 xfer->rx_buf = NULL;
623 }
624
625 return __spi_unmap_msg(master, msg);
626 }
627
628 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
629 {
630 struct spi_transfer *xfer;
631 void *tmp;
632 unsigned int max_tx, max_rx;
633
634 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
635 max_tx = 0;
636 max_rx = 0;
637
638 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
639 if ((master->flags & SPI_MASTER_MUST_TX) &&
640 !xfer->tx_buf)
641 max_tx = max(xfer->len, max_tx);
642 if ((master->flags & SPI_MASTER_MUST_RX) &&
643 !xfer->rx_buf)
644 max_rx = max(xfer->len, max_rx);
645 }
646
647 if (max_tx) {
648 tmp = krealloc(master->dummy_tx, max_tx,
649 GFP_KERNEL | GFP_DMA);
650 if (!tmp)
651 return -ENOMEM;
652 master->dummy_tx = tmp;
653 memset(tmp, 0, max_tx);
654 }
655
656 if (max_rx) {
657 tmp = krealloc(master->dummy_rx, max_rx,
658 GFP_KERNEL | GFP_DMA);
659 if (!tmp)
660 return -ENOMEM;
661 master->dummy_rx = tmp;
662 }
663
664 if (max_tx || max_rx) {
665 list_for_each_entry(xfer, &msg->transfers,
666 transfer_list) {
667 if (!xfer->tx_buf)
668 xfer->tx_buf = master->dummy_tx;
669 if (!xfer->rx_buf)
670 xfer->rx_buf = master->dummy_rx;
671 }
672 }
673 }
674
675 return __spi_map_msg(master, msg);
676 }
677
678 /*
679 * spi_transfer_one_message - Default implementation of transfer_one_message()
680 *
681 * This is a standard implementation of transfer_one_message() for
682 * drivers which impelment a transfer_one() operation. It provides
683 * standard handling of delays and chip select management.
684 */
685 static int spi_transfer_one_message(struct spi_master *master,
686 struct spi_message *msg)
687 {
688 struct spi_transfer *xfer;
689 bool keep_cs = false;
690 int ret = 0;
691 unsigned long ms = 1;
692
693 spi_set_cs(msg->spi, true);
694
695 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 trace_spi_transfer_start(msg, xfer);
697
698 if (xfer->tx_buf || xfer->rx_buf) {
699 reinit_completion(&master->xfer_completion);
700
701 ret = master->transfer_one(master, msg->spi, xfer);
702 if (ret < 0) {
703 dev_err(&msg->spi->dev,
704 "SPI transfer failed: %d\n", ret);
705 goto out;
706 }
707
708 if (ret > 0) {
709 ret = 0;
710 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
711 ms += ms + 100; /* some tolerance */
712
713 ms = wait_for_completion_timeout(&master->xfer_completion,
714 msecs_to_jiffies(ms));
715 }
716
717 if (ms == 0) {
718 dev_err(&msg->spi->dev,
719 "SPI transfer timed out\n");
720 msg->status = -ETIMEDOUT;
721 }
722 } else {
723 if (xfer->len)
724 dev_err(&msg->spi->dev,
725 "Bufferless transfer has length %u\n",
726 xfer->len);
727 }
728
729 trace_spi_transfer_stop(msg, xfer);
730
731 if (msg->status != -EINPROGRESS)
732 goto out;
733
734 if (xfer->delay_usecs)
735 udelay(xfer->delay_usecs);
736
737 if (xfer->cs_change) {
738 if (list_is_last(&xfer->transfer_list,
739 &msg->transfers)) {
740 keep_cs = true;
741 } else {
742 spi_set_cs(msg->spi, false);
743 udelay(10);
744 spi_set_cs(msg->spi, true);
745 }
746 }
747
748 msg->actual_length += xfer->len;
749 }
750
751 out:
752 if (ret != 0 || !keep_cs)
753 spi_set_cs(msg->spi, false);
754
755 if (msg->status == -EINPROGRESS)
756 msg->status = ret;
757
758 if (msg->status && master->handle_err)
759 master->handle_err(master, msg);
760
761 spi_finalize_current_message(master);
762
763 return ret;
764 }
765
766 /**
767 * spi_finalize_current_transfer - report completion of a transfer
768 * @master: the master reporting completion
769 *
770 * Called by SPI drivers using the core transfer_one_message()
771 * implementation to notify it that the current interrupt driven
772 * transfer has finished and the next one may be scheduled.
773 */
774 void spi_finalize_current_transfer(struct spi_master *master)
775 {
776 complete(&master->xfer_completion);
777 }
778 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
779
780 /**
781 * __spi_pump_messages - function which processes spi message queue
782 * @master: master to process queue for
783 * @in_kthread: true if we are in the context of the message pump thread
784 *
785 * This function checks if there is any spi message in the queue that
786 * needs processing and if so call out to the driver to initialize hardware
787 * and transfer each message.
788 *
789 * Note that it is called both from the kthread itself and also from
790 * inside spi_sync(); the queue extraction handling at the top of the
791 * function should deal with this safely.
792 */
793 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
794 {
795 unsigned long flags;
796 bool was_busy = false;
797 int ret;
798
799 /* Lock queue */
800 spin_lock_irqsave(&master->queue_lock, flags);
801
802 /* Make sure we are not already running a message */
803 if (master->cur_msg) {
804 spin_unlock_irqrestore(&master->queue_lock, flags);
805 return;
806 }
807
808 /* If another context is idling the device then defer */
809 if (master->idling) {
810 queue_kthread_work(&master->kworker, &master->pump_messages);
811 spin_unlock_irqrestore(&master->queue_lock, flags);
812 return;
813 }
814
815 /* Check if the queue is idle */
816 if (list_empty(&master->queue) || !master->running) {
817 if (!master->busy) {
818 spin_unlock_irqrestore(&master->queue_lock, flags);
819 return;
820 }
821
822 /* Only do teardown in the thread */
823 if (!in_kthread) {
824 queue_kthread_work(&master->kworker,
825 &master->pump_messages);
826 spin_unlock_irqrestore(&master->queue_lock, flags);
827 return;
828 }
829
830 master->busy = false;
831 master->idling = true;
832 spin_unlock_irqrestore(&master->queue_lock, flags);
833
834 kfree(master->dummy_rx);
835 master->dummy_rx = NULL;
836 kfree(master->dummy_tx);
837 master->dummy_tx = NULL;
838 if (master->unprepare_transfer_hardware &&
839 master->unprepare_transfer_hardware(master))
840 dev_err(&master->dev,
841 "failed to unprepare transfer hardware\n");
842 if (master->auto_runtime_pm) {
843 pm_runtime_mark_last_busy(master->dev.parent);
844 pm_runtime_put_autosuspend(master->dev.parent);
845 }
846 trace_spi_master_idle(master);
847
848 spin_lock_irqsave(&master->queue_lock, flags);
849 master->idling = false;
850 spin_unlock_irqrestore(&master->queue_lock, flags);
851 return;
852 }
853
854 /* Extract head of queue */
855 master->cur_msg =
856 list_first_entry(&master->queue, struct spi_message, queue);
857
858 list_del_init(&master->cur_msg->queue);
859 if (master->busy)
860 was_busy = true;
861 else
862 master->busy = true;
863 spin_unlock_irqrestore(&master->queue_lock, flags);
864
865 if (!was_busy && master->auto_runtime_pm) {
866 ret = pm_runtime_get_sync(master->dev.parent);
867 if (ret < 0) {
868 dev_err(&master->dev, "Failed to power device: %d\n",
869 ret);
870 return;
871 }
872 }
873
874 if (!was_busy)
875 trace_spi_master_busy(master);
876
877 if (!was_busy && master->prepare_transfer_hardware) {
878 ret = master->prepare_transfer_hardware(master);
879 if (ret) {
880 dev_err(&master->dev,
881 "failed to prepare transfer hardware\n");
882
883 if (master->auto_runtime_pm)
884 pm_runtime_put(master->dev.parent);
885 return;
886 }
887 }
888
889 trace_spi_message_start(master->cur_msg);
890
891 if (master->prepare_message) {
892 ret = master->prepare_message(master, master->cur_msg);
893 if (ret) {
894 dev_err(&master->dev,
895 "failed to prepare message: %d\n", ret);
896 master->cur_msg->status = ret;
897 spi_finalize_current_message(master);
898 return;
899 }
900 master->cur_msg_prepared = true;
901 }
902
903 ret = spi_map_msg(master, master->cur_msg);
904 if (ret) {
905 master->cur_msg->status = ret;
906 spi_finalize_current_message(master);
907 return;
908 }
909
910 ret = master->transfer_one_message(master, master->cur_msg);
911 if (ret) {
912 dev_err(&master->dev,
913 "failed to transfer one message from queue\n");
914 return;
915 }
916 }
917
918 /**
919 * spi_pump_messages - kthread work function which processes spi message queue
920 * @work: pointer to kthread work struct contained in the master struct
921 */
922 static void spi_pump_messages(struct kthread_work *work)
923 {
924 struct spi_master *master =
925 container_of(work, struct spi_master, pump_messages);
926
927 __spi_pump_messages(master, true);
928 }
929
930 static int spi_init_queue(struct spi_master *master)
931 {
932 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
933
934 master->running = false;
935 master->busy = false;
936
937 init_kthread_worker(&master->kworker);
938 master->kworker_task = kthread_run(kthread_worker_fn,
939 &master->kworker, "%s",
940 dev_name(&master->dev));
941 if (IS_ERR(master->kworker_task)) {
942 dev_err(&master->dev, "failed to create message pump task\n");
943 return PTR_ERR(master->kworker_task);
944 }
945 init_kthread_work(&master->pump_messages, spi_pump_messages);
946
947 /*
948 * Master config will indicate if this controller should run the
949 * message pump with high (realtime) priority to reduce the transfer
950 * latency on the bus by minimising the delay between a transfer
951 * request and the scheduling of the message pump thread. Without this
952 * setting the message pump thread will remain at default priority.
953 */
954 if (master->rt) {
955 dev_info(&master->dev,
956 "will run message pump with realtime priority\n");
957 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
958 }
959
960 return 0;
961 }
962
963 /**
964 * spi_get_next_queued_message() - called by driver to check for queued
965 * messages
966 * @master: the master to check for queued messages
967 *
968 * If there are more messages in the queue, the next message is returned from
969 * this call.
970 */
971 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
972 {
973 struct spi_message *next;
974 unsigned long flags;
975
976 /* get a pointer to the next message, if any */
977 spin_lock_irqsave(&master->queue_lock, flags);
978 next = list_first_entry_or_null(&master->queue, struct spi_message,
979 queue);
980 spin_unlock_irqrestore(&master->queue_lock, flags);
981
982 return next;
983 }
984 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
985
986 /**
987 * spi_finalize_current_message() - the current message is complete
988 * @master: the master to return the message to
989 *
990 * Called by the driver to notify the core that the message in the front of the
991 * queue is complete and can be removed from the queue.
992 */
993 void spi_finalize_current_message(struct spi_master *master)
994 {
995 struct spi_message *mesg;
996 unsigned long flags;
997 int ret;
998
999 spin_lock_irqsave(&master->queue_lock, flags);
1000 mesg = master->cur_msg;
1001 spin_unlock_irqrestore(&master->queue_lock, flags);
1002
1003 spi_unmap_msg(master, mesg);
1004
1005 if (master->cur_msg_prepared && master->unprepare_message) {
1006 ret = master->unprepare_message(master, mesg);
1007 if (ret) {
1008 dev_err(&master->dev,
1009 "failed to unprepare message: %d\n", ret);
1010 }
1011 }
1012
1013 spin_lock_irqsave(&master->queue_lock, flags);
1014 master->cur_msg = NULL;
1015 master->cur_msg_prepared = false;
1016 queue_kthread_work(&master->kworker, &master->pump_messages);
1017 spin_unlock_irqrestore(&master->queue_lock, flags);
1018
1019 trace_spi_message_done(mesg);
1020
1021 mesg->state = NULL;
1022 if (mesg->complete)
1023 mesg->complete(mesg->context);
1024 }
1025 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1026
1027 static int spi_start_queue(struct spi_master *master)
1028 {
1029 unsigned long flags;
1030
1031 spin_lock_irqsave(&master->queue_lock, flags);
1032
1033 if (master->running || master->busy) {
1034 spin_unlock_irqrestore(&master->queue_lock, flags);
1035 return -EBUSY;
1036 }
1037
1038 master->running = true;
1039 master->cur_msg = NULL;
1040 spin_unlock_irqrestore(&master->queue_lock, flags);
1041
1042 queue_kthread_work(&master->kworker, &master->pump_messages);
1043
1044 return 0;
1045 }
1046
1047 static int spi_stop_queue(struct spi_master *master)
1048 {
1049 unsigned long flags;
1050 unsigned limit = 500;
1051 int ret = 0;
1052
1053 spin_lock_irqsave(&master->queue_lock, flags);
1054
1055 /*
1056 * This is a bit lame, but is optimized for the common execution path.
1057 * A wait_queue on the master->busy could be used, but then the common
1058 * execution path (pump_messages) would be required to call wake_up or
1059 * friends on every SPI message. Do this instead.
1060 */
1061 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1062 spin_unlock_irqrestore(&master->queue_lock, flags);
1063 usleep_range(10000, 11000);
1064 spin_lock_irqsave(&master->queue_lock, flags);
1065 }
1066
1067 if (!list_empty(&master->queue) || master->busy)
1068 ret = -EBUSY;
1069 else
1070 master->running = false;
1071
1072 spin_unlock_irqrestore(&master->queue_lock, flags);
1073
1074 if (ret) {
1075 dev_warn(&master->dev,
1076 "could not stop message queue\n");
1077 return ret;
1078 }
1079 return ret;
1080 }
1081
1082 static int spi_destroy_queue(struct spi_master *master)
1083 {
1084 int ret;
1085
1086 ret = spi_stop_queue(master);
1087
1088 /*
1089 * flush_kthread_worker will block until all work is done.
1090 * If the reason that stop_queue timed out is that the work will never
1091 * finish, then it does no good to call flush/stop thread, so
1092 * return anyway.
1093 */
1094 if (ret) {
1095 dev_err(&master->dev, "problem destroying queue\n");
1096 return ret;
1097 }
1098
1099 flush_kthread_worker(&master->kworker);
1100 kthread_stop(master->kworker_task);
1101
1102 return 0;
1103 }
1104
1105 static int __spi_queued_transfer(struct spi_device *spi,
1106 struct spi_message *msg,
1107 bool need_pump)
1108 {
1109 struct spi_master *master = spi->master;
1110 unsigned long flags;
1111
1112 spin_lock_irqsave(&master->queue_lock, flags);
1113
1114 if (!master->running) {
1115 spin_unlock_irqrestore(&master->queue_lock, flags);
1116 return -ESHUTDOWN;
1117 }
1118 msg->actual_length = 0;
1119 msg->status = -EINPROGRESS;
1120
1121 list_add_tail(&msg->queue, &master->queue);
1122 if (!master->busy && need_pump)
1123 queue_kthread_work(&master->kworker, &master->pump_messages);
1124
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126 return 0;
1127 }
1128
1129 /**
1130 * spi_queued_transfer - transfer function for queued transfers
1131 * @spi: spi device which is requesting transfer
1132 * @msg: spi message which is to handled is queued to driver queue
1133 */
1134 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1135 {
1136 return __spi_queued_transfer(spi, msg, true);
1137 }
1138
1139 static int spi_master_initialize_queue(struct spi_master *master)
1140 {
1141 int ret;
1142
1143 master->transfer = spi_queued_transfer;
1144 if (!master->transfer_one_message)
1145 master->transfer_one_message = spi_transfer_one_message;
1146
1147 /* Initialize and start queue */
1148 ret = spi_init_queue(master);
1149 if (ret) {
1150 dev_err(&master->dev, "problem initializing queue\n");
1151 goto err_init_queue;
1152 }
1153 master->queued = true;
1154 ret = spi_start_queue(master);
1155 if (ret) {
1156 dev_err(&master->dev, "problem starting queue\n");
1157 goto err_start_queue;
1158 }
1159
1160 return 0;
1161
1162 err_start_queue:
1163 spi_destroy_queue(master);
1164 err_init_queue:
1165 return ret;
1166 }
1167
1168 /*-------------------------------------------------------------------------*/
1169
1170 #if defined(CONFIG_OF)
1171 static struct spi_device *
1172 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1173 {
1174 struct spi_device *spi;
1175 int rc;
1176 u32 value;
1177
1178 /* Alloc an spi_device */
1179 spi = spi_alloc_device(master);
1180 if (!spi) {
1181 dev_err(&master->dev, "spi_device alloc error for %s\n",
1182 nc->full_name);
1183 rc = -ENOMEM;
1184 goto err_out;
1185 }
1186
1187 /* Select device driver */
1188 rc = of_modalias_node(nc, spi->modalias,
1189 sizeof(spi->modalias));
1190 if (rc < 0) {
1191 dev_err(&master->dev, "cannot find modalias for %s\n",
1192 nc->full_name);
1193 goto err_out;
1194 }
1195
1196 /* Device address */
1197 rc = of_property_read_u32(nc, "reg", &value);
1198 if (rc) {
1199 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1200 nc->full_name, rc);
1201 goto err_out;
1202 }
1203 spi->chip_select = value;
1204
1205 /* Mode (clock phase/polarity/etc.) */
1206 if (of_find_property(nc, "spi-cpha", NULL))
1207 spi->mode |= SPI_CPHA;
1208 if (of_find_property(nc, "spi-cpol", NULL))
1209 spi->mode |= SPI_CPOL;
1210 if (of_find_property(nc, "spi-cs-high", NULL))
1211 spi->mode |= SPI_CS_HIGH;
1212 if (of_find_property(nc, "spi-3wire", NULL))
1213 spi->mode |= SPI_3WIRE;
1214 if (of_find_property(nc, "spi-lsb-first", NULL))
1215 spi->mode |= SPI_LSB_FIRST;
1216
1217 /* Device DUAL/QUAD mode */
1218 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1219 switch (value) {
1220 case 1:
1221 break;
1222 case 2:
1223 spi->mode |= SPI_TX_DUAL;
1224 break;
1225 case 4:
1226 spi->mode |= SPI_TX_QUAD;
1227 break;
1228 default:
1229 dev_warn(&master->dev,
1230 "spi-tx-bus-width %d not supported\n",
1231 value);
1232 break;
1233 }
1234 }
1235
1236 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1237 switch (value) {
1238 case 1:
1239 break;
1240 case 2:
1241 spi->mode |= SPI_RX_DUAL;
1242 break;
1243 case 4:
1244 spi->mode |= SPI_RX_QUAD;
1245 break;
1246 default:
1247 dev_warn(&master->dev,
1248 "spi-rx-bus-width %d not supported\n",
1249 value);
1250 break;
1251 }
1252 }
1253
1254 /* Device speed */
1255 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1256 if (rc) {
1257 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1258 nc->full_name, rc);
1259 goto err_out;
1260 }
1261 spi->max_speed_hz = value;
1262
1263 /* IRQ */
1264 spi->irq = irq_of_parse_and_map(nc, 0);
1265
1266 /* Store a pointer to the node in the device structure */
1267 of_node_get(nc);
1268 spi->dev.of_node = nc;
1269
1270 /* Register the new device */
1271 rc = spi_add_device(spi);
1272 if (rc) {
1273 dev_err(&master->dev, "spi_device register error %s\n",
1274 nc->full_name);
1275 goto err_out;
1276 }
1277
1278 return spi;
1279
1280 err_out:
1281 spi_dev_put(spi);
1282 return ERR_PTR(rc);
1283 }
1284
1285 /**
1286 * of_register_spi_devices() - Register child devices onto the SPI bus
1287 * @master: Pointer to spi_master device
1288 *
1289 * Registers an spi_device for each child node of master node which has a 'reg'
1290 * property.
1291 */
1292 static void of_register_spi_devices(struct spi_master *master)
1293 {
1294 struct spi_device *spi;
1295 struct device_node *nc;
1296
1297 if (!master->dev.of_node)
1298 return;
1299
1300 for_each_available_child_of_node(master->dev.of_node, nc) {
1301 spi = of_register_spi_device(master, nc);
1302 if (IS_ERR(spi))
1303 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1304 nc->full_name);
1305 }
1306 }
1307 #else
1308 static void of_register_spi_devices(struct spi_master *master) { }
1309 #endif
1310
1311 #ifdef CONFIG_ACPI
1312 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1313 {
1314 struct spi_device *spi = data;
1315
1316 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1317 struct acpi_resource_spi_serialbus *sb;
1318
1319 sb = &ares->data.spi_serial_bus;
1320 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1321 spi->chip_select = sb->device_selection;
1322 spi->max_speed_hz = sb->connection_speed;
1323
1324 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1325 spi->mode |= SPI_CPHA;
1326 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1327 spi->mode |= SPI_CPOL;
1328 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1329 spi->mode |= SPI_CS_HIGH;
1330 }
1331 } else if (spi->irq < 0) {
1332 struct resource r;
1333
1334 if (acpi_dev_resource_interrupt(ares, 0, &r))
1335 spi->irq = r.start;
1336 }
1337
1338 /* Always tell the ACPI core to skip this resource */
1339 return 1;
1340 }
1341
1342 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1343 void *data, void **return_value)
1344 {
1345 struct spi_master *master = data;
1346 struct list_head resource_list;
1347 struct acpi_device *adev;
1348 struct spi_device *spi;
1349 int ret;
1350
1351 if (acpi_bus_get_device(handle, &adev))
1352 return AE_OK;
1353 if (acpi_bus_get_status(adev) || !adev->status.present)
1354 return AE_OK;
1355
1356 spi = spi_alloc_device(master);
1357 if (!spi) {
1358 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1359 dev_name(&adev->dev));
1360 return AE_NO_MEMORY;
1361 }
1362
1363 ACPI_COMPANION_SET(&spi->dev, adev);
1364 spi->irq = -1;
1365
1366 INIT_LIST_HEAD(&resource_list);
1367 ret = acpi_dev_get_resources(adev, &resource_list,
1368 acpi_spi_add_resource, spi);
1369 acpi_dev_free_resource_list(&resource_list);
1370
1371 if (ret < 0 || !spi->max_speed_hz) {
1372 spi_dev_put(spi);
1373 return AE_OK;
1374 }
1375
1376 adev->power.flags.ignore_parent = true;
1377 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1378 if (spi_add_device(spi)) {
1379 adev->power.flags.ignore_parent = false;
1380 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1381 dev_name(&adev->dev));
1382 spi_dev_put(spi);
1383 }
1384
1385 return AE_OK;
1386 }
1387
1388 static void acpi_register_spi_devices(struct spi_master *master)
1389 {
1390 acpi_status status;
1391 acpi_handle handle;
1392
1393 handle = ACPI_HANDLE(master->dev.parent);
1394 if (!handle)
1395 return;
1396
1397 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1398 acpi_spi_add_device, NULL,
1399 master, NULL);
1400 if (ACPI_FAILURE(status))
1401 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1402 }
1403 #else
1404 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1405 #endif /* CONFIG_ACPI */
1406
1407 static void spi_master_release(struct device *dev)
1408 {
1409 struct spi_master *master;
1410
1411 master = container_of(dev, struct spi_master, dev);
1412 kfree(master);
1413 }
1414
1415 static struct class spi_master_class = {
1416 .name = "spi_master",
1417 .owner = THIS_MODULE,
1418 .dev_release = spi_master_release,
1419 };
1420
1421
1422
1423 /**
1424 * spi_alloc_master - allocate SPI master controller
1425 * @dev: the controller, possibly using the platform_bus
1426 * @size: how much zeroed driver-private data to allocate; the pointer to this
1427 * memory is in the driver_data field of the returned device,
1428 * accessible with spi_master_get_devdata().
1429 * Context: can sleep
1430 *
1431 * This call is used only by SPI master controller drivers, which are the
1432 * only ones directly touching chip registers. It's how they allocate
1433 * an spi_master structure, prior to calling spi_register_master().
1434 *
1435 * This must be called from context that can sleep. It returns the SPI
1436 * master structure on success, else NULL.
1437 *
1438 * The caller is responsible for assigning the bus number and initializing
1439 * the master's methods before calling spi_register_master(); and (after errors
1440 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1441 * leak.
1442 */
1443 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1444 {
1445 struct spi_master *master;
1446
1447 if (!dev)
1448 return NULL;
1449
1450 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1451 if (!master)
1452 return NULL;
1453
1454 device_initialize(&master->dev);
1455 master->bus_num = -1;
1456 master->num_chipselect = 1;
1457 master->dev.class = &spi_master_class;
1458 master->dev.parent = get_device(dev);
1459 spi_master_set_devdata(master, &master[1]);
1460
1461 return master;
1462 }
1463 EXPORT_SYMBOL_GPL(spi_alloc_master);
1464
1465 #ifdef CONFIG_OF
1466 static int of_spi_register_master(struct spi_master *master)
1467 {
1468 int nb, i, *cs;
1469 struct device_node *np = master->dev.of_node;
1470
1471 if (!np)
1472 return 0;
1473
1474 nb = of_gpio_named_count(np, "cs-gpios");
1475 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1476
1477 /* Return error only for an incorrectly formed cs-gpios property */
1478 if (nb == 0 || nb == -ENOENT)
1479 return 0;
1480 else if (nb < 0)
1481 return nb;
1482
1483 cs = devm_kzalloc(&master->dev,
1484 sizeof(int) * master->num_chipselect,
1485 GFP_KERNEL);
1486 master->cs_gpios = cs;
1487
1488 if (!master->cs_gpios)
1489 return -ENOMEM;
1490
1491 for (i = 0; i < master->num_chipselect; i++)
1492 cs[i] = -ENOENT;
1493
1494 for (i = 0; i < nb; i++)
1495 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1496
1497 return 0;
1498 }
1499 #else
1500 static int of_spi_register_master(struct spi_master *master)
1501 {
1502 return 0;
1503 }
1504 #endif
1505
1506 /**
1507 * spi_register_master - register SPI master controller
1508 * @master: initialized master, originally from spi_alloc_master()
1509 * Context: can sleep
1510 *
1511 * SPI master controllers connect to their drivers using some non-SPI bus,
1512 * such as the platform bus. The final stage of probe() in that code
1513 * includes calling spi_register_master() to hook up to this SPI bus glue.
1514 *
1515 * SPI controllers use board specific (often SOC specific) bus numbers,
1516 * and board-specific addressing for SPI devices combines those numbers
1517 * with chip select numbers. Since SPI does not directly support dynamic
1518 * device identification, boards need configuration tables telling which
1519 * chip is at which address.
1520 *
1521 * This must be called from context that can sleep. It returns zero on
1522 * success, else a negative error code (dropping the master's refcount).
1523 * After a successful return, the caller is responsible for calling
1524 * spi_unregister_master().
1525 */
1526 int spi_register_master(struct spi_master *master)
1527 {
1528 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1529 struct device *dev = master->dev.parent;
1530 struct boardinfo *bi;
1531 int status = -ENODEV;
1532 int dynamic = 0;
1533
1534 if (!dev)
1535 return -ENODEV;
1536
1537 status = of_spi_register_master(master);
1538 if (status)
1539 return status;
1540
1541 /* even if it's just one always-selected device, there must
1542 * be at least one chipselect
1543 */
1544 if (master->num_chipselect == 0)
1545 return -EINVAL;
1546
1547 if ((master->bus_num < 0) && master->dev.of_node)
1548 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1549
1550 /* convention: dynamically assigned bus IDs count down from the max */
1551 if (master->bus_num < 0) {
1552 /* FIXME switch to an IDR based scheme, something like
1553 * I2C now uses, so we can't run out of "dynamic" IDs
1554 */
1555 master->bus_num = atomic_dec_return(&dyn_bus_id);
1556 dynamic = 1;
1557 }
1558
1559 INIT_LIST_HEAD(&master->queue);
1560 spin_lock_init(&master->queue_lock);
1561 spin_lock_init(&master->bus_lock_spinlock);
1562 mutex_init(&master->bus_lock_mutex);
1563 master->bus_lock_flag = 0;
1564 init_completion(&master->xfer_completion);
1565 if (!master->max_dma_len)
1566 master->max_dma_len = INT_MAX;
1567
1568 /* register the device, then userspace will see it.
1569 * registration fails if the bus ID is in use.
1570 */
1571 dev_set_name(&master->dev, "spi%u", master->bus_num);
1572 status = device_add(&master->dev);
1573 if (status < 0)
1574 goto done;
1575 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1576 dynamic ? " (dynamic)" : "");
1577
1578 /* If we're using a queued driver, start the queue */
1579 if (master->transfer)
1580 dev_info(dev, "master is unqueued, this is deprecated\n");
1581 else {
1582 status = spi_master_initialize_queue(master);
1583 if (status) {
1584 device_del(&master->dev);
1585 goto done;
1586 }
1587 }
1588
1589 mutex_lock(&board_lock);
1590 list_add_tail(&master->list, &spi_master_list);
1591 list_for_each_entry(bi, &board_list, list)
1592 spi_match_master_to_boardinfo(master, &bi->board_info);
1593 mutex_unlock(&board_lock);
1594
1595 /* Register devices from the device tree and ACPI */
1596 of_register_spi_devices(master);
1597 acpi_register_spi_devices(master);
1598 done:
1599 return status;
1600 }
1601 EXPORT_SYMBOL_GPL(spi_register_master);
1602
1603 static void devm_spi_unregister(struct device *dev, void *res)
1604 {
1605 spi_unregister_master(*(struct spi_master **)res);
1606 }
1607
1608 /**
1609 * dev_spi_register_master - register managed SPI master controller
1610 * @dev: device managing SPI master
1611 * @master: initialized master, originally from spi_alloc_master()
1612 * Context: can sleep
1613 *
1614 * Register a SPI device as with spi_register_master() which will
1615 * automatically be unregister
1616 */
1617 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1618 {
1619 struct spi_master **ptr;
1620 int ret;
1621
1622 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1623 if (!ptr)
1624 return -ENOMEM;
1625
1626 ret = spi_register_master(master);
1627 if (!ret) {
1628 *ptr = master;
1629 devres_add(dev, ptr);
1630 } else {
1631 devres_free(ptr);
1632 }
1633
1634 return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1637
1638 static int __unregister(struct device *dev, void *null)
1639 {
1640 spi_unregister_device(to_spi_device(dev));
1641 return 0;
1642 }
1643
1644 /**
1645 * spi_unregister_master - unregister SPI master controller
1646 * @master: the master being unregistered
1647 * Context: can sleep
1648 *
1649 * This call is used only by SPI master controller drivers, which are the
1650 * only ones directly touching chip registers.
1651 *
1652 * This must be called from context that can sleep.
1653 */
1654 void spi_unregister_master(struct spi_master *master)
1655 {
1656 int dummy;
1657
1658 if (master->queued) {
1659 if (spi_destroy_queue(master))
1660 dev_err(&master->dev, "queue remove failed\n");
1661 }
1662
1663 mutex_lock(&board_lock);
1664 list_del(&master->list);
1665 mutex_unlock(&board_lock);
1666
1667 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1668 device_unregister(&master->dev);
1669 }
1670 EXPORT_SYMBOL_GPL(spi_unregister_master);
1671
1672 int spi_master_suspend(struct spi_master *master)
1673 {
1674 int ret;
1675
1676 /* Basically no-ops for non-queued masters */
1677 if (!master->queued)
1678 return 0;
1679
1680 ret = spi_stop_queue(master);
1681 if (ret)
1682 dev_err(&master->dev, "queue stop failed\n");
1683
1684 return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(spi_master_suspend);
1687
1688 int spi_master_resume(struct spi_master *master)
1689 {
1690 int ret;
1691
1692 if (!master->queued)
1693 return 0;
1694
1695 ret = spi_start_queue(master);
1696 if (ret)
1697 dev_err(&master->dev, "queue restart failed\n");
1698
1699 return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(spi_master_resume);
1702
1703 static int __spi_master_match(struct device *dev, const void *data)
1704 {
1705 struct spi_master *m;
1706 const u16 *bus_num = data;
1707
1708 m = container_of(dev, struct spi_master, dev);
1709 return m->bus_num == *bus_num;
1710 }
1711
1712 /**
1713 * spi_busnum_to_master - look up master associated with bus_num
1714 * @bus_num: the master's bus number
1715 * Context: can sleep
1716 *
1717 * This call may be used with devices that are registered after
1718 * arch init time. It returns a refcounted pointer to the relevant
1719 * spi_master (which the caller must release), or NULL if there is
1720 * no such master registered.
1721 */
1722 struct spi_master *spi_busnum_to_master(u16 bus_num)
1723 {
1724 struct device *dev;
1725 struct spi_master *master = NULL;
1726
1727 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1728 __spi_master_match);
1729 if (dev)
1730 master = container_of(dev, struct spi_master, dev);
1731 /* reference got in class_find_device */
1732 return master;
1733 }
1734 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1735
1736
1737 /*-------------------------------------------------------------------------*/
1738
1739 /* Core methods for SPI master protocol drivers. Some of the
1740 * other core methods are currently defined as inline functions.
1741 */
1742
1743 /**
1744 * spi_setup - setup SPI mode and clock rate
1745 * @spi: the device whose settings are being modified
1746 * Context: can sleep, and no requests are queued to the device
1747 *
1748 * SPI protocol drivers may need to update the transfer mode if the
1749 * device doesn't work with its default. They may likewise need
1750 * to update clock rates or word sizes from initial values. This function
1751 * changes those settings, and must be called from a context that can sleep.
1752 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1753 * effect the next time the device is selected and data is transferred to
1754 * or from it. When this function returns, the spi device is deselected.
1755 *
1756 * Note that this call will fail if the protocol driver specifies an option
1757 * that the underlying controller or its driver does not support. For
1758 * example, not all hardware supports wire transfers using nine bit words,
1759 * LSB-first wire encoding, or active-high chipselects.
1760 */
1761 int spi_setup(struct spi_device *spi)
1762 {
1763 unsigned bad_bits, ugly_bits;
1764 int status = 0;
1765
1766 /* check mode to prevent that DUAL and QUAD set at the same time
1767 */
1768 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1769 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1770 dev_err(&spi->dev,
1771 "setup: can not select dual and quad at the same time\n");
1772 return -EINVAL;
1773 }
1774 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1775 */
1776 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1777 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1778 return -EINVAL;
1779 /* help drivers fail *cleanly* when they need options
1780 * that aren't supported with their current master
1781 */
1782 bad_bits = spi->mode & ~spi->master->mode_bits;
1783 ugly_bits = bad_bits &
1784 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1785 if (ugly_bits) {
1786 dev_warn(&spi->dev,
1787 "setup: ignoring unsupported mode bits %x\n",
1788 ugly_bits);
1789 spi->mode &= ~ugly_bits;
1790 bad_bits &= ~ugly_bits;
1791 }
1792 if (bad_bits) {
1793 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1794 bad_bits);
1795 return -EINVAL;
1796 }
1797
1798 if (!spi->bits_per_word)
1799 spi->bits_per_word = 8;
1800
1801 if (!spi->max_speed_hz)
1802 spi->max_speed_hz = spi->master->max_speed_hz;
1803
1804 spi_set_cs(spi, false);
1805
1806 if (spi->master->setup)
1807 status = spi->master->setup(spi);
1808
1809 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1810 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1811 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1812 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1813 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1814 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1815 spi->bits_per_word, spi->max_speed_hz,
1816 status);
1817
1818 return status;
1819 }
1820 EXPORT_SYMBOL_GPL(spi_setup);
1821
1822 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1823 {
1824 struct spi_master *master = spi->master;
1825 struct spi_transfer *xfer;
1826 int w_size;
1827
1828 if (list_empty(&message->transfers))
1829 return -EINVAL;
1830
1831 /* Half-duplex links include original MicroWire, and ones with
1832 * only one data pin like SPI_3WIRE (switches direction) or where
1833 * either MOSI or MISO is missing. They can also be caused by
1834 * software limitations.
1835 */
1836 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1837 || (spi->mode & SPI_3WIRE)) {
1838 unsigned flags = master->flags;
1839
1840 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1841 if (xfer->rx_buf && xfer->tx_buf)
1842 return -EINVAL;
1843 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1844 return -EINVAL;
1845 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1846 return -EINVAL;
1847 }
1848 }
1849
1850 /**
1851 * Set transfer bits_per_word and max speed as spi device default if
1852 * it is not set for this transfer.
1853 * Set transfer tx_nbits and rx_nbits as single transfer default
1854 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1855 */
1856 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1857 message->frame_length += xfer->len;
1858 if (!xfer->bits_per_word)
1859 xfer->bits_per_word = spi->bits_per_word;
1860
1861 if (!xfer->speed_hz)
1862 xfer->speed_hz = spi->max_speed_hz;
1863
1864 if (master->max_speed_hz &&
1865 xfer->speed_hz > master->max_speed_hz)
1866 xfer->speed_hz = master->max_speed_hz;
1867
1868 if (master->bits_per_word_mask) {
1869 /* Only 32 bits fit in the mask */
1870 if (xfer->bits_per_word > 32)
1871 return -EINVAL;
1872 if (!(master->bits_per_word_mask &
1873 BIT(xfer->bits_per_word - 1)))
1874 return -EINVAL;
1875 }
1876
1877 /*
1878 * SPI transfer length should be multiple of SPI word size
1879 * where SPI word size should be power-of-two multiple
1880 */
1881 if (xfer->bits_per_word <= 8)
1882 w_size = 1;
1883 else if (xfer->bits_per_word <= 16)
1884 w_size = 2;
1885 else
1886 w_size = 4;
1887
1888 /* No partial transfers accepted */
1889 if (xfer->len % w_size)
1890 return -EINVAL;
1891
1892 if (xfer->speed_hz && master->min_speed_hz &&
1893 xfer->speed_hz < master->min_speed_hz)
1894 return -EINVAL;
1895
1896 if (xfer->tx_buf && !xfer->tx_nbits)
1897 xfer->tx_nbits = SPI_NBITS_SINGLE;
1898 if (xfer->rx_buf && !xfer->rx_nbits)
1899 xfer->rx_nbits = SPI_NBITS_SINGLE;
1900 /* check transfer tx/rx_nbits:
1901 * 1. check the value matches one of single, dual and quad
1902 * 2. check tx/rx_nbits match the mode in spi_device
1903 */
1904 if (xfer->tx_buf) {
1905 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1906 xfer->tx_nbits != SPI_NBITS_DUAL &&
1907 xfer->tx_nbits != SPI_NBITS_QUAD)
1908 return -EINVAL;
1909 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1910 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1911 return -EINVAL;
1912 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1913 !(spi->mode & SPI_TX_QUAD))
1914 return -EINVAL;
1915 }
1916 /* check transfer rx_nbits */
1917 if (xfer->rx_buf) {
1918 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1919 xfer->rx_nbits != SPI_NBITS_DUAL &&
1920 xfer->rx_nbits != SPI_NBITS_QUAD)
1921 return -EINVAL;
1922 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1923 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1924 return -EINVAL;
1925 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1926 !(spi->mode & SPI_RX_QUAD))
1927 return -EINVAL;
1928 }
1929 }
1930
1931 message->status = -EINPROGRESS;
1932
1933 return 0;
1934 }
1935
1936 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1937 {
1938 struct spi_master *master = spi->master;
1939
1940 message->spi = spi;
1941
1942 trace_spi_message_submit(message);
1943
1944 return master->transfer(spi, message);
1945 }
1946
1947 /**
1948 * spi_async - asynchronous SPI transfer
1949 * @spi: device with which data will be exchanged
1950 * @message: describes the data transfers, including completion callback
1951 * Context: any (irqs may be blocked, etc)
1952 *
1953 * This call may be used in_irq and other contexts which can't sleep,
1954 * as well as from task contexts which can sleep.
1955 *
1956 * The completion callback is invoked in a context which can't sleep.
1957 * Before that invocation, the value of message->status is undefined.
1958 * When the callback is issued, message->status holds either zero (to
1959 * indicate complete success) or a negative error code. After that
1960 * callback returns, the driver which issued the transfer request may
1961 * deallocate the associated memory; it's no longer in use by any SPI
1962 * core or controller driver code.
1963 *
1964 * Note that although all messages to a spi_device are handled in
1965 * FIFO order, messages may go to different devices in other orders.
1966 * Some device might be higher priority, or have various "hard" access
1967 * time requirements, for example.
1968 *
1969 * On detection of any fault during the transfer, processing of
1970 * the entire message is aborted, and the device is deselected.
1971 * Until returning from the associated message completion callback,
1972 * no other spi_message queued to that device will be processed.
1973 * (This rule applies equally to all the synchronous transfer calls,
1974 * which are wrappers around this core asynchronous primitive.)
1975 */
1976 int spi_async(struct spi_device *spi, struct spi_message *message)
1977 {
1978 struct spi_master *master = spi->master;
1979 int ret;
1980 unsigned long flags;
1981
1982 ret = __spi_validate(spi, message);
1983 if (ret != 0)
1984 return ret;
1985
1986 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1987
1988 if (master->bus_lock_flag)
1989 ret = -EBUSY;
1990 else
1991 ret = __spi_async(spi, message);
1992
1993 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1994
1995 return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(spi_async);
1998
1999 /**
2000 * spi_async_locked - version of spi_async with exclusive bus usage
2001 * @spi: device with which data will be exchanged
2002 * @message: describes the data transfers, including completion callback
2003 * Context: any (irqs may be blocked, etc)
2004 *
2005 * This call may be used in_irq and other contexts which can't sleep,
2006 * as well as from task contexts which can sleep.
2007 *
2008 * The completion callback is invoked in a context which can't sleep.
2009 * Before that invocation, the value of message->status is undefined.
2010 * When the callback is issued, message->status holds either zero (to
2011 * indicate complete success) or a negative error code. After that
2012 * callback returns, the driver which issued the transfer request may
2013 * deallocate the associated memory; it's no longer in use by any SPI
2014 * core or controller driver code.
2015 *
2016 * Note that although all messages to a spi_device are handled in
2017 * FIFO order, messages may go to different devices in other orders.
2018 * Some device might be higher priority, or have various "hard" access
2019 * time requirements, for example.
2020 *
2021 * On detection of any fault during the transfer, processing of
2022 * the entire message is aborted, and the device is deselected.
2023 * Until returning from the associated message completion callback,
2024 * no other spi_message queued to that device will be processed.
2025 * (This rule applies equally to all the synchronous transfer calls,
2026 * which are wrappers around this core asynchronous primitive.)
2027 */
2028 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2029 {
2030 struct spi_master *master = spi->master;
2031 int ret;
2032 unsigned long flags;
2033
2034 ret = __spi_validate(spi, message);
2035 if (ret != 0)
2036 return ret;
2037
2038 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2039
2040 ret = __spi_async(spi, message);
2041
2042 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2043
2044 return ret;
2045
2046 }
2047 EXPORT_SYMBOL_GPL(spi_async_locked);
2048
2049
2050 /*-------------------------------------------------------------------------*/
2051
2052 /* Utility methods for SPI master protocol drivers, layered on
2053 * top of the core. Some other utility methods are defined as
2054 * inline functions.
2055 */
2056
2057 static void spi_complete(void *arg)
2058 {
2059 complete(arg);
2060 }
2061
2062 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2063 int bus_locked)
2064 {
2065 DECLARE_COMPLETION_ONSTACK(done);
2066 int status;
2067 struct spi_master *master = spi->master;
2068 unsigned long flags;
2069
2070 status = __spi_validate(spi, message);
2071 if (status != 0)
2072 return status;
2073
2074 message->complete = spi_complete;
2075 message->context = &done;
2076 message->spi = spi;
2077
2078 if (!bus_locked)
2079 mutex_lock(&master->bus_lock_mutex);
2080
2081 /* If we're not using the legacy transfer method then we will
2082 * try to transfer in the calling context so special case.
2083 * This code would be less tricky if we could remove the
2084 * support for driver implemented message queues.
2085 */
2086 if (master->transfer == spi_queued_transfer) {
2087 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2088
2089 trace_spi_message_submit(message);
2090
2091 status = __spi_queued_transfer(spi, message, false);
2092
2093 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2094 } else {
2095 status = spi_async_locked(spi, message);
2096 }
2097
2098 if (!bus_locked)
2099 mutex_unlock(&master->bus_lock_mutex);
2100
2101 if (status == 0) {
2102 /* Push out the messages in the calling context if we
2103 * can.
2104 */
2105 if (master->transfer == spi_queued_transfer)
2106 __spi_pump_messages(master, false);
2107
2108 wait_for_completion(&done);
2109 status = message->status;
2110 }
2111 message->context = NULL;
2112 return status;
2113 }
2114
2115 /**
2116 * spi_sync - blocking/synchronous SPI data transfers
2117 * @spi: device with which data will be exchanged
2118 * @message: describes the data transfers
2119 * Context: can sleep
2120 *
2121 * This call may only be used from a context that may sleep. The sleep
2122 * is non-interruptible, and has no timeout. Low-overhead controller
2123 * drivers may DMA directly into and out of the message buffers.
2124 *
2125 * Note that the SPI device's chip select is active during the message,
2126 * and then is normally disabled between messages. Drivers for some
2127 * frequently-used devices may want to minimize costs of selecting a chip,
2128 * by leaving it selected in anticipation that the next message will go
2129 * to the same chip. (That may increase power usage.)
2130 *
2131 * Also, the caller is guaranteeing that the memory associated with the
2132 * message will not be freed before this call returns.
2133 *
2134 * It returns zero on success, else a negative error code.
2135 */
2136 int spi_sync(struct spi_device *spi, struct spi_message *message)
2137 {
2138 return __spi_sync(spi, message, 0);
2139 }
2140 EXPORT_SYMBOL_GPL(spi_sync);
2141
2142 /**
2143 * spi_sync_locked - version of spi_sync with exclusive bus usage
2144 * @spi: device with which data will be exchanged
2145 * @message: describes the data transfers
2146 * Context: can sleep
2147 *
2148 * This call may only be used from a context that may sleep. The sleep
2149 * is non-interruptible, and has no timeout. Low-overhead controller
2150 * drivers may DMA directly into and out of the message buffers.
2151 *
2152 * This call should be used by drivers that require exclusive access to the
2153 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2154 * be released by a spi_bus_unlock call when the exclusive access is over.
2155 *
2156 * It returns zero on success, else a negative error code.
2157 */
2158 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2159 {
2160 return __spi_sync(spi, message, 1);
2161 }
2162 EXPORT_SYMBOL_GPL(spi_sync_locked);
2163
2164 /**
2165 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2166 * @master: SPI bus master that should be locked for exclusive bus access
2167 * Context: can sleep
2168 *
2169 * This call may only be used from a context that may sleep. The sleep
2170 * is non-interruptible, and has no timeout.
2171 *
2172 * This call should be used by drivers that require exclusive access to the
2173 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2174 * exclusive access is over. Data transfer must be done by spi_sync_locked
2175 * and spi_async_locked calls when the SPI bus lock is held.
2176 *
2177 * It returns zero on success, else a negative error code.
2178 */
2179 int spi_bus_lock(struct spi_master *master)
2180 {
2181 unsigned long flags;
2182
2183 mutex_lock(&master->bus_lock_mutex);
2184
2185 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2186 master->bus_lock_flag = 1;
2187 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2188
2189 /* mutex remains locked until spi_bus_unlock is called */
2190
2191 return 0;
2192 }
2193 EXPORT_SYMBOL_GPL(spi_bus_lock);
2194
2195 /**
2196 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2197 * @master: SPI bus master that was locked for exclusive bus access
2198 * Context: can sleep
2199 *
2200 * This call may only be used from a context that may sleep. The sleep
2201 * is non-interruptible, and has no timeout.
2202 *
2203 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2204 * call.
2205 *
2206 * It returns zero on success, else a negative error code.
2207 */
2208 int spi_bus_unlock(struct spi_master *master)
2209 {
2210 master->bus_lock_flag = 0;
2211
2212 mutex_unlock(&master->bus_lock_mutex);
2213
2214 return 0;
2215 }
2216 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2217
2218 /* portable code must never pass more than 32 bytes */
2219 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2220
2221 static u8 *buf;
2222
2223 /**
2224 * spi_write_then_read - SPI synchronous write followed by read
2225 * @spi: device with which data will be exchanged
2226 * @txbuf: data to be written (need not be dma-safe)
2227 * @n_tx: size of txbuf, in bytes
2228 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2229 * @n_rx: size of rxbuf, in bytes
2230 * Context: can sleep
2231 *
2232 * This performs a half duplex MicroWire style transaction with the
2233 * device, sending txbuf and then reading rxbuf. The return value
2234 * is zero for success, else a negative errno status code.
2235 * This call may only be used from a context that may sleep.
2236 *
2237 * Parameters to this routine are always copied using a small buffer;
2238 * portable code should never use this for more than 32 bytes.
2239 * Performance-sensitive or bulk transfer code should instead use
2240 * spi_{async,sync}() calls with dma-safe buffers.
2241 */
2242 int spi_write_then_read(struct spi_device *spi,
2243 const void *txbuf, unsigned n_tx,
2244 void *rxbuf, unsigned n_rx)
2245 {
2246 static DEFINE_MUTEX(lock);
2247
2248 int status;
2249 struct spi_message message;
2250 struct spi_transfer x[2];
2251 u8 *local_buf;
2252
2253 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2254 * copying here, (as a pure convenience thing), but we can
2255 * keep heap costs out of the hot path unless someone else is
2256 * using the pre-allocated buffer or the transfer is too large.
2257 */
2258 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2259 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2260 GFP_KERNEL | GFP_DMA);
2261 if (!local_buf)
2262 return -ENOMEM;
2263 } else {
2264 local_buf = buf;
2265 }
2266
2267 spi_message_init(&message);
2268 memset(x, 0, sizeof(x));
2269 if (n_tx) {
2270 x[0].len = n_tx;
2271 spi_message_add_tail(&x[0], &message);
2272 }
2273 if (n_rx) {
2274 x[1].len = n_rx;
2275 spi_message_add_tail(&x[1], &message);
2276 }
2277
2278 memcpy(local_buf, txbuf, n_tx);
2279 x[0].tx_buf = local_buf;
2280 x[1].rx_buf = local_buf + n_tx;
2281
2282 /* do the i/o */
2283 status = spi_sync(spi, &message);
2284 if (status == 0)
2285 memcpy(rxbuf, x[1].rx_buf, n_rx);
2286
2287 if (x[0].tx_buf == buf)
2288 mutex_unlock(&lock);
2289 else
2290 kfree(local_buf);
2291
2292 return status;
2293 }
2294 EXPORT_SYMBOL_GPL(spi_write_then_read);
2295
2296 /*-------------------------------------------------------------------------*/
2297
2298 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2299 static int __spi_of_device_match(struct device *dev, void *data)
2300 {
2301 return dev->of_node == data;
2302 }
2303
2304 /* must call put_device() when done with returned spi_device device */
2305 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2306 {
2307 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2308 __spi_of_device_match);
2309 return dev ? to_spi_device(dev) : NULL;
2310 }
2311
2312 static int __spi_of_master_match(struct device *dev, const void *data)
2313 {
2314 return dev->of_node == data;
2315 }
2316
2317 /* the spi masters are not using spi_bus, so we find it with another way */
2318 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2319 {
2320 struct device *dev;
2321
2322 dev = class_find_device(&spi_master_class, NULL, node,
2323 __spi_of_master_match);
2324 if (!dev)
2325 return NULL;
2326
2327 /* reference got in class_find_device */
2328 return container_of(dev, struct spi_master, dev);
2329 }
2330
2331 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2332 void *arg)
2333 {
2334 struct of_reconfig_data *rd = arg;
2335 struct spi_master *master;
2336 struct spi_device *spi;
2337
2338 switch (of_reconfig_get_state_change(action, arg)) {
2339 case OF_RECONFIG_CHANGE_ADD:
2340 master = of_find_spi_master_by_node(rd->dn->parent);
2341 if (master == NULL)
2342 return NOTIFY_OK; /* not for us */
2343
2344 spi = of_register_spi_device(master, rd->dn);
2345 put_device(&master->dev);
2346
2347 if (IS_ERR(spi)) {
2348 pr_err("%s: failed to create for '%s'\n",
2349 __func__, rd->dn->full_name);
2350 return notifier_from_errno(PTR_ERR(spi));
2351 }
2352 break;
2353
2354 case OF_RECONFIG_CHANGE_REMOVE:
2355 /* find our device by node */
2356 spi = of_find_spi_device_by_node(rd->dn);
2357 if (spi == NULL)
2358 return NOTIFY_OK; /* no? not meant for us */
2359
2360 /* unregister takes one ref away */
2361 spi_unregister_device(spi);
2362
2363 /* and put the reference of the find */
2364 put_device(&spi->dev);
2365 break;
2366 }
2367
2368 return NOTIFY_OK;
2369 }
2370
2371 static struct notifier_block spi_of_notifier = {
2372 .notifier_call = of_spi_notify,
2373 };
2374 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2375 extern struct notifier_block spi_of_notifier;
2376 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2377
2378 static int __init spi_init(void)
2379 {
2380 int status;
2381
2382 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2383 if (!buf) {
2384 status = -ENOMEM;
2385 goto err0;
2386 }
2387
2388 status = bus_register(&spi_bus_type);
2389 if (status < 0)
2390 goto err1;
2391
2392 status = class_register(&spi_master_class);
2393 if (status < 0)
2394 goto err2;
2395
2396 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2397 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2398
2399 return 0;
2400
2401 err2:
2402 bus_unregister(&spi_bus_type);
2403 err1:
2404 kfree(buf);
2405 buf = NULL;
2406 err0:
2407 return status;
2408 }
2409
2410 /* board_info is normally registered in arch_initcall(),
2411 * but even essential drivers wait till later
2412 *
2413 * REVISIT only boardinfo really needs static linking. the rest (device and
2414 * driver registration) _could_ be dynamically linked (modular) ... costs
2415 * include needing to have boardinfo data structures be much more public.
2416 */
2417 postcore_initcall(spi_init);
2418
This page took 0.145718 seconds and 5 git commands to generate.