iw_cxgb4: use wildcard mapping for getting remote addr info
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 static struct attribute *spi_dev_attrs[] = {
71 &dev_attr_modalias.attr,
72 NULL,
73 };
74 ATTRIBUTE_GROUPS(spi_dev);
75
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
78 */
79
80 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 const struct spi_device *sdev)
82 {
83 while (id->name[0]) {
84 if (!strcmp(sdev->modalias, id->name))
85 return id;
86 id++;
87 }
88 return NULL;
89 }
90
91 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92 {
93 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94
95 return spi_match_id(sdrv->id_table, sdev);
96 }
97 EXPORT_SYMBOL_GPL(spi_get_device_id);
98
99 static int spi_match_device(struct device *dev, struct device_driver *drv)
100 {
101 const struct spi_device *spi = to_spi_device(dev);
102 const struct spi_driver *sdrv = to_spi_driver(drv);
103
104 /* Attempt an OF style match */
105 if (of_driver_match_device(dev, drv))
106 return 1;
107
108 /* Then try ACPI */
109 if (acpi_driver_match_device(dev, drv))
110 return 1;
111
112 if (sdrv->id_table)
113 return !!spi_match_id(sdrv->id_table, spi);
114
115 return strcmp(spi->modalias, drv->name) == 0;
116 }
117
118 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119 {
120 const struct spi_device *spi = to_spi_device(dev);
121 int rc;
122
123 rc = acpi_device_uevent_modalias(dev, env);
124 if (rc != -ENODEV)
125 return rc;
126
127 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128 return 0;
129 }
130
131 struct bus_type spi_bus_type = {
132 .name = "spi",
133 .dev_groups = spi_dev_groups,
134 .match = spi_match_device,
135 .uevent = spi_uevent,
136 };
137 EXPORT_SYMBOL_GPL(spi_bus_type);
138
139
140 static int spi_drv_probe(struct device *dev)
141 {
142 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
143 int ret;
144
145 ret = of_clk_set_defaults(dev->of_node, false);
146 if (ret)
147 return ret;
148
149 ret = dev_pm_domain_attach(dev, true);
150 if (ret != -EPROBE_DEFER) {
151 ret = sdrv->probe(to_spi_device(dev));
152 if (ret)
153 dev_pm_domain_detach(dev, true);
154 }
155
156 return ret;
157 }
158
159 static int spi_drv_remove(struct device *dev)
160 {
161 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
162 int ret;
163
164 ret = sdrv->remove(to_spi_device(dev));
165 dev_pm_domain_detach(dev, true);
166
167 return ret;
168 }
169
170 static void spi_drv_shutdown(struct device *dev)
171 {
172 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
173
174 sdrv->shutdown(to_spi_device(dev));
175 }
176
177 /**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
182 int spi_register_driver(struct spi_driver *sdrv)
183 {
184 sdrv->driver.bus = &spi_bus_type;
185 if (sdrv->probe)
186 sdrv->driver.probe = spi_drv_probe;
187 if (sdrv->remove)
188 sdrv->driver.remove = spi_drv_remove;
189 if (sdrv->shutdown)
190 sdrv->driver.shutdown = spi_drv_shutdown;
191 return driver_register(&sdrv->driver);
192 }
193 EXPORT_SYMBOL_GPL(spi_register_driver);
194
195 /*-------------------------------------------------------------------------*/
196
197 /* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203 struct boardinfo {
204 struct list_head list;
205 struct spi_board_info board_info;
206 };
207
208 static LIST_HEAD(board_list);
209 static LIST_HEAD(spi_master_list);
210
211 /*
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
214 */
215 static DEFINE_MUTEX(board_lock);
216
217 /**
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
220 * Context: can sleep
221 *
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately. This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
226 *
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master. If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
231 *
232 * Returns a pointer to the new device, or NULL.
233 */
234 struct spi_device *spi_alloc_device(struct spi_master *master)
235 {
236 struct spi_device *spi;
237
238 if (!spi_master_get(master))
239 return NULL;
240
241 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242 if (!spi) {
243 spi_master_put(master);
244 return NULL;
245 }
246
247 spi->master = master;
248 spi->dev.parent = &master->dev;
249 spi->dev.bus = &spi_bus_type;
250 spi->dev.release = spidev_release;
251 spi->cs_gpio = -ENOENT;
252 device_initialize(&spi->dev);
253 return spi;
254 }
255 EXPORT_SYMBOL_GPL(spi_alloc_device);
256
257 static void spi_dev_set_name(struct spi_device *spi)
258 {
259 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260
261 if (adev) {
262 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 return;
264 }
265
266 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 spi->chip_select);
268 }
269
270 static int spi_dev_check(struct device *dev, void *data)
271 {
272 struct spi_device *spi = to_spi_device(dev);
273 struct spi_device *new_spi = data;
274
275 if (spi->master == new_spi->master &&
276 spi->chip_select == new_spi->chip_select)
277 return -EBUSY;
278 return 0;
279 }
280
281 /**
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
284 *
285 * Companion function to spi_alloc_device. Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
287 *
288 * Returns 0 on success; negative errno on failure
289 */
290 int spi_add_device(struct spi_device *spi)
291 {
292 static DEFINE_MUTEX(spi_add_lock);
293 struct spi_master *master = spi->master;
294 struct device *dev = master->dev.parent;
295 int status;
296
297 /* Chipselects are numbered 0..max; validate. */
298 if (spi->chip_select >= master->num_chipselect) {
299 dev_err(dev, "cs%d >= max %d\n",
300 spi->chip_select,
301 master->num_chipselect);
302 return -EINVAL;
303 }
304
305 /* Set the bus ID string */
306 spi_dev_set_name(spi);
307
308 /* We need to make sure there's no other device with this
309 * chipselect **BEFORE** we call setup(), else we'll trash
310 * its configuration. Lock against concurrent add() calls.
311 */
312 mutex_lock(&spi_add_lock);
313
314 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 if (status) {
316 dev_err(dev, "chipselect %d already in use\n",
317 spi->chip_select);
318 goto done;
319 }
320
321 if (master->cs_gpios)
322 spi->cs_gpio = master->cs_gpios[spi->chip_select];
323
324 /* Drivers may modify this initial i/o setup, but will
325 * normally rely on the device being setup. Devices
326 * using SPI_CS_HIGH can't coexist well otherwise...
327 */
328 status = spi_setup(spi);
329 if (status < 0) {
330 dev_err(dev, "can't setup %s, status %d\n",
331 dev_name(&spi->dev), status);
332 goto done;
333 }
334
335 /* Device may be bound to an active driver when this returns */
336 status = device_add(&spi->dev);
337 if (status < 0)
338 dev_err(dev, "can't add %s, status %d\n",
339 dev_name(&spi->dev), status);
340 else
341 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342
343 done:
344 mutex_unlock(&spi_add_lock);
345 return status;
346 }
347 EXPORT_SYMBOL_GPL(spi_add_device);
348
349 /**
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
353 * Context: can sleep
354 *
355 * On typical mainboards, this is purely internal; and it's not needed
356 * after board init creates the hard-wired devices. Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
360 *
361 * Returns the new device, or NULL.
362 */
363 struct spi_device *spi_new_device(struct spi_master *master,
364 struct spi_board_info *chip)
365 {
366 struct spi_device *proxy;
367 int status;
368
369 /* NOTE: caller did any chip->bus_num checks necessary.
370 *
371 * Also, unless we change the return value convention to use
372 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 * suggests syslogged diagnostics are best here (ugh).
374 */
375
376 proxy = spi_alloc_device(master);
377 if (!proxy)
378 return NULL;
379
380 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381
382 proxy->chip_select = chip->chip_select;
383 proxy->max_speed_hz = chip->max_speed_hz;
384 proxy->mode = chip->mode;
385 proxy->irq = chip->irq;
386 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387 proxy->dev.platform_data = (void *) chip->platform_data;
388 proxy->controller_data = chip->controller_data;
389 proxy->controller_state = NULL;
390
391 status = spi_add_device(proxy);
392 if (status < 0) {
393 spi_dev_put(proxy);
394 return NULL;
395 }
396
397 return proxy;
398 }
399 EXPORT_SYMBOL_GPL(spi_new_device);
400
401 static void spi_match_master_to_boardinfo(struct spi_master *master,
402 struct spi_board_info *bi)
403 {
404 struct spi_device *dev;
405
406 if (master->bus_num != bi->bus_num)
407 return;
408
409 dev = spi_new_device(master, bi);
410 if (!dev)
411 dev_err(master->dev.parent, "can't create new device for %s\n",
412 bi->modalias);
413 }
414
415 /**
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
419 * Context: can sleep
420 *
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table. Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined. We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
426 *
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
430 *
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
433 */
434 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435 {
436 struct boardinfo *bi;
437 int i;
438
439 if (!n)
440 return -EINVAL;
441
442 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443 if (!bi)
444 return -ENOMEM;
445
446 for (i = 0; i < n; i++, bi++, info++) {
447 struct spi_master *master;
448
449 memcpy(&bi->board_info, info, sizeof(*info));
450 mutex_lock(&board_lock);
451 list_add_tail(&bi->list, &board_list);
452 list_for_each_entry(master, &spi_master_list, list)
453 spi_match_master_to_boardinfo(master, &bi->board_info);
454 mutex_unlock(&board_lock);
455 }
456
457 return 0;
458 }
459
460 /*-------------------------------------------------------------------------*/
461
462 static void spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 if (spi->mode & SPI_CS_HIGH)
465 enable = !enable;
466
467 if (spi->cs_gpio >= 0)
468 gpio_set_value(spi->cs_gpio, !enable);
469 else if (spi->master->set_cs)
470 spi->master->set_cs(spi, !enable);
471 }
472
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master *master, struct device *dev,
475 struct sg_table *sgt, void *buf, size_t len,
476 enum dma_data_direction dir)
477 {
478 const bool vmalloced_buf = is_vmalloc_addr(buf);
479 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 const int sgs = DIV_ROUND_UP(len, desc_len);
481 struct page *vm_page;
482 void *sg_buf;
483 size_t min;
484 int i, ret;
485
486 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 if (ret != 0)
488 return ret;
489
490 for (i = 0; i < sgs; i++) {
491 min = min_t(size_t, len, desc_len);
492
493 if (vmalloced_buf) {
494 vm_page = vmalloc_to_page(buf);
495 if (!vm_page) {
496 sg_free_table(sgt);
497 return -ENOMEM;
498 }
499 sg_set_page(&sgt->sgl[i], vm_page,
500 min, offset_in_page(buf));
501 } else {
502 sg_buf = buf;
503 sg_set_buf(&sgt->sgl[i], sg_buf, min);
504 }
505
506
507 buf += min;
508 len -= min;
509 }
510
511 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512 if (!ret)
513 ret = -ENOMEM;
514 if (ret < 0) {
515 sg_free_table(sgt);
516 return ret;
517 }
518
519 sgt->nents = ret;
520
521 return 0;
522 }
523
524 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 struct sg_table *sgt, enum dma_data_direction dir)
526 {
527 if (sgt->orig_nents) {
528 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 sg_free_table(sgt);
530 }
531 }
532
533 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534 {
535 struct device *tx_dev, *rx_dev;
536 struct spi_transfer *xfer;
537 int ret;
538
539 if (!master->can_dma)
540 return 0;
541
542 tx_dev = master->dma_tx->device->dev;
543 rx_dev = master->dma_rx->device->dev;
544
545 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 if (!master->can_dma(master, msg->spi, xfer))
547 continue;
548
549 if (xfer->tx_buf != NULL) {
550 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 (void *)xfer->tx_buf, xfer->len,
552 DMA_TO_DEVICE);
553 if (ret != 0)
554 return ret;
555 }
556
557 if (xfer->rx_buf != NULL) {
558 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 xfer->rx_buf, xfer->len,
560 DMA_FROM_DEVICE);
561 if (ret != 0) {
562 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 DMA_TO_DEVICE);
564 return ret;
565 }
566 }
567 }
568
569 master->cur_msg_mapped = true;
570
571 return 0;
572 }
573
574 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575 {
576 struct spi_transfer *xfer;
577 struct device *tx_dev, *rx_dev;
578
579 if (!master->cur_msg_mapped || !master->can_dma)
580 return 0;
581
582 tx_dev = master->dma_tx->device->dev;
583 rx_dev = master->dma_rx->device->dev;
584
585 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586 if (!master->can_dma(master, msg->spi, xfer))
587 continue;
588
589 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
590 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
591 }
592
593 return 0;
594 }
595 #else /* !CONFIG_HAS_DMA */
596 static inline int __spi_map_msg(struct spi_master *master,
597 struct spi_message *msg)
598 {
599 return 0;
600 }
601
602 static inline int spi_unmap_msg(struct spi_master *master,
603 struct spi_message *msg)
604 {
605 return 0;
606 }
607 #endif /* !CONFIG_HAS_DMA */
608
609 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
610 {
611 struct spi_transfer *xfer;
612 void *tmp;
613 unsigned int max_tx, max_rx;
614
615 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
616 max_tx = 0;
617 max_rx = 0;
618
619 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
620 if ((master->flags & SPI_MASTER_MUST_TX) &&
621 !xfer->tx_buf)
622 max_tx = max(xfer->len, max_tx);
623 if ((master->flags & SPI_MASTER_MUST_RX) &&
624 !xfer->rx_buf)
625 max_rx = max(xfer->len, max_rx);
626 }
627
628 if (max_tx) {
629 tmp = krealloc(master->dummy_tx, max_tx,
630 GFP_KERNEL | GFP_DMA);
631 if (!tmp)
632 return -ENOMEM;
633 master->dummy_tx = tmp;
634 memset(tmp, 0, max_tx);
635 }
636
637 if (max_rx) {
638 tmp = krealloc(master->dummy_rx, max_rx,
639 GFP_KERNEL | GFP_DMA);
640 if (!tmp)
641 return -ENOMEM;
642 master->dummy_rx = tmp;
643 }
644
645 if (max_tx || max_rx) {
646 list_for_each_entry(xfer, &msg->transfers,
647 transfer_list) {
648 if (!xfer->tx_buf)
649 xfer->tx_buf = master->dummy_tx;
650 if (!xfer->rx_buf)
651 xfer->rx_buf = master->dummy_rx;
652 }
653 }
654 }
655
656 return __spi_map_msg(master, msg);
657 }
658
659 /*
660 * spi_transfer_one_message - Default implementation of transfer_one_message()
661 *
662 * This is a standard implementation of transfer_one_message() for
663 * drivers which impelment a transfer_one() operation. It provides
664 * standard handling of delays and chip select management.
665 */
666 static int spi_transfer_one_message(struct spi_master *master,
667 struct spi_message *msg)
668 {
669 struct spi_transfer *xfer;
670 bool keep_cs = false;
671 int ret = 0;
672 unsigned long ms = 1;
673
674 spi_set_cs(msg->spi, true);
675
676 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
677 trace_spi_transfer_start(msg, xfer);
678
679 if (xfer->tx_buf || xfer->rx_buf) {
680 reinit_completion(&master->xfer_completion);
681
682 ret = master->transfer_one(master, msg->spi, xfer);
683 if (ret < 0) {
684 dev_err(&msg->spi->dev,
685 "SPI transfer failed: %d\n", ret);
686 goto out;
687 }
688
689 if (ret > 0) {
690 ret = 0;
691 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
692 ms += ms + 100; /* some tolerance */
693
694 ms = wait_for_completion_timeout(&master->xfer_completion,
695 msecs_to_jiffies(ms));
696 }
697
698 if (ms == 0) {
699 dev_err(&msg->spi->dev,
700 "SPI transfer timed out\n");
701 msg->status = -ETIMEDOUT;
702 }
703 } else {
704 if (xfer->len)
705 dev_err(&msg->spi->dev,
706 "Bufferless transfer has length %u\n",
707 xfer->len);
708 }
709
710 trace_spi_transfer_stop(msg, xfer);
711
712 if (msg->status != -EINPROGRESS)
713 goto out;
714
715 if (xfer->delay_usecs)
716 udelay(xfer->delay_usecs);
717
718 if (xfer->cs_change) {
719 if (list_is_last(&xfer->transfer_list,
720 &msg->transfers)) {
721 keep_cs = true;
722 } else {
723 spi_set_cs(msg->spi, false);
724 udelay(10);
725 spi_set_cs(msg->spi, true);
726 }
727 }
728
729 msg->actual_length += xfer->len;
730 }
731
732 out:
733 if (ret != 0 || !keep_cs)
734 spi_set_cs(msg->spi, false);
735
736 if (msg->status == -EINPROGRESS)
737 msg->status = ret;
738
739 if (msg->status && master->handle_err)
740 master->handle_err(master, msg);
741
742 spi_finalize_current_message(master);
743
744 return ret;
745 }
746
747 /**
748 * spi_finalize_current_transfer - report completion of a transfer
749 * @master: the master reporting completion
750 *
751 * Called by SPI drivers using the core transfer_one_message()
752 * implementation to notify it that the current interrupt driven
753 * transfer has finished and the next one may be scheduled.
754 */
755 void spi_finalize_current_transfer(struct spi_master *master)
756 {
757 complete(&master->xfer_completion);
758 }
759 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
760
761 /**
762 * __spi_pump_messages - function which processes spi message queue
763 * @master: master to process queue for
764 * @in_kthread: true if we are in the context of the message pump thread
765 *
766 * This function checks if there is any spi message in the queue that
767 * needs processing and if so call out to the driver to initialize hardware
768 * and transfer each message.
769 *
770 * Note that it is called both from the kthread itself and also from
771 * inside spi_sync(); the queue extraction handling at the top of the
772 * function should deal with this safely.
773 */
774 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
775 {
776 unsigned long flags;
777 bool was_busy = false;
778 int ret;
779
780 /* Lock queue */
781 spin_lock_irqsave(&master->queue_lock, flags);
782
783 /* Make sure we are not already running a message */
784 if (master->cur_msg) {
785 spin_unlock_irqrestore(&master->queue_lock, flags);
786 return;
787 }
788
789 /* If another context is idling the device then defer */
790 if (master->idling) {
791 queue_kthread_work(&master->kworker, &master->pump_messages);
792 spin_unlock_irqrestore(&master->queue_lock, flags);
793 return;
794 }
795
796 /* Check if the queue is idle */
797 if (list_empty(&master->queue) || !master->running) {
798 if (!master->busy) {
799 spin_unlock_irqrestore(&master->queue_lock, flags);
800 return;
801 }
802
803 /* Only do teardown in the thread */
804 if (!in_kthread) {
805 queue_kthread_work(&master->kworker,
806 &master->pump_messages);
807 spin_unlock_irqrestore(&master->queue_lock, flags);
808 return;
809 }
810
811 master->busy = false;
812 master->idling = true;
813 spin_unlock_irqrestore(&master->queue_lock, flags);
814
815 kfree(master->dummy_rx);
816 master->dummy_rx = NULL;
817 kfree(master->dummy_tx);
818 master->dummy_tx = NULL;
819 if (master->unprepare_transfer_hardware &&
820 master->unprepare_transfer_hardware(master))
821 dev_err(&master->dev,
822 "failed to unprepare transfer hardware\n");
823 if (master->auto_runtime_pm) {
824 pm_runtime_mark_last_busy(master->dev.parent);
825 pm_runtime_put_autosuspend(master->dev.parent);
826 }
827 trace_spi_master_idle(master);
828
829 spin_lock_irqsave(&master->queue_lock, flags);
830 master->idling = false;
831 spin_unlock_irqrestore(&master->queue_lock, flags);
832 return;
833 }
834
835 /* Extract head of queue */
836 master->cur_msg =
837 list_first_entry(&master->queue, struct spi_message, queue);
838
839 list_del_init(&master->cur_msg->queue);
840 if (master->busy)
841 was_busy = true;
842 else
843 master->busy = true;
844 spin_unlock_irqrestore(&master->queue_lock, flags);
845
846 if (!was_busy && master->auto_runtime_pm) {
847 ret = pm_runtime_get_sync(master->dev.parent);
848 if (ret < 0) {
849 dev_err(&master->dev, "Failed to power device: %d\n",
850 ret);
851 return;
852 }
853 }
854
855 if (!was_busy)
856 trace_spi_master_busy(master);
857
858 if (!was_busy && master->prepare_transfer_hardware) {
859 ret = master->prepare_transfer_hardware(master);
860 if (ret) {
861 dev_err(&master->dev,
862 "failed to prepare transfer hardware\n");
863
864 if (master->auto_runtime_pm)
865 pm_runtime_put(master->dev.parent);
866 return;
867 }
868 }
869
870 trace_spi_message_start(master->cur_msg);
871
872 if (master->prepare_message) {
873 ret = master->prepare_message(master, master->cur_msg);
874 if (ret) {
875 dev_err(&master->dev,
876 "failed to prepare message: %d\n", ret);
877 master->cur_msg->status = ret;
878 spi_finalize_current_message(master);
879 return;
880 }
881 master->cur_msg_prepared = true;
882 }
883
884 ret = spi_map_msg(master, master->cur_msg);
885 if (ret) {
886 master->cur_msg->status = ret;
887 spi_finalize_current_message(master);
888 return;
889 }
890
891 ret = master->transfer_one_message(master, master->cur_msg);
892 if (ret) {
893 dev_err(&master->dev,
894 "failed to transfer one message from queue\n");
895 return;
896 }
897 }
898
899 /**
900 * spi_pump_messages - kthread work function which processes spi message queue
901 * @work: pointer to kthread work struct contained in the master struct
902 */
903 static void spi_pump_messages(struct kthread_work *work)
904 {
905 struct spi_master *master =
906 container_of(work, struct spi_master, pump_messages);
907
908 __spi_pump_messages(master, true);
909 }
910
911 static int spi_init_queue(struct spi_master *master)
912 {
913 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
914
915 master->running = false;
916 master->busy = false;
917
918 init_kthread_worker(&master->kworker);
919 master->kworker_task = kthread_run(kthread_worker_fn,
920 &master->kworker, "%s",
921 dev_name(&master->dev));
922 if (IS_ERR(master->kworker_task)) {
923 dev_err(&master->dev, "failed to create message pump task\n");
924 return PTR_ERR(master->kworker_task);
925 }
926 init_kthread_work(&master->pump_messages, spi_pump_messages);
927
928 /*
929 * Master config will indicate if this controller should run the
930 * message pump with high (realtime) priority to reduce the transfer
931 * latency on the bus by minimising the delay between a transfer
932 * request and the scheduling of the message pump thread. Without this
933 * setting the message pump thread will remain at default priority.
934 */
935 if (master->rt) {
936 dev_info(&master->dev,
937 "will run message pump with realtime priority\n");
938 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
939 }
940
941 return 0;
942 }
943
944 /**
945 * spi_get_next_queued_message() - called by driver to check for queued
946 * messages
947 * @master: the master to check for queued messages
948 *
949 * If there are more messages in the queue, the next message is returned from
950 * this call.
951 */
952 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
953 {
954 struct spi_message *next;
955 unsigned long flags;
956
957 /* get a pointer to the next message, if any */
958 spin_lock_irqsave(&master->queue_lock, flags);
959 next = list_first_entry_or_null(&master->queue, struct spi_message,
960 queue);
961 spin_unlock_irqrestore(&master->queue_lock, flags);
962
963 return next;
964 }
965 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
966
967 /**
968 * spi_finalize_current_message() - the current message is complete
969 * @master: the master to return the message to
970 *
971 * Called by the driver to notify the core that the message in the front of the
972 * queue is complete and can be removed from the queue.
973 */
974 void spi_finalize_current_message(struct spi_master *master)
975 {
976 struct spi_message *mesg;
977 unsigned long flags;
978 int ret;
979
980 spin_lock_irqsave(&master->queue_lock, flags);
981 mesg = master->cur_msg;
982 master->cur_msg = NULL;
983
984 queue_kthread_work(&master->kworker, &master->pump_messages);
985 spin_unlock_irqrestore(&master->queue_lock, flags);
986
987 spi_unmap_msg(master, mesg);
988
989 if (master->cur_msg_prepared && master->unprepare_message) {
990 ret = master->unprepare_message(master, mesg);
991 if (ret) {
992 dev_err(&master->dev,
993 "failed to unprepare message: %d\n", ret);
994 }
995 }
996
997 trace_spi_message_done(mesg);
998
999 master->cur_msg_prepared = false;
1000
1001 mesg->state = NULL;
1002 if (mesg->complete)
1003 mesg->complete(mesg->context);
1004 }
1005 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1006
1007 static int spi_start_queue(struct spi_master *master)
1008 {
1009 unsigned long flags;
1010
1011 spin_lock_irqsave(&master->queue_lock, flags);
1012
1013 if (master->running || master->busy) {
1014 spin_unlock_irqrestore(&master->queue_lock, flags);
1015 return -EBUSY;
1016 }
1017
1018 master->running = true;
1019 master->cur_msg = NULL;
1020 spin_unlock_irqrestore(&master->queue_lock, flags);
1021
1022 queue_kthread_work(&master->kworker, &master->pump_messages);
1023
1024 return 0;
1025 }
1026
1027 static int spi_stop_queue(struct spi_master *master)
1028 {
1029 unsigned long flags;
1030 unsigned limit = 500;
1031 int ret = 0;
1032
1033 spin_lock_irqsave(&master->queue_lock, flags);
1034
1035 /*
1036 * This is a bit lame, but is optimized for the common execution path.
1037 * A wait_queue on the master->busy could be used, but then the common
1038 * execution path (pump_messages) would be required to call wake_up or
1039 * friends on every SPI message. Do this instead.
1040 */
1041 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1042 spin_unlock_irqrestore(&master->queue_lock, flags);
1043 usleep_range(10000, 11000);
1044 spin_lock_irqsave(&master->queue_lock, flags);
1045 }
1046
1047 if (!list_empty(&master->queue) || master->busy)
1048 ret = -EBUSY;
1049 else
1050 master->running = false;
1051
1052 spin_unlock_irqrestore(&master->queue_lock, flags);
1053
1054 if (ret) {
1055 dev_warn(&master->dev,
1056 "could not stop message queue\n");
1057 return ret;
1058 }
1059 return ret;
1060 }
1061
1062 static int spi_destroy_queue(struct spi_master *master)
1063 {
1064 int ret;
1065
1066 ret = spi_stop_queue(master);
1067
1068 /*
1069 * flush_kthread_worker will block until all work is done.
1070 * If the reason that stop_queue timed out is that the work will never
1071 * finish, then it does no good to call flush/stop thread, so
1072 * return anyway.
1073 */
1074 if (ret) {
1075 dev_err(&master->dev, "problem destroying queue\n");
1076 return ret;
1077 }
1078
1079 flush_kthread_worker(&master->kworker);
1080 kthread_stop(master->kworker_task);
1081
1082 return 0;
1083 }
1084
1085 static int __spi_queued_transfer(struct spi_device *spi,
1086 struct spi_message *msg,
1087 bool need_pump)
1088 {
1089 struct spi_master *master = spi->master;
1090 unsigned long flags;
1091
1092 spin_lock_irqsave(&master->queue_lock, flags);
1093
1094 if (!master->running) {
1095 spin_unlock_irqrestore(&master->queue_lock, flags);
1096 return -ESHUTDOWN;
1097 }
1098 msg->actual_length = 0;
1099 msg->status = -EINPROGRESS;
1100
1101 list_add_tail(&msg->queue, &master->queue);
1102 if (!master->busy && need_pump)
1103 queue_kthread_work(&master->kworker, &master->pump_messages);
1104
1105 spin_unlock_irqrestore(&master->queue_lock, flags);
1106 return 0;
1107 }
1108
1109 /**
1110 * spi_queued_transfer - transfer function for queued transfers
1111 * @spi: spi device which is requesting transfer
1112 * @msg: spi message which is to handled is queued to driver queue
1113 */
1114 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1115 {
1116 return __spi_queued_transfer(spi, msg, true);
1117 }
1118
1119 static int spi_master_initialize_queue(struct spi_master *master)
1120 {
1121 int ret;
1122
1123 master->transfer = spi_queued_transfer;
1124 if (!master->transfer_one_message)
1125 master->transfer_one_message = spi_transfer_one_message;
1126
1127 /* Initialize and start queue */
1128 ret = spi_init_queue(master);
1129 if (ret) {
1130 dev_err(&master->dev, "problem initializing queue\n");
1131 goto err_init_queue;
1132 }
1133 master->queued = true;
1134 ret = spi_start_queue(master);
1135 if (ret) {
1136 dev_err(&master->dev, "problem starting queue\n");
1137 goto err_start_queue;
1138 }
1139
1140 return 0;
1141
1142 err_start_queue:
1143 spi_destroy_queue(master);
1144 err_init_queue:
1145 return ret;
1146 }
1147
1148 /*-------------------------------------------------------------------------*/
1149
1150 #if defined(CONFIG_OF)
1151 static struct spi_device *
1152 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1153 {
1154 struct spi_device *spi;
1155 int rc;
1156 u32 value;
1157
1158 /* Alloc an spi_device */
1159 spi = spi_alloc_device(master);
1160 if (!spi) {
1161 dev_err(&master->dev, "spi_device alloc error for %s\n",
1162 nc->full_name);
1163 rc = -ENOMEM;
1164 goto err_out;
1165 }
1166
1167 /* Select device driver */
1168 rc = of_modalias_node(nc, spi->modalias,
1169 sizeof(spi->modalias));
1170 if (rc < 0) {
1171 dev_err(&master->dev, "cannot find modalias for %s\n",
1172 nc->full_name);
1173 goto err_out;
1174 }
1175
1176 /* Device address */
1177 rc = of_property_read_u32(nc, "reg", &value);
1178 if (rc) {
1179 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1180 nc->full_name, rc);
1181 goto err_out;
1182 }
1183 spi->chip_select = value;
1184
1185 /* Mode (clock phase/polarity/etc.) */
1186 if (of_find_property(nc, "spi-cpha", NULL))
1187 spi->mode |= SPI_CPHA;
1188 if (of_find_property(nc, "spi-cpol", NULL))
1189 spi->mode |= SPI_CPOL;
1190 if (of_find_property(nc, "spi-cs-high", NULL))
1191 spi->mode |= SPI_CS_HIGH;
1192 if (of_find_property(nc, "spi-3wire", NULL))
1193 spi->mode |= SPI_3WIRE;
1194 if (of_find_property(nc, "spi-lsb-first", NULL))
1195 spi->mode |= SPI_LSB_FIRST;
1196
1197 /* Device DUAL/QUAD mode */
1198 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1199 switch (value) {
1200 case 1:
1201 break;
1202 case 2:
1203 spi->mode |= SPI_TX_DUAL;
1204 break;
1205 case 4:
1206 spi->mode |= SPI_TX_QUAD;
1207 break;
1208 default:
1209 dev_warn(&master->dev,
1210 "spi-tx-bus-width %d not supported\n",
1211 value);
1212 break;
1213 }
1214 }
1215
1216 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1217 switch (value) {
1218 case 1:
1219 break;
1220 case 2:
1221 spi->mode |= SPI_RX_DUAL;
1222 break;
1223 case 4:
1224 spi->mode |= SPI_RX_QUAD;
1225 break;
1226 default:
1227 dev_warn(&master->dev,
1228 "spi-rx-bus-width %d not supported\n",
1229 value);
1230 break;
1231 }
1232 }
1233
1234 /* Device speed */
1235 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1236 if (rc) {
1237 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1238 nc->full_name, rc);
1239 goto err_out;
1240 }
1241 spi->max_speed_hz = value;
1242
1243 /* IRQ */
1244 spi->irq = irq_of_parse_and_map(nc, 0);
1245
1246 /* Store a pointer to the node in the device structure */
1247 of_node_get(nc);
1248 spi->dev.of_node = nc;
1249
1250 /* Register the new device */
1251 rc = spi_add_device(spi);
1252 if (rc) {
1253 dev_err(&master->dev, "spi_device register error %s\n",
1254 nc->full_name);
1255 goto err_out;
1256 }
1257
1258 return spi;
1259
1260 err_out:
1261 spi_dev_put(spi);
1262 return ERR_PTR(rc);
1263 }
1264
1265 /**
1266 * of_register_spi_devices() - Register child devices onto the SPI bus
1267 * @master: Pointer to spi_master device
1268 *
1269 * Registers an spi_device for each child node of master node which has a 'reg'
1270 * property.
1271 */
1272 static void of_register_spi_devices(struct spi_master *master)
1273 {
1274 struct spi_device *spi;
1275 struct device_node *nc;
1276
1277 if (!master->dev.of_node)
1278 return;
1279
1280 for_each_available_child_of_node(master->dev.of_node, nc) {
1281 spi = of_register_spi_device(master, nc);
1282 if (IS_ERR(spi))
1283 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1284 nc->full_name);
1285 }
1286 }
1287 #else
1288 static void of_register_spi_devices(struct spi_master *master) { }
1289 #endif
1290
1291 #ifdef CONFIG_ACPI
1292 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1293 {
1294 struct spi_device *spi = data;
1295
1296 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1297 struct acpi_resource_spi_serialbus *sb;
1298
1299 sb = &ares->data.spi_serial_bus;
1300 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1301 spi->chip_select = sb->device_selection;
1302 spi->max_speed_hz = sb->connection_speed;
1303
1304 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1305 spi->mode |= SPI_CPHA;
1306 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1307 spi->mode |= SPI_CPOL;
1308 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1309 spi->mode |= SPI_CS_HIGH;
1310 }
1311 } else if (spi->irq < 0) {
1312 struct resource r;
1313
1314 if (acpi_dev_resource_interrupt(ares, 0, &r))
1315 spi->irq = r.start;
1316 }
1317
1318 /* Always tell the ACPI core to skip this resource */
1319 return 1;
1320 }
1321
1322 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1323 void *data, void **return_value)
1324 {
1325 struct spi_master *master = data;
1326 struct list_head resource_list;
1327 struct acpi_device *adev;
1328 struct spi_device *spi;
1329 int ret;
1330
1331 if (acpi_bus_get_device(handle, &adev))
1332 return AE_OK;
1333 if (acpi_bus_get_status(adev) || !adev->status.present)
1334 return AE_OK;
1335
1336 spi = spi_alloc_device(master);
1337 if (!spi) {
1338 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1339 dev_name(&adev->dev));
1340 return AE_NO_MEMORY;
1341 }
1342
1343 ACPI_COMPANION_SET(&spi->dev, adev);
1344 spi->irq = -1;
1345
1346 INIT_LIST_HEAD(&resource_list);
1347 ret = acpi_dev_get_resources(adev, &resource_list,
1348 acpi_spi_add_resource, spi);
1349 acpi_dev_free_resource_list(&resource_list);
1350
1351 if (ret < 0 || !spi->max_speed_hz) {
1352 spi_dev_put(spi);
1353 return AE_OK;
1354 }
1355
1356 adev->power.flags.ignore_parent = true;
1357 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1358 if (spi_add_device(spi)) {
1359 adev->power.flags.ignore_parent = false;
1360 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1361 dev_name(&adev->dev));
1362 spi_dev_put(spi);
1363 }
1364
1365 return AE_OK;
1366 }
1367
1368 static void acpi_register_spi_devices(struct spi_master *master)
1369 {
1370 acpi_status status;
1371 acpi_handle handle;
1372
1373 handle = ACPI_HANDLE(master->dev.parent);
1374 if (!handle)
1375 return;
1376
1377 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1378 acpi_spi_add_device, NULL,
1379 master, NULL);
1380 if (ACPI_FAILURE(status))
1381 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1382 }
1383 #else
1384 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1385 #endif /* CONFIG_ACPI */
1386
1387 static void spi_master_release(struct device *dev)
1388 {
1389 struct spi_master *master;
1390
1391 master = container_of(dev, struct spi_master, dev);
1392 kfree(master);
1393 }
1394
1395 static struct class spi_master_class = {
1396 .name = "spi_master",
1397 .owner = THIS_MODULE,
1398 .dev_release = spi_master_release,
1399 };
1400
1401
1402
1403 /**
1404 * spi_alloc_master - allocate SPI master controller
1405 * @dev: the controller, possibly using the platform_bus
1406 * @size: how much zeroed driver-private data to allocate; the pointer to this
1407 * memory is in the driver_data field of the returned device,
1408 * accessible with spi_master_get_devdata().
1409 * Context: can sleep
1410 *
1411 * This call is used only by SPI master controller drivers, which are the
1412 * only ones directly touching chip registers. It's how they allocate
1413 * an spi_master structure, prior to calling spi_register_master().
1414 *
1415 * This must be called from context that can sleep. It returns the SPI
1416 * master structure on success, else NULL.
1417 *
1418 * The caller is responsible for assigning the bus number and initializing
1419 * the master's methods before calling spi_register_master(); and (after errors
1420 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1421 * leak.
1422 */
1423 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1424 {
1425 struct spi_master *master;
1426
1427 if (!dev)
1428 return NULL;
1429
1430 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1431 if (!master)
1432 return NULL;
1433
1434 device_initialize(&master->dev);
1435 master->bus_num = -1;
1436 master->num_chipselect = 1;
1437 master->dev.class = &spi_master_class;
1438 master->dev.parent = get_device(dev);
1439 spi_master_set_devdata(master, &master[1]);
1440
1441 return master;
1442 }
1443 EXPORT_SYMBOL_GPL(spi_alloc_master);
1444
1445 #ifdef CONFIG_OF
1446 static int of_spi_register_master(struct spi_master *master)
1447 {
1448 int nb, i, *cs;
1449 struct device_node *np = master->dev.of_node;
1450
1451 if (!np)
1452 return 0;
1453
1454 nb = of_gpio_named_count(np, "cs-gpios");
1455 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1456
1457 /* Return error only for an incorrectly formed cs-gpios property */
1458 if (nb == 0 || nb == -ENOENT)
1459 return 0;
1460 else if (nb < 0)
1461 return nb;
1462
1463 cs = devm_kzalloc(&master->dev,
1464 sizeof(int) * master->num_chipselect,
1465 GFP_KERNEL);
1466 master->cs_gpios = cs;
1467
1468 if (!master->cs_gpios)
1469 return -ENOMEM;
1470
1471 for (i = 0; i < master->num_chipselect; i++)
1472 cs[i] = -ENOENT;
1473
1474 for (i = 0; i < nb; i++)
1475 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1476
1477 return 0;
1478 }
1479 #else
1480 static int of_spi_register_master(struct spi_master *master)
1481 {
1482 return 0;
1483 }
1484 #endif
1485
1486 /**
1487 * spi_register_master - register SPI master controller
1488 * @master: initialized master, originally from spi_alloc_master()
1489 * Context: can sleep
1490 *
1491 * SPI master controllers connect to their drivers using some non-SPI bus,
1492 * such as the platform bus. The final stage of probe() in that code
1493 * includes calling spi_register_master() to hook up to this SPI bus glue.
1494 *
1495 * SPI controllers use board specific (often SOC specific) bus numbers,
1496 * and board-specific addressing for SPI devices combines those numbers
1497 * with chip select numbers. Since SPI does not directly support dynamic
1498 * device identification, boards need configuration tables telling which
1499 * chip is at which address.
1500 *
1501 * This must be called from context that can sleep. It returns zero on
1502 * success, else a negative error code (dropping the master's refcount).
1503 * After a successful return, the caller is responsible for calling
1504 * spi_unregister_master().
1505 */
1506 int spi_register_master(struct spi_master *master)
1507 {
1508 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1509 struct device *dev = master->dev.parent;
1510 struct boardinfo *bi;
1511 int status = -ENODEV;
1512 int dynamic = 0;
1513
1514 if (!dev)
1515 return -ENODEV;
1516
1517 status = of_spi_register_master(master);
1518 if (status)
1519 return status;
1520
1521 /* even if it's just one always-selected device, there must
1522 * be at least one chipselect
1523 */
1524 if (master->num_chipselect == 0)
1525 return -EINVAL;
1526
1527 if ((master->bus_num < 0) && master->dev.of_node)
1528 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1529
1530 /* convention: dynamically assigned bus IDs count down from the max */
1531 if (master->bus_num < 0) {
1532 /* FIXME switch to an IDR based scheme, something like
1533 * I2C now uses, so we can't run out of "dynamic" IDs
1534 */
1535 master->bus_num = atomic_dec_return(&dyn_bus_id);
1536 dynamic = 1;
1537 }
1538
1539 INIT_LIST_HEAD(&master->queue);
1540 spin_lock_init(&master->queue_lock);
1541 spin_lock_init(&master->bus_lock_spinlock);
1542 mutex_init(&master->bus_lock_mutex);
1543 master->bus_lock_flag = 0;
1544 init_completion(&master->xfer_completion);
1545 if (!master->max_dma_len)
1546 master->max_dma_len = INT_MAX;
1547
1548 /* register the device, then userspace will see it.
1549 * registration fails if the bus ID is in use.
1550 */
1551 dev_set_name(&master->dev, "spi%u", master->bus_num);
1552 status = device_add(&master->dev);
1553 if (status < 0)
1554 goto done;
1555 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1556 dynamic ? " (dynamic)" : "");
1557
1558 /* If we're using a queued driver, start the queue */
1559 if (master->transfer)
1560 dev_info(dev, "master is unqueued, this is deprecated\n");
1561 else {
1562 status = spi_master_initialize_queue(master);
1563 if (status) {
1564 device_del(&master->dev);
1565 goto done;
1566 }
1567 }
1568
1569 mutex_lock(&board_lock);
1570 list_add_tail(&master->list, &spi_master_list);
1571 list_for_each_entry(bi, &board_list, list)
1572 spi_match_master_to_boardinfo(master, &bi->board_info);
1573 mutex_unlock(&board_lock);
1574
1575 /* Register devices from the device tree and ACPI */
1576 of_register_spi_devices(master);
1577 acpi_register_spi_devices(master);
1578 done:
1579 return status;
1580 }
1581 EXPORT_SYMBOL_GPL(spi_register_master);
1582
1583 static void devm_spi_unregister(struct device *dev, void *res)
1584 {
1585 spi_unregister_master(*(struct spi_master **)res);
1586 }
1587
1588 /**
1589 * dev_spi_register_master - register managed SPI master controller
1590 * @dev: device managing SPI master
1591 * @master: initialized master, originally from spi_alloc_master()
1592 * Context: can sleep
1593 *
1594 * Register a SPI device as with spi_register_master() which will
1595 * automatically be unregister
1596 */
1597 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1598 {
1599 struct spi_master **ptr;
1600 int ret;
1601
1602 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1603 if (!ptr)
1604 return -ENOMEM;
1605
1606 ret = spi_register_master(master);
1607 if (!ret) {
1608 *ptr = master;
1609 devres_add(dev, ptr);
1610 } else {
1611 devres_free(ptr);
1612 }
1613
1614 return ret;
1615 }
1616 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1617
1618 static int __unregister(struct device *dev, void *null)
1619 {
1620 spi_unregister_device(to_spi_device(dev));
1621 return 0;
1622 }
1623
1624 /**
1625 * spi_unregister_master - unregister SPI master controller
1626 * @master: the master being unregistered
1627 * Context: can sleep
1628 *
1629 * This call is used only by SPI master controller drivers, which are the
1630 * only ones directly touching chip registers.
1631 *
1632 * This must be called from context that can sleep.
1633 */
1634 void spi_unregister_master(struct spi_master *master)
1635 {
1636 int dummy;
1637
1638 if (master->queued) {
1639 if (spi_destroy_queue(master))
1640 dev_err(&master->dev, "queue remove failed\n");
1641 }
1642
1643 mutex_lock(&board_lock);
1644 list_del(&master->list);
1645 mutex_unlock(&board_lock);
1646
1647 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1648 device_unregister(&master->dev);
1649 }
1650 EXPORT_SYMBOL_GPL(spi_unregister_master);
1651
1652 int spi_master_suspend(struct spi_master *master)
1653 {
1654 int ret;
1655
1656 /* Basically no-ops for non-queued masters */
1657 if (!master->queued)
1658 return 0;
1659
1660 ret = spi_stop_queue(master);
1661 if (ret)
1662 dev_err(&master->dev, "queue stop failed\n");
1663
1664 return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(spi_master_suspend);
1667
1668 int spi_master_resume(struct spi_master *master)
1669 {
1670 int ret;
1671
1672 if (!master->queued)
1673 return 0;
1674
1675 ret = spi_start_queue(master);
1676 if (ret)
1677 dev_err(&master->dev, "queue restart failed\n");
1678
1679 return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(spi_master_resume);
1682
1683 static int __spi_master_match(struct device *dev, const void *data)
1684 {
1685 struct spi_master *m;
1686 const u16 *bus_num = data;
1687
1688 m = container_of(dev, struct spi_master, dev);
1689 return m->bus_num == *bus_num;
1690 }
1691
1692 /**
1693 * spi_busnum_to_master - look up master associated with bus_num
1694 * @bus_num: the master's bus number
1695 * Context: can sleep
1696 *
1697 * This call may be used with devices that are registered after
1698 * arch init time. It returns a refcounted pointer to the relevant
1699 * spi_master (which the caller must release), or NULL if there is
1700 * no such master registered.
1701 */
1702 struct spi_master *spi_busnum_to_master(u16 bus_num)
1703 {
1704 struct device *dev;
1705 struct spi_master *master = NULL;
1706
1707 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1708 __spi_master_match);
1709 if (dev)
1710 master = container_of(dev, struct spi_master, dev);
1711 /* reference got in class_find_device */
1712 return master;
1713 }
1714 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1715
1716
1717 /*-------------------------------------------------------------------------*/
1718
1719 /* Core methods for SPI master protocol drivers. Some of the
1720 * other core methods are currently defined as inline functions.
1721 */
1722
1723 /**
1724 * spi_setup - setup SPI mode and clock rate
1725 * @spi: the device whose settings are being modified
1726 * Context: can sleep, and no requests are queued to the device
1727 *
1728 * SPI protocol drivers may need to update the transfer mode if the
1729 * device doesn't work with its default. They may likewise need
1730 * to update clock rates or word sizes from initial values. This function
1731 * changes those settings, and must be called from a context that can sleep.
1732 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1733 * effect the next time the device is selected and data is transferred to
1734 * or from it. When this function returns, the spi device is deselected.
1735 *
1736 * Note that this call will fail if the protocol driver specifies an option
1737 * that the underlying controller or its driver does not support. For
1738 * example, not all hardware supports wire transfers using nine bit words,
1739 * LSB-first wire encoding, or active-high chipselects.
1740 */
1741 int spi_setup(struct spi_device *spi)
1742 {
1743 unsigned bad_bits, ugly_bits;
1744 int status = 0;
1745
1746 /* check mode to prevent that DUAL and QUAD set at the same time
1747 */
1748 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1749 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1750 dev_err(&spi->dev,
1751 "setup: can not select dual and quad at the same time\n");
1752 return -EINVAL;
1753 }
1754 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1755 */
1756 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1757 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1758 return -EINVAL;
1759 /* help drivers fail *cleanly* when they need options
1760 * that aren't supported with their current master
1761 */
1762 bad_bits = spi->mode & ~spi->master->mode_bits;
1763 ugly_bits = bad_bits &
1764 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1765 if (ugly_bits) {
1766 dev_warn(&spi->dev,
1767 "setup: ignoring unsupported mode bits %x\n",
1768 ugly_bits);
1769 spi->mode &= ~ugly_bits;
1770 bad_bits &= ~ugly_bits;
1771 }
1772 if (bad_bits) {
1773 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1774 bad_bits);
1775 return -EINVAL;
1776 }
1777
1778 if (!spi->bits_per_word)
1779 spi->bits_per_word = 8;
1780
1781 if (!spi->max_speed_hz)
1782 spi->max_speed_hz = spi->master->max_speed_hz;
1783
1784 spi_set_cs(spi, false);
1785
1786 if (spi->master->setup)
1787 status = spi->master->setup(spi);
1788
1789 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1790 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1791 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1792 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1793 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1794 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1795 spi->bits_per_word, spi->max_speed_hz,
1796 status);
1797
1798 return status;
1799 }
1800 EXPORT_SYMBOL_GPL(spi_setup);
1801
1802 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1803 {
1804 struct spi_master *master = spi->master;
1805 struct spi_transfer *xfer;
1806 int w_size;
1807
1808 if (list_empty(&message->transfers))
1809 return -EINVAL;
1810
1811 /* Half-duplex links include original MicroWire, and ones with
1812 * only one data pin like SPI_3WIRE (switches direction) or where
1813 * either MOSI or MISO is missing. They can also be caused by
1814 * software limitations.
1815 */
1816 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1817 || (spi->mode & SPI_3WIRE)) {
1818 unsigned flags = master->flags;
1819
1820 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1821 if (xfer->rx_buf && xfer->tx_buf)
1822 return -EINVAL;
1823 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1824 return -EINVAL;
1825 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1826 return -EINVAL;
1827 }
1828 }
1829
1830 /**
1831 * Set transfer bits_per_word and max speed as spi device default if
1832 * it is not set for this transfer.
1833 * Set transfer tx_nbits and rx_nbits as single transfer default
1834 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1835 */
1836 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1837 message->frame_length += xfer->len;
1838 if (!xfer->bits_per_word)
1839 xfer->bits_per_word = spi->bits_per_word;
1840
1841 if (!xfer->speed_hz)
1842 xfer->speed_hz = spi->max_speed_hz;
1843
1844 if (master->max_speed_hz &&
1845 xfer->speed_hz > master->max_speed_hz)
1846 xfer->speed_hz = master->max_speed_hz;
1847
1848 if (master->bits_per_word_mask) {
1849 /* Only 32 bits fit in the mask */
1850 if (xfer->bits_per_word > 32)
1851 return -EINVAL;
1852 if (!(master->bits_per_word_mask &
1853 BIT(xfer->bits_per_word - 1)))
1854 return -EINVAL;
1855 }
1856
1857 /*
1858 * SPI transfer length should be multiple of SPI word size
1859 * where SPI word size should be power-of-two multiple
1860 */
1861 if (xfer->bits_per_word <= 8)
1862 w_size = 1;
1863 else if (xfer->bits_per_word <= 16)
1864 w_size = 2;
1865 else
1866 w_size = 4;
1867
1868 /* No partial transfers accepted */
1869 if (xfer->len % w_size)
1870 return -EINVAL;
1871
1872 if (xfer->speed_hz && master->min_speed_hz &&
1873 xfer->speed_hz < master->min_speed_hz)
1874 return -EINVAL;
1875
1876 if (xfer->tx_buf && !xfer->tx_nbits)
1877 xfer->tx_nbits = SPI_NBITS_SINGLE;
1878 if (xfer->rx_buf && !xfer->rx_nbits)
1879 xfer->rx_nbits = SPI_NBITS_SINGLE;
1880 /* check transfer tx/rx_nbits:
1881 * 1. check the value matches one of single, dual and quad
1882 * 2. check tx/rx_nbits match the mode in spi_device
1883 */
1884 if (xfer->tx_buf) {
1885 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1886 xfer->tx_nbits != SPI_NBITS_DUAL &&
1887 xfer->tx_nbits != SPI_NBITS_QUAD)
1888 return -EINVAL;
1889 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1890 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1891 return -EINVAL;
1892 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1893 !(spi->mode & SPI_TX_QUAD))
1894 return -EINVAL;
1895 }
1896 /* check transfer rx_nbits */
1897 if (xfer->rx_buf) {
1898 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1899 xfer->rx_nbits != SPI_NBITS_DUAL &&
1900 xfer->rx_nbits != SPI_NBITS_QUAD)
1901 return -EINVAL;
1902 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1903 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1904 return -EINVAL;
1905 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1906 !(spi->mode & SPI_RX_QUAD))
1907 return -EINVAL;
1908 }
1909 }
1910
1911 message->status = -EINPROGRESS;
1912
1913 return 0;
1914 }
1915
1916 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1917 {
1918 struct spi_master *master = spi->master;
1919
1920 message->spi = spi;
1921
1922 trace_spi_message_submit(message);
1923
1924 return master->transfer(spi, message);
1925 }
1926
1927 /**
1928 * spi_async - asynchronous SPI transfer
1929 * @spi: device with which data will be exchanged
1930 * @message: describes the data transfers, including completion callback
1931 * Context: any (irqs may be blocked, etc)
1932 *
1933 * This call may be used in_irq and other contexts which can't sleep,
1934 * as well as from task contexts which can sleep.
1935 *
1936 * The completion callback is invoked in a context which can't sleep.
1937 * Before that invocation, the value of message->status is undefined.
1938 * When the callback is issued, message->status holds either zero (to
1939 * indicate complete success) or a negative error code. After that
1940 * callback returns, the driver which issued the transfer request may
1941 * deallocate the associated memory; it's no longer in use by any SPI
1942 * core or controller driver code.
1943 *
1944 * Note that although all messages to a spi_device are handled in
1945 * FIFO order, messages may go to different devices in other orders.
1946 * Some device might be higher priority, or have various "hard" access
1947 * time requirements, for example.
1948 *
1949 * On detection of any fault during the transfer, processing of
1950 * the entire message is aborted, and the device is deselected.
1951 * Until returning from the associated message completion callback,
1952 * no other spi_message queued to that device will be processed.
1953 * (This rule applies equally to all the synchronous transfer calls,
1954 * which are wrappers around this core asynchronous primitive.)
1955 */
1956 int spi_async(struct spi_device *spi, struct spi_message *message)
1957 {
1958 struct spi_master *master = spi->master;
1959 int ret;
1960 unsigned long flags;
1961
1962 ret = __spi_validate(spi, message);
1963 if (ret != 0)
1964 return ret;
1965
1966 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1967
1968 if (master->bus_lock_flag)
1969 ret = -EBUSY;
1970 else
1971 ret = __spi_async(spi, message);
1972
1973 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1974
1975 return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(spi_async);
1978
1979 /**
1980 * spi_async_locked - version of spi_async with exclusive bus usage
1981 * @spi: device with which data will be exchanged
1982 * @message: describes the data transfers, including completion callback
1983 * Context: any (irqs may be blocked, etc)
1984 *
1985 * This call may be used in_irq and other contexts which can't sleep,
1986 * as well as from task contexts which can sleep.
1987 *
1988 * The completion callback is invoked in a context which can't sleep.
1989 * Before that invocation, the value of message->status is undefined.
1990 * When the callback is issued, message->status holds either zero (to
1991 * indicate complete success) or a negative error code. After that
1992 * callback returns, the driver which issued the transfer request may
1993 * deallocate the associated memory; it's no longer in use by any SPI
1994 * core or controller driver code.
1995 *
1996 * Note that although all messages to a spi_device are handled in
1997 * FIFO order, messages may go to different devices in other orders.
1998 * Some device might be higher priority, or have various "hard" access
1999 * time requirements, for example.
2000 *
2001 * On detection of any fault during the transfer, processing of
2002 * the entire message is aborted, and the device is deselected.
2003 * Until returning from the associated message completion callback,
2004 * no other spi_message queued to that device will be processed.
2005 * (This rule applies equally to all the synchronous transfer calls,
2006 * which are wrappers around this core asynchronous primitive.)
2007 */
2008 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2009 {
2010 struct spi_master *master = spi->master;
2011 int ret;
2012 unsigned long flags;
2013
2014 ret = __spi_validate(spi, message);
2015 if (ret != 0)
2016 return ret;
2017
2018 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2019
2020 ret = __spi_async(spi, message);
2021
2022 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2023
2024 return ret;
2025
2026 }
2027 EXPORT_SYMBOL_GPL(spi_async_locked);
2028
2029
2030 /*-------------------------------------------------------------------------*/
2031
2032 /* Utility methods for SPI master protocol drivers, layered on
2033 * top of the core. Some other utility methods are defined as
2034 * inline functions.
2035 */
2036
2037 static void spi_complete(void *arg)
2038 {
2039 complete(arg);
2040 }
2041
2042 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2043 int bus_locked)
2044 {
2045 DECLARE_COMPLETION_ONSTACK(done);
2046 int status;
2047 struct spi_master *master = spi->master;
2048 unsigned long flags;
2049
2050 status = __spi_validate(spi, message);
2051 if (status != 0)
2052 return status;
2053
2054 message->complete = spi_complete;
2055 message->context = &done;
2056 message->spi = spi;
2057
2058 if (!bus_locked)
2059 mutex_lock(&master->bus_lock_mutex);
2060
2061 /* If we're not using the legacy transfer method then we will
2062 * try to transfer in the calling context so special case.
2063 * This code would be less tricky if we could remove the
2064 * support for driver implemented message queues.
2065 */
2066 if (master->transfer == spi_queued_transfer) {
2067 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2068
2069 trace_spi_message_submit(message);
2070
2071 status = __spi_queued_transfer(spi, message, false);
2072
2073 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2074 } else {
2075 status = spi_async_locked(spi, message);
2076 }
2077
2078 if (!bus_locked)
2079 mutex_unlock(&master->bus_lock_mutex);
2080
2081 if (status == 0) {
2082 /* Push out the messages in the calling context if we
2083 * can.
2084 */
2085 if (master->transfer == spi_queued_transfer)
2086 __spi_pump_messages(master, false);
2087
2088 wait_for_completion(&done);
2089 status = message->status;
2090 }
2091 message->context = NULL;
2092 return status;
2093 }
2094
2095 /**
2096 * spi_sync - blocking/synchronous SPI data transfers
2097 * @spi: device with which data will be exchanged
2098 * @message: describes the data transfers
2099 * Context: can sleep
2100 *
2101 * This call may only be used from a context that may sleep. The sleep
2102 * is non-interruptible, and has no timeout. Low-overhead controller
2103 * drivers may DMA directly into and out of the message buffers.
2104 *
2105 * Note that the SPI device's chip select is active during the message,
2106 * and then is normally disabled between messages. Drivers for some
2107 * frequently-used devices may want to minimize costs of selecting a chip,
2108 * by leaving it selected in anticipation that the next message will go
2109 * to the same chip. (That may increase power usage.)
2110 *
2111 * Also, the caller is guaranteeing that the memory associated with the
2112 * message will not be freed before this call returns.
2113 *
2114 * It returns zero on success, else a negative error code.
2115 */
2116 int spi_sync(struct spi_device *spi, struct spi_message *message)
2117 {
2118 return __spi_sync(spi, message, 0);
2119 }
2120 EXPORT_SYMBOL_GPL(spi_sync);
2121
2122 /**
2123 * spi_sync_locked - version of spi_sync with exclusive bus usage
2124 * @spi: device with which data will be exchanged
2125 * @message: describes the data transfers
2126 * Context: can sleep
2127 *
2128 * This call may only be used from a context that may sleep. The sleep
2129 * is non-interruptible, and has no timeout. Low-overhead controller
2130 * drivers may DMA directly into and out of the message buffers.
2131 *
2132 * This call should be used by drivers that require exclusive access to the
2133 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2134 * be released by a spi_bus_unlock call when the exclusive access is over.
2135 *
2136 * It returns zero on success, else a negative error code.
2137 */
2138 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2139 {
2140 return __spi_sync(spi, message, 1);
2141 }
2142 EXPORT_SYMBOL_GPL(spi_sync_locked);
2143
2144 /**
2145 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2146 * @master: SPI bus master that should be locked for exclusive bus access
2147 * Context: can sleep
2148 *
2149 * This call may only be used from a context that may sleep. The sleep
2150 * is non-interruptible, and has no timeout.
2151 *
2152 * This call should be used by drivers that require exclusive access to the
2153 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2154 * exclusive access is over. Data transfer must be done by spi_sync_locked
2155 * and spi_async_locked calls when the SPI bus lock is held.
2156 *
2157 * It returns zero on success, else a negative error code.
2158 */
2159 int spi_bus_lock(struct spi_master *master)
2160 {
2161 unsigned long flags;
2162
2163 mutex_lock(&master->bus_lock_mutex);
2164
2165 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2166 master->bus_lock_flag = 1;
2167 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2168
2169 /* mutex remains locked until spi_bus_unlock is called */
2170
2171 return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(spi_bus_lock);
2174
2175 /**
2176 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2177 * @master: SPI bus master that was locked for exclusive bus access
2178 * Context: can sleep
2179 *
2180 * This call may only be used from a context that may sleep. The sleep
2181 * is non-interruptible, and has no timeout.
2182 *
2183 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2184 * call.
2185 *
2186 * It returns zero on success, else a negative error code.
2187 */
2188 int spi_bus_unlock(struct spi_master *master)
2189 {
2190 master->bus_lock_flag = 0;
2191
2192 mutex_unlock(&master->bus_lock_mutex);
2193
2194 return 0;
2195 }
2196 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2197
2198 /* portable code must never pass more than 32 bytes */
2199 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2200
2201 static u8 *buf;
2202
2203 /**
2204 * spi_write_then_read - SPI synchronous write followed by read
2205 * @spi: device with which data will be exchanged
2206 * @txbuf: data to be written (need not be dma-safe)
2207 * @n_tx: size of txbuf, in bytes
2208 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2209 * @n_rx: size of rxbuf, in bytes
2210 * Context: can sleep
2211 *
2212 * This performs a half duplex MicroWire style transaction with the
2213 * device, sending txbuf and then reading rxbuf. The return value
2214 * is zero for success, else a negative errno status code.
2215 * This call may only be used from a context that may sleep.
2216 *
2217 * Parameters to this routine are always copied using a small buffer;
2218 * portable code should never use this for more than 32 bytes.
2219 * Performance-sensitive or bulk transfer code should instead use
2220 * spi_{async,sync}() calls with dma-safe buffers.
2221 */
2222 int spi_write_then_read(struct spi_device *spi,
2223 const void *txbuf, unsigned n_tx,
2224 void *rxbuf, unsigned n_rx)
2225 {
2226 static DEFINE_MUTEX(lock);
2227
2228 int status;
2229 struct spi_message message;
2230 struct spi_transfer x[2];
2231 u8 *local_buf;
2232
2233 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2234 * copying here, (as a pure convenience thing), but we can
2235 * keep heap costs out of the hot path unless someone else is
2236 * using the pre-allocated buffer or the transfer is too large.
2237 */
2238 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2239 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2240 GFP_KERNEL | GFP_DMA);
2241 if (!local_buf)
2242 return -ENOMEM;
2243 } else {
2244 local_buf = buf;
2245 }
2246
2247 spi_message_init(&message);
2248 memset(x, 0, sizeof(x));
2249 if (n_tx) {
2250 x[0].len = n_tx;
2251 spi_message_add_tail(&x[0], &message);
2252 }
2253 if (n_rx) {
2254 x[1].len = n_rx;
2255 spi_message_add_tail(&x[1], &message);
2256 }
2257
2258 memcpy(local_buf, txbuf, n_tx);
2259 x[0].tx_buf = local_buf;
2260 x[1].rx_buf = local_buf + n_tx;
2261
2262 /* do the i/o */
2263 status = spi_sync(spi, &message);
2264 if (status == 0)
2265 memcpy(rxbuf, x[1].rx_buf, n_rx);
2266
2267 if (x[0].tx_buf == buf)
2268 mutex_unlock(&lock);
2269 else
2270 kfree(local_buf);
2271
2272 return status;
2273 }
2274 EXPORT_SYMBOL_GPL(spi_write_then_read);
2275
2276 /*-------------------------------------------------------------------------*/
2277
2278 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2279 static int __spi_of_device_match(struct device *dev, void *data)
2280 {
2281 return dev->of_node == data;
2282 }
2283
2284 /* must call put_device() when done with returned spi_device device */
2285 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2286 {
2287 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2288 __spi_of_device_match);
2289 return dev ? to_spi_device(dev) : NULL;
2290 }
2291
2292 static int __spi_of_master_match(struct device *dev, const void *data)
2293 {
2294 return dev->of_node == data;
2295 }
2296
2297 /* the spi masters are not using spi_bus, so we find it with another way */
2298 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2299 {
2300 struct device *dev;
2301
2302 dev = class_find_device(&spi_master_class, NULL, node,
2303 __spi_of_master_match);
2304 if (!dev)
2305 return NULL;
2306
2307 /* reference got in class_find_device */
2308 return container_of(dev, struct spi_master, dev);
2309 }
2310
2311 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2312 void *arg)
2313 {
2314 struct of_reconfig_data *rd = arg;
2315 struct spi_master *master;
2316 struct spi_device *spi;
2317
2318 switch (of_reconfig_get_state_change(action, arg)) {
2319 case OF_RECONFIG_CHANGE_ADD:
2320 master = of_find_spi_master_by_node(rd->dn->parent);
2321 if (master == NULL)
2322 return NOTIFY_OK; /* not for us */
2323
2324 spi = of_register_spi_device(master, rd->dn);
2325 put_device(&master->dev);
2326
2327 if (IS_ERR(spi)) {
2328 pr_err("%s: failed to create for '%s'\n",
2329 __func__, rd->dn->full_name);
2330 return notifier_from_errno(PTR_ERR(spi));
2331 }
2332 break;
2333
2334 case OF_RECONFIG_CHANGE_REMOVE:
2335 /* find our device by node */
2336 spi = of_find_spi_device_by_node(rd->dn);
2337 if (spi == NULL)
2338 return NOTIFY_OK; /* no? not meant for us */
2339
2340 /* unregister takes one ref away */
2341 spi_unregister_device(spi);
2342
2343 /* and put the reference of the find */
2344 put_device(&spi->dev);
2345 break;
2346 }
2347
2348 return NOTIFY_OK;
2349 }
2350
2351 static struct notifier_block spi_of_notifier = {
2352 .notifier_call = of_spi_notify,
2353 };
2354 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2355 extern struct notifier_block spi_of_notifier;
2356 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2357
2358 static int __init spi_init(void)
2359 {
2360 int status;
2361
2362 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2363 if (!buf) {
2364 status = -ENOMEM;
2365 goto err0;
2366 }
2367
2368 status = bus_register(&spi_bus_type);
2369 if (status < 0)
2370 goto err1;
2371
2372 status = class_register(&spi_master_class);
2373 if (status < 0)
2374 goto err2;
2375
2376 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2377 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2378
2379 return 0;
2380
2381 err2:
2382 bus_unregister(&spi_bus_type);
2383 err1:
2384 kfree(buf);
2385 buf = NULL;
2386 err0:
2387 return status;
2388 }
2389
2390 /* board_info is normally registered in arch_initcall(),
2391 * but even essential drivers wait till later
2392 *
2393 * REVISIT only boardinfo really needs static linking. the rest (device and
2394 * driver registration) _could_ be dynamically linked (modular) ... costs
2395 * include needing to have boardinfo data structures be much more public.
2396 */
2397 postcore_initcall(spi_init);
2398
This page took 0.083621 seconds and 5 git commands to generate.