Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/export.h>
39 #include <linux/sched/rt.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/ioport.h>
43 #include <linux/acpi.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/spi.h>
47
48 static void spidev_release(struct device *dev)
49 {
50 struct spi_device *spi = to_spi_device(dev);
51
52 /* spi masters may cleanup for released devices */
53 if (spi->master->cleanup)
54 spi->master->cleanup(spi);
55
56 spi_master_put(spi->master);
57 kfree(spi);
58 }
59
60 static ssize_t
61 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 {
63 const struct spi_device *spi = to_spi_device(dev);
64 int len;
65
66 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 if (len != -ENODEV)
68 return len;
69
70 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 }
72 static DEVICE_ATTR_RO(modalias);
73
74 static struct attribute *spi_dev_attrs[] = {
75 &dev_attr_modalias.attr,
76 NULL,
77 };
78 ATTRIBUTE_GROUPS(spi_dev);
79
80 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
81 * and the sysfs version makes coldplug work too.
82 */
83
84 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
85 const struct spi_device *sdev)
86 {
87 while (id->name[0]) {
88 if (!strcmp(sdev->modalias, id->name))
89 return id;
90 id++;
91 }
92 return NULL;
93 }
94
95 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
96 {
97 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
98
99 return spi_match_id(sdrv->id_table, sdev);
100 }
101 EXPORT_SYMBOL_GPL(spi_get_device_id);
102
103 static int spi_match_device(struct device *dev, struct device_driver *drv)
104 {
105 const struct spi_device *spi = to_spi_device(dev);
106 const struct spi_driver *sdrv = to_spi_driver(drv);
107
108 /* Attempt an OF style match */
109 if (of_driver_match_device(dev, drv))
110 return 1;
111
112 /* Then try ACPI */
113 if (acpi_driver_match_device(dev, drv))
114 return 1;
115
116 if (sdrv->id_table)
117 return !!spi_match_id(sdrv->id_table, spi);
118
119 return strcmp(spi->modalias, drv->name) == 0;
120 }
121
122 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
123 {
124 const struct spi_device *spi = to_spi_device(dev);
125 int rc;
126
127 rc = acpi_device_uevent_modalias(dev, env);
128 if (rc != -ENODEV)
129 return rc;
130
131 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
132 return 0;
133 }
134
135 #ifdef CONFIG_PM_SLEEP
136 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
137 {
138 int value = 0;
139 struct spi_driver *drv = to_spi_driver(dev->driver);
140
141 /* suspend will stop irqs and dma; no more i/o */
142 if (drv) {
143 if (drv->suspend)
144 value = drv->suspend(to_spi_device(dev), message);
145 else
146 dev_dbg(dev, "... can't suspend\n");
147 }
148 return value;
149 }
150
151 static int spi_legacy_resume(struct device *dev)
152 {
153 int value = 0;
154 struct spi_driver *drv = to_spi_driver(dev->driver);
155
156 /* resume may restart the i/o queue */
157 if (drv) {
158 if (drv->resume)
159 value = drv->resume(to_spi_device(dev));
160 else
161 dev_dbg(dev, "... can't resume\n");
162 }
163 return value;
164 }
165
166 static int spi_pm_suspend(struct device *dev)
167 {
168 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
169
170 if (pm)
171 return pm_generic_suspend(dev);
172 else
173 return spi_legacy_suspend(dev, PMSG_SUSPEND);
174 }
175
176 static int spi_pm_resume(struct device *dev)
177 {
178 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
179
180 if (pm)
181 return pm_generic_resume(dev);
182 else
183 return spi_legacy_resume(dev);
184 }
185
186 static int spi_pm_freeze(struct device *dev)
187 {
188 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
189
190 if (pm)
191 return pm_generic_freeze(dev);
192 else
193 return spi_legacy_suspend(dev, PMSG_FREEZE);
194 }
195
196 static int spi_pm_thaw(struct device *dev)
197 {
198 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
199
200 if (pm)
201 return pm_generic_thaw(dev);
202 else
203 return spi_legacy_resume(dev);
204 }
205
206 static int spi_pm_poweroff(struct device *dev)
207 {
208 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
209
210 if (pm)
211 return pm_generic_poweroff(dev);
212 else
213 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
214 }
215
216 static int spi_pm_restore(struct device *dev)
217 {
218 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
219
220 if (pm)
221 return pm_generic_restore(dev);
222 else
223 return spi_legacy_resume(dev);
224 }
225 #else
226 #define spi_pm_suspend NULL
227 #define spi_pm_resume NULL
228 #define spi_pm_freeze NULL
229 #define spi_pm_thaw NULL
230 #define spi_pm_poweroff NULL
231 #define spi_pm_restore NULL
232 #endif
233
234 static const struct dev_pm_ops spi_pm = {
235 .suspend = spi_pm_suspend,
236 .resume = spi_pm_resume,
237 .freeze = spi_pm_freeze,
238 .thaw = spi_pm_thaw,
239 .poweroff = spi_pm_poweroff,
240 .restore = spi_pm_restore,
241 SET_RUNTIME_PM_OPS(
242 pm_generic_runtime_suspend,
243 pm_generic_runtime_resume,
244 NULL
245 )
246 };
247
248 struct bus_type spi_bus_type = {
249 .name = "spi",
250 .dev_groups = spi_dev_groups,
251 .match = spi_match_device,
252 .uevent = spi_uevent,
253 .pm = &spi_pm,
254 };
255 EXPORT_SYMBOL_GPL(spi_bus_type);
256
257
258 static int spi_drv_probe(struct device *dev)
259 {
260 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
261 int ret;
262
263 ret = of_clk_set_defaults(dev->of_node, false);
264 if (ret)
265 return ret;
266
267 acpi_dev_pm_attach(dev, true);
268 ret = sdrv->probe(to_spi_device(dev));
269 if (ret)
270 acpi_dev_pm_detach(dev, true);
271
272 return ret;
273 }
274
275 static int spi_drv_remove(struct device *dev)
276 {
277 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
278 int ret;
279
280 ret = sdrv->remove(to_spi_device(dev));
281 acpi_dev_pm_detach(dev, true);
282
283 return ret;
284 }
285
286 static void spi_drv_shutdown(struct device *dev)
287 {
288 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
289
290 sdrv->shutdown(to_spi_device(dev));
291 }
292
293 /**
294 * spi_register_driver - register a SPI driver
295 * @sdrv: the driver to register
296 * Context: can sleep
297 */
298 int spi_register_driver(struct spi_driver *sdrv)
299 {
300 sdrv->driver.bus = &spi_bus_type;
301 if (sdrv->probe)
302 sdrv->driver.probe = spi_drv_probe;
303 if (sdrv->remove)
304 sdrv->driver.remove = spi_drv_remove;
305 if (sdrv->shutdown)
306 sdrv->driver.shutdown = spi_drv_shutdown;
307 return driver_register(&sdrv->driver);
308 }
309 EXPORT_SYMBOL_GPL(spi_register_driver);
310
311 /*-------------------------------------------------------------------------*/
312
313 /* SPI devices should normally not be created by SPI device drivers; that
314 * would make them board-specific. Similarly with SPI master drivers.
315 * Device registration normally goes into like arch/.../mach.../board-YYY.c
316 * with other readonly (flashable) information about mainboard devices.
317 */
318
319 struct boardinfo {
320 struct list_head list;
321 struct spi_board_info board_info;
322 };
323
324 static LIST_HEAD(board_list);
325 static LIST_HEAD(spi_master_list);
326
327 /*
328 * Used to protect add/del opertion for board_info list and
329 * spi_master list, and their matching process
330 */
331 static DEFINE_MUTEX(board_lock);
332
333 /**
334 * spi_alloc_device - Allocate a new SPI device
335 * @master: Controller to which device is connected
336 * Context: can sleep
337 *
338 * Allows a driver to allocate and initialize a spi_device without
339 * registering it immediately. This allows a driver to directly
340 * fill the spi_device with device parameters before calling
341 * spi_add_device() on it.
342 *
343 * Caller is responsible to call spi_add_device() on the returned
344 * spi_device structure to add it to the SPI master. If the caller
345 * needs to discard the spi_device without adding it, then it should
346 * call spi_dev_put() on it.
347 *
348 * Returns a pointer to the new device, or NULL.
349 */
350 struct spi_device *spi_alloc_device(struct spi_master *master)
351 {
352 struct spi_device *spi;
353
354 if (!spi_master_get(master))
355 return NULL;
356
357 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
358 if (!spi) {
359 spi_master_put(master);
360 return NULL;
361 }
362
363 spi->master = master;
364 spi->dev.parent = &master->dev;
365 spi->dev.bus = &spi_bus_type;
366 spi->dev.release = spidev_release;
367 spi->cs_gpio = -ENOENT;
368 device_initialize(&spi->dev);
369 return spi;
370 }
371 EXPORT_SYMBOL_GPL(spi_alloc_device);
372
373 static void spi_dev_set_name(struct spi_device *spi)
374 {
375 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
376
377 if (adev) {
378 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
379 return;
380 }
381
382 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
383 spi->chip_select);
384 }
385
386 static int spi_dev_check(struct device *dev, void *data)
387 {
388 struct spi_device *spi = to_spi_device(dev);
389 struct spi_device *new_spi = data;
390
391 if (spi->master == new_spi->master &&
392 spi->chip_select == new_spi->chip_select)
393 return -EBUSY;
394 return 0;
395 }
396
397 /**
398 * spi_add_device - Add spi_device allocated with spi_alloc_device
399 * @spi: spi_device to register
400 *
401 * Companion function to spi_alloc_device. Devices allocated with
402 * spi_alloc_device can be added onto the spi bus with this function.
403 *
404 * Returns 0 on success; negative errno on failure
405 */
406 int spi_add_device(struct spi_device *spi)
407 {
408 static DEFINE_MUTEX(spi_add_lock);
409 struct spi_master *master = spi->master;
410 struct device *dev = master->dev.parent;
411 int status;
412
413 /* Chipselects are numbered 0..max; validate. */
414 if (spi->chip_select >= master->num_chipselect) {
415 dev_err(dev, "cs%d >= max %d\n",
416 spi->chip_select,
417 master->num_chipselect);
418 return -EINVAL;
419 }
420
421 /* Set the bus ID string */
422 spi_dev_set_name(spi);
423
424 /* We need to make sure there's no other device with this
425 * chipselect **BEFORE** we call setup(), else we'll trash
426 * its configuration. Lock against concurrent add() calls.
427 */
428 mutex_lock(&spi_add_lock);
429
430 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
431 if (status) {
432 dev_err(dev, "chipselect %d already in use\n",
433 spi->chip_select);
434 goto done;
435 }
436
437 if (master->cs_gpios)
438 spi->cs_gpio = master->cs_gpios[spi->chip_select];
439
440 /* Drivers may modify this initial i/o setup, but will
441 * normally rely on the device being setup. Devices
442 * using SPI_CS_HIGH can't coexist well otherwise...
443 */
444 status = spi_setup(spi);
445 if (status < 0) {
446 dev_err(dev, "can't setup %s, status %d\n",
447 dev_name(&spi->dev), status);
448 goto done;
449 }
450
451 /* Device may be bound to an active driver when this returns */
452 status = device_add(&spi->dev);
453 if (status < 0)
454 dev_err(dev, "can't add %s, status %d\n",
455 dev_name(&spi->dev), status);
456 else
457 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
458
459 done:
460 mutex_unlock(&spi_add_lock);
461 return status;
462 }
463 EXPORT_SYMBOL_GPL(spi_add_device);
464
465 /**
466 * spi_new_device - instantiate one new SPI device
467 * @master: Controller to which device is connected
468 * @chip: Describes the SPI device
469 * Context: can sleep
470 *
471 * On typical mainboards, this is purely internal; and it's not needed
472 * after board init creates the hard-wired devices. Some development
473 * platforms may not be able to use spi_register_board_info though, and
474 * this is exported so that for example a USB or parport based adapter
475 * driver could add devices (which it would learn about out-of-band).
476 *
477 * Returns the new device, or NULL.
478 */
479 struct spi_device *spi_new_device(struct spi_master *master,
480 struct spi_board_info *chip)
481 {
482 struct spi_device *proxy;
483 int status;
484
485 /* NOTE: caller did any chip->bus_num checks necessary.
486 *
487 * Also, unless we change the return value convention to use
488 * error-or-pointer (not NULL-or-pointer), troubleshootability
489 * suggests syslogged diagnostics are best here (ugh).
490 */
491
492 proxy = spi_alloc_device(master);
493 if (!proxy)
494 return NULL;
495
496 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
497
498 proxy->chip_select = chip->chip_select;
499 proxy->max_speed_hz = chip->max_speed_hz;
500 proxy->mode = chip->mode;
501 proxy->irq = chip->irq;
502 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
503 proxy->dev.platform_data = (void *) chip->platform_data;
504 proxy->controller_data = chip->controller_data;
505 proxy->controller_state = NULL;
506
507 status = spi_add_device(proxy);
508 if (status < 0) {
509 spi_dev_put(proxy);
510 return NULL;
511 }
512
513 return proxy;
514 }
515 EXPORT_SYMBOL_GPL(spi_new_device);
516
517 static void spi_match_master_to_boardinfo(struct spi_master *master,
518 struct spi_board_info *bi)
519 {
520 struct spi_device *dev;
521
522 if (master->bus_num != bi->bus_num)
523 return;
524
525 dev = spi_new_device(master, bi);
526 if (!dev)
527 dev_err(master->dev.parent, "can't create new device for %s\n",
528 bi->modalias);
529 }
530
531 /**
532 * spi_register_board_info - register SPI devices for a given board
533 * @info: array of chip descriptors
534 * @n: how many descriptors are provided
535 * Context: can sleep
536 *
537 * Board-specific early init code calls this (probably during arch_initcall)
538 * with segments of the SPI device table. Any device nodes are created later,
539 * after the relevant parent SPI controller (bus_num) is defined. We keep
540 * this table of devices forever, so that reloading a controller driver will
541 * not make Linux forget about these hard-wired devices.
542 *
543 * Other code can also call this, e.g. a particular add-on board might provide
544 * SPI devices through its expansion connector, so code initializing that board
545 * would naturally declare its SPI devices.
546 *
547 * The board info passed can safely be __initdata ... but be careful of
548 * any embedded pointers (platform_data, etc), they're copied as-is.
549 */
550 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
551 {
552 struct boardinfo *bi;
553 int i;
554
555 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
556 if (!bi)
557 return -ENOMEM;
558
559 for (i = 0; i < n; i++, bi++, info++) {
560 struct spi_master *master;
561
562 memcpy(&bi->board_info, info, sizeof(*info));
563 mutex_lock(&board_lock);
564 list_add_tail(&bi->list, &board_list);
565 list_for_each_entry(master, &spi_master_list, list)
566 spi_match_master_to_boardinfo(master, &bi->board_info);
567 mutex_unlock(&board_lock);
568 }
569
570 return 0;
571 }
572
573 /*-------------------------------------------------------------------------*/
574
575 static void spi_set_cs(struct spi_device *spi, bool enable)
576 {
577 if (spi->mode & SPI_CS_HIGH)
578 enable = !enable;
579
580 if (spi->cs_gpio >= 0)
581 gpio_set_value(spi->cs_gpio, !enable);
582 else if (spi->master->set_cs)
583 spi->master->set_cs(spi, !enable);
584 }
585
586 #ifdef CONFIG_HAS_DMA
587 static int spi_map_buf(struct spi_master *master, struct device *dev,
588 struct sg_table *sgt, void *buf, size_t len,
589 enum dma_data_direction dir)
590 {
591 const bool vmalloced_buf = is_vmalloc_addr(buf);
592 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
593 const int sgs = DIV_ROUND_UP(len, desc_len);
594 struct page *vm_page;
595 void *sg_buf;
596 size_t min;
597 int i, ret;
598
599 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
600 if (ret != 0)
601 return ret;
602
603 for (i = 0; i < sgs; i++) {
604 min = min_t(size_t, len, desc_len);
605
606 if (vmalloced_buf) {
607 vm_page = vmalloc_to_page(buf);
608 if (!vm_page) {
609 sg_free_table(sgt);
610 return -ENOMEM;
611 }
612 sg_buf = page_address(vm_page) +
613 ((size_t)buf & ~PAGE_MASK);
614 } else {
615 sg_buf = buf;
616 }
617
618 sg_set_buf(&sgt->sgl[i], sg_buf, min);
619
620 buf += min;
621 len -= min;
622 }
623
624 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
625 if (!ret)
626 ret = -ENOMEM;
627 if (ret < 0) {
628 sg_free_table(sgt);
629 return ret;
630 }
631
632 sgt->nents = ret;
633
634 return 0;
635 }
636
637 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
638 struct sg_table *sgt, enum dma_data_direction dir)
639 {
640 if (sgt->orig_nents) {
641 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
642 sg_free_table(sgt);
643 }
644 }
645
646 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
647 {
648 struct device *tx_dev, *rx_dev;
649 struct spi_transfer *xfer;
650 int ret;
651
652 if (!master->can_dma)
653 return 0;
654
655 tx_dev = master->dma_tx->device->dev;
656 rx_dev = master->dma_rx->device->dev;
657
658 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
659 if (!master->can_dma(master, msg->spi, xfer))
660 continue;
661
662 if (xfer->tx_buf != NULL) {
663 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
664 (void *)xfer->tx_buf, xfer->len,
665 DMA_TO_DEVICE);
666 if (ret != 0)
667 return ret;
668 }
669
670 if (xfer->rx_buf != NULL) {
671 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
672 xfer->rx_buf, xfer->len,
673 DMA_FROM_DEVICE);
674 if (ret != 0) {
675 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
676 DMA_TO_DEVICE);
677 return ret;
678 }
679 }
680 }
681
682 master->cur_msg_mapped = true;
683
684 return 0;
685 }
686
687 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
688 {
689 struct spi_transfer *xfer;
690 struct device *tx_dev, *rx_dev;
691
692 if (!master->cur_msg_mapped || !master->can_dma)
693 return 0;
694
695 tx_dev = master->dma_tx->device->dev;
696 rx_dev = master->dma_rx->device->dev;
697
698 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
699 if (!master->can_dma(master, msg->spi, xfer))
700 continue;
701
702 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
703 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
704 }
705
706 return 0;
707 }
708 #else /* !CONFIG_HAS_DMA */
709 static inline int __spi_map_msg(struct spi_master *master,
710 struct spi_message *msg)
711 {
712 return 0;
713 }
714
715 static inline int spi_unmap_msg(struct spi_master *master,
716 struct spi_message *msg)
717 {
718 return 0;
719 }
720 #endif /* !CONFIG_HAS_DMA */
721
722 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
723 {
724 struct spi_transfer *xfer;
725 void *tmp;
726 unsigned int max_tx, max_rx;
727
728 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
729 max_tx = 0;
730 max_rx = 0;
731
732 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
733 if ((master->flags & SPI_MASTER_MUST_TX) &&
734 !xfer->tx_buf)
735 max_tx = max(xfer->len, max_tx);
736 if ((master->flags & SPI_MASTER_MUST_RX) &&
737 !xfer->rx_buf)
738 max_rx = max(xfer->len, max_rx);
739 }
740
741 if (max_tx) {
742 tmp = krealloc(master->dummy_tx, max_tx,
743 GFP_KERNEL | GFP_DMA);
744 if (!tmp)
745 return -ENOMEM;
746 master->dummy_tx = tmp;
747 memset(tmp, 0, max_tx);
748 }
749
750 if (max_rx) {
751 tmp = krealloc(master->dummy_rx, max_rx,
752 GFP_KERNEL | GFP_DMA);
753 if (!tmp)
754 return -ENOMEM;
755 master->dummy_rx = tmp;
756 }
757
758 if (max_tx || max_rx) {
759 list_for_each_entry(xfer, &msg->transfers,
760 transfer_list) {
761 if (!xfer->tx_buf)
762 xfer->tx_buf = master->dummy_tx;
763 if (!xfer->rx_buf)
764 xfer->rx_buf = master->dummy_rx;
765 }
766 }
767 }
768
769 return __spi_map_msg(master, msg);
770 }
771
772 /*
773 * spi_transfer_one_message - Default implementation of transfer_one_message()
774 *
775 * This is a standard implementation of transfer_one_message() for
776 * drivers which impelment a transfer_one() operation. It provides
777 * standard handling of delays and chip select management.
778 */
779 static int spi_transfer_one_message(struct spi_master *master,
780 struct spi_message *msg)
781 {
782 struct spi_transfer *xfer;
783 bool keep_cs = false;
784 int ret = 0;
785 int ms = 1;
786
787 spi_set_cs(msg->spi, true);
788
789 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
790 trace_spi_transfer_start(msg, xfer);
791
792 reinit_completion(&master->xfer_completion);
793
794 ret = master->transfer_one(master, msg->spi, xfer);
795 if (ret < 0) {
796 dev_err(&msg->spi->dev,
797 "SPI transfer failed: %d\n", ret);
798 goto out;
799 }
800
801 if (ret > 0) {
802 ret = 0;
803 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
804 ms += ms + 100; /* some tolerance */
805
806 ms = wait_for_completion_timeout(&master->xfer_completion,
807 msecs_to_jiffies(ms));
808 }
809
810 if (ms == 0) {
811 dev_err(&msg->spi->dev, "SPI transfer timed out\n");
812 msg->status = -ETIMEDOUT;
813 }
814
815 trace_spi_transfer_stop(msg, xfer);
816
817 if (msg->status != -EINPROGRESS)
818 goto out;
819
820 if (xfer->delay_usecs)
821 udelay(xfer->delay_usecs);
822
823 if (xfer->cs_change) {
824 if (list_is_last(&xfer->transfer_list,
825 &msg->transfers)) {
826 keep_cs = true;
827 } else {
828 spi_set_cs(msg->spi, false);
829 udelay(10);
830 spi_set_cs(msg->spi, true);
831 }
832 }
833
834 msg->actual_length += xfer->len;
835 }
836
837 out:
838 if (ret != 0 || !keep_cs)
839 spi_set_cs(msg->spi, false);
840
841 if (msg->status == -EINPROGRESS)
842 msg->status = ret;
843
844 spi_finalize_current_message(master);
845
846 return ret;
847 }
848
849 /**
850 * spi_finalize_current_transfer - report completion of a transfer
851 *
852 * Called by SPI drivers using the core transfer_one_message()
853 * implementation to notify it that the current interrupt driven
854 * transfer has finished and the next one may be scheduled.
855 */
856 void spi_finalize_current_transfer(struct spi_master *master)
857 {
858 complete(&master->xfer_completion);
859 }
860 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
861
862 /**
863 * spi_pump_messages - kthread work function which processes spi message queue
864 * @work: pointer to kthread work struct contained in the master struct
865 *
866 * This function checks if there is any spi message in the queue that
867 * needs processing and if so call out to the driver to initialize hardware
868 * and transfer each message.
869 *
870 */
871 static void spi_pump_messages(struct kthread_work *work)
872 {
873 struct spi_master *master =
874 container_of(work, struct spi_master, pump_messages);
875 unsigned long flags;
876 bool was_busy = false;
877 int ret;
878
879 /* Lock queue and check for queue work */
880 spin_lock_irqsave(&master->queue_lock, flags);
881 if (list_empty(&master->queue) || !master->running) {
882 if (!master->busy) {
883 spin_unlock_irqrestore(&master->queue_lock, flags);
884 return;
885 }
886 master->busy = false;
887 spin_unlock_irqrestore(&master->queue_lock, flags);
888 kfree(master->dummy_rx);
889 master->dummy_rx = NULL;
890 kfree(master->dummy_tx);
891 master->dummy_tx = NULL;
892 if (master->unprepare_transfer_hardware &&
893 master->unprepare_transfer_hardware(master))
894 dev_err(&master->dev,
895 "failed to unprepare transfer hardware\n");
896 if (master->auto_runtime_pm) {
897 pm_runtime_mark_last_busy(master->dev.parent);
898 pm_runtime_put_autosuspend(master->dev.parent);
899 }
900 trace_spi_master_idle(master);
901 return;
902 }
903
904 /* Make sure we are not already running a message */
905 if (master->cur_msg) {
906 spin_unlock_irqrestore(&master->queue_lock, flags);
907 return;
908 }
909 /* Extract head of queue */
910 master->cur_msg =
911 list_first_entry(&master->queue, struct spi_message, queue);
912
913 list_del_init(&master->cur_msg->queue);
914 if (master->busy)
915 was_busy = true;
916 else
917 master->busy = true;
918 spin_unlock_irqrestore(&master->queue_lock, flags);
919
920 if (!was_busy && master->auto_runtime_pm) {
921 ret = pm_runtime_get_sync(master->dev.parent);
922 if (ret < 0) {
923 dev_err(&master->dev, "Failed to power device: %d\n",
924 ret);
925 return;
926 }
927 }
928
929 if (!was_busy)
930 trace_spi_master_busy(master);
931
932 if (!was_busy && master->prepare_transfer_hardware) {
933 ret = master->prepare_transfer_hardware(master);
934 if (ret) {
935 dev_err(&master->dev,
936 "failed to prepare transfer hardware\n");
937
938 if (master->auto_runtime_pm)
939 pm_runtime_put(master->dev.parent);
940 return;
941 }
942 }
943
944 trace_spi_message_start(master->cur_msg);
945
946 if (master->prepare_message) {
947 ret = master->prepare_message(master, master->cur_msg);
948 if (ret) {
949 dev_err(&master->dev,
950 "failed to prepare message: %d\n", ret);
951 master->cur_msg->status = ret;
952 spi_finalize_current_message(master);
953 return;
954 }
955 master->cur_msg_prepared = true;
956 }
957
958 ret = spi_map_msg(master, master->cur_msg);
959 if (ret) {
960 master->cur_msg->status = ret;
961 spi_finalize_current_message(master);
962 return;
963 }
964
965 ret = master->transfer_one_message(master, master->cur_msg);
966 if (ret) {
967 dev_err(&master->dev,
968 "failed to transfer one message from queue\n");
969 return;
970 }
971 }
972
973 static int spi_init_queue(struct spi_master *master)
974 {
975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
976
977 INIT_LIST_HEAD(&master->queue);
978 spin_lock_init(&master->queue_lock);
979
980 master->running = false;
981 master->busy = false;
982
983 init_kthread_worker(&master->kworker);
984 master->kworker_task = kthread_run(kthread_worker_fn,
985 &master->kworker, "%s",
986 dev_name(&master->dev));
987 if (IS_ERR(master->kworker_task)) {
988 dev_err(&master->dev, "failed to create message pump task\n");
989 return -ENOMEM;
990 }
991 init_kthread_work(&master->pump_messages, spi_pump_messages);
992
993 /*
994 * Master config will indicate if this controller should run the
995 * message pump with high (realtime) priority to reduce the transfer
996 * latency on the bus by minimising the delay between a transfer
997 * request and the scheduling of the message pump thread. Without this
998 * setting the message pump thread will remain at default priority.
999 */
1000 if (master->rt) {
1001 dev_info(&master->dev,
1002 "will run message pump with realtime priority\n");
1003 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1004 }
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * spi_get_next_queued_message() - called by driver to check for queued
1011 * messages
1012 * @master: the master to check for queued messages
1013 *
1014 * If there are more messages in the queue, the next message is returned from
1015 * this call.
1016 */
1017 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1018 {
1019 struct spi_message *next;
1020 unsigned long flags;
1021
1022 /* get a pointer to the next message, if any */
1023 spin_lock_irqsave(&master->queue_lock, flags);
1024 next = list_first_entry_or_null(&master->queue, struct spi_message,
1025 queue);
1026 spin_unlock_irqrestore(&master->queue_lock, flags);
1027
1028 return next;
1029 }
1030 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1031
1032 /**
1033 * spi_finalize_current_message() - the current message is complete
1034 * @master: the master to return the message to
1035 *
1036 * Called by the driver to notify the core that the message in the front of the
1037 * queue is complete and can be removed from the queue.
1038 */
1039 void spi_finalize_current_message(struct spi_master *master)
1040 {
1041 struct spi_message *mesg;
1042 unsigned long flags;
1043 int ret;
1044
1045 spin_lock_irqsave(&master->queue_lock, flags);
1046 mesg = master->cur_msg;
1047 master->cur_msg = NULL;
1048
1049 queue_kthread_work(&master->kworker, &master->pump_messages);
1050 spin_unlock_irqrestore(&master->queue_lock, flags);
1051
1052 spi_unmap_msg(master, mesg);
1053
1054 if (master->cur_msg_prepared && master->unprepare_message) {
1055 ret = master->unprepare_message(master, mesg);
1056 if (ret) {
1057 dev_err(&master->dev,
1058 "failed to unprepare message: %d\n", ret);
1059 }
1060 }
1061 master->cur_msg_prepared = false;
1062
1063 mesg->state = NULL;
1064 if (mesg->complete)
1065 mesg->complete(mesg->context);
1066
1067 trace_spi_message_done(mesg);
1068 }
1069 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1070
1071 static int spi_start_queue(struct spi_master *master)
1072 {
1073 unsigned long flags;
1074
1075 spin_lock_irqsave(&master->queue_lock, flags);
1076
1077 if (master->running || master->busy) {
1078 spin_unlock_irqrestore(&master->queue_lock, flags);
1079 return -EBUSY;
1080 }
1081
1082 master->running = true;
1083 master->cur_msg = NULL;
1084 spin_unlock_irqrestore(&master->queue_lock, flags);
1085
1086 queue_kthread_work(&master->kworker, &master->pump_messages);
1087
1088 return 0;
1089 }
1090
1091 static int spi_stop_queue(struct spi_master *master)
1092 {
1093 unsigned long flags;
1094 unsigned limit = 500;
1095 int ret = 0;
1096
1097 spin_lock_irqsave(&master->queue_lock, flags);
1098
1099 /*
1100 * This is a bit lame, but is optimized for the common execution path.
1101 * A wait_queue on the master->busy could be used, but then the common
1102 * execution path (pump_messages) would be required to call wake_up or
1103 * friends on every SPI message. Do this instead.
1104 */
1105 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1106 spin_unlock_irqrestore(&master->queue_lock, flags);
1107 usleep_range(10000, 11000);
1108 spin_lock_irqsave(&master->queue_lock, flags);
1109 }
1110
1111 if (!list_empty(&master->queue) || master->busy)
1112 ret = -EBUSY;
1113 else
1114 master->running = false;
1115
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117
1118 if (ret) {
1119 dev_warn(&master->dev,
1120 "could not stop message queue\n");
1121 return ret;
1122 }
1123 return ret;
1124 }
1125
1126 static int spi_destroy_queue(struct spi_master *master)
1127 {
1128 int ret;
1129
1130 ret = spi_stop_queue(master);
1131
1132 /*
1133 * flush_kthread_worker will block until all work is done.
1134 * If the reason that stop_queue timed out is that the work will never
1135 * finish, then it does no good to call flush/stop thread, so
1136 * return anyway.
1137 */
1138 if (ret) {
1139 dev_err(&master->dev, "problem destroying queue\n");
1140 return ret;
1141 }
1142
1143 flush_kthread_worker(&master->kworker);
1144 kthread_stop(master->kworker_task);
1145
1146 return 0;
1147 }
1148
1149 /**
1150 * spi_queued_transfer - transfer function for queued transfers
1151 * @spi: spi device which is requesting transfer
1152 * @msg: spi message which is to handled is queued to driver queue
1153 */
1154 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1155 {
1156 struct spi_master *master = spi->master;
1157 unsigned long flags;
1158
1159 spin_lock_irqsave(&master->queue_lock, flags);
1160
1161 if (!master->running) {
1162 spin_unlock_irqrestore(&master->queue_lock, flags);
1163 return -ESHUTDOWN;
1164 }
1165 msg->actual_length = 0;
1166 msg->status = -EINPROGRESS;
1167
1168 list_add_tail(&msg->queue, &master->queue);
1169 if (!master->busy)
1170 queue_kthread_work(&master->kworker, &master->pump_messages);
1171
1172 spin_unlock_irqrestore(&master->queue_lock, flags);
1173 return 0;
1174 }
1175
1176 static int spi_master_initialize_queue(struct spi_master *master)
1177 {
1178 int ret;
1179
1180 master->transfer = spi_queued_transfer;
1181 if (!master->transfer_one_message)
1182 master->transfer_one_message = spi_transfer_one_message;
1183
1184 /* Initialize and start queue */
1185 ret = spi_init_queue(master);
1186 if (ret) {
1187 dev_err(&master->dev, "problem initializing queue\n");
1188 goto err_init_queue;
1189 }
1190 master->queued = true;
1191 ret = spi_start_queue(master);
1192 if (ret) {
1193 dev_err(&master->dev, "problem starting queue\n");
1194 goto err_start_queue;
1195 }
1196
1197 return 0;
1198
1199 err_start_queue:
1200 spi_destroy_queue(master);
1201 err_init_queue:
1202 return ret;
1203 }
1204
1205 /*-------------------------------------------------------------------------*/
1206
1207 #if defined(CONFIG_OF)
1208 /**
1209 * of_register_spi_devices() - Register child devices onto the SPI bus
1210 * @master: Pointer to spi_master device
1211 *
1212 * Registers an spi_device for each child node of master node which has a 'reg'
1213 * property.
1214 */
1215 static void of_register_spi_devices(struct spi_master *master)
1216 {
1217 struct spi_device *spi;
1218 struct device_node *nc;
1219 int rc;
1220 u32 value;
1221
1222 if (!master->dev.of_node)
1223 return;
1224
1225 for_each_available_child_of_node(master->dev.of_node, nc) {
1226 /* Alloc an spi_device */
1227 spi = spi_alloc_device(master);
1228 if (!spi) {
1229 dev_err(&master->dev, "spi_device alloc error for %s\n",
1230 nc->full_name);
1231 spi_dev_put(spi);
1232 continue;
1233 }
1234
1235 /* Select device driver */
1236 if (of_modalias_node(nc, spi->modalias,
1237 sizeof(spi->modalias)) < 0) {
1238 dev_err(&master->dev, "cannot find modalias for %s\n",
1239 nc->full_name);
1240 spi_dev_put(spi);
1241 continue;
1242 }
1243
1244 /* Device address */
1245 rc = of_property_read_u32(nc, "reg", &value);
1246 if (rc) {
1247 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1248 nc->full_name, rc);
1249 spi_dev_put(spi);
1250 continue;
1251 }
1252 spi->chip_select = value;
1253
1254 /* Mode (clock phase/polarity/etc.) */
1255 if (of_find_property(nc, "spi-cpha", NULL))
1256 spi->mode |= SPI_CPHA;
1257 if (of_find_property(nc, "spi-cpol", NULL))
1258 spi->mode |= SPI_CPOL;
1259 if (of_find_property(nc, "spi-cs-high", NULL))
1260 spi->mode |= SPI_CS_HIGH;
1261 if (of_find_property(nc, "spi-3wire", NULL))
1262 spi->mode |= SPI_3WIRE;
1263 if (of_find_property(nc, "spi-lsb-first", NULL))
1264 spi->mode |= SPI_LSB_FIRST;
1265
1266 /* Device DUAL/QUAD mode */
1267 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1268 switch (value) {
1269 case 1:
1270 break;
1271 case 2:
1272 spi->mode |= SPI_TX_DUAL;
1273 break;
1274 case 4:
1275 spi->mode |= SPI_TX_QUAD;
1276 break;
1277 default:
1278 dev_warn(&master->dev,
1279 "spi-tx-bus-width %d not supported\n",
1280 value);
1281 break;
1282 }
1283 }
1284
1285 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1286 switch (value) {
1287 case 1:
1288 break;
1289 case 2:
1290 spi->mode |= SPI_RX_DUAL;
1291 break;
1292 case 4:
1293 spi->mode |= SPI_RX_QUAD;
1294 break;
1295 default:
1296 dev_warn(&master->dev,
1297 "spi-rx-bus-width %d not supported\n",
1298 value);
1299 break;
1300 }
1301 }
1302
1303 /* Device speed */
1304 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1305 if (rc) {
1306 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1307 nc->full_name, rc);
1308 spi_dev_put(spi);
1309 continue;
1310 }
1311 spi->max_speed_hz = value;
1312
1313 /* IRQ */
1314 spi->irq = irq_of_parse_and_map(nc, 0);
1315
1316 /* Store a pointer to the node in the device structure */
1317 of_node_get(nc);
1318 spi->dev.of_node = nc;
1319
1320 /* Register the new device */
1321 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1322 rc = spi_add_device(spi);
1323 if (rc) {
1324 dev_err(&master->dev, "spi_device register error %s\n",
1325 nc->full_name);
1326 spi_dev_put(spi);
1327 }
1328
1329 }
1330 }
1331 #else
1332 static void of_register_spi_devices(struct spi_master *master) { }
1333 #endif
1334
1335 #ifdef CONFIG_ACPI
1336 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1337 {
1338 struct spi_device *spi = data;
1339
1340 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1341 struct acpi_resource_spi_serialbus *sb;
1342
1343 sb = &ares->data.spi_serial_bus;
1344 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1345 spi->chip_select = sb->device_selection;
1346 spi->max_speed_hz = sb->connection_speed;
1347
1348 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1349 spi->mode |= SPI_CPHA;
1350 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1351 spi->mode |= SPI_CPOL;
1352 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1353 spi->mode |= SPI_CS_HIGH;
1354 }
1355 } else if (spi->irq < 0) {
1356 struct resource r;
1357
1358 if (acpi_dev_resource_interrupt(ares, 0, &r))
1359 spi->irq = r.start;
1360 }
1361
1362 /* Always tell the ACPI core to skip this resource */
1363 return 1;
1364 }
1365
1366 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1367 void *data, void **return_value)
1368 {
1369 struct spi_master *master = data;
1370 struct list_head resource_list;
1371 struct acpi_device *adev;
1372 struct spi_device *spi;
1373 int ret;
1374
1375 if (acpi_bus_get_device(handle, &adev))
1376 return AE_OK;
1377 if (acpi_bus_get_status(adev) || !adev->status.present)
1378 return AE_OK;
1379
1380 spi = spi_alloc_device(master);
1381 if (!spi) {
1382 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1383 dev_name(&adev->dev));
1384 return AE_NO_MEMORY;
1385 }
1386
1387 ACPI_COMPANION_SET(&spi->dev, adev);
1388 spi->irq = -1;
1389
1390 INIT_LIST_HEAD(&resource_list);
1391 ret = acpi_dev_get_resources(adev, &resource_list,
1392 acpi_spi_add_resource, spi);
1393 acpi_dev_free_resource_list(&resource_list);
1394
1395 if (ret < 0 || !spi->max_speed_hz) {
1396 spi_dev_put(spi);
1397 return AE_OK;
1398 }
1399
1400 adev->power.flags.ignore_parent = true;
1401 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1402 if (spi_add_device(spi)) {
1403 adev->power.flags.ignore_parent = false;
1404 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1405 dev_name(&adev->dev));
1406 spi_dev_put(spi);
1407 }
1408
1409 return AE_OK;
1410 }
1411
1412 static void acpi_register_spi_devices(struct spi_master *master)
1413 {
1414 acpi_status status;
1415 acpi_handle handle;
1416
1417 handle = ACPI_HANDLE(master->dev.parent);
1418 if (!handle)
1419 return;
1420
1421 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1422 acpi_spi_add_device, NULL,
1423 master, NULL);
1424 if (ACPI_FAILURE(status))
1425 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1426 }
1427 #else
1428 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1429 #endif /* CONFIG_ACPI */
1430
1431 static void spi_master_release(struct device *dev)
1432 {
1433 struct spi_master *master;
1434
1435 master = container_of(dev, struct spi_master, dev);
1436 kfree(master);
1437 }
1438
1439 static struct class spi_master_class = {
1440 .name = "spi_master",
1441 .owner = THIS_MODULE,
1442 .dev_release = spi_master_release,
1443 };
1444
1445
1446
1447 /**
1448 * spi_alloc_master - allocate SPI master controller
1449 * @dev: the controller, possibly using the platform_bus
1450 * @size: how much zeroed driver-private data to allocate; the pointer to this
1451 * memory is in the driver_data field of the returned device,
1452 * accessible with spi_master_get_devdata().
1453 * Context: can sleep
1454 *
1455 * This call is used only by SPI master controller drivers, which are the
1456 * only ones directly touching chip registers. It's how they allocate
1457 * an spi_master structure, prior to calling spi_register_master().
1458 *
1459 * This must be called from context that can sleep. It returns the SPI
1460 * master structure on success, else NULL.
1461 *
1462 * The caller is responsible for assigning the bus number and initializing
1463 * the master's methods before calling spi_register_master(); and (after errors
1464 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1465 * leak.
1466 */
1467 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1468 {
1469 struct spi_master *master;
1470
1471 if (!dev)
1472 return NULL;
1473
1474 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1475 if (!master)
1476 return NULL;
1477
1478 device_initialize(&master->dev);
1479 master->bus_num = -1;
1480 master->num_chipselect = 1;
1481 master->dev.class = &spi_master_class;
1482 master->dev.parent = get_device(dev);
1483 spi_master_set_devdata(master, &master[1]);
1484
1485 return master;
1486 }
1487 EXPORT_SYMBOL_GPL(spi_alloc_master);
1488
1489 #ifdef CONFIG_OF
1490 static int of_spi_register_master(struct spi_master *master)
1491 {
1492 int nb, i, *cs;
1493 struct device_node *np = master->dev.of_node;
1494
1495 if (!np)
1496 return 0;
1497
1498 nb = of_gpio_named_count(np, "cs-gpios");
1499 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1500
1501 /* Return error only for an incorrectly formed cs-gpios property */
1502 if (nb == 0 || nb == -ENOENT)
1503 return 0;
1504 else if (nb < 0)
1505 return nb;
1506
1507 cs = devm_kzalloc(&master->dev,
1508 sizeof(int) * master->num_chipselect,
1509 GFP_KERNEL);
1510 master->cs_gpios = cs;
1511
1512 if (!master->cs_gpios)
1513 return -ENOMEM;
1514
1515 for (i = 0; i < master->num_chipselect; i++)
1516 cs[i] = -ENOENT;
1517
1518 for (i = 0; i < nb; i++)
1519 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1520
1521 return 0;
1522 }
1523 #else
1524 static int of_spi_register_master(struct spi_master *master)
1525 {
1526 return 0;
1527 }
1528 #endif
1529
1530 /**
1531 * spi_register_master - register SPI master controller
1532 * @master: initialized master, originally from spi_alloc_master()
1533 * Context: can sleep
1534 *
1535 * SPI master controllers connect to their drivers using some non-SPI bus,
1536 * such as the platform bus. The final stage of probe() in that code
1537 * includes calling spi_register_master() to hook up to this SPI bus glue.
1538 *
1539 * SPI controllers use board specific (often SOC specific) bus numbers,
1540 * and board-specific addressing for SPI devices combines those numbers
1541 * with chip select numbers. Since SPI does not directly support dynamic
1542 * device identification, boards need configuration tables telling which
1543 * chip is at which address.
1544 *
1545 * This must be called from context that can sleep. It returns zero on
1546 * success, else a negative error code (dropping the master's refcount).
1547 * After a successful return, the caller is responsible for calling
1548 * spi_unregister_master().
1549 */
1550 int spi_register_master(struct spi_master *master)
1551 {
1552 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1553 struct device *dev = master->dev.parent;
1554 struct boardinfo *bi;
1555 int status = -ENODEV;
1556 int dynamic = 0;
1557
1558 if (!dev)
1559 return -ENODEV;
1560
1561 status = of_spi_register_master(master);
1562 if (status)
1563 return status;
1564
1565 /* even if it's just one always-selected device, there must
1566 * be at least one chipselect
1567 */
1568 if (master->num_chipselect == 0)
1569 return -EINVAL;
1570
1571 if ((master->bus_num < 0) && master->dev.of_node)
1572 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1573
1574 /* convention: dynamically assigned bus IDs count down from the max */
1575 if (master->bus_num < 0) {
1576 /* FIXME switch to an IDR based scheme, something like
1577 * I2C now uses, so we can't run out of "dynamic" IDs
1578 */
1579 master->bus_num = atomic_dec_return(&dyn_bus_id);
1580 dynamic = 1;
1581 }
1582
1583 spin_lock_init(&master->bus_lock_spinlock);
1584 mutex_init(&master->bus_lock_mutex);
1585 master->bus_lock_flag = 0;
1586 init_completion(&master->xfer_completion);
1587 if (!master->max_dma_len)
1588 master->max_dma_len = INT_MAX;
1589
1590 /* register the device, then userspace will see it.
1591 * registration fails if the bus ID is in use.
1592 */
1593 dev_set_name(&master->dev, "spi%u", master->bus_num);
1594 status = device_add(&master->dev);
1595 if (status < 0)
1596 goto done;
1597 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1598 dynamic ? " (dynamic)" : "");
1599
1600 /* If we're using a queued driver, start the queue */
1601 if (master->transfer)
1602 dev_info(dev, "master is unqueued, this is deprecated\n");
1603 else {
1604 status = spi_master_initialize_queue(master);
1605 if (status) {
1606 device_del(&master->dev);
1607 goto done;
1608 }
1609 }
1610
1611 mutex_lock(&board_lock);
1612 list_add_tail(&master->list, &spi_master_list);
1613 list_for_each_entry(bi, &board_list, list)
1614 spi_match_master_to_boardinfo(master, &bi->board_info);
1615 mutex_unlock(&board_lock);
1616
1617 /* Register devices from the device tree and ACPI */
1618 of_register_spi_devices(master);
1619 acpi_register_spi_devices(master);
1620 done:
1621 return status;
1622 }
1623 EXPORT_SYMBOL_GPL(spi_register_master);
1624
1625 static void devm_spi_unregister(struct device *dev, void *res)
1626 {
1627 spi_unregister_master(*(struct spi_master **)res);
1628 }
1629
1630 /**
1631 * dev_spi_register_master - register managed SPI master controller
1632 * @dev: device managing SPI master
1633 * @master: initialized master, originally from spi_alloc_master()
1634 * Context: can sleep
1635 *
1636 * Register a SPI device as with spi_register_master() which will
1637 * automatically be unregister
1638 */
1639 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1640 {
1641 struct spi_master **ptr;
1642 int ret;
1643
1644 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1645 if (!ptr)
1646 return -ENOMEM;
1647
1648 ret = spi_register_master(master);
1649 if (!ret) {
1650 *ptr = master;
1651 devres_add(dev, ptr);
1652 } else {
1653 devres_free(ptr);
1654 }
1655
1656 return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1659
1660 static int __unregister(struct device *dev, void *null)
1661 {
1662 spi_unregister_device(to_spi_device(dev));
1663 return 0;
1664 }
1665
1666 /**
1667 * spi_unregister_master - unregister SPI master controller
1668 * @master: the master being unregistered
1669 * Context: can sleep
1670 *
1671 * This call is used only by SPI master controller drivers, which are the
1672 * only ones directly touching chip registers.
1673 *
1674 * This must be called from context that can sleep.
1675 */
1676 void spi_unregister_master(struct spi_master *master)
1677 {
1678 int dummy;
1679
1680 if (master->queued) {
1681 if (spi_destroy_queue(master))
1682 dev_err(&master->dev, "queue remove failed\n");
1683 }
1684
1685 mutex_lock(&board_lock);
1686 list_del(&master->list);
1687 mutex_unlock(&board_lock);
1688
1689 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1690 device_unregister(&master->dev);
1691 }
1692 EXPORT_SYMBOL_GPL(spi_unregister_master);
1693
1694 int spi_master_suspend(struct spi_master *master)
1695 {
1696 int ret;
1697
1698 /* Basically no-ops for non-queued masters */
1699 if (!master->queued)
1700 return 0;
1701
1702 ret = spi_stop_queue(master);
1703 if (ret)
1704 dev_err(&master->dev, "queue stop failed\n");
1705
1706 return ret;
1707 }
1708 EXPORT_SYMBOL_GPL(spi_master_suspend);
1709
1710 int spi_master_resume(struct spi_master *master)
1711 {
1712 int ret;
1713
1714 if (!master->queued)
1715 return 0;
1716
1717 ret = spi_start_queue(master);
1718 if (ret)
1719 dev_err(&master->dev, "queue restart failed\n");
1720
1721 return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(spi_master_resume);
1724
1725 static int __spi_master_match(struct device *dev, const void *data)
1726 {
1727 struct spi_master *m;
1728 const u16 *bus_num = data;
1729
1730 m = container_of(dev, struct spi_master, dev);
1731 return m->bus_num == *bus_num;
1732 }
1733
1734 /**
1735 * spi_busnum_to_master - look up master associated with bus_num
1736 * @bus_num: the master's bus number
1737 * Context: can sleep
1738 *
1739 * This call may be used with devices that are registered after
1740 * arch init time. It returns a refcounted pointer to the relevant
1741 * spi_master (which the caller must release), or NULL if there is
1742 * no such master registered.
1743 */
1744 struct spi_master *spi_busnum_to_master(u16 bus_num)
1745 {
1746 struct device *dev;
1747 struct spi_master *master = NULL;
1748
1749 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1750 __spi_master_match);
1751 if (dev)
1752 master = container_of(dev, struct spi_master, dev);
1753 /* reference got in class_find_device */
1754 return master;
1755 }
1756 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1757
1758
1759 /*-------------------------------------------------------------------------*/
1760
1761 /* Core methods for SPI master protocol drivers. Some of the
1762 * other core methods are currently defined as inline functions.
1763 */
1764
1765 /**
1766 * spi_setup - setup SPI mode and clock rate
1767 * @spi: the device whose settings are being modified
1768 * Context: can sleep, and no requests are queued to the device
1769 *
1770 * SPI protocol drivers may need to update the transfer mode if the
1771 * device doesn't work with its default. They may likewise need
1772 * to update clock rates or word sizes from initial values. This function
1773 * changes those settings, and must be called from a context that can sleep.
1774 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1775 * effect the next time the device is selected and data is transferred to
1776 * or from it. When this function returns, the spi device is deselected.
1777 *
1778 * Note that this call will fail if the protocol driver specifies an option
1779 * that the underlying controller or its driver does not support. For
1780 * example, not all hardware supports wire transfers using nine bit words,
1781 * LSB-first wire encoding, or active-high chipselects.
1782 */
1783 int spi_setup(struct spi_device *spi)
1784 {
1785 unsigned bad_bits, ugly_bits;
1786 int status = 0;
1787
1788 /* check mode to prevent that DUAL and QUAD set at the same time
1789 */
1790 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1791 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1792 dev_err(&spi->dev,
1793 "setup: can not select dual and quad at the same time\n");
1794 return -EINVAL;
1795 }
1796 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1797 */
1798 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1799 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1800 return -EINVAL;
1801 /* help drivers fail *cleanly* when they need options
1802 * that aren't supported with their current master
1803 */
1804 bad_bits = spi->mode & ~spi->master->mode_bits;
1805 ugly_bits = bad_bits &
1806 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1807 if (ugly_bits) {
1808 dev_warn(&spi->dev,
1809 "setup: ignoring unsupported mode bits %x\n",
1810 ugly_bits);
1811 spi->mode &= ~ugly_bits;
1812 bad_bits &= ~ugly_bits;
1813 }
1814 if (bad_bits) {
1815 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1816 bad_bits);
1817 return -EINVAL;
1818 }
1819
1820 if (!spi->bits_per_word)
1821 spi->bits_per_word = 8;
1822
1823 if (!spi->max_speed_hz)
1824 spi->max_speed_hz = spi->master->max_speed_hz;
1825
1826 if (spi->master->setup)
1827 status = spi->master->setup(spi);
1828
1829 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1830 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1831 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1832 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1833 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1834 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1835 spi->bits_per_word, spi->max_speed_hz,
1836 status);
1837
1838 return status;
1839 }
1840 EXPORT_SYMBOL_GPL(spi_setup);
1841
1842 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1843 {
1844 struct spi_master *master = spi->master;
1845 struct spi_transfer *xfer;
1846 int w_size;
1847
1848 if (list_empty(&message->transfers))
1849 return -EINVAL;
1850
1851 /* Half-duplex links include original MicroWire, and ones with
1852 * only one data pin like SPI_3WIRE (switches direction) or where
1853 * either MOSI or MISO is missing. They can also be caused by
1854 * software limitations.
1855 */
1856 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1857 || (spi->mode & SPI_3WIRE)) {
1858 unsigned flags = master->flags;
1859
1860 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1861 if (xfer->rx_buf && xfer->tx_buf)
1862 return -EINVAL;
1863 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1864 return -EINVAL;
1865 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1866 return -EINVAL;
1867 }
1868 }
1869
1870 /**
1871 * Set transfer bits_per_word and max speed as spi device default if
1872 * it is not set for this transfer.
1873 * Set transfer tx_nbits and rx_nbits as single transfer default
1874 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1875 */
1876 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1877 message->frame_length += xfer->len;
1878 if (!xfer->bits_per_word)
1879 xfer->bits_per_word = spi->bits_per_word;
1880
1881 if (!xfer->speed_hz)
1882 xfer->speed_hz = spi->max_speed_hz;
1883
1884 if (master->max_speed_hz &&
1885 xfer->speed_hz > master->max_speed_hz)
1886 xfer->speed_hz = master->max_speed_hz;
1887
1888 if (master->bits_per_word_mask) {
1889 /* Only 32 bits fit in the mask */
1890 if (xfer->bits_per_word > 32)
1891 return -EINVAL;
1892 if (!(master->bits_per_word_mask &
1893 BIT(xfer->bits_per_word - 1)))
1894 return -EINVAL;
1895 }
1896
1897 /*
1898 * SPI transfer length should be multiple of SPI word size
1899 * where SPI word size should be power-of-two multiple
1900 */
1901 if (xfer->bits_per_word <= 8)
1902 w_size = 1;
1903 else if (xfer->bits_per_word <= 16)
1904 w_size = 2;
1905 else
1906 w_size = 4;
1907
1908 /* No partial transfers accepted */
1909 if (xfer->len % w_size)
1910 return -EINVAL;
1911
1912 if (xfer->speed_hz && master->min_speed_hz &&
1913 xfer->speed_hz < master->min_speed_hz)
1914 return -EINVAL;
1915
1916 if (xfer->tx_buf && !xfer->tx_nbits)
1917 xfer->tx_nbits = SPI_NBITS_SINGLE;
1918 if (xfer->rx_buf && !xfer->rx_nbits)
1919 xfer->rx_nbits = SPI_NBITS_SINGLE;
1920 /* check transfer tx/rx_nbits:
1921 * 1. check the value matches one of single, dual and quad
1922 * 2. check tx/rx_nbits match the mode in spi_device
1923 */
1924 if (xfer->tx_buf) {
1925 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1926 xfer->tx_nbits != SPI_NBITS_DUAL &&
1927 xfer->tx_nbits != SPI_NBITS_QUAD)
1928 return -EINVAL;
1929 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1930 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1931 return -EINVAL;
1932 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1933 !(spi->mode & SPI_TX_QUAD))
1934 return -EINVAL;
1935 }
1936 /* check transfer rx_nbits */
1937 if (xfer->rx_buf) {
1938 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1939 xfer->rx_nbits != SPI_NBITS_DUAL &&
1940 xfer->rx_nbits != SPI_NBITS_QUAD)
1941 return -EINVAL;
1942 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1943 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1944 return -EINVAL;
1945 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1946 !(spi->mode & SPI_RX_QUAD))
1947 return -EINVAL;
1948 }
1949 }
1950
1951 message->status = -EINPROGRESS;
1952
1953 return 0;
1954 }
1955
1956 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1957 {
1958 struct spi_master *master = spi->master;
1959
1960 message->spi = spi;
1961
1962 trace_spi_message_submit(message);
1963
1964 return master->transfer(spi, message);
1965 }
1966
1967 /**
1968 * spi_async - asynchronous SPI transfer
1969 * @spi: device with which data will be exchanged
1970 * @message: describes the data transfers, including completion callback
1971 * Context: any (irqs may be blocked, etc)
1972 *
1973 * This call may be used in_irq and other contexts which can't sleep,
1974 * as well as from task contexts which can sleep.
1975 *
1976 * The completion callback is invoked in a context which can't sleep.
1977 * Before that invocation, the value of message->status is undefined.
1978 * When the callback is issued, message->status holds either zero (to
1979 * indicate complete success) or a negative error code. After that
1980 * callback returns, the driver which issued the transfer request may
1981 * deallocate the associated memory; it's no longer in use by any SPI
1982 * core or controller driver code.
1983 *
1984 * Note that although all messages to a spi_device are handled in
1985 * FIFO order, messages may go to different devices in other orders.
1986 * Some device might be higher priority, or have various "hard" access
1987 * time requirements, for example.
1988 *
1989 * On detection of any fault during the transfer, processing of
1990 * the entire message is aborted, and the device is deselected.
1991 * Until returning from the associated message completion callback,
1992 * no other spi_message queued to that device will be processed.
1993 * (This rule applies equally to all the synchronous transfer calls,
1994 * which are wrappers around this core asynchronous primitive.)
1995 */
1996 int spi_async(struct spi_device *spi, struct spi_message *message)
1997 {
1998 struct spi_master *master = spi->master;
1999 int ret;
2000 unsigned long flags;
2001
2002 ret = __spi_validate(spi, message);
2003 if (ret != 0)
2004 return ret;
2005
2006 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2007
2008 if (master->bus_lock_flag)
2009 ret = -EBUSY;
2010 else
2011 ret = __spi_async(spi, message);
2012
2013 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(spi_async);
2018
2019 /**
2020 * spi_async_locked - version of spi_async with exclusive bus usage
2021 * @spi: device with which data will be exchanged
2022 * @message: describes the data transfers, including completion callback
2023 * Context: any (irqs may be blocked, etc)
2024 *
2025 * This call may be used in_irq and other contexts which can't sleep,
2026 * as well as from task contexts which can sleep.
2027 *
2028 * The completion callback is invoked in a context which can't sleep.
2029 * Before that invocation, the value of message->status is undefined.
2030 * When the callback is issued, message->status holds either zero (to
2031 * indicate complete success) or a negative error code. After that
2032 * callback returns, the driver which issued the transfer request may
2033 * deallocate the associated memory; it's no longer in use by any SPI
2034 * core or controller driver code.
2035 *
2036 * Note that although all messages to a spi_device are handled in
2037 * FIFO order, messages may go to different devices in other orders.
2038 * Some device might be higher priority, or have various "hard" access
2039 * time requirements, for example.
2040 *
2041 * On detection of any fault during the transfer, processing of
2042 * the entire message is aborted, and the device is deselected.
2043 * Until returning from the associated message completion callback,
2044 * no other spi_message queued to that device will be processed.
2045 * (This rule applies equally to all the synchronous transfer calls,
2046 * which are wrappers around this core asynchronous primitive.)
2047 */
2048 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2049 {
2050 struct spi_master *master = spi->master;
2051 int ret;
2052 unsigned long flags;
2053
2054 ret = __spi_validate(spi, message);
2055 if (ret != 0)
2056 return ret;
2057
2058 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2059
2060 ret = __spi_async(spi, message);
2061
2062 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2063
2064 return ret;
2065
2066 }
2067 EXPORT_SYMBOL_GPL(spi_async_locked);
2068
2069
2070 /*-------------------------------------------------------------------------*/
2071
2072 /* Utility methods for SPI master protocol drivers, layered on
2073 * top of the core. Some other utility methods are defined as
2074 * inline functions.
2075 */
2076
2077 static void spi_complete(void *arg)
2078 {
2079 complete(arg);
2080 }
2081
2082 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2083 int bus_locked)
2084 {
2085 DECLARE_COMPLETION_ONSTACK(done);
2086 int status;
2087 struct spi_master *master = spi->master;
2088
2089 message->complete = spi_complete;
2090 message->context = &done;
2091
2092 if (!bus_locked)
2093 mutex_lock(&master->bus_lock_mutex);
2094
2095 status = spi_async_locked(spi, message);
2096
2097 if (!bus_locked)
2098 mutex_unlock(&master->bus_lock_mutex);
2099
2100 if (status == 0) {
2101 wait_for_completion(&done);
2102 status = message->status;
2103 }
2104 message->context = NULL;
2105 return status;
2106 }
2107
2108 /**
2109 * spi_sync - blocking/synchronous SPI data transfers
2110 * @spi: device with which data will be exchanged
2111 * @message: describes the data transfers
2112 * Context: can sleep
2113 *
2114 * This call may only be used from a context that may sleep. The sleep
2115 * is non-interruptible, and has no timeout. Low-overhead controller
2116 * drivers may DMA directly into and out of the message buffers.
2117 *
2118 * Note that the SPI device's chip select is active during the message,
2119 * and then is normally disabled between messages. Drivers for some
2120 * frequently-used devices may want to minimize costs of selecting a chip,
2121 * by leaving it selected in anticipation that the next message will go
2122 * to the same chip. (That may increase power usage.)
2123 *
2124 * Also, the caller is guaranteeing that the memory associated with the
2125 * message will not be freed before this call returns.
2126 *
2127 * It returns zero on success, else a negative error code.
2128 */
2129 int spi_sync(struct spi_device *spi, struct spi_message *message)
2130 {
2131 return __spi_sync(spi, message, 0);
2132 }
2133 EXPORT_SYMBOL_GPL(spi_sync);
2134
2135 /**
2136 * spi_sync_locked - version of spi_sync with exclusive bus usage
2137 * @spi: device with which data will be exchanged
2138 * @message: describes the data transfers
2139 * Context: can sleep
2140 *
2141 * This call may only be used from a context that may sleep. The sleep
2142 * is non-interruptible, and has no timeout. Low-overhead controller
2143 * drivers may DMA directly into and out of the message buffers.
2144 *
2145 * This call should be used by drivers that require exclusive access to the
2146 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2147 * be released by a spi_bus_unlock call when the exclusive access is over.
2148 *
2149 * It returns zero on success, else a negative error code.
2150 */
2151 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2152 {
2153 return __spi_sync(spi, message, 1);
2154 }
2155 EXPORT_SYMBOL_GPL(spi_sync_locked);
2156
2157 /**
2158 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2159 * @master: SPI bus master that should be locked for exclusive bus access
2160 * Context: can sleep
2161 *
2162 * This call may only be used from a context that may sleep. The sleep
2163 * is non-interruptible, and has no timeout.
2164 *
2165 * This call should be used by drivers that require exclusive access to the
2166 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2167 * exclusive access is over. Data transfer must be done by spi_sync_locked
2168 * and spi_async_locked calls when the SPI bus lock is held.
2169 *
2170 * It returns zero on success, else a negative error code.
2171 */
2172 int spi_bus_lock(struct spi_master *master)
2173 {
2174 unsigned long flags;
2175
2176 mutex_lock(&master->bus_lock_mutex);
2177
2178 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2179 master->bus_lock_flag = 1;
2180 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2181
2182 /* mutex remains locked until spi_bus_unlock is called */
2183
2184 return 0;
2185 }
2186 EXPORT_SYMBOL_GPL(spi_bus_lock);
2187
2188 /**
2189 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2190 * @master: SPI bus master that was locked for exclusive bus access
2191 * Context: can sleep
2192 *
2193 * This call may only be used from a context that may sleep. The sleep
2194 * is non-interruptible, and has no timeout.
2195 *
2196 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2197 * call.
2198 *
2199 * It returns zero on success, else a negative error code.
2200 */
2201 int spi_bus_unlock(struct spi_master *master)
2202 {
2203 master->bus_lock_flag = 0;
2204
2205 mutex_unlock(&master->bus_lock_mutex);
2206
2207 return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2210
2211 /* portable code must never pass more than 32 bytes */
2212 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2213
2214 static u8 *buf;
2215
2216 /**
2217 * spi_write_then_read - SPI synchronous write followed by read
2218 * @spi: device with which data will be exchanged
2219 * @txbuf: data to be written (need not be dma-safe)
2220 * @n_tx: size of txbuf, in bytes
2221 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2222 * @n_rx: size of rxbuf, in bytes
2223 * Context: can sleep
2224 *
2225 * This performs a half duplex MicroWire style transaction with the
2226 * device, sending txbuf and then reading rxbuf. The return value
2227 * is zero for success, else a negative errno status code.
2228 * This call may only be used from a context that may sleep.
2229 *
2230 * Parameters to this routine are always copied using a small buffer;
2231 * portable code should never use this for more than 32 bytes.
2232 * Performance-sensitive or bulk transfer code should instead use
2233 * spi_{async,sync}() calls with dma-safe buffers.
2234 */
2235 int spi_write_then_read(struct spi_device *spi,
2236 const void *txbuf, unsigned n_tx,
2237 void *rxbuf, unsigned n_rx)
2238 {
2239 static DEFINE_MUTEX(lock);
2240
2241 int status;
2242 struct spi_message message;
2243 struct spi_transfer x[2];
2244 u8 *local_buf;
2245
2246 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2247 * copying here, (as a pure convenience thing), but we can
2248 * keep heap costs out of the hot path unless someone else is
2249 * using the pre-allocated buffer or the transfer is too large.
2250 */
2251 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2252 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2253 GFP_KERNEL | GFP_DMA);
2254 if (!local_buf)
2255 return -ENOMEM;
2256 } else {
2257 local_buf = buf;
2258 }
2259
2260 spi_message_init(&message);
2261 memset(x, 0, sizeof(x));
2262 if (n_tx) {
2263 x[0].len = n_tx;
2264 spi_message_add_tail(&x[0], &message);
2265 }
2266 if (n_rx) {
2267 x[1].len = n_rx;
2268 spi_message_add_tail(&x[1], &message);
2269 }
2270
2271 memcpy(local_buf, txbuf, n_tx);
2272 x[0].tx_buf = local_buf;
2273 x[1].rx_buf = local_buf + n_tx;
2274
2275 /* do the i/o */
2276 status = spi_sync(spi, &message);
2277 if (status == 0)
2278 memcpy(rxbuf, x[1].rx_buf, n_rx);
2279
2280 if (x[0].tx_buf == buf)
2281 mutex_unlock(&lock);
2282 else
2283 kfree(local_buf);
2284
2285 return status;
2286 }
2287 EXPORT_SYMBOL_GPL(spi_write_then_read);
2288
2289 /*-------------------------------------------------------------------------*/
2290
2291 static int __init spi_init(void)
2292 {
2293 int status;
2294
2295 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2296 if (!buf) {
2297 status = -ENOMEM;
2298 goto err0;
2299 }
2300
2301 status = bus_register(&spi_bus_type);
2302 if (status < 0)
2303 goto err1;
2304
2305 status = class_register(&spi_master_class);
2306 if (status < 0)
2307 goto err2;
2308 return 0;
2309
2310 err2:
2311 bus_unregister(&spi_bus_type);
2312 err1:
2313 kfree(buf);
2314 buf = NULL;
2315 err0:
2316 return status;
2317 }
2318
2319 /* board_info is normally registered in arch_initcall(),
2320 * but even essential drivers wait till later
2321 *
2322 * REVISIT only boardinfo really needs static linking. the rest (device and
2323 * driver registration) _could_ be dynamically linked (modular) ... costs
2324 * include needing to have boardinfo data structures be much more public.
2325 */
2326 postcore_initcall(spi_init);
2327
This page took 0.081654 seconds and 5 git commands to generate.