Merge tag 'media/v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89 } \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98 { \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105 } \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150 &dev_attr_modalias.attr,
151 NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155 .attrs = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159 &dev_attr_spi_device_messages.attr,
160 &dev_attr_spi_device_transfers.attr,
161 &dev_attr_spi_device_errors.attr,
162 &dev_attr_spi_device_timedout.attr,
163 &dev_attr_spi_device_spi_sync.attr,
164 &dev_attr_spi_device_spi_sync_immediate.attr,
165 &dev_attr_spi_device_spi_async.attr,
166 &dev_attr_spi_device_bytes.attr,
167 &dev_attr_spi_device_bytes_rx.attr,
168 &dev_attr_spi_device_bytes_tx.attr,
169 &dev_attr_spi_device_transfer_bytes_histo0.attr,
170 &dev_attr_spi_device_transfer_bytes_histo1.attr,
171 &dev_attr_spi_device_transfer_bytes_histo2.attr,
172 &dev_attr_spi_device_transfer_bytes_histo3.attr,
173 &dev_attr_spi_device_transfer_bytes_histo4.attr,
174 &dev_attr_spi_device_transfer_bytes_histo5.attr,
175 &dev_attr_spi_device_transfer_bytes_histo6.attr,
176 &dev_attr_spi_device_transfer_bytes_histo7.attr,
177 &dev_attr_spi_device_transfer_bytes_histo8.attr,
178 &dev_attr_spi_device_transfer_bytes_histo9.attr,
179 &dev_attr_spi_device_transfer_bytes_histo10.attr,
180 &dev_attr_spi_device_transfer_bytes_histo11.attr,
181 &dev_attr_spi_device_transfer_bytes_histo12.attr,
182 &dev_attr_spi_device_transfer_bytes_histo13.attr,
183 &dev_attr_spi_device_transfer_bytes_histo14.attr,
184 &dev_attr_spi_device_transfer_bytes_histo15.attr,
185 &dev_attr_spi_device_transfer_bytes_histo16.attr,
186 &dev_attr_spi_device_transfers_split_maxsize.attr,
187 NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191 .name = "statistics",
192 .attrs = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196 &spi_dev_group,
197 &spi_device_statistics_group,
198 NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202 &dev_attr_spi_master_messages.attr,
203 &dev_attr_spi_master_transfers.attr,
204 &dev_attr_spi_master_errors.attr,
205 &dev_attr_spi_master_timedout.attr,
206 &dev_attr_spi_master_spi_sync.attr,
207 &dev_attr_spi_master_spi_sync_immediate.attr,
208 &dev_attr_spi_master_spi_async.attr,
209 &dev_attr_spi_master_bytes.attr,
210 &dev_attr_spi_master_bytes_rx.attr,
211 &dev_attr_spi_master_bytes_tx.attr,
212 &dev_attr_spi_master_transfer_bytes_histo0.attr,
213 &dev_attr_spi_master_transfer_bytes_histo1.attr,
214 &dev_attr_spi_master_transfer_bytes_histo2.attr,
215 &dev_attr_spi_master_transfer_bytes_histo3.attr,
216 &dev_attr_spi_master_transfer_bytes_histo4.attr,
217 &dev_attr_spi_master_transfer_bytes_histo5.attr,
218 &dev_attr_spi_master_transfer_bytes_histo6.attr,
219 &dev_attr_spi_master_transfer_bytes_histo7.attr,
220 &dev_attr_spi_master_transfer_bytes_histo8.attr,
221 &dev_attr_spi_master_transfer_bytes_histo9.attr,
222 &dev_attr_spi_master_transfer_bytes_histo10.attr,
223 &dev_attr_spi_master_transfer_bytes_histo11.attr,
224 &dev_attr_spi_master_transfer_bytes_histo12.attr,
225 &dev_attr_spi_master_transfer_bytes_histo13.attr,
226 &dev_attr_spi_master_transfer_bytes_histo14.attr,
227 &dev_attr_spi_master_transfer_bytes_histo15.attr,
228 &dev_attr_spi_master_transfer_bytes_histo16.attr,
229 &dev_attr_spi_master_transfers_split_maxsize.attr,
230 NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234 .name = "statistics",
235 .attrs = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239 &spi_master_statistics_group,
240 NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 struct spi_transfer *xfer,
245 struct spi_master *master)
246 {
247 unsigned long flags;
248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250 if (l2len < 0)
251 l2len = 0;
252
253 spin_lock_irqsave(&stats->lock, flags);
254
255 stats->transfers++;
256 stats->transfer_bytes_histo[l2len]++;
257
258 stats->bytes += xfer->len;
259 if ((xfer->tx_buf) &&
260 (xfer->tx_buf != master->dummy_tx))
261 stats->bytes_tx += xfer->len;
262 if ((xfer->rx_buf) &&
263 (xfer->rx_buf != master->dummy_rx))
264 stats->bytes_rx += xfer->len;
265
266 spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271 * and the sysfs version makes coldplug work too.
272 */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 const struct spi_device *sdev)
276 {
277 while (id->name[0]) {
278 if (!strcmp(sdev->modalias, id->name))
279 return id;
280 id++;
281 }
282 return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289 return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 const struct spi_device *spi = to_spi_device(dev);
296 const struct spi_driver *sdrv = to_spi_driver(drv);
297
298 /* Attempt an OF style match */
299 if (of_driver_match_device(dev, drv))
300 return 1;
301
302 /* Then try ACPI */
303 if (acpi_driver_match_device(dev, drv))
304 return 1;
305
306 if (sdrv->id_table)
307 return !!spi_match_id(sdrv->id_table, spi);
308
309 return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 const struct spi_device *spi = to_spi_device(dev);
315 int rc;
316
317 rc = acpi_device_uevent_modalias(dev, env);
318 if (rc != -ENODEV)
319 return rc;
320
321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326 .name = "spi",
327 .dev_groups = spi_dev_groups,
328 .match = spi_match_device,
329 .uevent = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
337 struct spi_device *spi = to_spi_device(dev);
338 int ret;
339
340 ret = of_clk_set_defaults(dev->of_node, false);
341 if (ret)
342 return ret;
343
344 if (dev->of_node) {
345 spi->irq = of_irq_get(dev->of_node, 0);
346 if (spi->irq == -EPROBE_DEFER)
347 return -EPROBE_DEFER;
348 if (spi->irq < 0)
349 spi->irq = 0;
350 }
351
352 ret = dev_pm_domain_attach(dev, true);
353 if (ret != -EPROBE_DEFER) {
354 ret = sdrv->probe(spi);
355 if (ret)
356 dev_pm_domain_detach(dev, true);
357 }
358
359 return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
365 int ret;
366
367 ret = sdrv->remove(to_spi_device(dev));
368 dev_pm_domain_detach(dev, true);
369
370 return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
376
377 sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381 * __spi_register_driver - register a SPI driver
382 * @owner: owner module of the driver to register
383 * @sdrv: the driver to register
384 * Context: can sleep
385 *
386 * Return: zero on success, else a negative error code.
387 */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 sdrv->driver.owner = owner;
391 sdrv->driver.bus = &spi_bus_type;
392 if (sdrv->probe)
393 sdrv->driver.probe = spi_drv_probe;
394 if (sdrv->remove)
395 sdrv->driver.remove = spi_drv_remove;
396 if (sdrv->shutdown)
397 sdrv->driver.shutdown = spi_drv_shutdown;
398 return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405 * would make them board-specific. Similarly with SPI master drivers.
406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
407 * with other readonly (flashable) information about mainboard devices.
408 */
409
410 struct boardinfo {
411 struct list_head list;
412 struct spi_board_info board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419 * Used to protect add/del opertion for board_info list and
420 * spi_master list, and their matching process
421 */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425 * spi_alloc_device - Allocate a new SPI device
426 * @master: Controller to which device is connected
427 * Context: can sleep
428 *
429 * Allows a driver to allocate and initialize a spi_device without
430 * registering it immediately. This allows a driver to directly
431 * fill the spi_device with device parameters before calling
432 * spi_add_device() on it.
433 *
434 * Caller is responsible to call spi_add_device() on the returned
435 * spi_device structure to add it to the SPI master. If the caller
436 * needs to discard the spi_device without adding it, then it should
437 * call spi_dev_put() on it.
438 *
439 * Return: a pointer to the new device, or NULL.
440 */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 struct spi_device *spi;
444
445 if (!spi_master_get(master))
446 return NULL;
447
448 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 if (!spi) {
450 spi_master_put(master);
451 return NULL;
452 }
453
454 spi->master = master;
455 spi->dev.parent = &master->dev;
456 spi->dev.bus = &spi_bus_type;
457 spi->dev.release = spidev_release;
458 spi->cs_gpio = -ENOENT;
459
460 spin_lock_init(&spi->statistics.lock);
461
462 device_initialize(&spi->dev);
463 return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471 if (adev) {
472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 return;
474 }
475
476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 struct spi_device *spi = to_spi_device(dev);
483 struct spi_device *new_spi = data;
484
485 if (spi->master == new_spi->master &&
486 spi->chip_select == new_spi->chip_select)
487 return -EBUSY;
488 return 0;
489 }
490
491 /**
492 * spi_add_device - Add spi_device allocated with spi_alloc_device
493 * @spi: spi_device to register
494 *
495 * Companion function to spi_alloc_device. Devices allocated with
496 * spi_alloc_device can be added onto the spi bus with this function.
497 *
498 * Return: 0 on success; negative errno on failure
499 */
500 int spi_add_device(struct spi_device *spi)
501 {
502 static DEFINE_MUTEX(spi_add_lock);
503 struct spi_master *master = spi->master;
504 struct device *dev = master->dev.parent;
505 int status;
506
507 /* Chipselects are numbered 0..max; validate. */
508 if (spi->chip_select >= master->num_chipselect) {
509 dev_err(dev, "cs%d >= max %d\n",
510 spi->chip_select,
511 master->num_chipselect);
512 return -EINVAL;
513 }
514
515 /* Set the bus ID string */
516 spi_dev_set_name(spi);
517
518 /* We need to make sure there's no other device with this
519 * chipselect **BEFORE** we call setup(), else we'll trash
520 * its configuration. Lock against concurrent add() calls.
521 */
522 mutex_lock(&spi_add_lock);
523
524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 if (status) {
526 dev_err(dev, "chipselect %d already in use\n",
527 spi->chip_select);
528 goto done;
529 }
530
531 if (master->cs_gpios)
532 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534 /* Drivers may modify this initial i/o setup, but will
535 * normally rely on the device being setup. Devices
536 * using SPI_CS_HIGH can't coexist well otherwise...
537 */
538 status = spi_setup(spi);
539 if (status < 0) {
540 dev_err(dev, "can't setup %s, status %d\n",
541 dev_name(&spi->dev), status);
542 goto done;
543 }
544
545 /* Device may be bound to an active driver when this returns */
546 status = device_add(&spi->dev);
547 if (status < 0)
548 dev_err(dev, "can't add %s, status %d\n",
549 dev_name(&spi->dev), status);
550 else
551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554 mutex_unlock(&spi_add_lock);
555 return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560 * spi_new_device - instantiate one new SPI device
561 * @master: Controller to which device is connected
562 * @chip: Describes the SPI device
563 * Context: can sleep
564 *
565 * On typical mainboards, this is purely internal; and it's not needed
566 * after board init creates the hard-wired devices. Some development
567 * platforms may not be able to use spi_register_board_info though, and
568 * this is exported so that for example a USB or parport based adapter
569 * driver could add devices (which it would learn about out-of-band).
570 *
571 * Return: the new device, or NULL.
572 */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 struct spi_board_info *chip)
575 {
576 struct spi_device *proxy;
577 int status;
578
579 /* NOTE: caller did any chip->bus_num checks necessary.
580 *
581 * Also, unless we change the return value convention to use
582 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 * suggests syslogged diagnostics are best here (ugh).
584 */
585
586 proxy = spi_alloc_device(master);
587 if (!proxy)
588 return NULL;
589
590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592 proxy->chip_select = chip->chip_select;
593 proxy->max_speed_hz = chip->max_speed_hz;
594 proxy->mode = chip->mode;
595 proxy->irq = chip->irq;
596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 proxy->dev.platform_data = (void *) chip->platform_data;
598 proxy->controller_data = chip->controller_data;
599 proxy->controller_state = NULL;
600
601 status = spi_add_device(proxy);
602 if (status < 0) {
603 spi_dev_put(proxy);
604 return NULL;
605 }
606
607 return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612 * spi_unregister_device - unregister a single SPI device
613 * @spi: spi_device to unregister
614 *
615 * Start making the passed SPI device vanish. Normally this would be handled
616 * by spi_unregister_master().
617 */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 if (!spi)
621 return;
622
623 if (spi->dev.of_node)
624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 if (ACPI_COMPANION(&spi->dev))
626 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
627 device_unregister(&spi->dev);
628 }
629 EXPORT_SYMBOL_GPL(spi_unregister_device);
630
631 static void spi_match_master_to_boardinfo(struct spi_master *master,
632 struct spi_board_info *bi)
633 {
634 struct spi_device *dev;
635
636 if (master->bus_num != bi->bus_num)
637 return;
638
639 dev = spi_new_device(master, bi);
640 if (!dev)
641 dev_err(master->dev.parent, "can't create new device for %s\n",
642 bi->modalias);
643 }
644
645 /**
646 * spi_register_board_info - register SPI devices for a given board
647 * @info: array of chip descriptors
648 * @n: how many descriptors are provided
649 * Context: can sleep
650 *
651 * Board-specific early init code calls this (probably during arch_initcall)
652 * with segments of the SPI device table. Any device nodes are created later,
653 * after the relevant parent SPI controller (bus_num) is defined. We keep
654 * this table of devices forever, so that reloading a controller driver will
655 * not make Linux forget about these hard-wired devices.
656 *
657 * Other code can also call this, e.g. a particular add-on board might provide
658 * SPI devices through its expansion connector, so code initializing that board
659 * would naturally declare its SPI devices.
660 *
661 * The board info passed can safely be __initdata ... but be careful of
662 * any embedded pointers (platform_data, etc), they're copied as-is.
663 *
664 * Return: zero on success, else a negative error code.
665 */
666 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
667 {
668 struct boardinfo *bi;
669 int i;
670
671 if (!n)
672 return -EINVAL;
673
674 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
675 if (!bi)
676 return -ENOMEM;
677
678 for (i = 0; i < n; i++, bi++, info++) {
679 struct spi_master *master;
680
681 memcpy(&bi->board_info, info, sizeof(*info));
682 mutex_lock(&board_lock);
683 list_add_tail(&bi->list, &board_list);
684 list_for_each_entry(master, &spi_master_list, list)
685 spi_match_master_to_boardinfo(master, &bi->board_info);
686 mutex_unlock(&board_lock);
687 }
688
689 return 0;
690 }
691
692 /*-------------------------------------------------------------------------*/
693
694 static void spi_set_cs(struct spi_device *spi, bool enable)
695 {
696 if (spi->mode & SPI_CS_HIGH)
697 enable = !enable;
698
699 if (gpio_is_valid(spi->cs_gpio))
700 gpio_set_value(spi->cs_gpio, !enable);
701 else if (spi->master->set_cs)
702 spi->master->set_cs(spi, !enable);
703 }
704
705 #ifdef CONFIG_HAS_DMA
706 static int spi_map_buf(struct spi_master *master, struct device *dev,
707 struct sg_table *sgt, void *buf, size_t len,
708 enum dma_data_direction dir)
709 {
710 const bool vmalloced_buf = is_vmalloc_addr(buf);
711 unsigned int max_seg_size = dma_get_max_seg_size(dev);
712 int desc_len;
713 int sgs;
714 struct page *vm_page;
715 void *sg_buf;
716 size_t min;
717 int i, ret;
718
719 if (vmalloced_buf) {
720 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
721 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
722 } else if (virt_addr_valid(buf)) {
723 desc_len = min_t(int, max_seg_size, master->max_dma_len);
724 sgs = DIV_ROUND_UP(len, desc_len);
725 } else {
726 return -EINVAL;
727 }
728
729 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
730 if (ret != 0)
731 return ret;
732
733 for (i = 0; i < sgs; i++) {
734
735 if (vmalloced_buf) {
736 min = min_t(size_t,
737 len, desc_len - offset_in_page(buf));
738 vm_page = vmalloc_to_page(buf);
739 if (!vm_page) {
740 sg_free_table(sgt);
741 return -ENOMEM;
742 }
743 sg_set_page(&sgt->sgl[i], vm_page,
744 min, offset_in_page(buf));
745 } else {
746 min = min_t(size_t, len, desc_len);
747 sg_buf = buf;
748 sg_set_buf(&sgt->sgl[i], sg_buf, min);
749 }
750
751 buf += min;
752 len -= min;
753 }
754
755 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
756 if (!ret)
757 ret = -ENOMEM;
758 if (ret < 0) {
759 sg_free_table(sgt);
760 return ret;
761 }
762
763 sgt->nents = ret;
764
765 return 0;
766 }
767
768 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
769 struct sg_table *sgt, enum dma_data_direction dir)
770 {
771 if (sgt->orig_nents) {
772 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
773 sg_free_table(sgt);
774 }
775 }
776
777 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
778 {
779 struct device *tx_dev, *rx_dev;
780 struct spi_transfer *xfer;
781 int ret;
782
783 if (!master->can_dma)
784 return 0;
785
786 if (master->dma_tx)
787 tx_dev = master->dma_tx->device->dev;
788 else
789 tx_dev = &master->dev;
790
791 if (master->dma_rx)
792 rx_dev = master->dma_rx->device->dev;
793 else
794 rx_dev = &master->dev;
795
796 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
797 if (!master->can_dma(master, msg->spi, xfer))
798 continue;
799
800 if (xfer->tx_buf != NULL) {
801 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
802 (void *)xfer->tx_buf, xfer->len,
803 DMA_TO_DEVICE);
804 if (ret != 0)
805 return ret;
806 }
807
808 if (xfer->rx_buf != NULL) {
809 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
810 xfer->rx_buf, xfer->len,
811 DMA_FROM_DEVICE);
812 if (ret != 0) {
813 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
814 DMA_TO_DEVICE);
815 return ret;
816 }
817 }
818 }
819
820 master->cur_msg_mapped = true;
821
822 return 0;
823 }
824
825 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
826 {
827 struct spi_transfer *xfer;
828 struct device *tx_dev, *rx_dev;
829
830 if (!master->cur_msg_mapped || !master->can_dma)
831 return 0;
832
833 if (master->dma_tx)
834 tx_dev = master->dma_tx->device->dev;
835 else
836 tx_dev = &master->dev;
837
838 if (master->dma_rx)
839 rx_dev = master->dma_rx->device->dev;
840 else
841 rx_dev = &master->dev;
842
843 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
844 if (!master->can_dma(master, msg->spi, xfer))
845 continue;
846
847 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
848 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
849 }
850
851 return 0;
852 }
853 #else /* !CONFIG_HAS_DMA */
854 static inline int __spi_map_msg(struct spi_master *master,
855 struct spi_message *msg)
856 {
857 return 0;
858 }
859
860 static inline int __spi_unmap_msg(struct spi_master *master,
861 struct spi_message *msg)
862 {
863 return 0;
864 }
865 #endif /* !CONFIG_HAS_DMA */
866
867 static inline int spi_unmap_msg(struct spi_master *master,
868 struct spi_message *msg)
869 {
870 struct spi_transfer *xfer;
871
872 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
873 /*
874 * Restore the original value of tx_buf or rx_buf if they are
875 * NULL.
876 */
877 if (xfer->tx_buf == master->dummy_tx)
878 xfer->tx_buf = NULL;
879 if (xfer->rx_buf == master->dummy_rx)
880 xfer->rx_buf = NULL;
881 }
882
883 return __spi_unmap_msg(master, msg);
884 }
885
886 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
887 {
888 struct spi_transfer *xfer;
889 void *tmp;
890 unsigned int max_tx, max_rx;
891
892 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
893 max_tx = 0;
894 max_rx = 0;
895
896 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
897 if ((master->flags & SPI_MASTER_MUST_TX) &&
898 !xfer->tx_buf)
899 max_tx = max(xfer->len, max_tx);
900 if ((master->flags & SPI_MASTER_MUST_RX) &&
901 !xfer->rx_buf)
902 max_rx = max(xfer->len, max_rx);
903 }
904
905 if (max_tx) {
906 tmp = krealloc(master->dummy_tx, max_tx,
907 GFP_KERNEL | GFP_DMA);
908 if (!tmp)
909 return -ENOMEM;
910 master->dummy_tx = tmp;
911 memset(tmp, 0, max_tx);
912 }
913
914 if (max_rx) {
915 tmp = krealloc(master->dummy_rx, max_rx,
916 GFP_KERNEL | GFP_DMA);
917 if (!tmp)
918 return -ENOMEM;
919 master->dummy_rx = tmp;
920 }
921
922 if (max_tx || max_rx) {
923 list_for_each_entry(xfer, &msg->transfers,
924 transfer_list) {
925 if (!xfer->tx_buf)
926 xfer->tx_buf = master->dummy_tx;
927 if (!xfer->rx_buf)
928 xfer->rx_buf = master->dummy_rx;
929 }
930 }
931 }
932
933 return __spi_map_msg(master, msg);
934 }
935
936 /*
937 * spi_transfer_one_message - Default implementation of transfer_one_message()
938 *
939 * This is a standard implementation of transfer_one_message() for
940 * drivers which implement a transfer_one() operation. It provides
941 * standard handling of delays and chip select management.
942 */
943 static int spi_transfer_one_message(struct spi_master *master,
944 struct spi_message *msg)
945 {
946 struct spi_transfer *xfer;
947 bool keep_cs = false;
948 int ret = 0;
949 unsigned long ms = 1;
950 struct spi_statistics *statm = &master->statistics;
951 struct spi_statistics *stats = &msg->spi->statistics;
952
953 spi_set_cs(msg->spi, true);
954
955 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
956 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
957
958 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
959 trace_spi_transfer_start(msg, xfer);
960
961 spi_statistics_add_transfer_stats(statm, xfer, master);
962 spi_statistics_add_transfer_stats(stats, xfer, master);
963
964 if (xfer->tx_buf || xfer->rx_buf) {
965 reinit_completion(&master->xfer_completion);
966
967 ret = master->transfer_one(master, msg->spi, xfer);
968 if (ret < 0) {
969 SPI_STATISTICS_INCREMENT_FIELD(statm,
970 errors);
971 SPI_STATISTICS_INCREMENT_FIELD(stats,
972 errors);
973 dev_err(&msg->spi->dev,
974 "SPI transfer failed: %d\n", ret);
975 goto out;
976 }
977
978 if (ret > 0) {
979 ret = 0;
980 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
981 ms += ms + 100; /* some tolerance */
982
983 ms = wait_for_completion_timeout(&master->xfer_completion,
984 msecs_to_jiffies(ms));
985 }
986
987 if (ms == 0) {
988 SPI_STATISTICS_INCREMENT_FIELD(statm,
989 timedout);
990 SPI_STATISTICS_INCREMENT_FIELD(stats,
991 timedout);
992 dev_err(&msg->spi->dev,
993 "SPI transfer timed out\n");
994 msg->status = -ETIMEDOUT;
995 }
996 } else {
997 if (xfer->len)
998 dev_err(&msg->spi->dev,
999 "Bufferless transfer has length %u\n",
1000 xfer->len);
1001 }
1002
1003 trace_spi_transfer_stop(msg, xfer);
1004
1005 if (msg->status != -EINPROGRESS)
1006 goto out;
1007
1008 if (xfer->delay_usecs)
1009 udelay(xfer->delay_usecs);
1010
1011 if (xfer->cs_change) {
1012 if (list_is_last(&xfer->transfer_list,
1013 &msg->transfers)) {
1014 keep_cs = true;
1015 } else {
1016 spi_set_cs(msg->spi, false);
1017 udelay(10);
1018 spi_set_cs(msg->spi, true);
1019 }
1020 }
1021
1022 msg->actual_length += xfer->len;
1023 }
1024
1025 out:
1026 if (ret != 0 || !keep_cs)
1027 spi_set_cs(msg->spi, false);
1028
1029 if (msg->status == -EINPROGRESS)
1030 msg->status = ret;
1031
1032 if (msg->status && master->handle_err)
1033 master->handle_err(master, msg);
1034
1035 spi_res_release(master, msg);
1036
1037 spi_finalize_current_message(master);
1038
1039 return ret;
1040 }
1041
1042 /**
1043 * spi_finalize_current_transfer - report completion of a transfer
1044 * @master: the master reporting completion
1045 *
1046 * Called by SPI drivers using the core transfer_one_message()
1047 * implementation to notify it that the current interrupt driven
1048 * transfer has finished and the next one may be scheduled.
1049 */
1050 void spi_finalize_current_transfer(struct spi_master *master)
1051 {
1052 complete(&master->xfer_completion);
1053 }
1054 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1055
1056 /**
1057 * __spi_pump_messages - function which processes spi message queue
1058 * @master: master to process queue for
1059 * @in_kthread: true if we are in the context of the message pump thread
1060 * @bus_locked: true if the bus mutex is held when calling this function
1061 *
1062 * This function checks if there is any spi message in the queue that
1063 * needs processing and if so call out to the driver to initialize hardware
1064 * and transfer each message.
1065 *
1066 * Note that it is called both from the kthread itself and also from
1067 * inside spi_sync(); the queue extraction handling at the top of the
1068 * function should deal with this safely.
1069 */
1070 static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1071 bool bus_locked)
1072 {
1073 unsigned long flags;
1074 bool was_busy = false;
1075 int ret;
1076
1077 /* Lock queue */
1078 spin_lock_irqsave(&master->queue_lock, flags);
1079
1080 /* Make sure we are not already running a message */
1081 if (master->cur_msg) {
1082 spin_unlock_irqrestore(&master->queue_lock, flags);
1083 return;
1084 }
1085
1086 /* If another context is idling the device then defer */
1087 if (master->idling) {
1088 queue_kthread_work(&master->kworker, &master->pump_messages);
1089 spin_unlock_irqrestore(&master->queue_lock, flags);
1090 return;
1091 }
1092
1093 /* Check if the queue is idle */
1094 if (list_empty(&master->queue) || !master->running) {
1095 if (!master->busy) {
1096 spin_unlock_irqrestore(&master->queue_lock, flags);
1097 return;
1098 }
1099
1100 /* Only do teardown in the thread */
1101 if (!in_kthread) {
1102 queue_kthread_work(&master->kworker,
1103 &master->pump_messages);
1104 spin_unlock_irqrestore(&master->queue_lock, flags);
1105 return;
1106 }
1107
1108 master->busy = false;
1109 master->idling = true;
1110 spin_unlock_irqrestore(&master->queue_lock, flags);
1111
1112 kfree(master->dummy_rx);
1113 master->dummy_rx = NULL;
1114 kfree(master->dummy_tx);
1115 master->dummy_tx = NULL;
1116 if (master->unprepare_transfer_hardware &&
1117 master->unprepare_transfer_hardware(master))
1118 dev_err(&master->dev,
1119 "failed to unprepare transfer hardware\n");
1120 if (master->auto_runtime_pm) {
1121 pm_runtime_mark_last_busy(master->dev.parent);
1122 pm_runtime_put_autosuspend(master->dev.parent);
1123 }
1124 trace_spi_master_idle(master);
1125
1126 spin_lock_irqsave(&master->queue_lock, flags);
1127 master->idling = false;
1128 spin_unlock_irqrestore(&master->queue_lock, flags);
1129 return;
1130 }
1131
1132 /* Extract head of queue */
1133 master->cur_msg =
1134 list_first_entry(&master->queue, struct spi_message, queue);
1135
1136 list_del_init(&master->cur_msg->queue);
1137 if (master->busy)
1138 was_busy = true;
1139 else
1140 master->busy = true;
1141 spin_unlock_irqrestore(&master->queue_lock, flags);
1142
1143 if (!was_busy && master->auto_runtime_pm) {
1144 ret = pm_runtime_get_sync(master->dev.parent);
1145 if (ret < 0) {
1146 dev_err(&master->dev, "Failed to power device: %d\n",
1147 ret);
1148 return;
1149 }
1150 }
1151
1152 if (!was_busy)
1153 trace_spi_master_busy(master);
1154
1155 if (!was_busy && master->prepare_transfer_hardware) {
1156 ret = master->prepare_transfer_hardware(master);
1157 if (ret) {
1158 dev_err(&master->dev,
1159 "failed to prepare transfer hardware\n");
1160
1161 if (master->auto_runtime_pm)
1162 pm_runtime_put(master->dev.parent);
1163 return;
1164 }
1165 }
1166
1167 if (!bus_locked)
1168 mutex_lock(&master->bus_lock_mutex);
1169
1170 trace_spi_message_start(master->cur_msg);
1171
1172 if (master->prepare_message) {
1173 ret = master->prepare_message(master, master->cur_msg);
1174 if (ret) {
1175 dev_err(&master->dev,
1176 "failed to prepare message: %d\n", ret);
1177 master->cur_msg->status = ret;
1178 spi_finalize_current_message(master);
1179 goto out;
1180 }
1181 master->cur_msg_prepared = true;
1182 }
1183
1184 ret = spi_map_msg(master, master->cur_msg);
1185 if (ret) {
1186 master->cur_msg->status = ret;
1187 spi_finalize_current_message(master);
1188 goto out;
1189 }
1190
1191 ret = master->transfer_one_message(master, master->cur_msg);
1192 if (ret) {
1193 dev_err(&master->dev,
1194 "failed to transfer one message from queue\n");
1195 goto out;
1196 }
1197
1198 out:
1199 if (!bus_locked)
1200 mutex_unlock(&master->bus_lock_mutex);
1201
1202 /* Prod the scheduler in case transfer_one() was busy waiting */
1203 if (!ret)
1204 cond_resched();
1205 }
1206
1207 /**
1208 * spi_pump_messages - kthread work function which processes spi message queue
1209 * @work: pointer to kthread work struct contained in the master struct
1210 */
1211 static void spi_pump_messages(struct kthread_work *work)
1212 {
1213 struct spi_master *master =
1214 container_of(work, struct spi_master, pump_messages);
1215
1216 __spi_pump_messages(master, true, master->bus_lock_flag);
1217 }
1218
1219 static int spi_init_queue(struct spi_master *master)
1220 {
1221 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1222
1223 master->running = false;
1224 master->busy = false;
1225
1226 init_kthread_worker(&master->kworker);
1227 master->kworker_task = kthread_run(kthread_worker_fn,
1228 &master->kworker, "%s",
1229 dev_name(&master->dev));
1230 if (IS_ERR(master->kworker_task)) {
1231 dev_err(&master->dev, "failed to create message pump task\n");
1232 return PTR_ERR(master->kworker_task);
1233 }
1234 init_kthread_work(&master->pump_messages, spi_pump_messages);
1235
1236 /*
1237 * Master config will indicate if this controller should run the
1238 * message pump with high (realtime) priority to reduce the transfer
1239 * latency on the bus by minimising the delay between a transfer
1240 * request and the scheduling of the message pump thread. Without this
1241 * setting the message pump thread will remain at default priority.
1242 */
1243 if (master->rt) {
1244 dev_info(&master->dev,
1245 "will run message pump with realtime priority\n");
1246 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1247 }
1248
1249 return 0;
1250 }
1251
1252 /**
1253 * spi_get_next_queued_message() - called by driver to check for queued
1254 * messages
1255 * @master: the master to check for queued messages
1256 *
1257 * If there are more messages in the queue, the next message is returned from
1258 * this call.
1259 *
1260 * Return: the next message in the queue, else NULL if the queue is empty.
1261 */
1262 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1263 {
1264 struct spi_message *next;
1265 unsigned long flags;
1266
1267 /* get a pointer to the next message, if any */
1268 spin_lock_irqsave(&master->queue_lock, flags);
1269 next = list_first_entry_or_null(&master->queue, struct spi_message,
1270 queue);
1271 spin_unlock_irqrestore(&master->queue_lock, flags);
1272
1273 return next;
1274 }
1275 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1276
1277 /**
1278 * spi_finalize_current_message() - the current message is complete
1279 * @master: the master to return the message to
1280 *
1281 * Called by the driver to notify the core that the message in the front of the
1282 * queue is complete and can be removed from the queue.
1283 */
1284 void spi_finalize_current_message(struct spi_master *master)
1285 {
1286 struct spi_message *mesg;
1287 unsigned long flags;
1288 int ret;
1289
1290 spin_lock_irqsave(&master->queue_lock, flags);
1291 mesg = master->cur_msg;
1292 spin_unlock_irqrestore(&master->queue_lock, flags);
1293
1294 spi_unmap_msg(master, mesg);
1295
1296 if (master->cur_msg_prepared && master->unprepare_message) {
1297 ret = master->unprepare_message(master, mesg);
1298 if (ret) {
1299 dev_err(&master->dev,
1300 "failed to unprepare message: %d\n", ret);
1301 }
1302 }
1303
1304 spin_lock_irqsave(&master->queue_lock, flags);
1305 master->cur_msg = NULL;
1306 master->cur_msg_prepared = false;
1307 queue_kthread_work(&master->kworker, &master->pump_messages);
1308 spin_unlock_irqrestore(&master->queue_lock, flags);
1309
1310 trace_spi_message_done(mesg);
1311
1312 mesg->state = NULL;
1313 if (mesg->complete)
1314 mesg->complete(mesg->context);
1315 }
1316 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1317
1318 static int spi_start_queue(struct spi_master *master)
1319 {
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&master->queue_lock, flags);
1323
1324 if (master->running || master->busy) {
1325 spin_unlock_irqrestore(&master->queue_lock, flags);
1326 return -EBUSY;
1327 }
1328
1329 master->running = true;
1330 master->cur_msg = NULL;
1331 spin_unlock_irqrestore(&master->queue_lock, flags);
1332
1333 queue_kthread_work(&master->kworker, &master->pump_messages);
1334
1335 return 0;
1336 }
1337
1338 static int spi_stop_queue(struct spi_master *master)
1339 {
1340 unsigned long flags;
1341 unsigned limit = 500;
1342 int ret = 0;
1343
1344 spin_lock_irqsave(&master->queue_lock, flags);
1345
1346 /*
1347 * This is a bit lame, but is optimized for the common execution path.
1348 * A wait_queue on the master->busy could be used, but then the common
1349 * execution path (pump_messages) would be required to call wake_up or
1350 * friends on every SPI message. Do this instead.
1351 */
1352 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1353 spin_unlock_irqrestore(&master->queue_lock, flags);
1354 usleep_range(10000, 11000);
1355 spin_lock_irqsave(&master->queue_lock, flags);
1356 }
1357
1358 if (!list_empty(&master->queue) || master->busy)
1359 ret = -EBUSY;
1360 else
1361 master->running = false;
1362
1363 spin_unlock_irqrestore(&master->queue_lock, flags);
1364
1365 if (ret) {
1366 dev_warn(&master->dev,
1367 "could not stop message queue\n");
1368 return ret;
1369 }
1370 return ret;
1371 }
1372
1373 static int spi_destroy_queue(struct spi_master *master)
1374 {
1375 int ret;
1376
1377 ret = spi_stop_queue(master);
1378
1379 /*
1380 * flush_kthread_worker will block until all work is done.
1381 * If the reason that stop_queue timed out is that the work will never
1382 * finish, then it does no good to call flush/stop thread, so
1383 * return anyway.
1384 */
1385 if (ret) {
1386 dev_err(&master->dev, "problem destroying queue\n");
1387 return ret;
1388 }
1389
1390 flush_kthread_worker(&master->kworker);
1391 kthread_stop(master->kworker_task);
1392
1393 return 0;
1394 }
1395
1396 static int __spi_queued_transfer(struct spi_device *spi,
1397 struct spi_message *msg,
1398 bool need_pump)
1399 {
1400 struct spi_master *master = spi->master;
1401 unsigned long flags;
1402
1403 spin_lock_irqsave(&master->queue_lock, flags);
1404
1405 if (!master->running) {
1406 spin_unlock_irqrestore(&master->queue_lock, flags);
1407 return -ESHUTDOWN;
1408 }
1409 msg->actual_length = 0;
1410 msg->status = -EINPROGRESS;
1411
1412 list_add_tail(&msg->queue, &master->queue);
1413 if (!master->busy && need_pump)
1414 queue_kthread_work(&master->kworker, &master->pump_messages);
1415
1416 spin_unlock_irqrestore(&master->queue_lock, flags);
1417 return 0;
1418 }
1419
1420 /**
1421 * spi_queued_transfer - transfer function for queued transfers
1422 * @spi: spi device which is requesting transfer
1423 * @msg: spi message which is to handled is queued to driver queue
1424 *
1425 * Return: zero on success, else a negative error code.
1426 */
1427 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1428 {
1429 return __spi_queued_transfer(spi, msg, true);
1430 }
1431
1432 static int spi_master_initialize_queue(struct spi_master *master)
1433 {
1434 int ret;
1435
1436 master->transfer = spi_queued_transfer;
1437 if (!master->transfer_one_message)
1438 master->transfer_one_message = spi_transfer_one_message;
1439
1440 /* Initialize and start queue */
1441 ret = spi_init_queue(master);
1442 if (ret) {
1443 dev_err(&master->dev, "problem initializing queue\n");
1444 goto err_init_queue;
1445 }
1446 master->queued = true;
1447 ret = spi_start_queue(master);
1448 if (ret) {
1449 dev_err(&master->dev, "problem starting queue\n");
1450 goto err_start_queue;
1451 }
1452
1453 return 0;
1454
1455 err_start_queue:
1456 spi_destroy_queue(master);
1457 err_init_queue:
1458 return ret;
1459 }
1460
1461 /*-------------------------------------------------------------------------*/
1462
1463 #if defined(CONFIG_OF)
1464 static struct spi_device *
1465 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1466 {
1467 struct spi_device *spi;
1468 int rc;
1469 u32 value;
1470
1471 /* Alloc an spi_device */
1472 spi = spi_alloc_device(master);
1473 if (!spi) {
1474 dev_err(&master->dev, "spi_device alloc error for %s\n",
1475 nc->full_name);
1476 rc = -ENOMEM;
1477 goto err_out;
1478 }
1479
1480 /* Select device driver */
1481 rc = of_modalias_node(nc, spi->modalias,
1482 sizeof(spi->modalias));
1483 if (rc < 0) {
1484 dev_err(&master->dev, "cannot find modalias for %s\n",
1485 nc->full_name);
1486 goto err_out;
1487 }
1488
1489 /* Device address */
1490 rc = of_property_read_u32(nc, "reg", &value);
1491 if (rc) {
1492 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1493 nc->full_name, rc);
1494 goto err_out;
1495 }
1496 spi->chip_select = value;
1497
1498 /* Mode (clock phase/polarity/etc.) */
1499 if (of_find_property(nc, "spi-cpha", NULL))
1500 spi->mode |= SPI_CPHA;
1501 if (of_find_property(nc, "spi-cpol", NULL))
1502 spi->mode |= SPI_CPOL;
1503 if (of_find_property(nc, "spi-cs-high", NULL))
1504 spi->mode |= SPI_CS_HIGH;
1505 if (of_find_property(nc, "spi-3wire", NULL))
1506 spi->mode |= SPI_3WIRE;
1507 if (of_find_property(nc, "spi-lsb-first", NULL))
1508 spi->mode |= SPI_LSB_FIRST;
1509
1510 /* Device DUAL/QUAD mode */
1511 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1512 switch (value) {
1513 case 1:
1514 break;
1515 case 2:
1516 spi->mode |= SPI_TX_DUAL;
1517 break;
1518 case 4:
1519 spi->mode |= SPI_TX_QUAD;
1520 break;
1521 default:
1522 dev_warn(&master->dev,
1523 "spi-tx-bus-width %d not supported\n",
1524 value);
1525 break;
1526 }
1527 }
1528
1529 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1530 switch (value) {
1531 case 1:
1532 break;
1533 case 2:
1534 spi->mode |= SPI_RX_DUAL;
1535 break;
1536 case 4:
1537 spi->mode |= SPI_RX_QUAD;
1538 break;
1539 default:
1540 dev_warn(&master->dev,
1541 "spi-rx-bus-width %d not supported\n",
1542 value);
1543 break;
1544 }
1545 }
1546
1547 /* Device speed */
1548 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1549 if (rc) {
1550 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1551 nc->full_name, rc);
1552 goto err_out;
1553 }
1554 spi->max_speed_hz = value;
1555
1556 /* Store a pointer to the node in the device structure */
1557 of_node_get(nc);
1558 spi->dev.of_node = nc;
1559
1560 /* Register the new device */
1561 rc = spi_add_device(spi);
1562 if (rc) {
1563 dev_err(&master->dev, "spi_device register error %s\n",
1564 nc->full_name);
1565 goto err_out;
1566 }
1567
1568 return spi;
1569
1570 err_out:
1571 spi_dev_put(spi);
1572 return ERR_PTR(rc);
1573 }
1574
1575 /**
1576 * of_register_spi_devices() - Register child devices onto the SPI bus
1577 * @master: Pointer to spi_master device
1578 *
1579 * Registers an spi_device for each child node of master node which has a 'reg'
1580 * property.
1581 */
1582 static void of_register_spi_devices(struct spi_master *master)
1583 {
1584 struct spi_device *spi;
1585 struct device_node *nc;
1586
1587 if (!master->dev.of_node)
1588 return;
1589
1590 for_each_available_child_of_node(master->dev.of_node, nc) {
1591 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1592 continue;
1593 spi = of_register_spi_device(master, nc);
1594 if (IS_ERR(spi))
1595 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1596 nc->full_name);
1597 }
1598 }
1599 #else
1600 static void of_register_spi_devices(struct spi_master *master) { }
1601 #endif
1602
1603 #ifdef CONFIG_ACPI
1604 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1605 {
1606 struct spi_device *spi = data;
1607 struct spi_master *master = spi->master;
1608
1609 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1610 struct acpi_resource_spi_serialbus *sb;
1611
1612 sb = &ares->data.spi_serial_bus;
1613 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1614 /*
1615 * ACPI DeviceSelection numbering is handled by the
1616 * host controller driver in Windows and can vary
1617 * from driver to driver. In Linux we always expect
1618 * 0 .. max - 1 so we need to ask the driver to
1619 * translate between the two schemes.
1620 */
1621 if (master->fw_translate_cs) {
1622 int cs = master->fw_translate_cs(master,
1623 sb->device_selection);
1624 if (cs < 0)
1625 return cs;
1626 spi->chip_select = cs;
1627 } else {
1628 spi->chip_select = sb->device_selection;
1629 }
1630
1631 spi->max_speed_hz = sb->connection_speed;
1632
1633 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1634 spi->mode |= SPI_CPHA;
1635 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1636 spi->mode |= SPI_CPOL;
1637 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1638 spi->mode |= SPI_CS_HIGH;
1639 }
1640 } else if (spi->irq < 0) {
1641 struct resource r;
1642
1643 if (acpi_dev_resource_interrupt(ares, 0, &r))
1644 spi->irq = r.start;
1645 }
1646
1647 /* Always tell the ACPI core to skip this resource */
1648 return 1;
1649 }
1650
1651 static acpi_status acpi_register_spi_device(struct spi_master *master,
1652 struct acpi_device *adev)
1653 {
1654 struct list_head resource_list;
1655 struct spi_device *spi;
1656 int ret;
1657
1658 if (acpi_bus_get_status(adev) || !adev->status.present ||
1659 acpi_device_enumerated(adev))
1660 return AE_OK;
1661
1662 spi = spi_alloc_device(master);
1663 if (!spi) {
1664 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1665 dev_name(&adev->dev));
1666 return AE_NO_MEMORY;
1667 }
1668
1669 ACPI_COMPANION_SET(&spi->dev, adev);
1670 spi->irq = -1;
1671
1672 INIT_LIST_HEAD(&resource_list);
1673 ret = acpi_dev_get_resources(adev, &resource_list,
1674 acpi_spi_add_resource, spi);
1675 acpi_dev_free_resource_list(&resource_list);
1676
1677 if (ret < 0 || !spi->max_speed_hz) {
1678 spi_dev_put(spi);
1679 return AE_OK;
1680 }
1681
1682 if (spi->irq < 0)
1683 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1684
1685 acpi_device_set_enumerated(adev);
1686
1687 adev->power.flags.ignore_parent = true;
1688 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1689 if (spi_add_device(spi)) {
1690 adev->power.flags.ignore_parent = false;
1691 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1692 dev_name(&adev->dev));
1693 spi_dev_put(spi);
1694 }
1695
1696 return AE_OK;
1697 }
1698
1699 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1700 void *data, void **return_value)
1701 {
1702 struct spi_master *master = data;
1703 struct acpi_device *adev;
1704
1705 if (acpi_bus_get_device(handle, &adev))
1706 return AE_OK;
1707
1708 return acpi_register_spi_device(master, adev);
1709 }
1710
1711 static void acpi_register_spi_devices(struct spi_master *master)
1712 {
1713 acpi_status status;
1714 acpi_handle handle;
1715
1716 handle = ACPI_HANDLE(master->dev.parent);
1717 if (!handle)
1718 return;
1719
1720 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1721 acpi_spi_add_device, NULL,
1722 master, NULL);
1723 if (ACPI_FAILURE(status))
1724 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1725 }
1726 #else
1727 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1728 #endif /* CONFIG_ACPI */
1729
1730 static void spi_master_release(struct device *dev)
1731 {
1732 struct spi_master *master;
1733
1734 master = container_of(dev, struct spi_master, dev);
1735 kfree(master);
1736 }
1737
1738 static struct class spi_master_class = {
1739 .name = "spi_master",
1740 .owner = THIS_MODULE,
1741 .dev_release = spi_master_release,
1742 .dev_groups = spi_master_groups,
1743 };
1744
1745
1746 /**
1747 * spi_alloc_master - allocate SPI master controller
1748 * @dev: the controller, possibly using the platform_bus
1749 * @size: how much zeroed driver-private data to allocate; the pointer to this
1750 * memory is in the driver_data field of the returned device,
1751 * accessible with spi_master_get_devdata().
1752 * Context: can sleep
1753 *
1754 * This call is used only by SPI master controller drivers, which are the
1755 * only ones directly touching chip registers. It's how they allocate
1756 * an spi_master structure, prior to calling spi_register_master().
1757 *
1758 * This must be called from context that can sleep.
1759 *
1760 * The caller is responsible for assigning the bus number and initializing
1761 * the master's methods before calling spi_register_master(); and (after errors
1762 * adding the device) calling spi_master_put() to prevent a memory leak.
1763 *
1764 * Return: the SPI master structure on success, else NULL.
1765 */
1766 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1767 {
1768 struct spi_master *master;
1769
1770 if (!dev)
1771 return NULL;
1772
1773 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1774 if (!master)
1775 return NULL;
1776
1777 device_initialize(&master->dev);
1778 master->bus_num = -1;
1779 master->num_chipselect = 1;
1780 master->dev.class = &spi_master_class;
1781 master->dev.parent = dev;
1782 pm_suspend_ignore_children(&master->dev, true);
1783 spi_master_set_devdata(master, &master[1]);
1784
1785 return master;
1786 }
1787 EXPORT_SYMBOL_GPL(spi_alloc_master);
1788
1789 #ifdef CONFIG_OF
1790 static int of_spi_register_master(struct spi_master *master)
1791 {
1792 int nb, i, *cs;
1793 struct device_node *np = master->dev.of_node;
1794
1795 if (!np)
1796 return 0;
1797
1798 nb = of_gpio_named_count(np, "cs-gpios");
1799 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1800
1801 /* Return error only for an incorrectly formed cs-gpios property */
1802 if (nb == 0 || nb == -ENOENT)
1803 return 0;
1804 else if (nb < 0)
1805 return nb;
1806
1807 cs = devm_kzalloc(&master->dev,
1808 sizeof(int) * master->num_chipselect,
1809 GFP_KERNEL);
1810 master->cs_gpios = cs;
1811
1812 if (!master->cs_gpios)
1813 return -ENOMEM;
1814
1815 for (i = 0; i < master->num_chipselect; i++)
1816 cs[i] = -ENOENT;
1817
1818 for (i = 0; i < nb; i++)
1819 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1820
1821 return 0;
1822 }
1823 #else
1824 static int of_spi_register_master(struct spi_master *master)
1825 {
1826 return 0;
1827 }
1828 #endif
1829
1830 /**
1831 * spi_register_master - register SPI master controller
1832 * @master: initialized master, originally from spi_alloc_master()
1833 * Context: can sleep
1834 *
1835 * SPI master controllers connect to their drivers using some non-SPI bus,
1836 * such as the platform bus. The final stage of probe() in that code
1837 * includes calling spi_register_master() to hook up to this SPI bus glue.
1838 *
1839 * SPI controllers use board specific (often SOC specific) bus numbers,
1840 * and board-specific addressing for SPI devices combines those numbers
1841 * with chip select numbers. Since SPI does not directly support dynamic
1842 * device identification, boards need configuration tables telling which
1843 * chip is at which address.
1844 *
1845 * This must be called from context that can sleep. It returns zero on
1846 * success, else a negative error code (dropping the master's refcount).
1847 * After a successful return, the caller is responsible for calling
1848 * spi_unregister_master().
1849 *
1850 * Return: zero on success, else a negative error code.
1851 */
1852 int spi_register_master(struct spi_master *master)
1853 {
1854 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1855 struct device *dev = master->dev.parent;
1856 struct boardinfo *bi;
1857 int status = -ENODEV;
1858 int dynamic = 0;
1859
1860 if (!dev)
1861 return -ENODEV;
1862
1863 status = of_spi_register_master(master);
1864 if (status)
1865 return status;
1866
1867 /* even if it's just one always-selected device, there must
1868 * be at least one chipselect
1869 */
1870 if (master->num_chipselect == 0)
1871 return -EINVAL;
1872
1873 if ((master->bus_num < 0) && master->dev.of_node)
1874 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1875
1876 /* convention: dynamically assigned bus IDs count down from the max */
1877 if (master->bus_num < 0) {
1878 /* FIXME switch to an IDR based scheme, something like
1879 * I2C now uses, so we can't run out of "dynamic" IDs
1880 */
1881 master->bus_num = atomic_dec_return(&dyn_bus_id);
1882 dynamic = 1;
1883 }
1884
1885 INIT_LIST_HEAD(&master->queue);
1886 spin_lock_init(&master->queue_lock);
1887 spin_lock_init(&master->bus_lock_spinlock);
1888 mutex_init(&master->bus_lock_mutex);
1889 master->bus_lock_flag = 0;
1890 init_completion(&master->xfer_completion);
1891 if (!master->max_dma_len)
1892 master->max_dma_len = INT_MAX;
1893
1894 /* register the device, then userspace will see it.
1895 * registration fails if the bus ID is in use.
1896 */
1897 dev_set_name(&master->dev, "spi%u", master->bus_num);
1898 status = device_add(&master->dev);
1899 if (status < 0)
1900 goto done;
1901 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1902 dynamic ? " (dynamic)" : "");
1903
1904 /* If we're using a queued driver, start the queue */
1905 if (master->transfer)
1906 dev_info(dev, "master is unqueued, this is deprecated\n");
1907 else {
1908 status = spi_master_initialize_queue(master);
1909 if (status) {
1910 device_del(&master->dev);
1911 goto done;
1912 }
1913 }
1914 /* add statistics */
1915 spin_lock_init(&master->statistics.lock);
1916
1917 mutex_lock(&board_lock);
1918 list_add_tail(&master->list, &spi_master_list);
1919 list_for_each_entry(bi, &board_list, list)
1920 spi_match_master_to_boardinfo(master, &bi->board_info);
1921 mutex_unlock(&board_lock);
1922
1923 /* Register devices from the device tree and ACPI */
1924 of_register_spi_devices(master);
1925 acpi_register_spi_devices(master);
1926 done:
1927 return status;
1928 }
1929 EXPORT_SYMBOL_GPL(spi_register_master);
1930
1931 static void devm_spi_unregister(struct device *dev, void *res)
1932 {
1933 spi_unregister_master(*(struct spi_master **)res);
1934 }
1935
1936 /**
1937 * dev_spi_register_master - register managed SPI master controller
1938 * @dev: device managing SPI master
1939 * @master: initialized master, originally from spi_alloc_master()
1940 * Context: can sleep
1941 *
1942 * Register a SPI device as with spi_register_master() which will
1943 * automatically be unregister
1944 *
1945 * Return: zero on success, else a negative error code.
1946 */
1947 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1948 {
1949 struct spi_master **ptr;
1950 int ret;
1951
1952 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1953 if (!ptr)
1954 return -ENOMEM;
1955
1956 ret = spi_register_master(master);
1957 if (!ret) {
1958 *ptr = master;
1959 devres_add(dev, ptr);
1960 } else {
1961 devres_free(ptr);
1962 }
1963
1964 return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1967
1968 static int __unregister(struct device *dev, void *null)
1969 {
1970 spi_unregister_device(to_spi_device(dev));
1971 return 0;
1972 }
1973
1974 /**
1975 * spi_unregister_master - unregister SPI master controller
1976 * @master: the master being unregistered
1977 * Context: can sleep
1978 *
1979 * This call is used only by SPI master controller drivers, which are the
1980 * only ones directly touching chip registers.
1981 *
1982 * This must be called from context that can sleep.
1983 */
1984 void spi_unregister_master(struct spi_master *master)
1985 {
1986 int dummy;
1987
1988 if (master->queued) {
1989 if (spi_destroy_queue(master))
1990 dev_err(&master->dev, "queue remove failed\n");
1991 }
1992
1993 mutex_lock(&board_lock);
1994 list_del(&master->list);
1995 mutex_unlock(&board_lock);
1996
1997 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1998 device_unregister(&master->dev);
1999 }
2000 EXPORT_SYMBOL_GPL(spi_unregister_master);
2001
2002 int spi_master_suspend(struct spi_master *master)
2003 {
2004 int ret;
2005
2006 /* Basically no-ops for non-queued masters */
2007 if (!master->queued)
2008 return 0;
2009
2010 ret = spi_stop_queue(master);
2011 if (ret)
2012 dev_err(&master->dev, "queue stop failed\n");
2013
2014 return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(spi_master_suspend);
2017
2018 int spi_master_resume(struct spi_master *master)
2019 {
2020 int ret;
2021
2022 if (!master->queued)
2023 return 0;
2024
2025 ret = spi_start_queue(master);
2026 if (ret)
2027 dev_err(&master->dev, "queue restart failed\n");
2028
2029 return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(spi_master_resume);
2032
2033 static int __spi_master_match(struct device *dev, const void *data)
2034 {
2035 struct spi_master *m;
2036 const u16 *bus_num = data;
2037
2038 m = container_of(dev, struct spi_master, dev);
2039 return m->bus_num == *bus_num;
2040 }
2041
2042 /**
2043 * spi_busnum_to_master - look up master associated with bus_num
2044 * @bus_num: the master's bus number
2045 * Context: can sleep
2046 *
2047 * This call may be used with devices that are registered after
2048 * arch init time. It returns a refcounted pointer to the relevant
2049 * spi_master (which the caller must release), or NULL if there is
2050 * no such master registered.
2051 *
2052 * Return: the SPI master structure on success, else NULL.
2053 */
2054 struct spi_master *spi_busnum_to_master(u16 bus_num)
2055 {
2056 struct device *dev;
2057 struct spi_master *master = NULL;
2058
2059 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2060 __spi_master_match);
2061 if (dev)
2062 master = container_of(dev, struct spi_master, dev);
2063 /* reference got in class_find_device */
2064 return master;
2065 }
2066 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2067
2068 /*-------------------------------------------------------------------------*/
2069
2070 /* Core methods for SPI resource management */
2071
2072 /**
2073 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2074 * during the processing of a spi_message while using
2075 * spi_transfer_one
2076 * @spi: the spi device for which we allocate memory
2077 * @release: the release code to execute for this resource
2078 * @size: size to alloc and return
2079 * @gfp: GFP allocation flags
2080 *
2081 * Return: the pointer to the allocated data
2082 *
2083 * This may get enhanced in the future to allocate from a memory pool
2084 * of the @spi_device or @spi_master to avoid repeated allocations.
2085 */
2086 void *spi_res_alloc(struct spi_device *spi,
2087 spi_res_release_t release,
2088 size_t size, gfp_t gfp)
2089 {
2090 struct spi_res *sres;
2091
2092 sres = kzalloc(sizeof(*sres) + size, gfp);
2093 if (!sres)
2094 return NULL;
2095
2096 INIT_LIST_HEAD(&sres->entry);
2097 sres->release = release;
2098
2099 return sres->data;
2100 }
2101 EXPORT_SYMBOL_GPL(spi_res_alloc);
2102
2103 /**
2104 * spi_res_free - free an spi resource
2105 * @res: pointer to the custom data of a resource
2106 *
2107 */
2108 void spi_res_free(void *res)
2109 {
2110 struct spi_res *sres = container_of(res, struct spi_res, data);
2111
2112 if (!res)
2113 return;
2114
2115 WARN_ON(!list_empty(&sres->entry));
2116 kfree(sres);
2117 }
2118 EXPORT_SYMBOL_GPL(spi_res_free);
2119
2120 /**
2121 * spi_res_add - add a spi_res to the spi_message
2122 * @message: the spi message
2123 * @res: the spi_resource
2124 */
2125 void spi_res_add(struct spi_message *message, void *res)
2126 {
2127 struct spi_res *sres = container_of(res, struct spi_res, data);
2128
2129 WARN_ON(!list_empty(&sres->entry));
2130 list_add_tail(&sres->entry, &message->resources);
2131 }
2132 EXPORT_SYMBOL_GPL(spi_res_add);
2133
2134 /**
2135 * spi_res_release - release all spi resources for this message
2136 * @master: the @spi_master
2137 * @message: the @spi_message
2138 */
2139 void spi_res_release(struct spi_master *master,
2140 struct spi_message *message)
2141 {
2142 struct spi_res *res;
2143
2144 while (!list_empty(&message->resources)) {
2145 res = list_last_entry(&message->resources,
2146 struct spi_res, entry);
2147
2148 if (res->release)
2149 res->release(master, message, res->data);
2150
2151 list_del(&res->entry);
2152
2153 kfree(res);
2154 }
2155 }
2156 EXPORT_SYMBOL_GPL(spi_res_release);
2157
2158 /*-------------------------------------------------------------------------*/
2159
2160 /* Core methods for spi_message alterations */
2161
2162 static void __spi_replace_transfers_release(struct spi_master *master,
2163 struct spi_message *msg,
2164 void *res)
2165 {
2166 struct spi_replaced_transfers *rxfer = res;
2167 size_t i;
2168
2169 /* call extra callback if requested */
2170 if (rxfer->release)
2171 rxfer->release(master, msg, res);
2172
2173 /* insert replaced transfers back into the message */
2174 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2175
2176 /* remove the formerly inserted entries */
2177 for (i = 0; i < rxfer->inserted; i++)
2178 list_del(&rxfer->inserted_transfers[i].transfer_list);
2179 }
2180
2181 /**
2182 * spi_replace_transfers - replace transfers with several transfers
2183 * and register change with spi_message.resources
2184 * @msg: the spi_message we work upon
2185 * @xfer_first: the first spi_transfer we want to replace
2186 * @remove: number of transfers to remove
2187 * @insert: the number of transfers we want to insert instead
2188 * @release: extra release code necessary in some circumstances
2189 * @extradatasize: extra data to allocate (with alignment guarantees
2190 * of struct @spi_transfer)
2191 * @gfp: gfp flags
2192 *
2193 * Returns: pointer to @spi_replaced_transfers,
2194 * PTR_ERR(...) in case of errors.
2195 */
2196 struct spi_replaced_transfers *spi_replace_transfers(
2197 struct spi_message *msg,
2198 struct spi_transfer *xfer_first,
2199 size_t remove,
2200 size_t insert,
2201 spi_replaced_release_t release,
2202 size_t extradatasize,
2203 gfp_t gfp)
2204 {
2205 struct spi_replaced_transfers *rxfer;
2206 struct spi_transfer *xfer;
2207 size_t i;
2208
2209 /* allocate the structure using spi_res */
2210 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2211 insert * sizeof(struct spi_transfer)
2212 + sizeof(struct spi_replaced_transfers)
2213 + extradatasize,
2214 gfp);
2215 if (!rxfer)
2216 return ERR_PTR(-ENOMEM);
2217
2218 /* the release code to invoke before running the generic release */
2219 rxfer->release = release;
2220
2221 /* assign extradata */
2222 if (extradatasize)
2223 rxfer->extradata =
2224 &rxfer->inserted_transfers[insert];
2225
2226 /* init the replaced_transfers list */
2227 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2228
2229 /* assign the list_entry after which we should reinsert
2230 * the @replaced_transfers - it may be spi_message.messages!
2231 */
2232 rxfer->replaced_after = xfer_first->transfer_list.prev;
2233
2234 /* remove the requested number of transfers */
2235 for (i = 0; i < remove; i++) {
2236 /* if the entry after replaced_after it is msg->transfers
2237 * then we have been requested to remove more transfers
2238 * than are in the list
2239 */
2240 if (rxfer->replaced_after->next == &msg->transfers) {
2241 dev_err(&msg->spi->dev,
2242 "requested to remove more spi_transfers than are available\n");
2243 /* insert replaced transfers back into the message */
2244 list_splice(&rxfer->replaced_transfers,
2245 rxfer->replaced_after);
2246
2247 /* free the spi_replace_transfer structure */
2248 spi_res_free(rxfer);
2249
2250 /* and return with an error */
2251 return ERR_PTR(-EINVAL);
2252 }
2253
2254 /* remove the entry after replaced_after from list of
2255 * transfers and add it to list of replaced_transfers
2256 */
2257 list_move_tail(rxfer->replaced_after->next,
2258 &rxfer->replaced_transfers);
2259 }
2260
2261 /* create copy of the given xfer with identical settings
2262 * based on the first transfer to get removed
2263 */
2264 for (i = 0; i < insert; i++) {
2265 /* we need to run in reverse order */
2266 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2267
2268 /* copy all spi_transfer data */
2269 memcpy(xfer, xfer_first, sizeof(*xfer));
2270
2271 /* add to list */
2272 list_add(&xfer->transfer_list, rxfer->replaced_after);
2273
2274 /* clear cs_change and delay_usecs for all but the last */
2275 if (i) {
2276 xfer->cs_change = false;
2277 xfer->delay_usecs = 0;
2278 }
2279 }
2280
2281 /* set up inserted */
2282 rxfer->inserted = insert;
2283
2284 /* and register it with spi_res/spi_message */
2285 spi_res_add(msg, rxfer);
2286
2287 return rxfer;
2288 }
2289 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2290
2291 static int __spi_split_transfer_maxsize(struct spi_master *master,
2292 struct spi_message *msg,
2293 struct spi_transfer **xferp,
2294 size_t maxsize,
2295 gfp_t gfp)
2296 {
2297 struct spi_transfer *xfer = *xferp, *xfers;
2298 struct spi_replaced_transfers *srt;
2299 size_t offset;
2300 size_t count, i;
2301
2302 /* warn once about this fact that we are splitting a transfer */
2303 dev_warn_once(&msg->spi->dev,
2304 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2305 xfer->len, maxsize);
2306
2307 /* calculate how many we have to replace */
2308 count = DIV_ROUND_UP(xfer->len, maxsize);
2309
2310 /* create replacement */
2311 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2312 if (IS_ERR(srt))
2313 return PTR_ERR(srt);
2314 xfers = srt->inserted_transfers;
2315
2316 /* now handle each of those newly inserted spi_transfers
2317 * note that the replacements spi_transfers all are preset
2318 * to the same values as *xferp, so tx_buf, rx_buf and len
2319 * are all identical (as well as most others)
2320 * so we just have to fix up len and the pointers.
2321 *
2322 * this also includes support for the depreciated
2323 * spi_message.is_dma_mapped interface
2324 */
2325
2326 /* the first transfer just needs the length modified, so we
2327 * run it outside the loop
2328 */
2329 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2330
2331 /* all the others need rx_buf/tx_buf also set */
2332 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2333 /* update rx_buf, tx_buf and dma */
2334 if (xfers[i].rx_buf)
2335 xfers[i].rx_buf += offset;
2336 if (xfers[i].rx_dma)
2337 xfers[i].rx_dma += offset;
2338 if (xfers[i].tx_buf)
2339 xfers[i].tx_buf += offset;
2340 if (xfers[i].tx_dma)
2341 xfers[i].tx_dma += offset;
2342
2343 /* update length */
2344 xfers[i].len = min(maxsize, xfers[i].len - offset);
2345 }
2346
2347 /* we set up xferp to the last entry we have inserted,
2348 * so that we skip those already split transfers
2349 */
2350 *xferp = &xfers[count - 1];
2351
2352 /* increment statistics counters */
2353 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2354 transfers_split_maxsize);
2355 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2356 transfers_split_maxsize);
2357
2358 return 0;
2359 }
2360
2361 /**
2362 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2363 * when an individual transfer exceeds a
2364 * certain size
2365 * @master: the @spi_master for this transfer
2366 * @msg: the @spi_message to transform
2367 * @maxsize: the maximum when to apply this
2368 * @gfp: GFP allocation flags
2369 *
2370 * Return: status of transformation
2371 */
2372 int spi_split_transfers_maxsize(struct spi_master *master,
2373 struct spi_message *msg,
2374 size_t maxsize,
2375 gfp_t gfp)
2376 {
2377 struct spi_transfer *xfer;
2378 int ret;
2379
2380 /* iterate over the transfer_list,
2381 * but note that xfer is advanced to the last transfer inserted
2382 * to avoid checking sizes again unnecessarily (also xfer does
2383 * potentiall belong to a different list by the time the
2384 * replacement has happened
2385 */
2386 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2387 if (xfer->len > maxsize) {
2388 ret = __spi_split_transfer_maxsize(
2389 master, msg, &xfer, maxsize, gfp);
2390 if (ret)
2391 return ret;
2392 }
2393 }
2394
2395 return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2398
2399 /*-------------------------------------------------------------------------*/
2400
2401 /* Core methods for SPI master protocol drivers. Some of the
2402 * other core methods are currently defined as inline functions.
2403 */
2404
2405 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2406 {
2407 if (master->bits_per_word_mask) {
2408 /* Only 32 bits fit in the mask */
2409 if (bits_per_word > 32)
2410 return -EINVAL;
2411 if (!(master->bits_per_word_mask &
2412 SPI_BPW_MASK(bits_per_word)))
2413 return -EINVAL;
2414 }
2415
2416 return 0;
2417 }
2418
2419 /**
2420 * spi_setup - setup SPI mode and clock rate
2421 * @spi: the device whose settings are being modified
2422 * Context: can sleep, and no requests are queued to the device
2423 *
2424 * SPI protocol drivers may need to update the transfer mode if the
2425 * device doesn't work with its default. They may likewise need
2426 * to update clock rates or word sizes from initial values. This function
2427 * changes those settings, and must be called from a context that can sleep.
2428 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2429 * effect the next time the device is selected and data is transferred to
2430 * or from it. When this function returns, the spi device is deselected.
2431 *
2432 * Note that this call will fail if the protocol driver specifies an option
2433 * that the underlying controller or its driver does not support. For
2434 * example, not all hardware supports wire transfers using nine bit words,
2435 * LSB-first wire encoding, or active-high chipselects.
2436 *
2437 * Return: zero on success, else a negative error code.
2438 */
2439 int spi_setup(struct spi_device *spi)
2440 {
2441 unsigned bad_bits, ugly_bits;
2442 int status;
2443
2444 /* check mode to prevent that DUAL and QUAD set at the same time
2445 */
2446 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2447 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2448 dev_err(&spi->dev,
2449 "setup: can not select dual and quad at the same time\n");
2450 return -EINVAL;
2451 }
2452 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2453 */
2454 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2455 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2456 return -EINVAL;
2457 /* help drivers fail *cleanly* when they need options
2458 * that aren't supported with their current master
2459 */
2460 bad_bits = spi->mode & ~spi->master->mode_bits;
2461 ugly_bits = bad_bits &
2462 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2463 if (ugly_bits) {
2464 dev_warn(&spi->dev,
2465 "setup: ignoring unsupported mode bits %x\n",
2466 ugly_bits);
2467 spi->mode &= ~ugly_bits;
2468 bad_bits &= ~ugly_bits;
2469 }
2470 if (bad_bits) {
2471 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2472 bad_bits);
2473 return -EINVAL;
2474 }
2475
2476 if (!spi->bits_per_word)
2477 spi->bits_per_word = 8;
2478
2479 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2480 if (status)
2481 return status;
2482
2483 if (!spi->max_speed_hz)
2484 spi->max_speed_hz = spi->master->max_speed_hz;
2485
2486 if (spi->master->setup)
2487 status = spi->master->setup(spi);
2488
2489 spi_set_cs(spi, false);
2490
2491 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2492 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2493 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2494 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2495 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2496 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2497 spi->bits_per_word, spi->max_speed_hz,
2498 status);
2499
2500 return status;
2501 }
2502 EXPORT_SYMBOL_GPL(spi_setup);
2503
2504 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2505 {
2506 struct spi_master *master = spi->master;
2507 struct spi_transfer *xfer;
2508 int w_size;
2509
2510 if (list_empty(&message->transfers))
2511 return -EINVAL;
2512
2513 /* Half-duplex links include original MicroWire, and ones with
2514 * only one data pin like SPI_3WIRE (switches direction) or where
2515 * either MOSI or MISO is missing. They can also be caused by
2516 * software limitations.
2517 */
2518 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2519 || (spi->mode & SPI_3WIRE)) {
2520 unsigned flags = master->flags;
2521
2522 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2523 if (xfer->rx_buf && xfer->tx_buf)
2524 return -EINVAL;
2525 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2526 return -EINVAL;
2527 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2528 return -EINVAL;
2529 }
2530 }
2531
2532 /**
2533 * Set transfer bits_per_word and max speed as spi device default if
2534 * it is not set for this transfer.
2535 * Set transfer tx_nbits and rx_nbits as single transfer default
2536 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2537 */
2538 message->frame_length = 0;
2539 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2540 message->frame_length += xfer->len;
2541 if (!xfer->bits_per_word)
2542 xfer->bits_per_word = spi->bits_per_word;
2543
2544 if (!xfer->speed_hz)
2545 xfer->speed_hz = spi->max_speed_hz;
2546 if (!xfer->speed_hz)
2547 xfer->speed_hz = master->max_speed_hz;
2548
2549 if (master->max_speed_hz &&
2550 xfer->speed_hz > master->max_speed_hz)
2551 xfer->speed_hz = master->max_speed_hz;
2552
2553 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2554 return -EINVAL;
2555
2556 /*
2557 * SPI transfer length should be multiple of SPI word size
2558 * where SPI word size should be power-of-two multiple
2559 */
2560 if (xfer->bits_per_word <= 8)
2561 w_size = 1;
2562 else if (xfer->bits_per_word <= 16)
2563 w_size = 2;
2564 else
2565 w_size = 4;
2566
2567 /* No partial transfers accepted */
2568 if (xfer->len % w_size)
2569 return -EINVAL;
2570
2571 if (xfer->speed_hz && master->min_speed_hz &&
2572 xfer->speed_hz < master->min_speed_hz)
2573 return -EINVAL;
2574
2575 if (xfer->tx_buf && !xfer->tx_nbits)
2576 xfer->tx_nbits = SPI_NBITS_SINGLE;
2577 if (xfer->rx_buf && !xfer->rx_nbits)
2578 xfer->rx_nbits = SPI_NBITS_SINGLE;
2579 /* check transfer tx/rx_nbits:
2580 * 1. check the value matches one of single, dual and quad
2581 * 2. check tx/rx_nbits match the mode in spi_device
2582 */
2583 if (xfer->tx_buf) {
2584 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2585 xfer->tx_nbits != SPI_NBITS_DUAL &&
2586 xfer->tx_nbits != SPI_NBITS_QUAD)
2587 return -EINVAL;
2588 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2589 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2590 return -EINVAL;
2591 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2592 !(spi->mode & SPI_TX_QUAD))
2593 return -EINVAL;
2594 }
2595 /* check transfer rx_nbits */
2596 if (xfer->rx_buf) {
2597 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2598 xfer->rx_nbits != SPI_NBITS_DUAL &&
2599 xfer->rx_nbits != SPI_NBITS_QUAD)
2600 return -EINVAL;
2601 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2602 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2603 return -EINVAL;
2604 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2605 !(spi->mode & SPI_RX_QUAD))
2606 return -EINVAL;
2607 }
2608 }
2609
2610 message->status = -EINPROGRESS;
2611
2612 return 0;
2613 }
2614
2615 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2616 {
2617 struct spi_master *master = spi->master;
2618
2619 message->spi = spi;
2620
2621 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2622 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2623
2624 trace_spi_message_submit(message);
2625
2626 return master->transfer(spi, message);
2627 }
2628
2629 /**
2630 * spi_async - asynchronous SPI transfer
2631 * @spi: device with which data will be exchanged
2632 * @message: describes the data transfers, including completion callback
2633 * Context: any (irqs may be blocked, etc)
2634 *
2635 * This call may be used in_irq and other contexts which can't sleep,
2636 * as well as from task contexts which can sleep.
2637 *
2638 * The completion callback is invoked in a context which can't sleep.
2639 * Before that invocation, the value of message->status is undefined.
2640 * When the callback is issued, message->status holds either zero (to
2641 * indicate complete success) or a negative error code. After that
2642 * callback returns, the driver which issued the transfer request may
2643 * deallocate the associated memory; it's no longer in use by any SPI
2644 * core or controller driver code.
2645 *
2646 * Note that although all messages to a spi_device are handled in
2647 * FIFO order, messages may go to different devices in other orders.
2648 * Some device might be higher priority, or have various "hard" access
2649 * time requirements, for example.
2650 *
2651 * On detection of any fault during the transfer, processing of
2652 * the entire message is aborted, and the device is deselected.
2653 * Until returning from the associated message completion callback,
2654 * no other spi_message queued to that device will be processed.
2655 * (This rule applies equally to all the synchronous transfer calls,
2656 * which are wrappers around this core asynchronous primitive.)
2657 *
2658 * Return: zero on success, else a negative error code.
2659 */
2660 int spi_async(struct spi_device *spi, struct spi_message *message)
2661 {
2662 struct spi_master *master = spi->master;
2663 int ret;
2664 unsigned long flags;
2665
2666 ret = __spi_validate(spi, message);
2667 if (ret != 0)
2668 return ret;
2669
2670 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2671
2672 if (master->bus_lock_flag)
2673 ret = -EBUSY;
2674 else
2675 ret = __spi_async(spi, message);
2676
2677 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2678
2679 return ret;
2680 }
2681 EXPORT_SYMBOL_GPL(spi_async);
2682
2683 /**
2684 * spi_async_locked - version of spi_async with exclusive bus usage
2685 * @spi: device with which data will be exchanged
2686 * @message: describes the data transfers, including completion callback
2687 * Context: any (irqs may be blocked, etc)
2688 *
2689 * This call may be used in_irq and other contexts which can't sleep,
2690 * as well as from task contexts which can sleep.
2691 *
2692 * The completion callback is invoked in a context which can't sleep.
2693 * Before that invocation, the value of message->status is undefined.
2694 * When the callback is issued, message->status holds either zero (to
2695 * indicate complete success) or a negative error code. After that
2696 * callback returns, the driver which issued the transfer request may
2697 * deallocate the associated memory; it's no longer in use by any SPI
2698 * core or controller driver code.
2699 *
2700 * Note that although all messages to a spi_device are handled in
2701 * FIFO order, messages may go to different devices in other orders.
2702 * Some device might be higher priority, or have various "hard" access
2703 * time requirements, for example.
2704 *
2705 * On detection of any fault during the transfer, processing of
2706 * the entire message is aborted, and the device is deselected.
2707 * Until returning from the associated message completion callback,
2708 * no other spi_message queued to that device will be processed.
2709 * (This rule applies equally to all the synchronous transfer calls,
2710 * which are wrappers around this core asynchronous primitive.)
2711 *
2712 * Return: zero on success, else a negative error code.
2713 */
2714 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2715 {
2716 struct spi_master *master = spi->master;
2717 int ret;
2718 unsigned long flags;
2719
2720 ret = __spi_validate(spi, message);
2721 if (ret != 0)
2722 return ret;
2723
2724 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2725
2726 ret = __spi_async(spi, message);
2727
2728 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2729
2730 return ret;
2731
2732 }
2733 EXPORT_SYMBOL_GPL(spi_async_locked);
2734
2735
2736 int spi_flash_read(struct spi_device *spi,
2737 struct spi_flash_read_message *msg)
2738
2739 {
2740 struct spi_master *master = spi->master;
2741 int ret;
2742
2743 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2744 msg->addr_nbits == SPI_NBITS_DUAL) &&
2745 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2746 return -EINVAL;
2747 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2748 msg->addr_nbits == SPI_NBITS_QUAD) &&
2749 !(spi->mode & SPI_TX_QUAD))
2750 return -EINVAL;
2751 if (msg->data_nbits == SPI_NBITS_DUAL &&
2752 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2753 return -EINVAL;
2754 if (msg->data_nbits == SPI_NBITS_QUAD &&
2755 !(spi->mode & SPI_RX_QUAD))
2756 return -EINVAL;
2757
2758 if (master->auto_runtime_pm) {
2759 ret = pm_runtime_get_sync(master->dev.parent);
2760 if (ret < 0) {
2761 dev_err(&master->dev, "Failed to power device: %d\n",
2762 ret);
2763 return ret;
2764 }
2765 }
2766 mutex_lock(&master->bus_lock_mutex);
2767 ret = master->spi_flash_read(spi, msg);
2768 mutex_unlock(&master->bus_lock_mutex);
2769 if (master->auto_runtime_pm)
2770 pm_runtime_put(master->dev.parent);
2771
2772 return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(spi_flash_read);
2775
2776 /*-------------------------------------------------------------------------*/
2777
2778 /* Utility methods for SPI master protocol drivers, layered on
2779 * top of the core. Some other utility methods are defined as
2780 * inline functions.
2781 */
2782
2783 static void spi_complete(void *arg)
2784 {
2785 complete(arg);
2786 }
2787
2788 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2789 int bus_locked)
2790 {
2791 DECLARE_COMPLETION_ONSTACK(done);
2792 int status;
2793 struct spi_master *master = spi->master;
2794 unsigned long flags;
2795
2796 status = __spi_validate(spi, message);
2797 if (status != 0)
2798 return status;
2799
2800 message->complete = spi_complete;
2801 message->context = &done;
2802 message->spi = spi;
2803
2804 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2805 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2806
2807 if (!bus_locked)
2808 mutex_lock(&master->bus_lock_mutex);
2809
2810 /* If we're not using the legacy transfer method then we will
2811 * try to transfer in the calling context so special case.
2812 * This code would be less tricky if we could remove the
2813 * support for driver implemented message queues.
2814 */
2815 if (master->transfer == spi_queued_transfer) {
2816 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2817
2818 trace_spi_message_submit(message);
2819
2820 status = __spi_queued_transfer(spi, message, false);
2821
2822 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2823 } else {
2824 status = spi_async_locked(spi, message);
2825 }
2826
2827 if (!bus_locked)
2828 mutex_unlock(&master->bus_lock_mutex);
2829
2830 if (status == 0) {
2831 /* Push out the messages in the calling context if we
2832 * can.
2833 */
2834 if (master->transfer == spi_queued_transfer) {
2835 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2836 spi_sync_immediate);
2837 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2838 spi_sync_immediate);
2839 __spi_pump_messages(master, false, bus_locked);
2840 }
2841
2842 wait_for_completion(&done);
2843 status = message->status;
2844 }
2845 message->context = NULL;
2846 return status;
2847 }
2848
2849 /**
2850 * spi_sync - blocking/synchronous SPI data transfers
2851 * @spi: device with which data will be exchanged
2852 * @message: describes the data transfers
2853 * Context: can sleep
2854 *
2855 * This call may only be used from a context that may sleep. The sleep
2856 * is non-interruptible, and has no timeout. Low-overhead controller
2857 * drivers may DMA directly into and out of the message buffers.
2858 *
2859 * Note that the SPI device's chip select is active during the message,
2860 * and then is normally disabled between messages. Drivers for some
2861 * frequently-used devices may want to minimize costs of selecting a chip,
2862 * by leaving it selected in anticipation that the next message will go
2863 * to the same chip. (That may increase power usage.)
2864 *
2865 * Also, the caller is guaranteeing that the memory associated with the
2866 * message will not be freed before this call returns.
2867 *
2868 * Return: zero on success, else a negative error code.
2869 */
2870 int spi_sync(struct spi_device *spi, struct spi_message *message)
2871 {
2872 return __spi_sync(spi, message, spi->master->bus_lock_flag);
2873 }
2874 EXPORT_SYMBOL_GPL(spi_sync);
2875
2876 /**
2877 * spi_sync_locked - version of spi_sync with exclusive bus usage
2878 * @spi: device with which data will be exchanged
2879 * @message: describes the data transfers
2880 * Context: can sleep
2881 *
2882 * This call may only be used from a context that may sleep. The sleep
2883 * is non-interruptible, and has no timeout. Low-overhead controller
2884 * drivers may DMA directly into and out of the message buffers.
2885 *
2886 * This call should be used by drivers that require exclusive access to the
2887 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2888 * be released by a spi_bus_unlock call when the exclusive access is over.
2889 *
2890 * Return: zero on success, else a negative error code.
2891 */
2892 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2893 {
2894 return __spi_sync(spi, message, 1);
2895 }
2896 EXPORT_SYMBOL_GPL(spi_sync_locked);
2897
2898 /**
2899 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2900 * @master: SPI bus master that should be locked for exclusive bus access
2901 * Context: can sleep
2902 *
2903 * This call may only be used from a context that may sleep. The sleep
2904 * is non-interruptible, and has no timeout.
2905 *
2906 * This call should be used by drivers that require exclusive access to the
2907 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2908 * exclusive access is over. Data transfer must be done by spi_sync_locked
2909 * and spi_async_locked calls when the SPI bus lock is held.
2910 *
2911 * Return: always zero.
2912 */
2913 int spi_bus_lock(struct spi_master *master)
2914 {
2915 unsigned long flags;
2916
2917 mutex_lock(&master->bus_lock_mutex);
2918
2919 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2920 master->bus_lock_flag = 1;
2921 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2922
2923 /* mutex remains locked until spi_bus_unlock is called */
2924
2925 return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(spi_bus_lock);
2928
2929 /**
2930 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2931 * @master: SPI bus master that was locked for exclusive bus access
2932 * Context: can sleep
2933 *
2934 * This call may only be used from a context that may sleep. The sleep
2935 * is non-interruptible, and has no timeout.
2936 *
2937 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2938 * call.
2939 *
2940 * Return: always zero.
2941 */
2942 int spi_bus_unlock(struct spi_master *master)
2943 {
2944 master->bus_lock_flag = 0;
2945
2946 mutex_unlock(&master->bus_lock_mutex);
2947
2948 return 0;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2951
2952 /* portable code must never pass more than 32 bytes */
2953 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2954
2955 static u8 *buf;
2956
2957 /**
2958 * spi_write_then_read - SPI synchronous write followed by read
2959 * @spi: device with which data will be exchanged
2960 * @txbuf: data to be written (need not be dma-safe)
2961 * @n_tx: size of txbuf, in bytes
2962 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2963 * @n_rx: size of rxbuf, in bytes
2964 * Context: can sleep
2965 *
2966 * This performs a half duplex MicroWire style transaction with the
2967 * device, sending txbuf and then reading rxbuf. The return value
2968 * is zero for success, else a negative errno status code.
2969 * This call may only be used from a context that may sleep.
2970 *
2971 * Parameters to this routine are always copied using a small buffer;
2972 * portable code should never use this for more than 32 bytes.
2973 * Performance-sensitive or bulk transfer code should instead use
2974 * spi_{async,sync}() calls with dma-safe buffers.
2975 *
2976 * Return: zero on success, else a negative error code.
2977 */
2978 int spi_write_then_read(struct spi_device *spi,
2979 const void *txbuf, unsigned n_tx,
2980 void *rxbuf, unsigned n_rx)
2981 {
2982 static DEFINE_MUTEX(lock);
2983
2984 int status;
2985 struct spi_message message;
2986 struct spi_transfer x[2];
2987 u8 *local_buf;
2988
2989 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2990 * copying here, (as a pure convenience thing), but we can
2991 * keep heap costs out of the hot path unless someone else is
2992 * using the pre-allocated buffer or the transfer is too large.
2993 */
2994 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2995 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2996 GFP_KERNEL | GFP_DMA);
2997 if (!local_buf)
2998 return -ENOMEM;
2999 } else {
3000 local_buf = buf;
3001 }
3002
3003 spi_message_init(&message);
3004 memset(x, 0, sizeof(x));
3005 if (n_tx) {
3006 x[0].len = n_tx;
3007 spi_message_add_tail(&x[0], &message);
3008 }
3009 if (n_rx) {
3010 x[1].len = n_rx;
3011 spi_message_add_tail(&x[1], &message);
3012 }
3013
3014 memcpy(local_buf, txbuf, n_tx);
3015 x[0].tx_buf = local_buf;
3016 x[1].rx_buf = local_buf + n_tx;
3017
3018 /* do the i/o */
3019 status = spi_sync(spi, &message);
3020 if (status == 0)
3021 memcpy(rxbuf, x[1].rx_buf, n_rx);
3022
3023 if (x[0].tx_buf == buf)
3024 mutex_unlock(&lock);
3025 else
3026 kfree(local_buf);
3027
3028 return status;
3029 }
3030 EXPORT_SYMBOL_GPL(spi_write_then_read);
3031
3032 /*-------------------------------------------------------------------------*/
3033
3034 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3035 static int __spi_of_device_match(struct device *dev, void *data)
3036 {
3037 return dev->of_node == data;
3038 }
3039
3040 /* must call put_device() when done with returned spi_device device */
3041 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3042 {
3043 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3044 __spi_of_device_match);
3045 return dev ? to_spi_device(dev) : NULL;
3046 }
3047
3048 static int __spi_of_master_match(struct device *dev, const void *data)
3049 {
3050 return dev->of_node == data;
3051 }
3052
3053 /* the spi masters are not using spi_bus, so we find it with another way */
3054 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3055 {
3056 struct device *dev;
3057
3058 dev = class_find_device(&spi_master_class, NULL, node,
3059 __spi_of_master_match);
3060 if (!dev)
3061 return NULL;
3062
3063 /* reference got in class_find_device */
3064 return container_of(dev, struct spi_master, dev);
3065 }
3066
3067 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3068 void *arg)
3069 {
3070 struct of_reconfig_data *rd = arg;
3071 struct spi_master *master;
3072 struct spi_device *spi;
3073
3074 switch (of_reconfig_get_state_change(action, arg)) {
3075 case OF_RECONFIG_CHANGE_ADD:
3076 master = of_find_spi_master_by_node(rd->dn->parent);
3077 if (master == NULL)
3078 return NOTIFY_OK; /* not for us */
3079
3080 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3081 put_device(&master->dev);
3082 return NOTIFY_OK;
3083 }
3084
3085 spi = of_register_spi_device(master, rd->dn);
3086 put_device(&master->dev);
3087
3088 if (IS_ERR(spi)) {
3089 pr_err("%s: failed to create for '%s'\n",
3090 __func__, rd->dn->full_name);
3091 return notifier_from_errno(PTR_ERR(spi));
3092 }
3093 break;
3094
3095 case OF_RECONFIG_CHANGE_REMOVE:
3096 /* already depopulated? */
3097 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3098 return NOTIFY_OK;
3099
3100 /* find our device by node */
3101 spi = of_find_spi_device_by_node(rd->dn);
3102 if (spi == NULL)
3103 return NOTIFY_OK; /* no? not meant for us */
3104
3105 /* unregister takes one ref away */
3106 spi_unregister_device(spi);
3107
3108 /* and put the reference of the find */
3109 put_device(&spi->dev);
3110 break;
3111 }
3112
3113 return NOTIFY_OK;
3114 }
3115
3116 static struct notifier_block spi_of_notifier = {
3117 .notifier_call = of_spi_notify,
3118 };
3119 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3120 extern struct notifier_block spi_of_notifier;
3121 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3122
3123 #if IS_ENABLED(CONFIG_ACPI)
3124 static int spi_acpi_master_match(struct device *dev, const void *data)
3125 {
3126 return ACPI_COMPANION(dev->parent) == data;
3127 }
3128
3129 static int spi_acpi_device_match(struct device *dev, void *data)
3130 {
3131 return ACPI_COMPANION(dev) == data;
3132 }
3133
3134 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3135 {
3136 struct device *dev;
3137
3138 dev = class_find_device(&spi_master_class, NULL, adev,
3139 spi_acpi_master_match);
3140 if (!dev)
3141 return NULL;
3142
3143 return container_of(dev, struct spi_master, dev);
3144 }
3145
3146 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3147 {
3148 struct device *dev;
3149
3150 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3151
3152 return dev ? to_spi_device(dev) : NULL;
3153 }
3154
3155 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3156 void *arg)
3157 {
3158 struct acpi_device *adev = arg;
3159 struct spi_master *master;
3160 struct spi_device *spi;
3161
3162 switch (value) {
3163 case ACPI_RECONFIG_DEVICE_ADD:
3164 master = acpi_spi_find_master_by_adev(adev->parent);
3165 if (!master)
3166 break;
3167
3168 acpi_register_spi_device(master, adev);
3169 put_device(&master->dev);
3170 break;
3171 case ACPI_RECONFIG_DEVICE_REMOVE:
3172 if (!acpi_device_enumerated(adev))
3173 break;
3174
3175 spi = acpi_spi_find_device_by_adev(adev);
3176 if (!spi)
3177 break;
3178
3179 spi_unregister_device(spi);
3180 put_device(&spi->dev);
3181 break;
3182 }
3183
3184 return NOTIFY_OK;
3185 }
3186
3187 static struct notifier_block spi_acpi_notifier = {
3188 .notifier_call = acpi_spi_notify,
3189 };
3190 #else
3191 extern struct notifier_block spi_acpi_notifier;
3192 #endif
3193
3194 static int __init spi_init(void)
3195 {
3196 int status;
3197
3198 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3199 if (!buf) {
3200 status = -ENOMEM;
3201 goto err0;
3202 }
3203
3204 status = bus_register(&spi_bus_type);
3205 if (status < 0)
3206 goto err1;
3207
3208 status = class_register(&spi_master_class);
3209 if (status < 0)
3210 goto err2;
3211
3212 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3213 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3214 if (IS_ENABLED(CONFIG_ACPI))
3215 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3216
3217 return 0;
3218
3219 err2:
3220 bus_unregister(&spi_bus_type);
3221 err1:
3222 kfree(buf);
3223 buf = NULL;
3224 err0:
3225 return status;
3226 }
3227
3228 /* board_info is normally registered in arch_initcall(),
3229 * but even essential drivers wait till later
3230 *
3231 * REVISIT only boardinfo really needs static linking. the rest (device and
3232 * driver registration) _could_ be dynamically linked (modular) ... costs
3233 * include needing to have boardinfo data structures be much more public.
3234 */
3235 postcore_initcall(spi_init);
3236
This page took 0.09623 seconds and 6 git commands to generate.