Merge remote-tracking branches 'regulator/topic/da9063', 'regulator/topic/doc', ...
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 static struct attribute *spi_dev_attrs[] = {
71 &dev_attr_modalias.attr,
72 NULL,
73 };
74 ATTRIBUTE_GROUPS(spi_dev);
75
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
78 */
79
80 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 const struct spi_device *sdev)
82 {
83 while (id->name[0]) {
84 if (!strcmp(sdev->modalias, id->name))
85 return id;
86 id++;
87 }
88 return NULL;
89 }
90
91 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92 {
93 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94
95 return spi_match_id(sdrv->id_table, sdev);
96 }
97 EXPORT_SYMBOL_GPL(spi_get_device_id);
98
99 static int spi_match_device(struct device *dev, struct device_driver *drv)
100 {
101 const struct spi_device *spi = to_spi_device(dev);
102 const struct spi_driver *sdrv = to_spi_driver(drv);
103
104 /* Attempt an OF style match */
105 if (of_driver_match_device(dev, drv))
106 return 1;
107
108 /* Then try ACPI */
109 if (acpi_driver_match_device(dev, drv))
110 return 1;
111
112 if (sdrv->id_table)
113 return !!spi_match_id(sdrv->id_table, spi);
114
115 return strcmp(spi->modalias, drv->name) == 0;
116 }
117
118 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119 {
120 const struct spi_device *spi = to_spi_device(dev);
121 int rc;
122
123 rc = acpi_device_uevent_modalias(dev, env);
124 if (rc != -ENODEV)
125 return rc;
126
127 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128 return 0;
129 }
130
131 struct bus_type spi_bus_type = {
132 .name = "spi",
133 .dev_groups = spi_dev_groups,
134 .match = spi_match_device,
135 .uevent = spi_uevent,
136 };
137 EXPORT_SYMBOL_GPL(spi_bus_type);
138
139
140 static int spi_drv_probe(struct device *dev)
141 {
142 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
143 int ret;
144
145 ret = of_clk_set_defaults(dev->of_node, false);
146 if (ret)
147 return ret;
148
149 ret = dev_pm_domain_attach(dev, true);
150 if (ret != -EPROBE_DEFER) {
151 ret = sdrv->probe(to_spi_device(dev));
152 if (ret)
153 dev_pm_domain_detach(dev, true);
154 }
155
156 return ret;
157 }
158
159 static int spi_drv_remove(struct device *dev)
160 {
161 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
162 int ret;
163
164 ret = sdrv->remove(to_spi_device(dev));
165 dev_pm_domain_detach(dev, true);
166
167 return ret;
168 }
169
170 static void spi_drv_shutdown(struct device *dev)
171 {
172 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
173
174 sdrv->shutdown(to_spi_device(dev));
175 }
176
177 /**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
182 int spi_register_driver(struct spi_driver *sdrv)
183 {
184 sdrv->driver.bus = &spi_bus_type;
185 if (sdrv->probe)
186 sdrv->driver.probe = spi_drv_probe;
187 if (sdrv->remove)
188 sdrv->driver.remove = spi_drv_remove;
189 if (sdrv->shutdown)
190 sdrv->driver.shutdown = spi_drv_shutdown;
191 return driver_register(&sdrv->driver);
192 }
193 EXPORT_SYMBOL_GPL(spi_register_driver);
194
195 /*-------------------------------------------------------------------------*/
196
197 /* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203 struct boardinfo {
204 struct list_head list;
205 struct spi_board_info board_info;
206 };
207
208 static LIST_HEAD(board_list);
209 static LIST_HEAD(spi_master_list);
210
211 /*
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
214 */
215 static DEFINE_MUTEX(board_lock);
216
217 /**
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
220 * Context: can sleep
221 *
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately. This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
226 *
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master. If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
231 *
232 * Returns a pointer to the new device, or NULL.
233 */
234 struct spi_device *spi_alloc_device(struct spi_master *master)
235 {
236 struct spi_device *spi;
237
238 if (!spi_master_get(master))
239 return NULL;
240
241 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242 if (!spi) {
243 spi_master_put(master);
244 return NULL;
245 }
246
247 spi->master = master;
248 spi->dev.parent = &master->dev;
249 spi->dev.bus = &spi_bus_type;
250 spi->dev.release = spidev_release;
251 spi->cs_gpio = -ENOENT;
252 device_initialize(&spi->dev);
253 return spi;
254 }
255 EXPORT_SYMBOL_GPL(spi_alloc_device);
256
257 static void spi_dev_set_name(struct spi_device *spi)
258 {
259 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260
261 if (adev) {
262 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 return;
264 }
265
266 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 spi->chip_select);
268 }
269
270 static int spi_dev_check(struct device *dev, void *data)
271 {
272 struct spi_device *spi = to_spi_device(dev);
273 struct spi_device *new_spi = data;
274
275 if (spi->master == new_spi->master &&
276 spi->chip_select == new_spi->chip_select)
277 return -EBUSY;
278 return 0;
279 }
280
281 /**
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
284 *
285 * Companion function to spi_alloc_device. Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
287 *
288 * Returns 0 on success; negative errno on failure
289 */
290 int spi_add_device(struct spi_device *spi)
291 {
292 static DEFINE_MUTEX(spi_add_lock);
293 struct spi_master *master = spi->master;
294 struct device *dev = master->dev.parent;
295 int status;
296
297 /* Chipselects are numbered 0..max; validate. */
298 if (spi->chip_select >= master->num_chipselect) {
299 dev_err(dev, "cs%d >= max %d\n",
300 spi->chip_select,
301 master->num_chipselect);
302 return -EINVAL;
303 }
304
305 /* Set the bus ID string */
306 spi_dev_set_name(spi);
307
308 /* We need to make sure there's no other device with this
309 * chipselect **BEFORE** we call setup(), else we'll trash
310 * its configuration. Lock against concurrent add() calls.
311 */
312 mutex_lock(&spi_add_lock);
313
314 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 if (status) {
316 dev_err(dev, "chipselect %d already in use\n",
317 spi->chip_select);
318 goto done;
319 }
320
321 if (master->cs_gpios)
322 spi->cs_gpio = master->cs_gpios[spi->chip_select];
323
324 /* Drivers may modify this initial i/o setup, but will
325 * normally rely on the device being setup. Devices
326 * using SPI_CS_HIGH can't coexist well otherwise...
327 */
328 status = spi_setup(spi);
329 if (status < 0) {
330 dev_err(dev, "can't setup %s, status %d\n",
331 dev_name(&spi->dev), status);
332 goto done;
333 }
334
335 /* Device may be bound to an active driver when this returns */
336 status = device_add(&spi->dev);
337 if (status < 0)
338 dev_err(dev, "can't add %s, status %d\n",
339 dev_name(&spi->dev), status);
340 else
341 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342
343 done:
344 mutex_unlock(&spi_add_lock);
345 return status;
346 }
347 EXPORT_SYMBOL_GPL(spi_add_device);
348
349 /**
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
353 * Context: can sleep
354 *
355 * On typical mainboards, this is purely internal; and it's not needed
356 * after board init creates the hard-wired devices. Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
360 *
361 * Returns the new device, or NULL.
362 */
363 struct spi_device *spi_new_device(struct spi_master *master,
364 struct spi_board_info *chip)
365 {
366 struct spi_device *proxy;
367 int status;
368
369 /* NOTE: caller did any chip->bus_num checks necessary.
370 *
371 * Also, unless we change the return value convention to use
372 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 * suggests syslogged diagnostics are best here (ugh).
374 */
375
376 proxy = spi_alloc_device(master);
377 if (!proxy)
378 return NULL;
379
380 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381
382 proxy->chip_select = chip->chip_select;
383 proxy->max_speed_hz = chip->max_speed_hz;
384 proxy->mode = chip->mode;
385 proxy->irq = chip->irq;
386 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387 proxy->dev.platform_data = (void *) chip->platform_data;
388 proxy->controller_data = chip->controller_data;
389 proxy->controller_state = NULL;
390
391 status = spi_add_device(proxy);
392 if (status < 0) {
393 spi_dev_put(proxy);
394 return NULL;
395 }
396
397 return proxy;
398 }
399 EXPORT_SYMBOL_GPL(spi_new_device);
400
401 static void spi_match_master_to_boardinfo(struct spi_master *master,
402 struct spi_board_info *bi)
403 {
404 struct spi_device *dev;
405
406 if (master->bus_num != bi->bus_num)
407 return;
408
409 dev = spi_new_device(master, bi);
410 if (!dev)
411 dev_err(master->dev.parent, "can't create new device for %s\n",
412 bi->modalias);
413 }
414
415 /**
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
419 * Context: can sleep
420 *
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table. Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined. We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
426 *
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
430 *
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
433 */
434 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435 {
436 struct boardinfo *bi;
437 int i;
438
439 if (!n)
440 return -EINVAL;
441
442 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443 if (!bi)
444 return -ENOMEM;
445
446 for (i = 0; i < n; i++, bi++, info++) {
447 struct spi_master *master;
448
449 memcpy(&bi->board_info, info, sizeof(*info));
450 mutex_lock(&board_lock);
451 list_add_tail(&bi->list, &board_list);
452 list_for_each_entry(master, &spi_master_list, list)
453 spi_match_master_to_boardinfo(master, &bi->board_info);
454 mutex_unlock(&board_lock);
455 }
456
457 return 0;
458 }
459
460 /*-------------------------------------------------------------------------*/
461
462 static void spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 if (spi->mode & SPI_CS_HIGH)
465 enable = !enable;
466
467 if (spi->cs_gpio >= 0)
468 gpio_set_value(spi->cs_gpio, !enable);
469 else if (spi->master->set_cs)
470 spi->master->set_cs(spi, !enable);
471 }
472
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master *master, struct device *dev,
475 struct sg_table *sgt, void *buf, size_t len,
476 enum dma_data_direction dir)
477 {
478 const bool vmalloced_buf = is_vmalloc_addr(buf);
479 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 const int sgs = DIV_ROUND_UP(len, desc_len);
481 struct page *vm_page;
482 void *sg_buf;
483 size_t min;
484 int i, ret;
485
486 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 if (ret != 0)
488 return ret;
489
490 for (i = 0; i < sgs; i++) {
491 min = min_t(size_t, len, desc_len);
492
493 if (vmalloced_buf) {
494 vm_page = vmalloc_to_page(buf);
495 if (!vm_page) {
496 sg_free_table(sgt);
497 return -ENOMEM;
498 }
499 sg_set_page(&sgt->sgl[i], vm_page,
500 min, offset_in_page(buf));
501 } else {
502 sg_buf = buf;
503 sg_set_buf(&sgt->sgl[i], sg_buf, min);
504 }
505
506
507 buf += min;
508 len -= min;
509 }
510
511 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512 if (!ret)
513 ret = -ENOMEM;
514 if (ret < 0) {
515 sg_free_table(sgt);
516 return ret;
517 }
518
519 sgt->nents = ret;
520
521 return 0;
522 }
523
524 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 struct sg_table *sgt, enum dma_data_direction dir)
526 {
527 if (sgt->orig_nents) {
528 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 sg_free_table(sgt);
530 }
531 }
532
533 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534 {
535 struct device *tx_dev, *rx_dev;
536 struct spi_transfer *xfer;
537 int ret;
538
539 if (!master->can_dma)
540 return 0;
541
542 tx_dev = master->dma_tx->device->dev;
543 rx_dev = master->dma_rx->device->dev;
544
545 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 if (!master->can_dma(master, msg->spi, xfer))
547 continue;
548
549 if (xfer->tx_buf != NULL) {
550 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 (void *)xfer->tx_buf, xfer->len,
552 DMA_TO_DEVICE);
553 if (ret != 0)
554 return ret;
555 }
556
557 if (xfer->rx_buf != NULL) {
558 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 xfer->rx_buf, xfer->len,
560 DMA_FROM_DEVICE);
561 if (ret != 0) {
562 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 DMA_TO_DEVICE);
564 return ret;
565 }
566 }
567 }
568
569 master->cur_msg_mapped = true;
570
571 return 0;
572 }
573
574 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575 {
576 struct spi_transfer *xfer;
577 struct device *tx_dev, *rx_dev;
578
579 if (!master->cur_msg_mapped || !master->can_dma)
580 return 0;
581
582 tx_dev = master->dma_tx->device->dev;
583 rx_dev = master->dma_rx->device->dev;
584
585 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586 /*
587 * Restore the original value of tx_buf or rx_buf if they are
588 * NULL.
589 */
590 if (xfer->tx_buf == master->dummy_tx)
591 xfer->tx_buf = NULL;
592 if (xfer->rx_buf == master->dummy_rx)
593 xfer->rx_buf = NULL;
594
595 if (!master->can_dma(master, msg->spi, xfer))
596 continue;
597
598 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
599 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
600 }
601
602 return 0;
603 }
604 #else /* !CONFIG_HAS_DMA */
605 static inline int __spi_map_msg(struct spi_master *master,
606 struct spi_message *msg)
607 {
608 return 0;
609 }
610
611 static inline int spi_unmap_msg(struct spi_master *master,
612 struct spi_message *msg)
613 {
614 return 0;
615 }
616 #endif /* !CONFIG_HAS_DMA */
617
618 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
619 {
620 struct spi_transfer *xfer;
621 void *tmp;
622 unsigned int max_tx, max_rx;
623
624 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
625 max_tx = 0;
626 max_rx = 0;
627
628 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
629 if ((master->flags & SPI_MASTER_MUST_TX) &&
630 !xfer->tx_buf)
631 max_tx = max(xfer->len, max_tx);
632 if ((master->flags & SPI_MASTER_MUST_RX) &&
633 !xfer->rx_buf)
634 max_rx = max(xfer->len, max_rx);
635 }
636
637 if (max_tx) {
638 tmp = krealloc(master->dummy_tx, max_tx,
639 GFP_KERNEL | GFP_DMA);
640 if (!tmp)
641 return -ENOMEM;
642 master->dummy_tx = tmp;
643 memset(tmp, 0, max_tx);
644 }
645
646 if (max_rx) {
647 tmp = krealloc(master->dummy_rx, max_rx,
648 GFP_KERNEL | GFP_DMA);
649 if (!tmp)
650 return -ENOMEM;
651 master->dummy_rx = tmp;
652 }
653
654 if (max_tx || max_rx) {
655 list_for_each_entry(xfer, &msg->transfers,
656 transfer_list) {
657 if (!xfer->tx_buf)
658 xfer->tx_buf = master->dummy_tx;
659 if (!xfer->rx_buf)
660 xfer->rx_buf = master->dummy_rx;
661 }
662 }
663 }
664
665 return __spi_map_msg(master, msg);
666 }
667
668 /*
669 * spi_transfer_one_message - Default implementation of transfer_one_message()
670 *
671 * This is a standard implementation of transfer_one_message() for
672 * drivers which impelment a transfer_one() operation. It provides
673 * standard handling of delays and chip select management.
674 */
675 static int spi_transfer_one_message(struct spi_master *master,
676 struct spi_message *msg)
677 {
678 struct spi_transfer *xfer;
679 bool keep_cs = false;
680 int ret = 0;
681 unsigned long ms = 1;
682
683 spi_set_cs(msg->spi, true);
684
685 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
686 trace_spi_transfer_start(msg, xfer);
687
688 if (xfer->tx_buf || xfer->rx_buf) {
689 reinit_completion(&master->xfer_completion);
690
691 ret = master->transfer_one(master, msg->spi, xfer);
692 if (ret < 0) {
693 dev_err(&msg->spi->dev,
694 "SPI transfer failed: %d\n", ret);
695 goto out;
696 }
697
698 if (ret > 0) {
699 ret = 0;
700 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
701 ms += ms + 100; /* some tolerance */
702
703 ms = wait_for_completion_timeout(&master->xfer_completion,
704 msecs_to_jiffies(ms));
705 }
706
707 if (ms == 0) {
708 dev_err(&msg->spi->dev,
709 "SPI transfer timed out\n");
710 msg->status = -ETIMEDOUT;
711 }
712 } else {
713 if (xfer->len)
714 dev_err(&msg->spi->dev,
715 "Bufferless transfer has length %u\n",
716 xfer->len);
717 }
718
719 trace_spi_transfer_stop(msg, xfer);
720
721 if (msg->status != -EINPROGRESS)
722 goto out;
723
724 if (xfer->delay_usecs)
725 udelay(xfer->delay_usecs);
726
727 if (xfer->cs_change) {
728 if (list_is_last(&xfer->transfer_list,
729 &msg->transfers)) {
730 keep_cs = true;
731 } else {
732 spi_set_cs(msg->spi, false);
733 udelay(10);
734 spi_set_cs(msg->spi, true);
735 }
736 }
737
738 msg->actual_length += xfer->len;
739 }
740
741 out:
742 if (ret != 0 || !keep_cs)
743 spi_set_cs(msg->spi, false);
744
745 if (msg->status == -EINPROGRESS)
746 msg->status = ret;
747
748 if (msg->status && master->handle_err)
749 master->handle_err(master, msg);
750
751 spi_finalize_current_message(master);
752
753 return ret;
754 }
755
756 /**
757 * spi_finalize_current_transfer - report completion of a transfer
758 * @master: the master reporting completion
759 *
760 * Called by SPI drivers using the core transfer_one_message()
761 * implementation to notify it that the current interrupt driven
762 * transfer has finished and the next one may be scheduled.
763 */
764 void spi_finalize_current_transfer(struct spi_master *master)
765 {
766 complete(&master->xfer_completion);
767 }
768 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
769
770 /**
771 * __spi_pump_messages - function which processes spi message queue
772 * @master: master to process queue for
773 * @in_kthread: true if we are in the context of the message pump thread
774 *
775 * This function checks if there is any spi message in the queue that
776 * needs processing and if so call out to the driver to initialize hardware
777 * and transfer each message.
778 *
779 * Note that it is called both from the kthread itself and also from
780 * inside spi_sync(); the queue extraction handling at the top of the
781 * function should deal with this safely.
782 */
783 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
784 {
785 unsigned long flags;
786 bool was_busy = false;
787 int ret;
788
789 /* Lock queue */
790 spin_lock_irqsave(&master->queue_lock, flags);
791
792 /* Make sure we are not already running a message */
793 if (master->cur_msg) {
794 spin_unlock_irqrestore(&master->queue_lock, flags);
795 return;
796 }
797
798 /* If another context is idling the device then defer */
799 if (master->idling) {
800 queue_kthread_work(&master->kworker, &master->pump_messages);
801 spin_unlock_irqrestore(&master->queue_lock, flags);
802 return;
803 }
804
805 /* Check if the queue is idle */
806 if (list_empty(&master->queue) || !master->running) {
807 if (!master->busy) {
808 spin_unlock_irqrestore(&master->queue_lock, flags);
809 return;
810 }
811
812 /* Only do teardown in the thread */
813 if (!in_kthread) {
814 queue_kthread_work(&master->kworker,
815 &master->pump_messages);
816 spin_unlock_irqrestore(&master->queue_lock, flags);
817 return;
818 }
819
820 master->busy = false;
821 master->idling = true;
822 spin_unlock_irqrestore(&master->queue_lock, flags);
823
824 kfree(master->dummy_rx);
825 master->dummy_rx = NULL;
826 kfree(master->dummy_tx);
827 master->dummy_tx = NULL;
828 if (master->unprepare_transfer_hardware &&
829 master->unprepare_transfer_hardware(master))
830 dev_err(&master->dev,
831 "failed to unprepare transfer hardware\n");
832 if (master->auto_runtime_pm) {
833 pm_runtime_mark_last_busy(master->dev.parent);
834 pm_runtime_put_autosuspend(master->dev.parent);
835 }
836 trace_spi_master_idle(master);
837
838 spin_lock_irqsave(&master->queue_lock, flags);
839 master->idling = false;
840 spin_unlock_irqrestore(&master->queue_lock, flags);
841 return;
842 }
843
844 /* Extract head of queue */
845 master->cur_msg =
846 list_first_entry(&master->queue, struct spi_message, queue);
847
848 list_del_init(&master->cur_msg->queue);
849 if (master->busy)
850 was_busy = true;
851 else
852 master->busy = true;
853 spin_unlock_irqrestore(&master->queue_lock, flags);
854
855 if (!was_busy && master->auto_runtime_pm) {
856 ret = pm_runtime_get_sync(master->dev.parent);
857 if (ret < 0) {
858 dev_err(&master->dev, "Failed to power device: %d\n",
859 ret);
860 return;
861 }
862 }
863
864 if (!was_busy)
865 trace_spi_master_busy(master);
866
867 if (!was_busy && master->prepare_transfer_hardware) {
868 ret = master->prepare_transfer_hardware(master);
869 if (ret) {
870 dev_err(&master->dev,
871 "failed to prepare transfer hardware\n");
872
873 if (master->auto_runtime_pm)
874 pm_runtime_put(master->dev.parent);
875 return;
876 }
877 }
878
879 trace_spi_message_start(master->cur_msg);
880
881 if (master->prepare_message) {
882 ret = master->prepare_message(master, master->cur_msg);
883 if (ret) {
884 dev_err(&master->dev,
885 "failed to prepare message: %d\n", ret);
886 master->cur_msg->status = ret;
887 spi_finalize_current_message(master);
888 return;
889 }
890 master->cur_msg_prepared = true;
891 }
892
893 ret = spi_map_msg(master, master->cur_msg);
894 if (ret) {
895 master->cur_msg->status = ret;
896 spi_finalize_current_message(master);
897 return;
898 }
899
900 ret = master->transfer_one_message(master, master->cur_msg);
901 if (ret) {
902 dev_err(&master->dev,
903 "failed to transfer one message from queue\n");
904 return;
905 }
906 }
907
908 /**
909 * spi_pump_messages - kthread work function which processes spi message queue
910 * @work: pointer to kthread work struct contained in the master struct
911 */
912 static void spi_pump_messages(struct kthread_work *work)
913 {
914 struct spi_master *master =
915 container_of(work, struct spi_master, pump_messages);
916
917 __spi_pump_messages(master, true);
918 }
919
920 static int spi_init_queue(struct spi_master *master)
921 {
922 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
923
924 master->running = false;
925 master->busy = false;
926
927 init_kthread_worker(&master->kworker);
928 master->kworker_task = kthread_run(kthread_worker_fn,
929 &master->kworker, "%s",
930 dev_name(&master->dev));
931 if (IS_ERR(master->kworker_task)) {
932 dev_err(&master->dev, "failed to create message pump task\n");
933 return PTR_ERR(master->kworker_task);
934 }
935 init_kthread_work(&master->pump_messages, spi_pump_messages);
936
937 /*
938 * Master config will indicate if this controller should run the
939 * message pump with high (realtime) priority to reduce the transfer
940 * latency on the bus by minimising the delay between a transfer
941 * request and the scheduling of the message pump thread. Without this
942 * setting the message pump thread will remain at default priority.
943 */
944 if (master->rt) {
945 dev_info(&master->dev,
946 "will run message pump with realtime priority\n");
947 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
948 }
949
950 return 0;
951 }
952
953 /**
954 * spi_get_next_queued_message() - called by driver to check for queued
955 * messages
956 * @master: the master to check for queued messages
957 *
958 * If there are more messages in the queue, the next message is returned from
959 * this call.
960 */
961 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
962 {
963 struct spi_message *next;
964 unsigned long flags;
965
966 /* get a pointer to the next message, if any */
967 spin_lock_irqsave(&master->queue_lock, flags);
968 next = list_first_entry_or_null(&master->queue, struct spi_message,
969 queue);
970 spin_unlock_irqrestore(&master->queue_lock, flags);
971
972 return next;
973 }
974 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
975
976 /**
977 * spi_finalize_current_message() - the current message is complete
978 * @master: the master to return the message to
979 *
980 * Called by the driver to notify the core that the message in the front of the
981 * queue is complete and can be removed from the queue.
982 */
983 void spi_finalize_current_message(struct spi_master *master)
984 {
985 struct spi_message *mesg;
986 unsigned long flags;
987 int ret;
988
989 spin_lock_irqsave(&master->queue_lock, flags);
990 mesg = master->cur_msg;
991 master->cur_msg = NULL;
992
993 queue_kthread_work(&master->kworker, &master->pump_messages);
994 spin_unlock_irqrestore(&master->queue_lock, flags);
995
996 spi_unmap_msg(master, mesg);
997
998 if (master->cur_msg_prepared && master->unprepare_message) {
999 ret = master->unprepare_message(master, mesg);
1000 if (ret) {
1001 dev_err(&master->dev,
1002 "failed to unprepare message: %d\n", ret);
1003 }
1004 }
1005
1006 trace_spi_message_done(mesg);
1007
1008 master->cur_msg_prepared = false;
1009
1010 mesg->state = NULL;
1011 if (mesg->complete)
1012 mesg->complete(mesg->context);
1013 }
1014 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1015
1016 static int spi_start_queue(struct spi_master *master)
1017 {
1018 unsigned long flags;
1019
1020 spin_lock_irqsave(&master->queue_lock, flags);
1021
1022 if (master->running || master->busy) {
1023 spin_unlock_irqrestore(&master->queue_lock, flags);
1024 return -EBUSY;
1025 }
1026
1027 master->running = true;
1028 master->cur_msg = NULL;
1029 spin_unlock_irqrestore(&master->queue_lock, flags);
1030
1031 queue_kthread_work(&master->kworker, &master->pump_messages);
1032
1033 return 0;
1034 }
1035
1036 static int spi_stop_queue(struct spi_master *master)
1037 {
1038 unsigned long flags;
1039 unsigned limit = 500;
1040 int ret = 0;
1041
1042 spin_lock_irqsave(&master->queue_lock, flags);
1043
1044 /*
1045 * This is a bit lame, but is optimized for the common execution path.
1046 * A wait_queue on the master->busy could be used, but then the common
1047 * execution path (pump_messages) would be required to call wake_up or
1048 * friends on every SPI message. Do this instead.
1049 */
1050 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1051 spin_unlock_irqrestore(&master->queue_lock, flags);
1052 usleep_range(10000, 11000);
1053 spin_lock_irqsave(&master->queue_lock, flags);
1054 }
1055
1056 if (!list_empty(&master->queue) || master->busy)
1057 ret = -EBUSY;
1058 else
1059 master->running = false;
1060
1061 spin_unlock_irqrestore(&master->queue_lock, flags);
1062
1063 if (ret) {
1064 dev_warn(&master->dev,
1065 "could not stop message queue\n");
1066 return ret;
1067 }
1068 return ret;
1069 }
1070
1071 static int spi_destroy_queue(struct spi_master *master)
1072 {
1073 int ret;
1074
1075 ret = spi_stop_queue(master);
1076
1077 /*
1078 * flush_kthread_worker will block until all work is done.
1079 * If the reason that stop_queue timed out is that the work will never
1080 * finish, then it does no good to call flush/stop thread, so
1081 * return anyway.
1082 */
1083 if (ret) {
1084 dev_err(&master->dev, "problem destroying queue\n");
1085 return ret;
1086 }
1087
1088 flush_kthread_worker(&master->kworker);
1089 kthread_stop(master->kworker_task);
1090
1091 return 0;
1092 }
1093
1094 static int __spi_queued_transfer(struct spi_device *spi,
1095 struct spi_message *msg,
1096 bool need_pump)
1097 {
1098 struct spi_master *master = spi->master;
1099 unsigned long flags;
1100
1101 spin_lock_irqsave(&master->queue_lock, flags);
1102
1103 if (!master->running) {
1104 spin_unlock_irqrestore(&master->queue_lock, flags);
1105 return -ESHUTDOWN;
1106 }
1107 msg->actual_length = 0;
1108 msg->status = -EINPROGRESS;
1109
1110 list_add_tail(&msg->queue, &master->queue);
1111 if (!master->busy && need_pump)
1112 queue_kthread_work(&master->kworker, &master->pump_messages);
1113
1114 spin_unlock_irqrestore(&master->queue_lock, flags);
1115 return 0;
1116 }
1117
1118 /**
1119 * spi_queued_transfer - transfer function for queued transfers
1120 * @spi: spi device which is requesting transfer
1121 * @msg: spi message which is to handled is queued to driver queue
1122 */
1123 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1124 {
1125 return __spi_queued_transfer(spi, msg, true);
1126 }
1127
1128 static int spi_master_initialize_queue(struct spi_master *master)
1129 {
1130 int ret;
1131
1132 master->transfer = spi_queued_transfer;
1133 if (!master->transfer_one_message)
1134 master->transfer_one_message = spi_transfer_one_message;
1135
1136 /* Initialize and start queue */
1137 ret = spi_init_queue(master);
1138 if (ret) {
1139 dev_err(&master->dev, "problem initializing queue\n");
1140 goto err_init_queue;
1141 }
1142 master->queued = true;
1143 ret = spi_start_queue(master);
1144 if (ret) {
1145 dev_err(&master->dev, "problem starting queue\n");
1146 goto err_start_queue;
1147 }
1148
1149 return 0;
1150
1151 err_start_queue:
1152 spi_destroy_queue(master);
1153 err_init_queue:
1154 return ret;
1155 }
1156
1157 /*-------------------------------------------------------------------------*/
1158
1159 #if defined(CONFIG_OF)
1160 static struct spi_device *
1161 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1162 {
1163 struct spi_device *spi;
1164 int rc;
1165 u32 value;
1166
1167 /* Alloc an spi_device */
1168 spi = spi_alloc_device(master);
1169 if (!spi) {
1170 dev_err(&master->dev, "spi_device alloc error for %s\n",
1171 nc->full_name);
1172 rc = -ENOMEM;
1173 goto err_out;
1174 }
1175
1176 /* Select device driver */
1177 rc = of_modalias_node(nc, spi->modalias,
1178 sizeof(spi->modalias));
1179 if (rc < 0) {
1180 dev_err(&master->dev, "cannot find modalias for %s\n",
1181 nc->full_name);
1182 goto err_out;
1183 }
1184
1185 /* Device address */
1186 rc = of_property_read_u32(nc, "reg", &value);
1187 if (rc) {
1188 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1189 nc->full_name, rc);
1190 goto err_out;
1191 }
1192 spi->chip_select = value;
1193
1194 /* Mode (clock phase/polarity/etc.) */
1195 if (of_find_property(nc, "spi-cpha", NULL))
1196 spi->mode |= SPI_CPHA;
1197 if (of_find_property(nc, "spi-cpol", NULL))
1198 spi->mode |= SPI_CPOL;
1199 if (of_find_property(nc, "spi-cs-high", NULL))
1200 spi->mode |= SPI_CS_HIGH;
1201 if (of_find_property(nc, "spi-3wire", NULL))
1202 spi->mode |= SPI_3WIRE;
1203 if (of_find_property(nc, "spi-lsb-first", NULL))
1204 spi->mode |= SPI_LSB_FIRST;
1205
1206 /* Device DUAL/QUAD mode */
1207 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1208 switch (value) {
1209 case 1:
1210 break;
1211 case 2:
1212 spi->mode |= SPI_TX_DUAL;
1213 break;
1214 case 4:
1215 spi->mode |= SPI_TX_QUAD;
1216 break;
1217 default:
1218 dev_warn(&master->dev,
1219 "spi-tx-bus-width %d not supported\n",
1220 value);
1221 break;
1222 }
1223 }
1224
1225 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1226 switch (value) {
1227 case 1:
1228 break;
1229 case 2:
1230 spi->mode |= SPI_RX_DUAL;
1231 break;
1232 case 4:
1233 spi->mode |= SPI_RX_QUAD;
1234 break;
1235 default:
1236 dev_warn(&master->dev,
1237 "spi-rx-bus-width %d not supported\n",
1238 value);
1239 break;
1240 }
1241 }
1242
1243 /* Device speed */
1244 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1245 if (rc) {
1246 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1247 nc->full_name, rc);
1248 goto err_out;
1249 }
1250 spi->max_speed_hz = value;
1251
1252 /* IRQ */
1253 spi->irq = irq_of_parse_and_map(nc, 0);
1254
1255 /* Store a pointer to the node in the device structure */
1256 of_node_get(nc);
1257 spi->dev.of_node = nc;
1258
1259 /* Register the new device */
1260 rc = spi_add_device(spi);
1261 if (rc) {
1262 dev_err(&master->dev, "spi_device register error %s\n",
1263 nc->full_name);
1264 goto err_out;
1265 }
1266
1267 return spi;
1268
1269 err_out:
1270 spi_dev_put(spi);
1271 return ERR_PTR(rc);
1272 }
1273
1274 /**
1275 * of_register_spi_devices() - Register child devices onto the SPI bus
1276 * @master: Pointer to spi_master device
1277 *
1278 * Registers an spi_device for each child node of master node which has a 'reg'
1279 * property.
1280 */
1281 static void of_register_spi_devices(struct spi_master *master)
1282 {
1283 struct spi_device *spi;
1284 struct device_node *nc;
1285
1286 if (!master->dev.of_node)
1287 return;
1288
1289 for_each_available_child_of_node(master->dev.of_node, nc) {
1290 spi = of_register_spi_device(master, nc);
1291 if (IS_ERR(spi))
1292 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1293 nc->full_name);
1294 }
1295 }
1296 #else
1297 static void of_register_spi_devices(struct spi_master *master) { }
1298 #endif
1299
1300 #ifdef CONFIG_ACPI
1301 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1302 {
1303 struct spi_device *spi = data;
1304
1305 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1306 struct acpi_resource_spi_serialbus *sb;
1307
1308 sb = &ares->data.spi_serial_bus;
1309 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1310 spi->chip_select = sb->device_selection;
1311 spi->max_speed_hz = sb->connection_speed;
1312
1313 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1314 spi->mode |= SPI_CPHA;
1315 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1316 spi->mode |= SPI_CPOL;
1317 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1318 spi->mode |= SPI_CS_HIGH;
1319 }
1320 } else if (spi->irq < 0) {
1321 struct resource r;
1322
1323 if (acpi_dev_resource_interrupt(ares, 0, &r))
1324 spi->irq = r.start;
1325 }
1326
1327 /* Always tell the ACPI core to skip this resource */
1328 return 1;
1329 }
1330
1331 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1332 void *data, void **return_value)
1333 {
1334 struct spi_master *master = data;
1335 struct list_head resource_list;
1336 struct acpi_device *adev;
1337 struct spi_device *spi;
1338 int ret;
1339
1340 if (acpi_bus_get_device(handle, &adev))
1341 return AE_OK;
1342 if (acpi_bus_get_status(adev) || !adev->status.present)
1343 return AE_OK;
1344
1345 spi = spi_alloc_device(master);
1346 if (!spi) {
1347 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1348 dev_name(&adev->dev));
1349 return AE_NO_MEMORY;
1350 }
1351
1352 ACPI_COMPANION_SET(&spi->dev, adev);
1353 spi->irq = -1;
1354
1355 INIT_LIST_HEAD(&resource_list);
1356 ret = acpi_dev_get_resources(adev, &resource_list,
1357 acpi_spi_add_resource, spi);
1358 acpi_dev_free_resource_list(&resource_list);
1359
1360 if (ret < 0 || !spi->max_speed_hz) {
1361 spi_dev_put(spi);
1362 return AE_OK;
1363 }
1364
1365 adev->power.flags.ignore_parent = true;
1366 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1367 if (spi_add_device(spi)) {
1368 adev->power.flags.ignore_parent = false;
1369 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1370 dev_name(&adev->dev));
1371 spi_dev_put(spi);
1372 }
1373
1374 return AE_OK;
1375 }
1376
1377 static void acpi_register_spi_devices(struct spi_master *master)
1378 {
1379 acpi_status status;
1380 acpi_handle handle;
1381
1382 handle = ACPI_HANDLE(master->dev.parent);
1383 if (!handle)
1384 return;
1385
1386 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1387 acpi_spi_add_device, NULL,
1388 master, NULL);
1389 if (ACPI_FAILURE(status))
1390 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1391 }
1392 #else
1393 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1394 #endif /* CONFIG_ACPI */
1395
1396 static void spi_master_release(struct device *dev)
1397 {
1398 struct spi_master *master;
1399
1400 master = container_of(dev, struct spi_master, dev);
1401 kfree(master);
1402 }
1403
1404 static struct class spi_master_class = {
1405 .name = "spi_master",
1406 .owner = THIS_MODULE,
1407 .dev_release = spi_master_release,
1408 };
1409
1410
1411
1412 /**
1413 * spi_alloc_master - allocate SPI master controller
1414 * @dev: the controller, possibly using the platform_bus
1415 * @size: how much zeroed driver-private data to allocate; the pointer to this
1416 * memory is in the driver_data field of the returned device,
1417 * accessible with spi_master_get_devdata().
1418 * Context: can sleep
1419 *
1420 * This call is used only by SPI master controller drivers, which are the
1421 * only ones directly touching chip registers. It's how they allocate
1422 * an spi_master structure, prior to calling spi_register_master().
1423 *
1424 * This must be called from context that can sleep. It returns the SPI
1425 * master structure on success, else NULL.
1426 *
1427 * The caller is responsible for assigning the bus number and initializing
1428 * the master's methods before calling spi_register_master(); and (after errors
1429 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1430 * leak.
1431 */
1432 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1433 {
1434 struct spi_master *master;
1435
1436 if (!dev)
1437 return NULL;
1438
1439 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1440 if (!master)
1441 return NULL;
1442
1443 device_initialize(&master->dev);
1444 master->bus_num = -1;
1445 master->num_chipselect = 1;
1446 master->dev.class = &spi_master_class;
1447 master->dev.parent = get_device(dev);
1448 spi_master_set_devdata(master, &master[1]);
1449
1450 return master;
1451 }
1452 EXPORT_SYMBOL_GPL(spi_alloc_master);
1453
1454 #ifdef CONFIG_OF
1455 static int of_spi_register_master(struct spi_master *master)
1456 {
1457 int nb, i, *cs;
1458 struct device_node *np = master->dev.of_node;
1459
1460 if (!np)
1461 return 0;
1462
1463 nb = of_gpio_named_count(np, "cs-gpios");
1464 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1465
1466 /* Return error only for an incorrectly formed cs-gpios property */
1467 if (nb == 0 || nb == -ENOENT)
1468 return 0;
1469 else if (nb < 0)
1470 return nb;
1471
1472 cs = devm_kzalloc(&master->dev,
1473 sizeof(int) * master->num_chipselect,
1474 GFP_KERNEL);
1475 master->cs_gpios = cs;
1476
1477 if (!master->cs_gpios)
1478 return -ENOMEM;
1479
1480 for (i = 0; i < master->num_chipselect; i++)
1481 cs[i] = -ENOENT;
1482
1483 for (i = 0; i < nb; i++)
1484 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1485
1486 return 0;
1487 }
1488 #else
1489 static int of_spi_register_master(struct spi_master *master)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 /**
1496 * spi_register_master - register SPI master controller
1497 * @master: initialized master, originally from spi_alloc_master()
1498 * Context: can sleep
1499 *
1500 * SPI master controllers connect to their drivers using some non-SPI bus,
1501 * such as the platform bus. The final stage of probe() in that code
1502 * includes calling spi_register_master() to hook up to this SPI bus glue.
1503 *
1504 * SPI controllers use board specific (often SOC specific) bus numbers,
1505 * and board-specific addressing for SPI devices combines those numbers
1506 * with chip select numbers. Since SPI does not directly support dynamic
1507 * device identification, boards need configuration tables telling which
1508 * chip is at which address.
1509 *
1510 * This must be called from context that can sleep. It returns zero on
1511 * success, else a negative error code (dropping the master's refcount).
1512 * After a successful return, the caller is responsible for calling
1513 * spi_unregister_master().
1514 */
1515 int spi_register_master(struct spi_master *master)
1516 {
1517 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1518 struct device *dev = master->dev.parent;
1519 struct boardinfo *bi;
1520 int status = -ENODEV;
1521 int dynamic = 0;
1522
1523 if (!dev)
1524 return -ENODEV;
1525
1526 status = of_spi_register_master(master);
1527 if (status)
1528 return status;
1529
1530 /* even if it's just one always-selected device, there must
1531 * be at least one chipselect
1532 */
1533 if (master->num_chipselect == 0)
1534 return -EINVAL;
1535
1536 if ((master->bus_num < 0) && master->dev.of_node)
1537 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1538
1539 /* convention: dynamically assigned bus IDs count down from the max */
1540 if (master->bus_num < 0) {
1541 /* FIXME switch to an IDR based scheme, something like
1542 * I2C now uses, so we can't run out of "dynamic" IDs
1543 */
1544 master->bus_num = atomic_dec_return(&dyn_bus_id);
1545 dynamic = 1;
1546 }
1547
1548 INIT_LIST_HEAD(&master->queue);
1549 spin_lock_init(&master->queue_lock);
1550 spin_lock_init(&master->bus_lock_spinlock);
1551 mutex_init(&master->bus_lock_mutex);
1552 master->bus_lock_flag = 0;
1553 init_completion(&master->xfer_completion);
1554 if (!master->max_dma_len)
1555 master->max_dma_len = INT_MAX;
1556
1557 /* register the device, then userspace will see it.
1558 * registration fails if the bus ID is in use.
1559 */
1560 dev_set_name(&master->dev, "spi%u", master->bus_num);
1561 status = device_add(&master->dev);
1562 if (status < 0)
1563 goto done;
1564 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1565 dynamic ? " (dynamic)" : "");
1566
1567 /* If we're using a queued driver, start the queue */
1568 if (master->transfer)
1569 dev_info(dev, "master is unqueued, this is deprecated\n");
1570 else {
1571 status = spi_master_initialize_queue(master);
1572 if (status) {
1573 device_del(&master->dev);
1574 goto done;
1575 }
1576 }
1577
1578 mutex_lock(&board_lock);
1579 list_add_tail(&master->list, &spi_master_list);
1580 list_for_each_entry(bi, &board_list, list)
1581 spi_match_master_to_boardinfo(master, &bi->board_info);
1582 mutex_unlock(&board_lock);
1583
1584 /* Register devices from the device tree and ACPI */
1585 of_register_spi_devices(master);
1586 acpi_register_spi_devices(master);
1587 done:
1588 return status;
1589 }
1590 EXPORT_SYMBOL_GPL(spi_register_master);
1591
1592 static void devm_spi_unregister(struct device *dev, void *res)
1593 {
1594 spi_unregister_master(*(struct spi_master **)res);
1595 }
1596
1597 /**
1598 * dev_spi_register_master - register managed SPI master controller
1599 * @dev: device managing SPI master
1600 * @master: initialized master, originally from spi_alloc_master()
1601 * Context: can sleep
1602 *
1603 * Register a SPI device as with spi_register_master() which will
1604 * automatically be unregister
1605 */
1606 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1607 {
1608 struct spi_master **ptr;
1609 int ret;
1610
1611 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1612 if (!ptr)
1613 return -ENOMEM;
1614
1615 ret = spi_register_master(master);
1616 if (!ret) {
1617 *ptr = master;
1618 devres_add(dev, ptr);
1619 } else {
1620 devres_free(ptr);
1621 }
1622
1623 return ret;
1624 }
1625 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1626
1627 static int __unregister(struct device *dev, void *null)
1628 {
1629 spi_unregister_device(to_spi_device(dev));
1630 return 0;
1631 }
1632
1633 /**
1634 * spi_unregister_master - unregister SPI master controller
1635 * @master: the master being unregistered
1636 * Context: can sleep
1637 *
1638 * This call is used only by SPI master controller drivers, which are the
1639 * only ones directly touching chip registers.
1640 *
1641 * This must be called from context that can sleep.
1642 */
1643 void spi_unregister_master(struct spi_master *master)
1644 {
1645 int dummy;
1646
1647 if (master->queued) {
1648 if (spi_destroy_queue(master))
1649 dev_err(&master->dev, "queue remove failed\n");
1650 }
1651
1652 mutex_lock(&board_lock);
1653 list_del(&master->list);
1654 mutex_unlock(&board_lock);
1655
1656 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1657 device_unregister(&master->dev);
1658 }
1659 EXPORT_SYMBOL_GPL(spi_unregister_master);
1660
1661 int spi_master_suspend(struct spi_master *master)
1662 {
1663 int ret;
1664
1665 /* Basically no-ops for non-queued masters */
1666 if (!master->queued)
1667 return 0;
1668
1669 ret = spi_stop_queue(master);
1670 if (ret)
1671 dev_err(&master->dev, "queue stop failed\n");
1672
1673 return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(spi_master_suspend);
1676
1677 int spi_master_resume(struct spi_master *master)
1678 {
1679 int ret;
1680
1681 if (!master->queued)
1682 return 0;
1683
1684 ret = spi_start_queue(master);
1685 if (ret)
1686 dev_err(&master->dev, "queue restart failed\n");
1687
1688 return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(spi_master_resume);
1691
1692 static int __spi_master_match(struct device *dev, const void *data)
1693 {
1694 struct spi_master *m;
1695 const u16 *bus_num = data;
1696
1697 m = container_of(dev, struct spi_master, dev);
1698 return m->bus_num == *bus_num;
1699 }
1700
1701 /**
1702 * spi_busnum_to_master - look up master associated with bus_num
1703 * @bus_num: the master's bus number
1704 * Context: can sleep
1705 *
1706 * This call may be used with devices that are registered after
1707 * arch init time. It returns a refcounted pointer to the relevant
1708 * spi_master (which the caller must release), or NULL if there is
1709 * no such master registered.
1710 */
1711 struct spi_master *spi_busnum_to_master(u16 bus_num)
1712 {
1713 struct device *dev;
1714 struct spi_master *master = NULL;
1715
1716 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1717 __spi_master_match);
1718 if (dev)
1719 master = container_of(dev, struct spi_master, dev);
1720 /* reference got in class_find_device */
1721 return master;
1722 }
1723 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1724
1725
1726 /*-------------------------------------------------------------------------*/
1727
1728 /* Core methods for SPI master protocol drivers. Some of the
1729 * other core methods are currently defined as inline functions.
1730 */
1731
1732 /**
1733 * spi_setup - setup SPI mode and clock rate
1734 * @spi: the device whose settings are being modified
1735 * Context: can sleep, and no requests are queued to the device
1736 *
1737 * SPI protocol drivers may need to update the transfer mode if the
1738 * device doesn't work with its default. They may likewise need
1739 * to update clock rates or word sizes from initial values. This function
1740 * changes those settings, and must be called from a context that can sleep.
1741 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1742 * effect the next time the device is selected and data is transferred to
1743 * or from it. When this function returns, the spi device is deselected.
1744 *
1745 * Note that this call will fail if the protocol driver specifies an option
1746 * that the underlying controller or its driver does not support. For
1747 * example, not all hardware supports wire transfers using nine bit words,
1748 * LSB-first wire encoding, or active-high chipselects.
1749 */
1750 int spi_setup(struct spi_device *spi)
1751 {
1752 unsigned bad_bits, ugly_bits;
1753 int status = 0;
1754
1755 /* check mode to prevent that DUAL and QUAD set at the same time
1756 */
1757 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1758 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1759 dev_err(&spi->dev,
1760 "setup: can not select dual and quad at the same time\n");
1761 return -EINVAL;
1762 }
1763 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1764 */
1765 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1766 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1767 return -EINVAL;
1768 /* help drivers fail *cleanly* when they need options
1769 * that aren't supported with their current master
1770 */
1771 bad_bits = spi->mode & ~spi->master->mode_bits;
1772 ugly_bits = bad_bits &
1773 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1774 if (ugly_bits) {
1775 dev_warn(&spi->dev,
1776 "setup: ignoring unsupported mode bits %x\n",
1777 ugly_bits);
1778 spi->mode &= ~ugly_bits;
1779 bad_bits &= ~ugly_bits;
1780 }
1781 if (bad_bits) {
1782 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1783 bad_bits);
1784 return -EINVAL;
1785 }
1786
1787 if (!spi->bits_per_word)
1788 spi->bits_per_word = 8;
1789
1790 if (!spi->max_speed_hz)
1791 spi->max_speed_hz = spi->master->max_speed_hz;
1792
1793 spi_set_cs(spi, false);
1794
1795 if (spi->master->setup)
1796 status = spi->master->setup(spi);
1797
1798 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1799 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1800 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1801 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1802 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1803 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1804 spi->bits_per_word, spi->max_speed_hz,
1805 status);
1806
1807 return status;
1808 }
1809 EXPORT_SYMBOL_GPL(spi_setup);
1810
1811 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1812 {
1813 struct spi_master *master = spi->master;
1814 struct spi_transfer *xfer;
1815 int w_size;
1816
1817 if (list_empty(&message->transfers))
1818 return -EINVAL;
1819
1820 /* Half-duplex links include original MicroWire, and ones with
1821 * only one data pin like SPI_3WIRE (switches direction) or where
1822 * either MOSI or MISO is missing. They can also be caused by
1823 * software limitations.
1824 */
1825 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1826 || (spi->mode & SPI_3WIRE)) {
1827 unsigned flags = master->flags;
1828
1829 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1830 if (xfer->rx_buf && xfer->tx_buf)
1831 return -EINVAL;
1832 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1833 return -EINVAL;
1834 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1835 return -EINVAL;
1836 }
1837 }
1838
1839 /**
1840 * Set transfer bits_per_word and max speed as spi device default if
1841 * it is not set for this transfer.
1842 * Set transfer tx_nbits and rx_nbits as single transfer default
1843 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1844 */
1845 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1846 message->frame_length += xfer->len;
1847 if (!xfer->bits_per_word)
1848 xfer->bits_per_word = spi->bits_per_word;
1849
1850 if (!xfer->speed_hz)
1851 xfer->speed_hz = spi->max_speed_hz;
1852
1853 if (master->max_speed_hz &&
1854 xfer->speed_hz > master->max_speed_hz)
1855 xfer->speed_hz = master->max_speed_hz;
1856
1857 if (master->bits_per_word_mask) {
1858 /* Only 32 bits fit in the mask */
1859 if (xfer->bits_per_word > 32)
1860 return -EINVAL;
1861 if (!(master->bits_per_word_mask &
1862 BIT(xfer->bits_per_word - 1)))
1863 return -EINVAL;
1864 }
1865
1866 /*
1867 * SPI transfer length should be multiple of SPI word size
1868 * where SPI word size should be power-of-two multiple
1869 */
1870 if (xfer->bits_per_word <= 8)
1871 w_size = 1;
1872 else if (xfer->bits_per_word <= 16)
1873 w_size = 2;
1874 else
1875 w_size = 4;
1876
1877 /* No partial transfers accepted */
1878 if (xfer->len % w_size)
1879 return -EINVAL;
1880
1881 if (xfer->speed_hz && master->min_speed_hz &&
1882 xfer->speed_hz < master->min_speed_hz)
1883 return -EINVAL;
1884
1885 if (xfer->tx_buf && !xfer->tx_nbits)
1886 xfer->tx_nbits = SPI_NBITS_SINGLE;
1887 if (xfer->rx_buf && !xfer->rx_nbits)
1888 xfer->rx_nbits = SPI_NBITS_SINGLE;
1889 /* check transfer tx/rx_nbits:
1890 * 1. check the value matches one of single, dual and quad
1891 * 2. check tx/rx_nbits match the mode in spi_device
1892 */
1893 if (xfer->tx_buf) {
1894 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1895 xfer->tx_nbits != SPI_NBITS_DUAL &&
1896 xfer->tx_nbits != SPI_NBITS_QUAD)
1897 return -EINVAL;
1898 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1899 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1900 return -EINVAL;
1901 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1902 !(spi->mode & SPI_TX_QUAD))
1903 return -EINVAL;
1904 }
1905 /* check transfer rx_nbits */
1906 if (xfer->rx_buf) {
1907 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1908 xfer->rx_nbits != SPI_NBITS_DUAL &&
1909 xfer->rx_nbits != SPI_NBITS_QUAD)
1910 return -EINVAL;
1911 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1912 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1913 return -EINVAL;
1914 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1915 !(spi->mode & SPI_RX_QUAD))
1916 return -EINVAL;
1917 }
1918 }
1919
1920 message->status = -EINPROGRESS;
1921
1922 return 0;
1923 }
1924
1925 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1926 {
1927 struct spi_master *master = spi->master;
1928
1929 message->spi = spi;
1930
1931 trace_spi_message_submit(message);
1932
1933 return master->transfer(spi, message);
1934 }
1935
1936 /**
1937 * spi_async - asynchronous SPI transfer
1938 * @spi: device with which data will be exchanged
1939 * @message: describes the data transfers, including completion callback
1940 * Context: any (irqs may be blocked, etc)
1941 *
1942 * This call may be used in_irq and other contexts which can't sleep,
1943 * as well as from task contexts which can sleep.
1944 *
1945 * The completion callback is invoked in a context which can't sleep.
1946 * Before that invocation, the value of message->status is undefined.
1947 * When the callback is issued, message->status holds either zero (to
1948 * indicate complete success) or a negative error code. After that
1949 * callback returns, the driver which issued the transfer request may
1950 * deallocate the associated memory; it's no longer in use by any SPI
1951 * core or controller driver code.
1952 *
1953 * Note that although all messages to a spi_device are handled in
1954 * FIFO order, messages may go to different devices in other orders.
1955 * Some device might be higher priority, or have various "hard" access
1956 * time requirements, for example.
1957 *
1958 * On detection of any fault during the transfer, processing of
1959 * the entire message is aborted, and the device is deselected.
1960 * Until returning from the associated message completion callback,
1961 * no other spi_message queued to that device will be processed.
1962 * (This rule applies equally to all the synchronous transfer calls,
1963 * which are wrappers around this core asynchronous primitive.)
1964 */
1965 int spi_async(struct spi_device *spi, struct spi_message *message)
1966 {
1967 struct spi_master *master = spi->master;
1968 int ret;
1969 unsigned long flags;
1970
1971 ret = __spi_validate(spi, message);
1972 if (ret != 0)
1973 return ret;
1974
1975 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1976
1977 if (master->bus_lock_flag)
1978 ret = -EBUSY;
1979 else
1980 ret = __spi_async(spi, message);
1981
1982 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1983
1984 return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(spi_async);
1987
1988 /**
1989 * spi_async_locked - version of spi_async with exclusive bus usage
1990 * @spi: device with which data will be exchanged
1991 * @message: describes the data transfers, including completion callback
1992 * Context: any (irqs may be blocked, etc)
1993 *
1994 * This call may be used in_irq and other contexts which can't sleep,
1995 * as well as from task contexts which can sleep.
1996 *
1997 * The completion callback is invoked in a context which can't sleep.
1998 * Before that invocation, the value of message->status is undefined.
1999 * When the callback is issued, message->status holds either zero (to
2000 * indicate complete success) or a negative error code. After that
2001 * callback returns, the driver which issued the transfer request may
2002 * deallocate the associated memory; it's no longer in use by any SPI
2003 * core or controller driver code.
2004 *
2005 * Note that although all messages to a spi_device are handled in
2006 * FIFO order, messages may go to different devices in other orders.
2007 * Some device might be higher priority, or have various "hard" access
2008 * time requirements, for example.
2009 *
2010 * On detection of any fault during the transfer, processing of
2011 * the entire message is aborted, and the device is deselected.
2012 * Until returning from the associated message completion callback,
2013 * no other spi_message queued to that device will be processed.
2014 * (This rule applies equally to all the synchronous transfer calls,
2015 * which are wrappers around this core asynchronous primitive.)
2016 */
2017 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2018 {
2019 struct spi_master *master = spi->master;
2020 int ret;
2021 unsigned long flags;
2022
2023 ret = __spi_validate(spi, message);
2024 if (ret != 0)
2025 return ret;
2026
2027 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2028
2029 ret = __spi_async(spi, message);
2030
2031 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2032
2033 return ret;
2034
2035 }
2036 EXPORT_SYMBOL_GPL(spi_async_locked);
2037
2038
2039 /*-------------------------------------------------------------------------*/
2040
2041 /* Utility methods for SPI master protocol drivers, layered on
2042 * top of the core. Some other utility methods are defined as
2043 * inline functions.
2044 */
2045
2046 static void spi_complete(void *arg)
2047 {
2048 complete(arg);
2049 }
2050
2051 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2052 int bus_locked)
2053 {
2054 DECLARE_COMPLETION_ONSTACK(done);
2055 int status;
2056 struct spi_master *master = spi->master;
2057 unsigned long flags;
2058
2059 status = __spi_validate(spi, message);
2060 if (status != 0)
2061 return status;
2062
2063 message->complete = spi_complete;
2064 message->context = &done;
2065 message->spi = spi;
2066
2067 if (!bus_locked)
2068 mutex_lock(&master->bus_lock_mutex);
2069
2070 /* If we're not using the legacy transfer method then we will
2071 * try to transfer in the calling context so special case.
2072 * This code would be less tricky if we could remove the
2073 * support for driver implemented message queues.
2074 */
2075 if (master->transfer == spi_queued_transfer) {
2076 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2077
2078 trace_spi_message_submit(message);
2079
2080 status = __spi_queued_transfer(spi, message, false);
2081
2082 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2083 } else {
2084 status = spi_async_locked(spi, message);
2085 }
2086
2087 if (!bus_locked)
2088 mutex_unlock(&master->bus_lock_mutex);
2089
2090 if (status == 0) {
2091 /* Push out the messages in the calling context if we
2092 * can.
2093 */
2094 if (master->transfer == spi_queued_transfer)
2095 __spi_pump_messages(master, false);
2096
2097 wait_for_completion(&done);
2098 status = message->status;
2099 }
2100 message->context = NULL;
2101 return status;
2102 }
2103
2104 /**
2105 * spi_sync - blocking/synchronous SPI data transfers
2106 * @spi: device with which data will be exchanged
2107 * @message: describes the data transfers
2108 * Context: can sleep
2109 *
2110 * This call may only be used from a context that may sleep. The sleep
2111 * is non-interruptible, and has no timeout. Low-overhead controller
2112 * drivers may DMA directly into and out of the message buffers.
2113 *
2114 * Note that the SPI device's chip select is active during the message,
2115 * and then is normally disabled between messages. Drivers for some
2116 * frequently-used devices may want to minimize costs of selecting a chip,
2117 * by leaving it selected in anticipation that the next message will go
2118 * to the same chip. (That may increase power usage.)
2119 *
2120 * Also, the caller is guaranteeing that the memory associated with the
2121 * message will not be freed before this call returns.
2122 *
2123 * It returns zero on success, else a negative error code.
2124 */
2125 int spi_sync(struct spi_device *spi, struct spi_message *message)
2126 {
2127 return __spi_sync(spi, message, 0);
2128 }
2129 EXPORT_SYMBOL_GPL(spi_sync);
2130
2131 /**
2132 * spi_sync_locked - version of spi_sync with exclusive bus usage
2133 * @spi: device with which data will be exchanged
2134 * @message: describes the data transfers
2135 * Context: can sleep
2136 *
2137 * This call may only be used from a context that may sleep. The sleep
2138 * is non-interruptible, and has no timeout. Low-overhead controller
2139 * drivers may DMA directly into and out of the message buffers.
2140 *
2141 * This call should be used by drivers that require exclusive access to the
2142 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2143 * be released by a spi_bus_unlock call when the exclusive access is over.
2144 *
2145 * It returns zero on success, else a negative error code.
2146 */
2147 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2148 {
2149 return __spi_sync(spi, message, 1);
2150 }
2151 EXPORT_SYMBOL_GPL(spi_sync_locked);
2152
2153 /**
2154 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2155 * @master: SPI bus master that should be locked for exclusive bus access
2156 * Context: can sleep
2157 *
2158 * This call may only be used from a context that may sleep. The sleep
2159 * is non-interruptible, and has no timeout.
2160 *
2161 * This call should be used by drivers that require exclusive access to the
2162 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2163 * exclusive access is over. Data transfer must be done by spi_sync_locked
2164 * and spi_async_locked calls when the SPI bus lock is held.
2165 *
2166 * It returns zero on success, else a negative error code.
2167 */
2168 int spi_bus_lock(struct spi_master *master)
2169 {
2170 unsigned long flags;
2171
2172 mutex_lock(&master->bus_lock_mutex);
2173
2174 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2175 master->bus_lock_flag = 1;
2176 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2177
2178 /* mutex remains locked until spi_bus_unlock is called */
2179
2180 return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(spi_bus_lock);
2183
2184 /**
2185 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2186 * @master: SPI bus master that was locked for exclusive bus access
2187 * Context: can sleep
2188 *
2189 * This call may only be used from a context that may sleep. The sleep
2190 * is non-interruptible, and has no timeout.
2191 *
2192 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2193 * call.
2194 *
2195 * It returns zero on success, else a negative error code.
2196 */
2197 int spi_bus_unlock(struct spi_master *master)
2198 {
2199 master->bus_lock_flag = 0;
2200
2201 mutex_unlock(&master->bus_lock_mutex);
2202
2203 return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2206
2207 /* portable code must never pass more than 32 bytes */
2208 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2209
2210 static u8 *buf;
2211
2212 /**
2213 * spi_write_then_read - SPI synchronous write followed by read
2214 * @spi: device with which data will be exchanged
2215 * @txbuf: data to be written (need not be dma-safe)
2216 * @n_tx: size of txbuf, in bytes
2217 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2218 * @n_rx: size of rxbuf, in bytes
2219 * Context: can sleep
2220 *
2221 * This performs a half duplex MicroWire style transaction with the
2222 * device, sending txbuf and then reading rxbuf. The return value
2223 * is zero for success, else a negative errno status code.
2224 * This call may only be used from a context that may sleep.
2225 *
2226 * Parameters to this routine are always copied using a small buffer;
2227 * portable code should never use this for more than 32 bytes.
2228 * Performance-sensitive or bulk transfer code should instead use
2229 * spi_{async,sync}() calls with dma-safe buffers.
2230 */
2231 int spi_write_then_read(struct spi_device *spi,
2232 const void *txbuf, unsigned n_tx,
2233 void *rxbuf, unsigned n_rx)
2234 {
2235 static DEFINE_MUTEX(lock);
2236
2237 int status;
2238 struct spi_message message;
2239 struct spi_transfer x[2];
2240 u8 *local_buf;
2241
2242 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2243 * copying here, (as a pure convenience thing), but we can
2244 * keep heap costs out of the hot path unless someone else is
2245 * using the pre-allocated buffer or the transfer is too large.
2246 */
2247 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2248 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2249 GFP_KERNEL | GFP_DMA);
2250 if (!local_buf)
2251 return -ENOMEM;
2252 } else {
2253 local_buf = buf;
2254 }
2255
2256 spi_message_init(&message);
2257 memset(x, 0, sizeof(x));
2258 if (n_tx) {
2259 x[0].len = n_tx;
2260 spi_message_add_tail(&x[0], &message);
2261 }
2262 if (n_rx) {
2263 x[1].len = n_rx;
2264 spi_message_add_tail(&x[1], &message);
2265 }
2266
2267 memcpy(local_buf, txbuf, n_tx);
2268 x[0].tx_buf = local_buf;
2269 x[1].rx_buf = local_buf + n_tx;
2270
2271 /* do the i/o */
2272 status = spi_sync(spi, &message);
2273 if (status == 0)
2274 memcpy(rxbuf, x[1].rx_buf, n_rx);
2275
2276 if (x[0].tx_buf == buf)
2277 mutex_unlock(&lock);
2278 else
2279 kfree(local_buf);
2280
2281 return status;
2282 }
2283 EXPORT_SYMBOL_GPL(spi_write_then_read);
2284
2285 /*-------------------------------------------------------------------------*/
2286
2287 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2288 static int __spi_of_device_match(struct device *dev, void *data)
2289 {
2290 return dev->of_node == data;
2291 }
2292
2293 /* must call put_device() when done with returned spi_device device */
2294 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2295 {
2296 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2297 __spi_of_device_match);
2298 return dev ? to_spi_device(dev) : NULL;
2299 }
2300
2301 static int __spi_of_master_match(struct device *dev, const void *data)
2302 {
2303 return dev->of_node == data;
2304 }
2305
2306 /* the spi masters are not using spi_bus, so we find it with another way */
2307 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2308 {
2309 struct device *dev;
2310
2311 dev = class_find_device(&spi_master_class, NULL, node,
2312 __spi_of_master_match);
2313 if (!dev)
2314 return NULL;
2315
2316 /* reference got in class_find_device */
2317 return container_of(dev, struct spi_master, dev);
2318 }
2319
2320 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2321 void *arg)
2322 {
2323 struct of_reconfig_data *rd = arg;
2324 struct spi_master *master;
2325 struct spi_device *spi;
2326
2327 switch (of_reconfig_get_state_change(action, arg)) {
2328 case OF_RECONFIG_CHANGE_ADD:
2329 master = of_find_spi_master_by_node(rd->dn->parent);
2330 if (master == NULL)
2331 return NOTIFY_OK; /* not for us */
2332
2333 spi = of_register_spi_device(master, rd->dn);
2334 put_device(&master->dev);
2335
2336 if (IS_ERR(spi)) {
2337 pr_err("%s: failed to create for '%s'\n",
2338 __func__, rd->dn->full_name);
2339 return notifier_from_errno(PTR_ERR(spi));
2340 }
2341 break;
2342
2343 case OF_RECONFIG_CHANGE_REMOVE:
2344 /* find our device by node */
2345 spi = of_find_spi_device_by_node(rd->dn);
2346 if (spi == NULL)
2347 return NOTIFY_OK; /* no? not meant for us */
2348
2349 /* unregister takes one ref away */
2350 spi_unregister_device(spi);
2351
2352 /* and put the reference of the find */
2353 put_device(&spi->dev);
2354 break;
2355 }
2356
2357 return NOTIFY_OK;
2358 }
2359
2360 static struct notifier_block spi_of_notifier = {
2361 .notifier_call = of_spi_notify,
2362 };
2363 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2364 extern struct notifier_block spi_of_notifier;
2365 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2366
2367 static int __init spi_init(void)
2368 {
2369 int status;
2370
2371 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2372 if (!buf) {
2373 status = -ENOMEM;
2374 goto err0;
2375 }
2376
2377 status = bus_register(&spi_bus_type);
2378 if (status < 0)
2379 goto err1;
2380
2381 status = class_register(&spi_master_class);
2382 if (status < 0)
2383 goto err2;
2384
2385 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2386 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2387
2388 return 0;
2389
2390 err2:
2391 bus_unregister(&spi_bus_type);
2392 err1:
2393 kfree(buf);
2394 buf = NULL;
2395 err0:
2396 return status;
2397 }
2398
2399 /* board_info is normally registered in arch_initcall(),
2400 * but even essential drivers wait till later
2401 *
2402 * REVISIT only boardinfo really needs static linking. the rest (device and
2403 * driver registration) _could_ be dynamically linked (modular) ... costs
2404 * include needing to have boardinfo data structures be much more public.
2405 */
2406 postcore_initcall(spi_init);
2407
This page took 0.078426 seconds and 6 git commands to generate.