Merge remote-tracking branches 'spi/topic/flash-dma', 'spi/topic/imx', 'spi/topic...
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89 } \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98 { \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105 } \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150 &dev_attr_modalias.attr,
151 NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155 .attrs = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159 &dev_attr_spi_device_messages.attr,
160 &dev_attr_spi_device_transfers.attr,
161 &dev_attr_spi_device_errors.attr,
162 &dev_attr_spi_device_timedout.attr,
163 &dev_attr_spi_device_spi_sync.attr,
164 &dev_attr_spi_device_spi_sync_immediate.attr,
165 &dev_attr_spi_device_spi_async.attr,
166 &dev_attr_spi_device_bytes.attr,
167 &dev_attr_spi_device_bytes_rx.attr,
168 &dev_attr_spi_device_bytes_tx.attr,
169 &dev_attr_spi_device_transfer_bytes_histo0.attr,
170 &dev_attr_spi_device_transfer_bytes_histo1.attr,
171 &dev_attr_spi_device_transfer_bytes_histo2.attr,
172 &dev_attr_spi_device_transfer_bytes_histo3.attr,
173 &dev_attr_spi_device_transfer_bytes_histo4.attr,
174 &dev_attr_spi_device_transfer_bytes_histo5.attr,
175 &dev_attr_spi_device_transfer_bytes_histo6.attr,
176 &dev_attr_spi_device_transfer_bytes_histo7.attr,
177 &dev_attr_spi_device_transfer_bytes_histo8.attr,
178 &dev_attr_spi_device_transfer_bytes_histo9.attr,
179 &dev_attr_spi_device_transfer_bytes_histo10.attr,
180 &dev_attr_spi_device_transfer_bytes_histo11.attr,
181 &dev_attr_spi_device_transfer_bytes_histo12.attr,
182 &dev_attr_spi_device_transfer_bytes_histo13.attr,
183 &dev_attr_spi_device_transfer_bytes_histo14.attr,
184 &dev_attr_spi_device_transfer_bytes_histo15.attr,
185 &dev_attr_spi_device_transfer_bytes_histo16.attr,
186 &dev_attr_spi_device_transfers_split_maxsize.attr,
187 NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191 .name = "statistics",
192 .attrs = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196 &spi_dev_group,
197 &spi_device_statistics_group,
198 NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202 &dev_attr_spi_master_messages.attr,
203 &dev_attr_spi_master_transfers.attr,
204 &dev_attr_spi_master_errors.attr,
205 &dev_attr_spi_master_timedout.attr,
206 &dev_attr_spi_master_spi_sync.attr,
207 &dev_attr_spi_master_spi_sync_immediate.attr,
208 &dev_attr_spi_master_spi_async.attr,
209 &dev_attr_spi_master_bytes.attr,
210 &dev_attr_spi_master_bytes_rx.attr,
211 &dev_attr_spi_master_bytes_tx.attr,
212 &dev_attr_spi_master_transfer_bytes_histo0.attr,
213 &dev_attr_spi_master_transfer_bytes_histo1.attr,
214 &dev_attr_spi_master_transfer_bytes_histo2.attr,
215 &dev_attr_spi_master_transfer_bytes_histo3.attr,
216 &dev_attr_spi_master_transfer_bytes_histo4.attr,
217 &dev_attr_spi_master_transfer_bytes_histo5.attr,
218 &dev_attr_spi_master_transfer_bytes_histo6.attr,
219 &dev_attr_spi_master_transfer_bytes_histo7.attr,
220 &dev_attr_spi_master_transfer_bytes_histo8.attr,
221 &dev_attr_spi_master_transfer_bytes_histo9.attr,
222 &dev_attr_spi_master_transfer_bytes_histo10.attr,
223 &dev_attr_spi_master_transfer_bytes_histo11.attr,
224 &dev_attr_spi_master_transfer_bytes_histo12.attr,
225 &dev_attr_spi_master_transfer_bytes_histo13.attr,
226 &dev_attr_spi_master_transfer_bytes_histo14.attr,
227 &dev_attr_spi_master_transfer_bytes_histo15.attr,
228 &dev_attr_spi_master_transfer_bytes_histo16.attr,
229 &dev_attr_spi_master_transfers_split_maxsize.attr,
230 NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234 .name = "statistics",
235 .attrs = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239 &spi_master_statistics_group,
240 NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 struct spi_transfer *xfer,
245 struct spi_master *master)
246 {
247 unsigned long flags;
248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250 if (l2len < 0)
251 l2len = 0;
252
253 spin_lock_irqsave(&stats->lock, flags);
254
255 stats->transfers++;
256 stats->transfer_bytes_histo[l2len]++;
257
258 stats->bytes += xfer->len;
259 if ((xfer->tx_buf) &&
260 (xfer->tx_buf != master->dummy_tx))
261 stats->bytes_tx += xfer->len;
262 if ((xfer->rx_buf) &&
263 (xfer->rx_buf != master->dummy_rx))
264 stats->bytes_rx += xfer->len;
265
266 spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271 * and the sysfs version makes coldplug work too.
272 */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 const struct spi_device *sdev)
276 {
277 while (id->name[0]) {
278 if (!strcmp(sdev->modalias, id->name))
279 return id;
280 id++;
281 }
282 return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289 return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 const struct spi_device *spi = to_spi_device(dev);
296 const struct spi_driver *sdrv = to_spi_driver(drv);
297
298 /* Attempt an OF style match */
299 if (of_driver_match_device(dev, drv))
300 return 1;
301
302 /* Then try ACPI */
303 if (acpi_driver_match_device(dev, drv))
304 return 1;
305
306 if (sdrv->id_table)
307 return !!spi_match_id(sdrv->id_table, spi);
308
309 return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 const struct spi_device *spi = to_spi_device(dev);
315 int rc;
316
317 rc = acpi_device_uevent_modalias(dev, env);
318 if (rc != -ENODEV)
319 return rc;
320
321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326 .name = "spi",
327 .dev_groups = spi_dev_groups,
328 .match = spi_match_device,
329 .uevent = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
337 struct spi_device *spi = to_spi_device(dev);
338 int ret;
339
340 ret = of_clk_set_defaults(dev->of_node, false);
341 if (ret)
342 return ret;
343
344 if (dev->of_node) {
345 spi->irq = of_irq_get(dev->of_node, 0);
346 if (spi->irq == -EPROBE_DEFER)
347 return -EPROBE_DEFER;
348 if (spi->irq < 0)
349 spi->irq = 0;
350 }
351
352 ret = dev_pm_domain_attach(dev, true);
353 if (ret != -EPROBE_DEFER) {
354 ret = sdrv->probe(spi);
355 if (ret)
356 dev_pm_domain_detach(dev, true);
357 }
358
359 return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
365 int ret;
366
367 ret = sdrv->remove(to_spi_device(dev));
368 dev_pm_domain_detach(dev, true);
369
370 return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
376
377 sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381 * __spi_register_driver - register a SPI driver
382 * @owner: owner module of the driver to register
383 * @sdrv: the driver to register
384 * Context: can sleep
385 *
386 * Return: zero on success, else a negative error code.
387 */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 sdrv->driver.owner = owner;
391 sdrv->driver.bus = &spi_bus_type;
392 if (sdrv->probe)
393 sdrv->driver.probe = spi_drv_probe;
394 if (sdrv->remove)
395 sdrv->driver.remove = spi_drv_remove;
396 if (sdrv->shutdown)
397 sdrv->driver.shutdown = spi_drv_shutdown;
398 return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405 * would make them board-specific. Similarly with SPI master drivers.
406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
407 * with other readonly (flashable) information about mainboard devices.
408 */
409
410 struct boardinfo {
411 struct list_head list;
412 struct spi_board_info board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419 * Used to protect add/del opertion for board_info list and
420 * spi_master list, and their matching process
421 */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425 * spi_alloc_device - Allocate a new SPI device
426 * @master: Controller to which device is connected
427 * Context: can sleep
428 *
429 * Allows a driver to allocate and initialize a spi_device without
430 * registering it immediately. This allows a driver to directly
431 * fill the spi_device with device parameters before calling
432 * spi_add_device() on it.
433 *
434 * Caller is responsible to call spi_add_device() on the returned
435 * spi_device structure to add it to the SPI master. If the caller
436 * needs to discard the spi_device without adding it, then it should
437 * call spi_dev_put() on it.
438 *
439 * Return: a pointer to the new device, or NULL.
440 */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 struct spi_device *spi;
444
445 if (!spi_master_get(master))
446 return NULL;
447
448 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 if (!spi) {
450 spi_master_put(master);
451 return NULL;
452 }
453
454 spi->master = master;
455 spi->dev.parent = &master->dev;
456 spi->dev.bus = &spi_bus_type;
457 spi->dev.release = spidev_release;
458 spi->cs_gpio = -ENOENT;
459
460 spin_lock_init(&spi->statistics.lock);
461
462 device_initialize(&spi->dev);
463 return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471 if (adev) {
472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 return;
474 }
475
476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 struct spi_device *spi = to_spi_device(dev);
483 struct spi_device *new_spi = data;
484
485 if (spi->master == new_spi->master &&
486 spi->chip_select == new_spi->chip_select)
487 return -EBUSY;
488 return 0;
489 }
490
491 /**
492 * spi_add_device - Add spi_device allocated with spi_alloc_device
493 * @spi: spi_device to register
494 *
495 * Companion function to spi_alloc_device. Devices allocated with
496 * spi_alloc_device can be added onto the spi bus with this function.
497 *
498 * Return: 0 on success; negative errno on failure
499 */
500 int spi_add_device(struct spi_device *spi)
501 {
502 static DEFINE_MUTEX(spi_add_lock);
503 struct spi_master *master = spi->master;
504 struct device *dev = master->dev.parent;
505 int status;
506
507 /* Chipselects are numbered 0..max; validate. */
508 if (spi->chip_select >= master->num_chipselect) {
509 dev_err(dev, "cs%d >= max %d\n",
510 spi->chip_select,
511 master->num_chipselect);
512 return -EINVAL;
513 }
514
515 /* Set the bus ID string */
516 spi_dev_set_name(spi);
517
518 /* We need to make sure there's no other device with this
519 * chipselect **BEFORE** we call setup(), else we'll trash
520 * its configuration. Lock against concurrent add() calls.
521 */
522 mutex_lock(&spi_add_lock);
523
524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 if (status) {
526 dev_err(dev, "chipselect %d already in use\n",
527 spi->chip_select);
528 goto done;
529 }
530
531 if (master->cs_gpios)
532 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534 /* Drivers may modify this initial i/o setup, but will
535 * normally rely on the device being setup. Devices
536 * using SPI_CS_HIGH can't coexist well otherwise...
537 */
538 status = spi_setup(spi);
539 if (status < 0) {
540 dev_err(dev, "can't setup %s, status %d\n",
541 dev_name(&spi->dev), status);
542 goto done;
543 }
544
545 /* Device may be bound to an active driver when this returns */
546 status = device_add(&spi->dev);
547 if (status < 0)
548 dev_err(dev, "can't add %s, status %d\n",
549 dev_name(&spi->dev), status);
550 else
551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554 mutex_unlock(&spi_add_lock);
555 return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560 * spi_new_device - instantiate one new SPI device
561 * @master: Controller to which device is connected
562 * @chip: Describes the SPI device
563 * Context: can sleep
564 *
565 * On typical mainboards, this is purely internal; and it's not needed
566 * after board init creates the hard-wired devices. Some development
567 * platforms may not be able to use spi_register_board_info though, and
568 * this is exported so that for example a USB or parport based adapter
569 * driver could add devices (which it would learn about out-of-band).
570 *
571 * Return: the new device, or NULL.
572 */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 struct spi_board_info *chip)
575 {
576 struct spi_device *proxy;
577 int status;
578
579 /* NOTE: caller did any chip->bus_num checks necessary.
580 *
581 * Also, unless we change the return value convention to use
582 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 * suggests syslogged diagnostics are best here (ugh).
584 */
585
586 proxy = spi_alloc_device(master);
587 if (!proxy)
588 return NULL;
589
590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592 proxy->chip_select = chip->chip_select;
593 proxy->max_speed_hz = chip->max_speed_hz;
594 proxy->mode = chip->mode;
595 proxy->irq = chip->irq;
596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 proxy->dev.platform_data = (void *) chip->platform_data;
598 proxy->controller_data = chip->controller_data;
599 proxy->controller_state = NULL;
600
601 status = spi_add_device(proxy);
602 if (status < 0) {
603 spi_dev_put(proxy);
604 return NULL;
605 }
606
607 return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612 * spi_unregister_device - unregister a single SPI device
613 * @spi: spi_device to unregister
614 *
615 * Start making the passed SPI device vanish. Normally this would be handled
616 * by spi_unregister_master().
617 */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 if (!spi)
621 return;
622
623 if (spi->dev.of_node)
624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630 struct spi_board_info *bi)
631 {
632 struct spi_device *dev;
633
634 if (master->bus_num != bi->bus_num)
635 return;
636
637 dev = spi_new_device(master, bi);
638 if (!dev)
639 dev_err(master->dev.parent, "can't create new device for %s\n",
640 bi->modalias);
641 }
642
643 /**
644 * spi_register_board_info - register SPI devices for a given board
645 * @info: array of chip descriptors
646 * @n: how many descriptors are provided
647 * Context: can sleep
648 *
649 * Board-specific early init code calls this (probably during arch_initcall)
650 * with segments of the SPI device table. Any device nodes are created later,
651 * after the relevant parent SPI controller (bus_num) is defined. We keep
652 * this table of devices forever, so that reloading a controller driver will
653 * not make Linux forget about these hard-wired devices.
654 *
655 * Other code can also call this, e.g. a particular add-on board might provide
656 * SPI devices through its expansion connector, so code initializing that board
657 * would naturally declare its SPI devices.
658 *
659 * The board info passed can safely be __initdata ... but be careful of
660 * any embedded pointers (platform_data, etc), they're copied as-is.
661 *
662 * Return: zero on success, else a negative error code.
663 */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666 struct boardinfo *bi;
667 int i;
668
669 if (!n)
670 return -EINVAL;
671
672 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673 if (!bi)
674 return -ENOMEM;
675
676 for (i = 0; i < n; i++, bi++, info++) {
677 struct spi_master *master;
678
679 memcpy(&bi->board_info, info, sizeof(*info));
680 mutex_lock(&board_lock);
681 list_add_tail(&bi->list, &board_list);
682 list_for_each_entry(master, &spi_master_list, list)
683 spi_match_master_to_boardinfo(master, &bi->board_info);
684 mutex_unlock(&board_lock);
685 }
686
687 return 0;
688 }
689
690 /*-------------------------------------------------------------------------*/
691
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694 if (spi->mode & SPI_CS_HIGH)
695 enable = !enable;
696
697 if (gpio_is_valid(spi->cs_gpio))
698 gpio_set_value(spi->cs_gpio, !enable);
699 else if (spi->master->set_cs)
700 spi->master->set_cs(spi, !enable);
701 }
702
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705 struct sg_table *sgt, void *buf, size_t len,
706 enum dma_data_direction dir)
707 {
708 const bool vmalloced_buf = is_vmalloc_addr(buf);
709 unsigned int max_seg_size = dma_get_max_seg_size(dev);
710 int desc_len;
711 int sgs;
712 struct page *vm_page;
713 void *sg_buf;
714 size_t min;
715 int i, ret;
716
717 if (vmalloced_buf) {
718 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
719 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
720 } else if (virt_addr_valid(buf)) {
721 desc_len = min_t(int, max_seg_size, master->max_dma_len);
722 sgs = DIV_ROUND_UP(len, desc_len);
723 } else {
724 return -EINVAL;
725 }
726
727 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
728 if (ret != 0)
729 return ret;
730
731 for (i = 0; i < sgs; i++) {
732
733 if (vmalloced_buf) {
734 min = min_t(size_t,
735 len, desc_len - offset_in_page(buf));
736 vm_page = vmalloc_to_page(buf);
737 if (!vm_page) {
738 sg_free_table(sgt);
739 return -ENOMEM;
740 }
741 sg_set_page(&sgt->sgl[i], vm_page,
742 min, offset_in_page(buf));
743 } else {
744 min = min_t(size_t, len, desc_len);
745 sg_buf = buf;
746 sg_set_buf(&sgt->sgl[i], sg_buf, min);
747 }
748
749 buf += min;
750 len -= min;
751 }
752
753 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
754 if (!ret)
755 ret = -ENOMEM;
756 if (ret < 0) {
757 sg_free_table(sgt);
758 return ret;
759 }
760
761 sgt->nents = ret;
762
763 return 0;
764 }
765
766 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
767 struct sg_table *sgt, enum dma_data_direction dir)
768 {
769 if (sgt->orig_nents) {
770 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
771 sg_free_table(sgt);
772 }
773 }
774
775 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
776 {
777 struct device *tx_dev, *rx_dev;
778 struct spi_transfer *xfer;
779 int ret;
780
781 if (!master->can_dma)
782 return 0;
783
784 if (master->dma_tx)
785 tx_dev = master->dma_tx->device->dev;
786 else
787 tx_dev = &master->dev;
788
789 if (master->dma_rx)
790 rx_dev = master->dma_rx->device->dev;
791 else
792 rx_dev = &master->dev;
793
794 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
795 if (!master->can_dma(master, msg->spi, xfer))
796 continue;
797
798 if (xfer->tx_buf != NULL) {
799 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
800 (void *)xfer->tx_buf, xfer->len,
801 DMA_TO_DEVICE);
802 if (ret != 0)
803 return ret;
804 }
805
806 if (xfer->rx_buf != NULL) {
807 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
808 xfer->rx_buf, xfer->len,
809 DMA_FROM_DEVICE);
810 if (ret != 0) {
811 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
812 DMA_TO_DEVICE);
813 return ret;
814 }
815 }
816 }
817
818 master->cur_msg_mapped = true;
819
820 return 0;
821 }
822
823 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
824 {
825 struct spi_transfer *xfer;
826 struct device *tx_dev, *rx_dev;
827
828 if (!master->cur_msg_mapped || !master->can_dma)
829 return 0;
830
831 if (master->dma_tx)
832 tx_dev = master->dma_tx->device->dev;
833 else
834 tx_dev = &master->dev;
835
836 if (master->dma_rx)
837 rx_dev = master->dma_rx->device->dev;
838 else
839 rx_dev = &master->dev;
840
841 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842 if (!master->can_dma(master, msg->spi, xfer))
843 continue;
844
845 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
846 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
847 }
848
849 return 0;
850 }
851 #else /* !CONFIG_HAS_DMA */
852 static inline int spi_map_buf(struct spi_master *master,
853 struct device *dev, struct sg_table *sgt,
854 void *buf, size_t len,
855 enum dma_data_direction dir)
856 {
857 return -EINVAL;
858 }
859
860 static inline void spi_unmap_buf(struct spi_master *master,
861 struct device *dev, struct sg_table *sgt,
862 enum dma_data_direction dir)
863 {
864 }
865
866 static inline int __spi_map_msg(struct spi_master *master,
867 struct spi_message *msg)
868 {
869 return 0;
870 }
871
872 static inline int __spi_unmap_msg(struct spi_master *master,
873 struct spi_message *msg)
874 {
875 return 0;
876 }
877 #endif /* !CONFIG_HAS_DMA */
878
879 static inline int spi_unmap_msg(struct spi_master *master,
880 struct spi_message *msg)
881 {
882 struct spi_transfer *xfer;
883
884 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
885 /*
886 * Restore the original value of tx_buf or rx_buf if they are
887 * NULL.
888 */
889 if (xfer->tx_buf == master->dummy_tx)
890 xfer->tx_buf = NULL;
891 if (xfer->rx_buf == master->dummy_rx)
892 xfer->rx_buf = NULL;
893 }
894
895 return __spi_unmap_msg(master, msg);
896 }
897
898 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
899 {
900 struct spi_transfer *xfer;
901 void *tmp;
902 unsigned int max_tx, max_rx;
903
904 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
905 max_tx = 0;
906 max_rx = 0;
907
908 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
909 if ((master->flags & SPI_MASTER_MUST_TX) &&
910 !xfer->tx_buf)
911 max_tx = max(xfer->len, max_tx);
912 if ((master->flags & SPI_MASTER_MUST_RX) &&
913 !xfer->rx_buf)
914 max_rx = max(xfer->len, max_rx);
915 }
916
917 if (max_tx) {
918 tmp = krealloc(master->dummy_tx, max_tx,
919 GFP_KERNEL | GFP_DMA);
920 if (!tmp)
921 return -ENOMEM;
922 master->dummy_tx = tmp;
923 memset(tmp, 0, max_tx);
924 }
925
926 if (max_rx) {
927 tmp = krealloc(master->dummy_rx, max_rx,
928 GFP_KERNEL | GFP_DMA);
929 if (!tmp)
930 return -ENOMEM;
931 master->dummy_rx = tmp;
932 }
933
934 if (max_tx || max_rx) {
935 list_for_each_entry(xfer, &msg->transfers,
936 transfer_list) {
937 if (!xfer->tx_buf)
938 xfer->tx_buf = master->dummy_tx;
939 if (!xfer->rx_buf)
940 xfer->rx_buf = master->dummy_rx;
941 }
942 }
943 }
944
945 return __spi_map_msg(master, msg);
946 }
947
948 /*
949 * spi_transfer_one_message - Default implementation of transfer_one_message()
950 *
951 * This is a standard implementation of transfer_one_message() for
952 * drivers which implement a transfer_one() operation. It provides
953 * standard handling of delays and chip select management.
954 */
955 static int spi_transfer_one_message(struct spi_master *master,
956 struct spi_message *msg)
957 {
958 struct spi_transfer *xfer;
959 bool keep_cs = false;
960 int ret = 0;
961 unsigned long ms = 1;
962 struct spi_statistics *statm = &master->statistics;
963 struct spi_statistics *stats = &msg->spi->statistics;
964
965 spi_set_cs(msg->spi, true);
966
967 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
968 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
969
970 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
971 trace_spi_transfer_start(msg, xfer);
972
973 spi_statistics_add_transfer_stats(statm, xfer, master);
974 spi_statistics_add_transfer_stats(stats, xfer, master);
975
976 if (xfer->tx_buf || xfer->rx_buf) {
977 reinit_completion(&master->xfer_completion);
978
979 ret = master->transfer_one(master, msg->spi, xfer);
980 if (ret < 0) {
981 SPI_STATISTICS_INCREMENT_FIELD(statm,
982 errors);
983 SPI_STATISTICS_INCREMENT_FIELD(stats,
984 errors);
985 dev_err(&msg->spi->dev,
986 "SPI transfer failed: %d\n", ret);
987 goto out;
988 }
989
990 if (ret > 0) {
991 ret = 0;
992 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
993 ms += ms + 100; /* some tolerance */
994
995 ms = wait_for_completion_timeout(&master->xfer_completion,
996 msecs_to_jiffies(ms));
997 }
998
999 if (ms == 0) {
1000 SPI_STATISTICS_INCREMENT_FIELD(statm,
1001 timedout);
1002 SPI_STATISTICS_INCREMENT_FIELD(stats,
1003 timedout);
1004 dev_err(&msg->spi->dev,
1005 "SPI transfer timed out\n");
1006 msg->status = -ETIMEDOUT;
1007 }
1008 } else {
1009 if (xfer->len)
1010 dev_err(&msg->spi->dev,
1011 "Bufferless transfer has length %u\n",
1012 xfer->len);
1013 }
1014
1015 trace_spi_transfer_stop(msg, xfer);
1016
1017 if (msg->status != -EINPROGRESS)
1018 goto out;
1019
1020 if (xfer->delay_usecs)
1021 udelay(xfer->delay_usecs);
1022
1023 if (xfer->cs_change) {
1024 if (list_is_last(&xfer->transfer_list,
1025 &msg->transfers)) {
1026 keep_cs = true;
1027 } else {
1028 spi_set_cs(msg->spi, false);
1029 udelay(10);
1030 spi_set_cs(msg->spi, true);
1031 }
1032 }
1033
1034 msg->actual_length += xfer->len;
1035 }
1036
1037 out:
1038 if (ret != 0 || !keep_cs)
1039 spi_set_cs(msg->spi, false);
1040
1041 if (msg->status == -EINPROGRESS)
1042 msg->status = ret;
1043
1044 if (msg->status && master->handle_err)
1045 master->handle_err(master, msg);
1046
1047 spi_res_release(master, msg);
1048
1049 spi_finalize_current_message(master);
1050
1051 return ret;
1052 }
1053
1054 /**
1055 * spi_finalize_current_transfer - report completion of a transfer
1056 * @master: the master reporting completion
1057 *
1058 * Called by SPI drivers using the core transfer_one_message()
1059 * implementation to notify it that the current interrupt driven
1060 * transfer has finished and the next one may be scheduled.
1061 */
1062 void spi_finalize_current_transfer(struct spi_master *master)
1063 {
1064 complete(&master->xfer_completion);
1065 }
1066 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1067
1068 /**
1069 * __spi_pump_messages - function which processes spi message queue
1070 * @master: master to process queue for
1071 * @in_kthread: true if we are in the context of the message pump thread
1072 * @bus_locked: true if the bus mutex is held when calling this function
1073 *
1074 * This function checks if there is any spi message in the queue that
1075 * needs processing and if so call out to the driver to initialize hardware
1076 * and transfer each message.
1077 *
1078 * Note that it is called both from the kthread itself and also from
1079 * inside spi_sync(); the queue extraction handling at the top of the
1080 * function should deal with this safely.
1081 */
1082 static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1083 bool bus_locked)
1084 {
1085 unsigned long flags;
1086 bool was_busy = false;
1087 int ret;
1088
1089 /* Lock queue */
1090 spin_lock_irqsave(&master->queue_lock, flags);
1091
1092 /* Make sure we are not already running a message */
1093 if (master->cur_msg) {
1094 spin_unlock_irqrestore(&master->queue_lock, flags);
1095 return;
1096 }
1097
1098 /* If another context is idling the device then defer */
1099 if (master->idling) {
1100 queue_kthread_work(&master->kworker, &master->pump_messages);
1101 spin_unlock_irqrestore(&master->queue_lock, flags);
1102 return;
1103 }
1104
1105 /* Check if the queue is idle */
1106 if (list_empty(&master->queue) || !master->running) {
1107 if (!master->busy) {
1108 spin_unlock_irqrestore(&master->queue_lock, flags);
1109 return;
1110 }
1111
1112 /* Only do teardown in the thread */
1113 if (!in_kthread) {
1114 queue_kthread_work(&master->kworker,
1115 &master->pump_messages);
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117 return;
1118 }
1119
1120 master->busy = false;
1121 master->idling = true;
1122 spin_unlock_irqrestore(&master->queue_lock, flags);
1123
1124 kfree(master->dummy_rx);
1125 master->dummy_rx = NULL;
1126 kfree(master->dummy_tx);
1127 master->dummy_tx = NULL;
1128 if (master->unprepare_transfer_hardware &&
1129 master->unprepare_transfer_hardware(master))
1130 dev_err(&master->dev,
1131 "failed to unprepare transfer hardware\n");
1132 if (master->auto_runtime_pm) {
1133 pm_runtime_mark_last_busy(master->dev.parent);
1134 pm_runtime_put_autosuspend(master->dev.parent);
1135 }
1136 trace_spi_master_idle(master);
1137
1138 spin_lock_irqsave(&master->queue_lock, flags);
1139 master->idling = false;
1140 spin_unlock_irqrestore(&master->queue_lock, flags);
1141 return;
1142 }
1143
1144 /* Extract head of queue */
1145 master->cur_msg =
1146 list_first_entry(&master->queue, struct spi_message, queue);
1147
1148 list_del_init(&master->cur_msg->queue);
1149 if (master->busy)
1150 was_busy = true;
1151 else
1152 master->busy = true;
1153 spin_unlock_irqrestore(&master->queue_lock, flags);
1154
1155 if (!was_busy && master->auto_runtime_pm) {
1156 ret = pm_runtime_get_sync(master->dev.parent);
1157 if (ret < 0) {
1158 dev_err(&master->dev, "Failed to power device: %d\n",
1159 ret);
1160 return;
1161 }
1162 }
1163
1164 if (!was_busy)
1165 trace_spi_master_busy(master);
1166
1167 if (!was_busy && master->prepare_transfer_hardware) {
1168 ret = master->prepare_transfer_hardware(master);
1169 if (ret) {
1170 dev_err(&master->dev,
1171 "failed to prepare transfer hardware\n");
1172
1173 if (master->auto_runtime_pm)
1174 pm_runtime_put(master->dev.parent);
1175 return;
1176 }
1177 }
1178
1179 if (!bus_locked)
1180 mutex_lock(&master->bus_lock_mutex);
1181
1182 trace_spi_message_start(master->cur_msg);
1183
1184 if (master->prepare_message) {
1185 ret = master->prepare_message(master, master->cur_msg);
1186 if (ret) {
1187 dev_err(&master->dev,
1188 "failed to prepare message: %d\n", ret);
1189 master->cur_msg->status = ret;
1190 spi_finalize_current_message(master);
1191 goto out;
1192 }
1193 master->cur_msg_prepared = true;
1194 }
1195
1196 ret = spi_map_msg(master, master->cur_msg);
1197 if (ret) {
1198 master->cur_msg->status = ret;
1199 spi_finalize_current_message(master);
1200 goto out;
1201 }
1202
1203 ret = master->transfer_one_message(master, master->cur_msg);
1204 if (ret) {
1205 dev_err(&master->dev,
1206 "failed to transfer one message from queue\n");
1207 goto out;
1208 }
1209
1210 out:
1211 if (!bus_locked)
1212 mutex_unlock(&master->bus_lock_mutex);
1213
1214 /* Prod the scheduler in case transfer_one() was busy waiting */
1215 if (!ret)
1216 cond_resched();
1217 }
1218
1219 /**
1220 * spi_pump_messages - kthread work function which processes spi message queue
1221 * @work: pointer to kthread work struct contained in the master struct
1222 */
1223 static void spi_pump_messages(struct kthread_work *work)
1224 {
1225 struct spi_master *master =
1226 container_of(work, struct spi_master, pump_messages);
1227
1228 __spi_pump_messages(master, true, master->bus_lock_flag);
1229 }
1230
1231 static int spi_init_queue(struct spi_master *master)
1232 {
1233 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1234
1235 master->running = false;
1236 master->busy = false;
1237
1238 init_kthread_worker(&master->kworker);
1239 master->kworker_task = kthread_run(kthread_worker_fn,
1240 &master->kworker, "%s",
1241 dev_name(&master->dev));
1242 if (IS_ERR(master->kworker_task)) {
1243 dev_err(&master->dev, "failed to create message pump task\n");
1244 return PTR_ERR(master->kworker_task);
1245 }
1246 init_kthread_work(&master->pump_messages, spi_pump_messages);
1247
1248 /*
1249 * Master config will indicate if this controller should run the
1250 * message pump with high (realtime) priority to reduce the transfer
1251 * latency on the bus by minimising the delay between a transfer
1252 * request and the scheduling of the message pump thread. Without this
1253 * setting the message pump thread will remain at default priority.
1254 */
1255 if (master->rt) {
1256 dev_info(&master->dev,
1257 "will run message pump with realtime priority\n");
1258 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1259 }
1260
1261 return 0;
1262 }
1263
1264 /**
1265 * spi_get_next_queued_message() - called by driver to check for queued
1266 * messages
1267 * @master: the master to check for queued messages
1268 *
1269 * If there are more messages in the queue, the next message is returned from
1270 * this call.
1271 *
1272 * Return: the next message in the queue, else NULL if the queue is empty.
1273 */
1274 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1275 {
1276 struct spi_message *next;
1277 unsigned long flags;
1278
1279 /* get a pointer to the next message, if any */
1280 spin_lock_irqsave(&master->queue_lock, flags);
1281 next = list_first_entry_or_null(&master->queue, struct spi_message,
1282 queue);
1283 spin_unlock_irqrestore(&master->queue_lock, flags);
1284
1285 return next;
1286 }
1287 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1288
1289 /**
1290 * spi_finalize_current_message() - the current message is complete
1291 * @master: the master to return the message to
1292 *
1293 * Called by the driver to notify the core that the message in the front of the
1294 * queue is complete and can be removed from the queue.
1295 */
1296 void spi_finalize_current_message(struct spi_master *master)
1297 {
1298 struct spi_message *mesg;
1299 unsigned long flags;
1300 int ret;
1301
1302 spin_lock_irqsave(&master->queue_lock, flags);
1303 mesg = master->cur_msg;
1304 spin_unlock_irqrestore(&master->queue_lock, flags);
1305
1306 spi_unmap_msg(master, mesg);
1307
1308 if (master->cur_msg_prepared && master->unprepare_message) {
1309 ret = master->unprepare_message(master, mesg);
1310 if (ret) {
1311 dev_err(&master->dev,
1312 "failed to unprepare message: %d\n", ret);
1313 }
1314 }
1315
1316 spin_lock_irqsave(&master->queue_lock, flags);
1317 master->cur_msg = NULL;
1318 master->cur_msg_prepared = false;
1319 queue_kthread_work(&master->kworker, &master->pump_messages);
1320 spin_unlock_irqrestore(&master->queue_lock, flags);
1321
1322 trace_spi_message_done(mesg);
1323
1324 mesg->state = NULL;
1325 if (mesg->complete)
1326 mesg->complete(mesg->context);
1327 }
1328 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1329
1330 static int spi_start_queue(struct spi_master *master)
1331 {
1332 unsigned long flags;
1333
1334 spin_lock_irqsave(&master->queue_lock, flags);
1335
1336 if (master->running || master->busy) {
1337 spin_unlock_irqrestore(&master->queue_lock, flags);
1338 return -EBUSY;
1339 }
1340
1341 master->running = true;
1342 master->cur_msg = NULL;
1343 spin_unlock_irqrestore(&master->queue_lock, flags);
1344
1345 queue_kthread_work(&master->kworker, &master->pump_messages);
1346
1347 return 0;
1348 }
1349
1350 static int spi_stop_queue(struct spi_master *master)
1351 {
1352 unsigned long flags;
1353 unsigned limit = 500;
1354 int ret = 0;
1355
1356 spin_lock_irqsave(&master->queue_lock, flags);
1357
1358 /*
1359 * This is a bit lame, but is optimized for the common execution path.
1360 * A wait_queue on the master->busy could be used, but then the common
1361 * execution path (pump_messages) would be required to call wake_up or
1362 * friends on every SPI message. Do this instead.
1363 */
1364 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1365 spin_unlock_irqrestore(&master->queue_lock, flags);
1366 usleep_range(10000, 11000);
1367 spin_lock_irqsave(&master->queue_lock, flags);
1368 }
1369
1370 if (!list_empty(&master->queue) || master->busy)
1371 ret = -EBUSY;
1372 else
1373 master->running = false;
1374
1375 spin_unlock_irqrestore(&master->queue_lock, flags);
1376
1377 if (ret) {
1378 dev_warn(&master->dev,
1379 "could not stop message queue\n");
1380 return ret;
1381 }
1382 return ret;
1383 }
1384
1385 static int spi_destroy_queue(struct spi_master *master)
1386 {
1387 int ret;
1388
1389 ret = spi_stop_queue(master);
1390
1391 /*
1392 * flush_kthread_worker will block until all work is done.
1393 * If the reason that stop_queue timed out is that the work will never
1394 * finish, then it does no good to call flush/stop thread, so
1395 * return anyway.
1396 */
1397 if (ret) {
1398 dev_err(&master->dev, "problem destroying queue\n");
1399 return ret;
1400 }
1401
1402 flush_kthread_worker(&master->kworker);
1403 kthread_stop(master->kworker_task);
1404
1405 return 0;
1406 }
1407
1408 static int __spi_queued_transfer(struct spi_device *spi,
1409 struct spi_message *msg,
1410 bool need_pump)
1411 {
1412 struct spi_master *master = spi->master;
1413 unsigned long flags;
1414
1415 spin_lock_irqsave(&master->queue_lock, flags);
1416
1417 if (!master->running) {
1418 spin_unlock_irqrestore(&master->queue_lock, flags);
1419 return -ESHUTDOWN;
1420 }
1421 msg->actual_length = 0;
1422 msg->status = -EINPROGRESS;
1423
1424 list_add_tail(&msg->queue, &master->queue);
1425 if (!master->busy && need_pump)
1426 queue_kthread_work(&master->kworker, &master->pump_messages);
1427
1428 spin_unlock_irqrestore(&master->queue_lock, flags);
1429 return 0;
1430 }
1431
1432 /**
1433 * spi_queued_transfer - transfer function for queued transfers
1434 * @spi: spi device which is requesting transfer
1435 * @msg: spi message which is to handled is queued to driver queue
1436 *
1437 * Return: zero on success, else a negative error code.
1438 */
1439 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1440 {
1441 return __spi_queued_transfer(spi, msg, true);
1442 }
1443
1444 static int spi_master_initialize_queue(struct spi_master *master)
1445 {
1446 int ret;
1447
1448 master->transfer = spi_queued_transfer;
1449 if (!master->transfer_one_message)
1450 master->transfer_one_message = spi_transfer_one_message;
1451
1452 /* Initialize and start queue */
1453 ret = spi_init_queue(master);
1454 if (ret) {
1455 dev_err(&master->dev, "problem initializing queue\n");
1456 goto err_init_queue;
1457 }
1458 master->queued = true;
1459 ret = spi_start_queue(master);
1460 if (ret) {
1461 dev_err(&master->dev, "problem starting queue\n");
1462 goto err_start_queue;
1463 }
1464
1465 return 0;
1466
1467 err_start_queue:
1468 spi_destroy_queue(master);
1469 err_init_queue:
1470 return ret;
1471 }
1472
1473 /*-------------------------------------------------------------------------*/
1474
1475 #if defined(CONFIG_OF)
1476 static struct spi_device *
1477 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1478 {
1479 struct spi_device *spi;
1480 int rc;
1481 u32 value;
1482
1483 /* Alloc an spi_device */
1484 spi = spi_alloc_device(master);
1485 if (!spi) {
1486 dev_err(&master->dev, "spi_device alloc error for %s\n",
1487 nc->full_name);
1488 rc = -ENOMEM;
1489 goto err_out;
1490 }
1491
1492 /* Select device driver */
1493 rc = of_modalias_node(nc, spi->modalias,
1494 sizeof(spi->modalias));
1495 if (rc < 0) {
1496 dev_err(&master->dev, "cannot find modalias for %s\n",
1497 nc->full_name);
1498 goto err_out;
1499 }
1500
1501 /* Device address */
1502 rc = of_property_read_u32(nc, "reg", &value);
1503 if (rc) {
1504 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1505 nc->full_name, rc);
1506 goto err_out;
1507 }
1508 spi->chip_select = value;
1509
1510 /* Mode (clock phase/polarity/etc.) */
1511 if (of_find_property(nc, "spi-cpha", NULL))
1512 spi->mode |= SPI_CPHA;
1513 if (of_find_property(nc, "spi-cpol", NULL))
1514 spi->mode |= SPI_CPOL;
1515 if (of_find_property(nc, "spi-cs-high", NULL))
1516 spi->mode |= SPI_CS_HIGH;
1517 if (of_find_property(nc, "spi-3wire", NULL))
1518 spi->mode |= SPI_3WIRE;
1519 if (of_find_property(nc, "spi-lsb-first", NULL))
1520 spi->mode |= SPI_LSB_FIRST;
1521
1522 /* Device DUAL/QUAD mode */
1523 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1524 switch (value) {
1525 case 1:
1526 break;
1527 case 2:
1528 spi->mode |= SPI_TX_DUAL;
1529 break;
1530 case 4:
1531 spi->mode |= SPI_TX_QUAD;
1532 break;
1533 default:
1534 dev_warn(&master->dev,
1535 "spi-tx-bus-width %d not supported\n",
1536 value);
1537 break;
1538 }
1539 }
1540
1541 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1542 switch (value) {
1543 case 1:
1544 break;
1545 case 2:
1546 spi->mode |= SPI_RX_DUAL;
1547 break;
1548 case 4:
1549 spi->mode |= SPI_RX_QUAD;
1550 break;
1551 default:
1552 dev_warn(&master->dev,
1553 "spi-rx-bus-width %d not supported\n",
1554 value);
1555 break;
1556 }
1557 }
1558
1559 /* Device speed */
1560 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1561 if (rc) {
1562 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1563 nc->full_name, rc);
1564 goto err_out;
1565 }
1566 spi->max_speed_hz = value;
1567
1568 /* Store a pointer to the node in the device structure */
1569 of_node_get(nc);
1570 spi->dev.of_node = nc;
1571
1572 /* Register the new device */
1573 rc = spi_add_device(spi);
1574 if (rc) {
1575 dev_err(&master->dev, "spi_device register error %s\n",
1576 nc->full_name);
1577 goto err_out;
1578 }
1579
1580 return spi;
1581
1582 err_out:
1583 spi_dev_put(spi);
1584 return ERR_PTR(rc);
1585 }
1586
1587 /**
1588 * of_register_spi_devices() - Register child devices onto the SPI bus
1589 * @master: Pointer to spi_master device
1590 *
1591 * Registers an spi_device for each child node of master node which has a 'reg'
1592 * property.
1593 */
1594 static void of_register_spi_devices(struct spi_master *master)
1595 {
1596 struct spi_device *spi;
1597 struct device_node *nc;
1598
1599 if (!master->dev.of_node)
1600 return;
1601
1602 for_each_available_child_of_node(master->dev.of_node, nc) {
1603 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1604 continue;
1605 spi = of_register_spi_device(master, nc);
1606 if (IS_ERR(spi))
1607 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1608 nc->full_name);
1609 }
1610 }
1611 #else
1612 static void of_register_spi_devices(struct spi_master *master) { }
1613 #endif
1614
1615 #ifdef CONFIG_ACPI
1616 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1617 {
1618 struct spi_device *spi = data;
1619 struct spi_master *master = spi->master;
1620
1621 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1622 struct acpi_resource_spi_serialbus *sb;
1623
1624 sb = &ares->data.spi_serial_bus;
1625 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1626 /*
1627 * ACPI DeviceSelection numbering is handled by the
1628 * host controller driver in Windows and can vary
1629 * from driver to driver. In Linux we always expect
1630 * 0 .. max - 1 so we need to ask the driver to
1631 * translate between the two schemes.
1632 */
1633 if (master->fw_translate_cs) {
1634 int cs = master->fw_translate_cs(master,
1635 sb->device_selection);
1636 if (cs < 0)
1637 return cs;
1638 spi->chip_select = cs;
1639 } else {
1640 spi->chip_select = sb->device_selection;
1641 }
1642
1643 spi->max_speed_hz = sb->connection_speed;
1644
1645 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1646 spi->mode |= SPI_CPHA;
1647 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1648 spi->mode |= SPI_CPOL;
1649 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1650 spi->mode |= SPI_CS_HIGH;
1651 }
1652 } else if (spi->irq < 0) {
1653 struct resource r;
1654
1655 if (acpi_dev_resource_interrupt(ares, 0, &r))
1656 spi->irq = r.start;
1657 }
1658
1659 /* Always tell the ACPI core to skip this resource */
1660 return 1;
1661 }
1662
1663 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1664 void *data, void **return_value)
1665 {
1666 struct spi_master *master = data;
1667 struct list_head resource_list;
1668 struct acpi_device *adev;
1669 struct spi_device *spi;
1670 int ret;
1671
1672 if (acpi_bus_get_device(handle, &adev))
1673 return AE_OK;
1674 if (acpi_bus_get_status(adev) || !adev->status.present)
1675 return AE_OK;
1676
1677 spi = spi_alloc_device(master);
1678 if (!spi) {
1679 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1680 dev_name(&adev->dev));
1681 return AE_NO_MEMORY;
1682 }
1683
1684 ACPI_COMPANION_SET(&spi->dev, adev);
1685 spi->irq = -1;
1686
1687 INIT_LIST_HEAD(&resource_list);
1688 ret = acpi_dev_get_resources(adev, &resource_list,
1689 acpi_spi_add_resource, spi);
1690 acpi_dev_free_resource_list(&resource_list);
1691
1692 if (ret < 0 || !spi->max_speed_hz) {
1693 spi_dev_put(spi);
1694 return AE_OK;
1695 }
1696
1697 if (spi->irq < 0)
1698 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1699
1700 adev->power.flags.ignore_parent = true;
1701 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1702 if (spi_add_device(spi)) {
1703 adev->power.flags.ignore_parent = false;
1704 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1705 dev_name(&adev->dev));
1706 spi_dev_put(spi);
1707 }
1708
1709 return AE_OK;
1710 }
1711
1712 static void acpi_register_spi_devices(struct spi_master *master)
1713 {
1714 acpi_status status;
1715 acpi_handle handle;
1716
1717 handle = ACPI_HANDLE(master->dev.parent);
1718 if (!handle)
1719 return;
1720
1721 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1722 acpi_spi_add_device, NULL,
1723 master, NULL);
1724 if (ACPI_FAILURE(status))
1725 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1726 }
1727 #else
1728 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1729 #endif /* CONFIG_ACPI */
1730
1731 static void spi_master_release(struct device *dev)
1732 {
1733 struct spi_master *master;
1734
1735 master = container_of(dev, struct spi_master, dev);
1736 kfree(master);
1737 }
1738
1739 static struct class spi_master_class = {
1740 .name = "spi_master",
1741 .owner = THIS_MODULE,
1742 .dev_release = spi_master_release,
1743 .dev_groups = spi_master_groups,
1744 };
1745
1746
1747 /**
1748 * spi_alloc_master - allocate SPI master controller
1749 * @dev: the controller, possibly using the platform_bus
1750 * @size: how much zeroed driver-private data to allocate; the pointer to this
1751 * memory is in the driver_data field of the returned device,
1752 * accessible with spi_master_get_devdata().
1753 * Context: can sleep
1754 *
1755 * This call is used only by SPI master controller drivers, which are the
1756 * only ones directly touching chip registers. It's how they allocate
1757 * an spi_master structure, prior to calling spi_register_master().
1758 *
1759 * This must be called from context that can sleep.
1760 *
1761 * The caller is responsible for assigning the bus number and initializing
1762 * the master's methods before calling spi_register_master(); and (after errors
1763 * adding the device) calling spi_master_put() to prevent a memory leak.
1764 *
1765 * Return: the SPI master structure on success, else NULL.
1766 */
1767 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1768 {
1769 struct spi_master *master;
1770
1771 if (!dev)
1772 return NULL;
1773
1774 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1775 if (!master)
1776 return NULL;
1777
1778 device_initialize(&master->dev);
1779 master->bus_num = -1;
1780 master->num_chipselect = 1;
1781 master->dev.class = &spi_master_class;
1782 master->dev.parent = dev;
1783 pm_suspend_ignore_children(&master->dev, true);
1784 spi_master_set_devdata(master, &master[1]);
1785
1786 return master;
1787 }
1788 EXPORT_SYMBOL_GPL(spi_alloc_master);
1789
1790 #ifdef CONFIG_OF
1791 static int of_spi_register_master(struct spi_master *master)
1792 {
1793 int nb, i, *cs;
1794 struct device_node *np = master->dev.of_node;
1795
1796 if (!np)
1797 return 0;
1798
1799 nb = of_gpio_named_count(np, "cs-gpios");
1800 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1801
1802 /* Return error only for an incorrectly formed cs-gpios property */
1803 if (nb == 0 || nb == -ENOENT)
1804 return 0;
1805 else if (nb < 0)
1806 return nb;
1807
1808 cs = devm_kzalloc(&master->dev,
1809 sizeof(int) * master->num_chipselect,
1810 GFP_KERNEL);
1811 master->cs_gpios = cs;
1812
1813 if (!master->cs_gpios)
1814 return -ENOMEM;
1815
1816 for (i = 0; i < master->num_chipselect; i++)
1817 cs[i] = -ENOENT;
1818
1819 for (i = 0; i < nb; i++)
1820 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1821
1822 return 0;
1823 }
1824 #else
1825 static int of_spi_register_master(struct spi_master *master)
1826 {
1827 return 0;
1828 }
1829 #endif
1830
1831 /**
1832 * spi_register_master - register SPI master controller
1833 * @master: initialized master, originally from spi_alloc_master()
1834 * Context: can sleep
1835 *
1836 * SPI master controllers connect to their drivers using some non-SPI bus,
1837 * such as the platform bus. The final stage of probe() in that code
1838 * includes calling spi_register_master() to hook up to this SPI bus glue.
1839 *
1840 * SPI controllers use board specific (often SOC specific) bus numbers,
1841 * and board-specific addressing for SPI devices combines those numbers
1842 * with chip select numbers. Since SPI does not directly support dynamic
1843 * device identification, boards need configuration tables telling which
1844 * chip is at which address.
1845 *
1846 * This must be called from context that can sleep. It returns zero on
1847 * success, else a negative error code (dropping the master's refcount).
1848 * After a successful return, the caller is responsible for calling
1849 * spi_unregister_master().
1850 *
1851 * Return: zero on success, else a negative error code.
1852 */
1853 int spi_register_master(struct spi_master *master)
1854 {
1855 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1856 struct device *dev = master->dev.parent;
1857 struct boardinfo *bi;
1858 int status = -ENODEV;
1859 int dynamic = 0;
1860
1861 if (!dev)
1862 return -ENODEV;
1863
1864 status = of_spi_register_master(master);
1865 if (status)
1866 return status;
1867
1868 /* even if it's just one always-selected device, there must
1869 * be at least one chipselect
1870 */
1871 if (master->num_chipselect == 0)
1872 return -EINVAL;
1873
1874 if ((master->bus_num < 0) && master->dev.of_node)
1875 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1876
1877 /* convention: dynamically assigned bus IDs count down from the max */
1878 if (master->bus_num < 0) {
1879 /* FIXME switch to an IDR based scheme, something like
1880 * I2C now uses, so we can't run out of "dynamic" IDs
1881 */
1882 master->bus_num = atomic_dec_return(&dyn_bus_id);
1883 dynamic = 1;
1884 }
1885
1886 INIT_LIST_HEAD(&master->queue);
1887 spin_lock_init(&master->queue_lock);
1888 spin_lock_init(&master->bus_lock_spinlock);
1889 mutex_init(&master->bus_lock_mutex);
1890 master->bus_lock_flag = 0;
1891 init_completion(&master->xfer_completion);
1892 if (!master->max_dma_len)
1893 master->max_dma_len = INT_MAX;
1894
1895 /* register the device, then userspace will see it.
1896 * registration fails if the bus ID is in use.
1897 */
1898 dev_set_name(&master->dev, "spi%u", master->bus_num);
1899 status = device_add(&master->dev);
1900 if (status < 0)
1901 goto done;
1902 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1903 dynamic ? " (dynamic)" : "");
1904
1905 /* If we're using a queued driver, start the queue */
1906 if (master->transfer)
1907 dev_info(dev, "master is unqueued, this is deprecated\n");
1908 else {
1909 status = spi_master_initialize_queue(master);
1910 if (status) {
1911 device_del(&master->dev);
1912 goto done;
1913 }
1914 }
1915 /* add statistics */
1916 spin_lock_init(&master->statistics.lock);
1917
1918 mutex_lock(&board_lock);
1919 list_add_tail(&master->list, &spi_master_list);
1920 list_for_each_entry(bi, &board_list, list)
1921 spi_match_master_to_boardinfo(master, &bi->board_info);
1922 mutex_unlock(&board_lock);
1923
1924 /* Register devices from the device tree and ACPI */
1925 of_register_spi_devices(master);
1926 acpi_register_spi_devices(master);
1927 done:
1928 return status;
1929 }
1930 EXPORT_SYMBOL_GPL(spi_register_master);
1931
1932 static void devm_spi_unregister(struct device *dev, void *res)
1933 {
1934 spi_unregister_master(*(struct spi_master **)res);
1935 }
1936
1937 /**
1938 * dev_spi_register_master - register managed SPI master controller
1939 * @dev: device managing SPI master
1940 * @master: initialized master, originally from spi_alloc_master()
1941 * Context: can sleep
1942 *
1943 * Register a SPI device as with spi_register_master() which will
1944 * automatically be unregister
1945 *
1946 * Return: zero on success, else a negative error code.
1947 */
1948 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1949 {
1950 struct spi_master **ptr;
1951 int ret;
1952
1953 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1954 if (!ptr)
1955 return -ENOMEM;
1956
1957 ret = spi_register_master(master);
1958 if (!ret) {
1959 *ptr = master;
1960 devres_add(dev, ptr);
1961 } else {
1962 devres_free(ptr);
1963 }
1964
1965 return ret;
1966 }
1967 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1968
1969 static int __unregister(struct device *dev, void *null)
1970 {
1971 spi_unregister_device(to_spi_device(dev));
1972 return 0;
1973 }
1974
1975 /**
1976 * spi_unregister_master - unregister SPI master controller
1977 * @master: the master being unregistered
1978 * Context: can sleep
1979 *
1980 * This call is used only by SPI master controller drivers, which are the
1981 * only ones directly touching chip registers.
1982 *
1983 * This must be called from context that can sleep.
1984 */
1985 void spi_unregister_master(struct spi_master *master)
1986 {
1987 int dummy;
1988
1989 if (master->queued) {
1990 if (spi_destroy_queue(master))
1991 dev_err(&master->dev, "queue remove failed\n");
1992 }
1993
1994 mutex_lock(&board_lock);
1995 list_del(&master->list);
1996 mutex_unlock(&board_lock);
1997
1998 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1999 device_unregister(&master->dev);
2000 }
2001 EXPORT_SYMBOL_GPL(spi_unregister_master);
2002
2003 int spi_master_suspend(struct spi_master *master)
2004 {
2005 int ret;
2006
2007 /* Basically no-ops for non-queued masters */
2008 if (!master->queued)
2009 return 0;
2010
2011 ret = spi_stop_queue(master);
2012 if (ret)
2013 dev_err(&master->dev, "queue stop failed\n");
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(spi_master_suspend);
2018
2019 int spi_master_resume(struct spi_master *master)
2020 {
2021 int ret;
2022
2023 if (!master->queued)
2024 return 0;
2025
2026 ret = spi_start_queue(master);
2027 if (ret)
2028 dev_err(&master->dev, "queue restart failed\n");
2029
2030 return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(spi_master_resume);
2033
2034 static int __spi_master_match(struct device *dev, const void *data)
2035 {
2036 struct spi_master *m;
2037 const u16 *bus_num = data;
2038
2039 m = container_of(dev, struct spi_master, dev);
2040 return m->bus_num == *bus_num;
2041 }
2042
2043 /**
2044 * spi_busnum_to_master - look up master associated with bus_num
2045 * @bus_num: the master's bus number
2046 * Context: can sleep
2047 *
2048 * This call may be used with devices that are registered after
2049 * arch init time. It returns a refcounted pointer to the relevant
2050 * spi_master (which the caller must release), or NULL if there is
2051 * no such master registered.
2052 *
2053 * Return: the SPI master structure on success, else NULL.
2054 */
2055 struct spi_master *spi_busnum_to_master(u16 bus_num)
2056 {
2057 struct device *dev;
2058 struct spi_master *master = NULL;
2059
2060 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2061 __spi_master_match);
2062 if (dev)
2063 master = container_of(dev, struct spi_master, dev);
2064 /* reference got in class_find_device */
2065 return master;
2066 }
2067 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2068
2069 /*-------------------------------------------------------------------------*/
2070
2071 /* Core methods for SPI resource management */
2072
2073 /**
2074 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2075 * during the processing of a spi_message while using
2076 * spi_transfer_one
2077 * @spi: the spi device for which we allocate memory
2078 * @release: the release code to execute for this resource
2079 * @size: size to alloc and return
2080 * @gfp: GFP allocation flags
2081 *
2082 * Return: the pointer to the allocated data
2083 *
2084 * This may get enhanced in the future to allocate from a memory pool
2085 * of the @spi_device or @spi_master to avoid repeated allocations.
2086 */
2087 void *spi_res_alloc(struct spi_device *spi,
2088 spi_res_release_t release,
2089 size_t size, gfp_t gfp)
2090 {
2091 struct spi_res *sres;
2092
2093 sres = kzalloc(sizeof(*sres) + size, gfp);
2094 if (!sres)
2095 return NULL;
2096
2097 INIT_LIST_HEAD(&sres->entry);
2098 sres->release = release;
2099
2100 return sres->data;
2101 }
2102 EXPORT_SYMBOL_GPL(spi_res_alloc);
2103
2104 /**
2105 * spi_res_free - free an spi resource
2106 * @res: pointer to the custom data of a resource
2107 *
2108 */
2109 void spi_res_free(void *res)
2110 {
2111 struct spi_res *sres = container_of(res, struct spi_res, data);
2112
2113 if (!res)
2114 return;
2115
2116 WARN_ON(!list_empty(&sres->entry));
2117 kfree(sres);
2118 }
2119 EXPORT_SYMBOL_GPL(spi_res_free);
2120
2121 /**
2122 * spi_res_add - add a spi_res to the spi_message
2123 * @message: the spi message
2124 * @res: the spi_resource
2125 */
2126 void spi_res_add(struct spi_message *message, void *res)
2127 {
2128 struct spi_res *sres = container_of(res, struct spi_res, data);
2129
2130 WARN_ON(!list_empty(&sres->entry));
2131 list_add_tail(&sres->entry, &message->resources);
2132 }
2133 EXPORT_SYMBOL_GPL(spi_res_add);
2134
2135 /**
2136 * spi_res_release - release all spi resources for this message
2137 * @master: the @spi_master
2138 * @message: the @spi_message
2139 */
2140 void spi_res_release(struct spi_master *master,
2141 struct spi_message *message)
2142 {
2143 struct spi_res *res;
2144
2145 while (!list_empty(&message->resources)) {
2146 res = list_last_entry(&message->resources,
2147 struct spi_res, entry);
2148
2149 if (res->release)
2150 res->release(master, message, res->data);
2151
2152 list_del(&res->entry);
2153
2154 kfree(res);
2155 }
2156 }
2157 EXPORT_SYMBOL_GPL(spi_res_release);
2158
2159 /*-------------------------------------------------------------------------*/
2160
2161 /* Core methods for spi_message alterations */
2162
2163 static void __spi_replace_transfers_release(struct spi_master *master,
2164 struct spi_message *msg,
2165 void *res)
2166 {
2167 struct spi_replaced_transfers *rxfer = res;
2168 size_t i;
2169
2170 /* call extra callback if requested */
2171 if (rxfer->release)
2172 rxfer->release(master, msg, res);
2173
2174 /* insert replaced transfers back into the message */
2175 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2176
2177 /* remove the formerly inserted entries */
2178 for (i = 0; i < rxfer->inserted; i++)
2179 list_del(&rxfer->inserted_transfers[i].transfer_list);
2180 }
2181
2182 /**
2183 * spi_replace_transfers - replace transfers with several transfers
2184 * and register change with spi_message.resources
2185 * @msg: the spi_message we work upon
2186 * @xfer_first: the first spi_transfer we want to replace
2187 * @remove: number of transfers to remove
2188 * @insert: the number of transfers we want to insert instead
2189 * @release: extra release code necessary in some circumstances
2190 * @extradatasize: extra data to allocate (with alignment guarantees
2191 * of struct @spi_transfer)
2192 * @gfp: gfp flags
2193 *
2194 * Returns: pointer to @spi_replaced_transfers,
2195 * PTR_ERR(...) in case of errors.
2196 */
2197 struct spi_replaced_transfers *spi_replace_transfers(
2198 struct spi_message *msg,
2199 struct spi_transfer *xfer_first,
2200 size_t remove,
2201 size_t insert,
2202 spi_replaced_release_t release,
2203 size_t extradatasize,
2204 gfp_t gfp)
2205 {
2206 struct spi_replaced_transfers *rxfer;
2207 struct spi_transfer *xfer;
2208 size_t i;
2209
2210 /* allocate the structure using spi_res */
2211 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2212 insert * sizeof(struct spi_transfer)
2213 + sizeof(struct spi_replaced_transfers)
2214 + extradatasize,
2215 gfp);
2216 if (!rxfer)
2217 return ERR_PTR(-ENOMEM);
2218
2219 /* the release code to invoke before running the generic release */
2220 rxfer->release = release;
2221
2222 /* assign extradata */
2223 if (extradatasize)
2224 rxfer->extradata =
2225 &rxfer->inserted_transfers[insert];
2226
2227 /* init the replaced_transfers list */
2228 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2229
2230 /* assign the list_entry after which we should reinsert
2231 * the @replaced_transfers - it may be spi_message.messages!
2232 */
2233 rxfer->replaced_after = xfer_first->transfer_list.prev;
2234
2235 /* remove the requested number of transfers */
2236 for (i = 0; i < remove; i++) {
2237 /* if the entry after replaced_after it is msg->transfers
2238 * then we have been requested to remove more transfers
2239 * than are in the list
2240 */
2241 if (rxfer->replaced_after->next == &msg->transfers) {
2242 dev_err(&msg->spi->dev,
2243 "requested to remove more spi_transfers than are available\n");
2244 /* insert replaced transfers back into the message */
2245 list_splice(&rxfer->replaced_transfers,
2246 rxfer->replaced_after);
2247
2248 /* free the spi_replace_transfer structure */
2249 spi_res_free(rxfer);
2250
2251 /* and return with an error */
2252 return ERR_PTR(-EINVAL);
2253 }
2254
2255 /* remove the entry after replaced_after from list of
2256 * transfers and add it to list of replaced_transfers
2257 */
2258 list_move_tail(rxfer->replaced_after->next,
2259 &rxfer->replaced_transfers);
2260 }
2261
2262 /* create copy of the given xfer with identical settings
2263 * based on the first transfer to get removed
2264 */
2265 for (i = 0; i < insert; i++) {
2266 /* we need to run in reverse order */
2267 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2268
2269 /* copy all spi_transfer data */
2270 memcpy(xfer, xfer_first, sizeof(*xfer));
2271
2272 /* add to list */
2273 list_add(&xfer->transfer_list, rxfer->replaced_after);
2274
2275 /* clear cs_change and delay_usecs for all but the last */
2276 if (i) {
2277 xfer->cs_change = false;
2278 xfer->delay_usecs = 0;
2279 }
2280 }
2281
2282 /* set up inserted */
2283 rxfer->inserted = insert;
2284
2285 /* and register it with spi_res/spi_message */
2286 spi_res_add(msg, rxfer);
2287
2288 return rxfer;
2289 }
2290 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2291
2292 static int __spi_split_transfer_maxsize(struct spi_master *master,
2293 struct spi_message *msg,
2294 struct spi_transfer **xferp,
2295 size_t maxsize,
2296 gfp_t gfp)
2297 {
2298 struct spi_transfer *xfer = *xferp, *xfers;
2299 struct spi_replaced_transfers *srt;
2300 size_t offset;
2301 size_t count, i;
2302
2303 /* warn once about this fact that we are splitting a transfer */
2304 dev_warn_once(&msg->spi->dev,
2305 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2306 xfer->len, maxsize);
2307
2308 /* calculate how many we have to replace */
2309 count = DIV_ROUND_UP(xfer->len, maxsize);
2310
2311 /* create replacement */
2312 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2313 if (IS_ERR(srt))
2314 return PTR_ERR(srt);
2315 xfers = srt->inserted_transfers;
2316
2317 /* now handle each of those newly inserted spi_transfers
2318 * note that the replacements spi_transfers all are preset
2319 * to the same values as *xferp, so tx_buf, rx_buf and len
2320 * are all identical (as well as most others)
2321 * so we just have to fix up len and the pointers.
2322 *
2323 * this also includes support for the depreciated
2324 * spi_message.is_dma_mapped interface
2325 */
2326
2327 /* the first transfer just needs the length modified, so we
2328 * run it outside the loop
2329 */
2330 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2331
2332 /* all the others need rx_buf/tx_buf also set */
2333 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2334 /* update rx_buf, tx_buf and dma */
2335 if (xfers[i].rx_buf)
2336 xfers[i].rx_buf += offset;
2337 if (xfers[i].rx_dma)
2338 xfers[i].rx_dma += offset;
2339 if (xfers[i].tx_buf)
2340 xfers[i].tx_buf += offset;
2341 if (xfers[i].tx_dma)
2342 xfers[i].tx_dma += offset;
2343
2344 /* update length */
2345 xfers[i].len = min(maxsize, xfers[i].len - offset);
2346 }
2347
2348 /* we set up xferp to the last entry we have inserted,
2349 * so that we skip those already split transfers
2350 */
2351 *xferp = &xfers[count - 1];
2352
2353 /* increment statistics counters */
2354 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2355 transfers_split_maxsize);
2356 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2357 transfers_split_maxsize);
2358
2359 return 0;
2360 }
2361
2362 /**
2363 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2364 * when an individual transfer exceeds a
2365 * certain size
2366 * @master: the @spi_master for this transfer
2367 * @msg: the @spi_message to transform
2368 * @maxsize: the maximum when to apply this
2369 * @gfp: GFP allocation flags
2370 *
2371 * Return: status of transformation
2372 */
2373 int spi_split_transfers_maxsize(struct spi_master *master,
2374 struct spi_message *msg,
2375 size_t maxsize,
2376 gfp_t gfp)
2377 {
2378 struct spi_transfer *xfer;
2379 int ret;
2380
2381 /* iterate over the transfer_list,
2382 * but note that xfer is advanced to the last transfer inserted
2383 * to avoid checking sizes again unnecessarily (also xfer does
2384 * potentiall belong to a different list by the time the
2385 * replacement has happened
2386 */
2387 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2388 if (xfer->len > maxsize) {
2389 ret = __spi_split_transfer_maxsize(
2390 master, msg, &xfer, maxsize, gfp);
2391 if (ret)
2392 return ret;
2393 }
2394 }
2395
2396 return 0;
2397 }
2398 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2399
2400 /*-------------------------------------------------------------------------*/
2401
2402 /* Core methods for SPI master protocol drivers. Some of the
2403 * other core methods are currently defined as inline functions.
2404 */
2405
2406 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2407 {
2408 if (master->bits_per_word_mask) {
2409 /* Only 32 bits fit in the mask */
2410 if (bits_per_word > 32)
2411 return -EINVAL;
2412 if (!(master->bits_per_word_mask &
2413 SPI_BPW_MASK(bits_per_word)))
2414 return -EINVAL;
2415 }
2416
2417 return 0;
2418 }
2419
2420 /**
2421 * spi_setup - setup SPI mode and clock rate
2422 * @spi: the device whose settings are being modified
2423 * Context: can sleep, and no requests are queued to the device
2424 *
2425 * SPI protocol drivers may need to update the transfer mode if the
2426 * device doesn't work with its default. They may likewise need
2427 * to update clock rates or word sizes from initial values. This function
2428 * changes those settings, and must be called from a context that can sleep.
2429 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2430 * effect the next time the device is selected and data is transferred to
2431 * or from it. When this function returns, the spi device is deselected.
2432 *
2433 * Note that this call will fail if the protocol driver specifies an option
2434 * that the underlying controller or its driver does not support. For
2435 * example, not all hardware supports wire transfers using nine bit words,
2436 * LSB-first wire encoding, or active-high chipselects.
2437 *
2438 * Return: zero on success, else a negative error code.
2439 */
2440 int spi_setup(struct spi_device *spi)
2441 {
2442 unsigned bad_bits, ugly_bits;
2443 int status;
2444
2445 /* check mode to prevent that DUAL and QUAD set at the same time
2446 */
2447 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2448 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2449 dev_err(&spi->dev,
2450 "setup: can not select dual and quad at the same time\n");
2451 return -EINVAL;
2452 }
2453 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2454 */
2455 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2456 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2457 return -EINVAL;
2458 /* help drivers fail *cleanly* when they need options
2459 * that aren't supported with their current master
2460 */
2461 bad_bits = spi->mode & ~spi->master->mode_bits;
2462 ugly_bits = bad_bits &
2463 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2464 if (ugly_bits) {
2465 dev_warn(&spi->dev,
2466 "setup: ignoring unsupported mode bits %x\n",
2467 ugly_bits);
2468 spi->mode &= ~ugly_bits;
2469 bad_bits &= ~ugly_bits;
2470 }
2471 if (bad_bits) {
2472 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2473 bad_bits);
2474 return -EINVAL;
2475 }
2476
2477 if (!spi->bits_per_word)
2478 spi->bits_per_word = 8;
2479
2480 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2481 if (status)
2482 return status;
2483
2484 if (!spi->max_speed_hz)
2485 spi->max_speed_hz = spi->master->max_speed_hz;
2486
2487 if (spi->master->setup)
2488 status = spi->master->setup(spi);
2489
2490 spi_set_cs(spi, false);
2491
2492 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2493 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2494 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2495 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2496 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2497 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2498 spi->bits_per_word, spi->max_speed_hz,
2499 status);
2500
2501 return status;
2502 }
2503 EXPORT_SYMBOL_GPL(spi_setup);
2504
2505 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2506 {
2507 struct spi_master *master = spi->master;
2508 struct spi_transfer *xfer;
2509 int w_size;
2510
2511 if (list_empty(&message->transfers))
2512 return -EINVAL;
2513
2514 /* Half-duplex links include original MicroWire, and ones with
2515 * only one data pin like SPI_3WIRE (switches direction) or where
2516 * either MOSI or MISO is missing. They can also be caused by
2517 * software limitations.
2518 */
2519 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2520 || (spi->mode & SPI_3WIRE)) {
2521 unsigned flags = master->flags;
2522
2523 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2524 if (xfer->rx_buf && xfer->tx_buf)
2525 return -EINVAL;
2526 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2527 return -EINVAL;
2528 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2529 return -EINVAL;
2530 }
2531 }
2532
2533 /**
2534 * Set transfer bits_per_word and max speed as spi device default if
2535 * it is not set for this transfer.
2536 * Set transfer tx_nbits and rx_nbits as single transfer default
2537 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2538 */
2539 message->frame_length = 0;
2540 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2541 message->frame_length += xfer->len;
2542 if (!xfer->bits_per_word)
2543 xfer->bits_per_word = spi->bits_per_word;
2544
2545 if (!xfer->speed_hz)
2546 xfer->speed_hz = spi->max_speed_hz;
2547 if (!xfer->speed_hz)
2548 xfer->speed_hz = master->max_speed_hz;
2549
2550 if (master->max_speed_hz &&
2551 xfer->speed_hz > master->max_speed_hz)
2552 xfer->speed_hz = master->max_speed_hz;
2553
2554 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2555 return -EINVAL;
2556
2557 /*
2558 * SPI transfer length should be multiple of SPI word size
2559 * where SPI word size should be power-of-two multiple
2560 */
2561 if (xfer->bits_per_word <= 8)
2562 w_size = 1;
2563 else if (xfer->bits_per_word <= 16)
2564 w_size = 2;
2565 else
2566 w_size = 4;
2567
2568 /* No partial transfers accepted */
2569 if (xfer->len % w_size)
2570 return -EINVAL;
2571
2572 if (xfer->speed_hz && master->min_speed_hz &&
2573 xfer->speed_hz < master->min_speed_hz)
2574 return -EINVAL;
2575
2576 if (xfer->tx_buf && !xfer->tx_nbits)
2577 xfer->tx_nbits = SPI_NBITS_SINGLE;
2578 if (xfer->rx_buf && !xfer->rx_nbits)
2579 xfer->rx_nbits = SPI_NBITS_SINGLE;
2580 /* check transfer tx/rx_nbits:
2581 * 1. check the value matches one of single, dual and quad
2582 * 2. check tx/rx_nbits match the mode in spi_device
2583 */
2584 if (xfer->tx_buf) {
2585 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2586 xfer->tx_nbits != SPI_NBITS_DUAL &&
2587 xfer->tx_nbits != SPI_NBITS_QUAD)
2588 return -EINVAL;
2589 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2590 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2591 return -EINVAL;
2592 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2593 !(spi->mode & SPI_TX_QUAD))
2594 return -EINVAL;
2595 }
2596 /* check transfer rx_nbits */
2597 if (xfer->rx_buf) {
2598 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2599 xfer->rx_nbits != SPI_NBITS_DUAL &&
2600 xfer->rx_nbits != SPI_NBITS_QUAD)
2601 return -EINVAL;
2602 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2603 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2604 return -EINVAL;
2605 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2606 !(spi->mode & SPI_RX_QUAD))
2607 return -EINVAL;
2608 }
2609 }
2610
2611 message->status = -EINPROGRESS;
2612
2613 return 0;
2614 }
2615
2616 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2617 {
2618 struct spi_master *master = spi->master;
2619
2620 message->spi = spi;
2621
2622 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2623 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2624
2625 trace_spi_message_submit(message);
2626
2627 return master->transfer(spi, message);
2628 }
2629
2630 /**
2631 * spi_async - asynchronous SPI transfer
2632 * @spi: device with which data will be exchanged
2633 * @message: describes the data transfers, including completion callback
2634 * Context: any (irqs may be blocked, etc)
2635 *
2636 * This call may be used in_irq and other contexts which can't sleep,
2637 * as well as from task contexts which can sleep.
2638 *
2639 * The completion callback is invoked in a context which can't sleep.
2640 * Before that invocation, the value of message->status is undefined.
2641 * When the callback is issued, message->status holds either zero (to
2642 * indicate complete success) or a negative error code. After that
2643 * callback returns, the driver which issued the transfer request may
2644 * deallocate the associated memory; it's no longer in use by any SPI
2645 * core or controller driver code.
2646 *
2647 * Note that although all messages to a spi_device are handled in
2648 * FIFO order, messages may go to different devices in other orders.
2649 * Some device might be higher priority, or have various "hard" access
2650 * time requirements, for example.
2651 *
2652 * On detection of any fault during the transfer, processing of
2653 * the entire message is aborted, and the device is deselected.
2654 * Until returning from the associated message completion callback,
2655 * no other spi_message queued to that device will be processed.
2656 * (This rule applies equally to all the synchronous transfer calls,
2657 * which are wrappers around this core asynchronous primitive.)
2658 *
2659 * Return: zero on success, else a negative error code.
2660 */
2661 int spi_async(struct spi_device *spi, struct spi_message *message)
2662 {
2663 struct spi_master *master = spi->master;
2664 int ret;
2665 unsigned long flags;
2666
2667 ret = __spi_validate(spi, message);
2668 if (ret != 0)
2669 return ret;
2670
2671 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2672
2673 if (master->bus_lock_flag)
2674 ret = -EBUSY;
2675 else
2676 ret = __spi_async(spi, message);
2677
2678 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2679
2680 return ret;
2681 }
2682 EXPORT_SYMBOL_GPL(spi_async);
2683
2684 /**
2685 * spi_async_locked - version of spi_async with exclusive bus usage
2686 * @spi: device with which data will be exchanged
2687 * @message: describes the data transfers, including completion callback
2688 * Context: any (irqs may be blocked, etc)
2689 *
2690 * This call may be used in_irq and other contexts which can't sleep,
2691 * as well as from task contexts which can sleep.
2692 *
2693 * The completion callback is invoked in a context which can't sleep.
2694 * Before that invocation, the value of message->status is undefined.
2695 * When the callback is issued, message->status holds either zero (to
2696 * indicate complete success) or a negative error code. After that
2697 * callback returns, the driver which issued the transfer request may
2698 * deallocate the associated memory; it's no longer in use by any SPI
2699 * core or controller driver code.
2700 *
2701 * Note that although all messages to a spi_device are handled in
2702 * FIFO order, messages may go to different devices in other orders.
2703 * Some device might be higher priority, or have various "hard" access
2704 * time requirements, for example.
2705 *
2706 * On detection of any fault during the transfer, processing of
2707 * the entire message is aborted, and the device is deselected.
2708 * Until returning from the associated message completion callback,
2709 * no other spi_message queued to that device will be processed.
2710 * (This rule applies equally to all the synchronous transfer calls,
2711 * which are wrappers around this core asynchronous primitive.)
2712 *
2713 * Return: zero on success, else a negative error code.
2714 */
2715 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2716 {
2717 struct spi_master *master = spi->master;
2718 int ret;
2719 unsigned long flags;
2720
2721 ret = __spi_validate(spi, message);
2722 if (ret != 0)
2723 return ret;
2724
2725 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2726
2727 ret = __spi_async(spi, message);
2728
2729 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2730
2731 return ret;
2732
2733 }
2734 EXPORT_SYMBOL_GPL(spi_async_locked);
2735
2736
2737 int spi_flash_read(struct spi_device *spi,
2738 struct spi_flash_read_message *msg)
2739
2740 {
2741 struct spi_master *master = spi->master;
2742 struct device *rx_dev = NULL;
2743 int ret;
2744
2745 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2746 msg->addr_nbits == SPI_NBITS_DUAL) &&
2747 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2748 return -EINVAL;
2749 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2750 msg->addr_nbits == SPI_NBITS_QUAD) &&
2751 !(spi->mode & SPI_TX_QUAD))
2752 return -EINVAL;
2753 if (msg->data_nbits == SPI_NBITS_DUAL &&
2754 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2755 return -EINVAL;
2756 if (msg->data_nbits == SPI_NBITS_QUAD &&
2757 !(spi->mode & SPI_RX_QUAD))
2758 return -EINVAL;
2759
2760 if (master->auto_runtime_pm) {
2761 ret = pm_runtime_get_sync(master->dev.parent);
2762 if (ret < 0) {
2763 dev_err(&master->dev, "Failed to power device: %d\n",
2764 ret);
2765 return ret;
2766 }
2767 }
2768
2769 mutex_lock(&master->bus_lock_mutex);
2770 if (master->dma_rx) {
2771 rx_dev = master->dma_rx->device->dev;
2772 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2773 msg->buf, msg->len,
2774 DMA_FROM_DEVICE);
2775 if (!ret)
2776 msg->cur_msg_mapped = true;
2777 }
2778 ret = master->spi_flash_read(spi, msg);
2779 if (msg->cur_msg_mapped)
2780 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2781 DMA_FROM_DEVICE);
2782 mutex_unlock(&master->bus_lock_mutex);
2783
2784 if (master->auto_runtime_pm)
2785 pm_runtime_put(master->dev.parent);
2786
2787 return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(spi_flash_read);
2790
2791 /*-------------------------------------------------------------------------*/
2792
2793 /* Utility methods for SPI master protocol drivers, layered on
2794 * top of the core. Some other utility methods are defined as
2795 * inline functions.
2796 */
2797
2798 static void spi_complete(void *arg)
2799 {
2800 complete(arg);
2801 }
2802
2803 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2804 int bus_locked)
2805 {
2806 DECLARE_COMPLETION_ONSTACK(done);
2807 int status;
2808 struct spi_master *master = spi->master;
2809 unsigned long flags;
2810
2811 status = __spi_validate(spi, message);
2812 if (status != 0)
2813 return status;
2814
2815 message->complete = spi_complete;
2816 message->context = &done;
2817 message->spi = spi;
2818
2819 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2820 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2821
2822 if (!bus_locked)
2823 mutex_lock(&master->bus_lock_mutex);
2824
2825 /* If we're not using the legacy transfer method then we will
2826 * try to transfer in the calling context so special case.
2827 * This code would be less tricky if we could remove the
2828 * support for driver implemented message queues.
2829 */
2830 if (master->transfer == spi_queued_transfer) {
2831 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2832
2833 trace_spi_message_submit(message);
2834
2835 status = __spi_queued_transfer(spi, message, false);
2836
2837 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2838 } else {
2839 status = spi_async_locked(spi, message);
2840 }
2841
2842 if (!bus_locked)
2843 mutex_unlock(&master->bus_lock_mutex);
2844
2845 if (status == 0) {
2846 /* Push out the messages in the calling context if we
2847 * can.
2848 */
2849 if (master->transfer == spi_queued_transfer) {
2850 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2851 spi_sync_immediate);
2852 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2853 spi_sync_immediate);
2854 __spi_pump_messages(master, false, bus_locked);
2855 }
2856
2857 wait_for_completion(&done);
2858 status = message->status;
2859 }
2860 message->context = NULL;
2861 return status;
2862 }
2863
2864 /**
2865 * spi_sync - blocking/synchronous SPI data transfers
2866 * @spi: device with which data will be exchanged
2867 * @message: describes the data transfers
2868 * Context: can sleep
2869 *
2870 * This call may only be used from a context that may sleep. The sleep
2871 * is non-interruptible, and has no timeout. Low-overhead controller
2872 * drivers may DMA directly into and out of the message buffers.
2873 *
2874 * Note that the SPI device's chip select is active during the message,
2875 * and then is normally disabled between messages. Drivers for some
2876 * frequently-used devices may want to minimize costs of selecting a chip,
2877 * by leaving it selected in anticipation that the next message will go
2878 * to the same chip. (That may increase power usage.)
2879 *
2880 * Also, the caller is guaranteeing that the memory associated with the
2881 * message will not be freed before this call returns.
2882 *
2883 * Return: zero on success, else a negative error code.
2884 */
2885 int spi_sync(struct spi_device *spi, struct spi_message *message)
2886 {
2887 return __spi_sync(spi, message, spi->master->bus_lock_flag);
2888 }
2889 EXPORT_SYMBOL_GPL(spi_sync);
2890
2891 /**
2892 * spi_sync_locked - version of spi_sync with exclusive bus usage
2893 * @spi: device with which data will be exchanged
2894 * @message: describes the data transfers
2895 * Context: can sleep
2896 *
2897 * This call may only be used from a context that may sleep. The sleep
2898 * is non-interruptible, and has no timeout. Low-overhead controller
2899 * drivers may DMA directly into and out of the message buffers.
2900 *
2901 * This call should be used by drivers that require exclusive access to the
2902 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2903 * be released by a spi_bus_unlock call when the exclusive access is over.
2904 *
2905 * Return: zero on success, else a negative error code.
2906 */
2907 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2908 {
2909 return __spi_sync(spi, message, 1);
2910 }
2911 EXPORT_SYMBOL_GPL(spi_sync_locked);
2912
2913 /**
2914 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2915 * @master: SPI bus master that should be locked for exclusive bus access
2916 * Context: can sleep
2917 *
2918 * This call may only be used from a context that may sleep. The sleep
2919 * is non-interruptible, and has no timeout.
2920 *
2921 * This call should be used by drivers that require exclusive access to the
2922 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2923 * exclusive access is over. Data transfer must be done by spi_sync_locked
2924 * and spi_async_locked calls when the SPI bus lock is held.
2925 *
2926 * Return: always zero.
2927 */
2928 int spi_bus_lock(struct spi_master *master)
2929 {
2930 unsigned long flags;
2931
2932 mutex_lock(&master->bus_lock_mutex);
2933
2934 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2935 master->bus_lock_flag = 1;
2936 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2937
2938 /* mutex remains locked until spi_bus_unlock is called */
2939
2940 return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(spi_bus_lock);
2943
2944 /**
2945 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2946 * @master: SPI bus master that was locked for exclusive bus access
2947 * Context: can sleep
2948 *
2949 * This call may only be used from a context that may sleep. The sleep
2950 * is non-interruptible, and has no timeout.
2951 *
2952 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2953 * call.
2954 *
2955 * Return: always zero.
2956 */
2957 int spi_bus_unlock(struct spi_master *master)
2958 {
2959 master->bus_lock_flag = 0;
2960
2961 mutex_unlock(&master->bus_lock_mutex);
2962
2963 return 0;
2964 }
2965 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2966
2967 /* portable code must never pass more than 32 bytes */
2968 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2969
2970 static u8 *buf;
2971
2972 /**
2973 * spi_write_then_read - SPI synchronous write followed by read
2974 * @spi: device with which data will be exchanged
2975 * @txbuf: data to be written (need not be dma-safe)
2976 * @n_tx: size of txbuf, in bytes
2977 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2978 * @n_rx: size of rxbuf, in bytes
2979 * Context: can sleep
2980 *
2981 * This performs a half duplex MicroWire style transaction with the
2982 * device, sending txbuf and then reading rxbuf. The return value
2983 * is zero for success, else a negative errno status code.
2984 * This call may only be used from a context that may sleep.
2985 *
2986 * Parameters to this routine are always copied using a small buffer;
2987 * portable code should never use this for more than 32 bytes.
2988 * Performance-sensitive or bulk transfer code should instead use
2989 * spi_{async,sync}() calls with dma-safe buffers.
2990 *
2991 * Return: zero on success, else a negative error code.
2992 */
2993 int spi_write_then_read(struct spi_device *spi,
2994 const void *txbuf, unsigned n_tx,
2995 void *rxbuf, unsigned n_rx)
2996 {
2997 static DEFINE_MUTEX(lock);
2998
2999 int status;
3000 struct spi_message message;
3001 struct spi_transfer x[2];
3002 u8 *local_buf;
3003
3004 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3005 * copying here, (as a pure convenience thing), but we can
3006 * keep heap costs out of the hot path unless someone else is
3007 * using the pre-allocated buffer or the transfer is too large.
3008 */
3009 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3010 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3011 GFP_KERNEL | GFP_DMA);
3012 if (!local_buf)
3013 return -ENOMEM;
3014 } else {
3015 local_buf = buf;
3016 }
3017
3018 spi_message_init(&message);
3019 memset(x, 0, sizeof(x));
3020 if (n_tx) {
3021 x[0].len = n_tx;
3022 spi_message_add_tail(&x[0], &message);
3023 }
3024 if (n_rx) {
3025 x[1].len = n_rx;
3026 spi_message_add_tail(&x[1], &message);
3027 }
3028
3029 memcpy(local_buf, txbuf, n_tx);
3030 x[0].tx_buf = local_buf;
3031 x[1].rx_buf = local_buf + n_tx;
3032
3033 /* do the i/o */
3034 status = spi_sync(spi, &message);
3035 if (status == 0)
3036 memcpy(rxbuf, x[1].rx_buf, n_rx);
3037
3038 if (x[0].tx_buf == buf)
3039 mutex_unlock(&lock);
3040 else
3041 kfree(local_buf);
3042
3043 return status;
3044 }
3045 EXPORT_SYMBOL_GPL(spi_write_then_read);
3046
3047 /*-------------------------------------------------------------------------*/
3048
3049 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3050 static int __spi_of_device_match(struct device *dev, void *data)
3051 {
3052 return dev->of_node == data;
3053 }
3054
3055 /* must call put_device() when done with returned spi_device device */
3056 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3057 {
3058 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3059 __spi_of_device_match);
3060 return dev ? to_spi_device(dev) : NULL;
3061 }
3062
3063 static int __spi_of_master_match(struct device *dev, const void *data)
3064 {
3065 return dev->of_node == data;
3066 }
3067
3068 /* the spi masters are not using spi_bus, so we find it with another way */
3069 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3070 {
3071 struct device *dev;
3072
3073 dev = class_find_device(&spi_master_class, NULL, node,
3074 __spi_of_master_match);
3075 if (!dev)
3076 return NULL;
3077
3078 /* reference got in class_find_device */
3079 return container_of(dev, struct spi_master, dev);
3080 }
3081
3082 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3083 void *arg)
3084 {
3085 struct of_reconfig_data *rd = arg;
3086 struct spi_master *master;
3087 struct spi_device *spi;
3088
3089 switch (of_reconfig_get_state_change(action, arg)) {
3090 case OF_RECONFIG_CHANGE_ADD:
3091 master = of_find_spi_master_by_node(rd->dn->parent);
3092 if (master == NULL)
3093 return NOTIFY_OK; /* not for us */
3094
3095 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3096 put_device(&master->dev);
3097 return NOTIFY_OK;
3098 }
3099
3100 spi = of_register_spi_device(master, rd->dn);
3101 put_device(&master->dev);
3102
3103 if (IS_ERR(spi)) {
3104 pr_err("%s: failed to create for '%s'\n",
3105 __func__, rd->dn->full_name);
3106 return notifier_from_errno(PTR_ERR(spi));
3107 }
3108 break;
3109
3110 case OF_RECONFIG_CHANGE_REMOVE:
3111 /* already depopulated? */
3112 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3113 return NOTIFY_OK;
3114
3115 /* find our device by node */
3116 spi = of_find_spi_device_by_node(rd->dn);
3117 if (spi == NULL)
3118 return NOTIFY_OK; /* no? not meant for us */
3119
3120 /* unregister takes one ref away */
3121 spi_unregister_device(spi);
3122
3123 /* and put the reference of the find */
3124 put_device(&spi->dev);
3125 break;
3126 }
3127
3128 return NOTIFY_OK;
3129 }
3130
3131 static struct notifier_block spi_of_notifier = {
3132 .notifier_call = of_spi_notify,
3133 };
3134 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3135 extern struct notifier_block spi_of_notifier;
3136 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3137
3138 static int __init spi_init(void)
3139 {
3140 int status;
3141
3142 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3143 if (!buf) {
3144 status = -ENOMEM;
3145 goto err0;
3146 }
3147
3148 status = bus_register(&spi_bus_type);
3149 if (status < 0)
3150 goto err1;
3151
3152 status = class_register(&spi_master_class);
3153 if (status < 0)
3154 goto err2;
3155
3156 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3157 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3158
3159 return 0;
3160
3161 err2:
3162 bus_unregister(&spi_bus_type);
3163 err1:
3164 kfree(buf);
3165 buf = NULL;
3166 err0:
3167 return status;
3168 }
3169
3170 /* board_info is normally registered in arch_initcall(),
3171 * but even essential drivers wait till later
3172 *
3173 * REVISIT only boardinfo really needs static linking. the rest (device and
3174 * driver registration) _could_ be dynamically linked (modular) ... costs
3175 * include needing to have boardinfo data structures be much more public.
3176 */
3177 postcore_initcall(spi_init);
3178
This page took 0.091075 seconds and 6 git commands to generate.