Merge tag 'sound-fix-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / drivers / spi / spidev.c
1 /*
2 * Simple synchronous userspace interface to SPI devices
3 *
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
22 #include <linux/fs.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
35
36 #include <linux/uaccess.h>
37
38
39 /*
40 * This supports access to SPI devices using normal userspace I/O calls.
41 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42 * and often mask message boundaries, full SPI support requires full duplex
43 * transfers. There are several kinds of internal message boundaries to
44 * handle chipselect management and other protocol options.
45 *
46 * SPI has a character major number assigned. We allocate minor numbers
47 * dynamically using a bitmask. You must use hotplug tools, such as udev
48 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49 * nodes, since there is no fixed association of minor numbers with any
50 * particular SPI bus or device.
51 */
52 #define SPIDEV_MAJOR 153 /* assigned */
53 #define N_SPI_MINORS 32 /* ... up to 256 */
54
55 static DECLARE_BITMAP(minors, N_SPI_MINORS);
56
57
58 /* Bit masks for spi_device.mode management. Note that incorrect
59 * settings for some settings can cause *lots* of trouble for other
60 * devices on a shared bus:
61 *
62 * - CS_HIGH ... this device will be active when it shouldn't be
63 * - 3WIRE ... when active, it won't behave as it should
64 * - NO_CS ... there will be no explicit message boundaries; this
65 * is completely incompatible with the shared bus model
66 * - READY ... transfers may proceed when they shouldn't.
67 *
68 * REVISIT should changing those flags be privileged?
69 */
70 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
71 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
72 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
73 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
74
75 struct spidev_data {
76 dev_t devt;
77 spinlock_t spi_lock;
78 struct spi_device *spi;
79 struct list_head device_entry;
80
81 /* TX/RX buffers are NULL unless this device is open (users > 0) */
82 struct mutex buf_lock;
83 unsigned users;
84 u8 *tx_buffer;
85 u8 *rx_buffer;
86 u32 speed_hz;
87 };
88
89 static LIST_HEAD(device_list);
90 static DEFINE_MUTEX(device_list_lock);
91
92 static unsigned bufsiz = 4096;
93 module_param(bufsiz, uint, S_IRUGO);
94 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
95
96 /*-------------------------------------------------------------------------*/
97
98 /*
99 * We can't use the standard synchronous wrappers for file I/O; we
100 * need to protect against async removal of the underlying spi_device.
101 */
102 static void spidev_complete(void *arg)
103 {
104 complete(arg);
105 }
106
107 static ssize_t
108 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
109 {
110 DECLARE_COMPLETION_ONSTACK(done);
111 int status;
112
113 message->complete = spidev_complete;
114 message->context = &done;
115
116 spin_lock_irq(&spidev->spi_lock);
117 if (spidev->spi == NULL)
118 status = -ESHUTDOWN;
119 else
120 status = spi_async(spidev->spi, message);
121 spin_unlock_irq(&spidev->spi_lock);
122
123 if (status == 0) {
124 wait_for_completion(&done);
125 status = message->status;
126 if (status == 0)
127 status = message->actual_length;
128 }
129 return status;
130 }
131
132 static inline ssize_t
133 spidev_sync_write(struct spidev_data *spidev, size_t len)
134 {
135 struct spi_transfer t = {
136 .tx_buf = spidev->tx_buffer,
137 .len = len,
138 .speed_hz = spidev->speed_hz,
139 };
140 struct spi_message m;
141
142 spi_message_init(&m);
143 spi_message_add_tail(&t, &m);
144 return spidev_sync(spidev, &m);
145 }
146
147 static inline ssize_t
148 spidev_sync_read(struct spidev_data *spidev, size_t len)
149 {
150 struct spi_transfer t = {
151 .rx_buf = spidev->rx_buffer,
152 .len = len,
153 .speed_hz = spidev->speed_hz,
154 };
155 struct spi_message m;
156
157 spi_message_init(&m);
158 spi_message_add_tail(&t, &m);
159 return spidev_sync(spidev, &m);
160 }
161
162 /*-------------------------------------------------------------------------*/
163
164 /* Read-only message with current device setup */
165 static ssize_t
166 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
167 {
168 struct spidev_data *spidev;
169 ssize_t status = 0;
170
171 /* chipselect only toggles at start or end of operation */
172 if (count > bufsiz)
173 return -EMSGSIZE;
174
175 spidev = filp->private_data;
176
177 mutex_lock(&spidev->buf_lock);
178 status = spidev_sync_read(spidev, count);
179 if (status > 0) {
180 unsigned long missing;
181
182 missing = copy_to_user(buf, spidev->rx_buffer, status);
183 if (missing == status)
184 status = -EFAULT;
185 else
186 status = status - missing;
187 }
188 mutex_unlock(&spidev->buf_lock);
189
190 return status;
191 }
192
193 /* Write-only message with current device setup */
194 static ssize_t
195 spidev_write(struct file *filp, const char __user *buf,
196 size_t count, loff_t *f_pos)
197 {
198 struct spidev_data *spidev;
199 ssize_t status = 0;
200 unsigned long missing;
201
202 /* chipselect only toggles at start or end of operation */
203 if (count > bufsiz)
204 return -EMSGSIZE;
205
206 spidev = filp->private_data;
207
208 mutex_lock(&spidev->buf_lock);
209 missing = copy_from_user(spidev->tx_buffer, buf, count);
210 if (missing == 0)
211 status = spidev_sync_write(spidev, count);
212 else
213 status = -EFAULT;
214 mutex_unlock(&spidev->buf_lock);
215
216 return status;
217 }
218
219 static int spidev_message(struct spidev_data *spidev,
220 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
221 {
222 struct spi_message msg;
223 struct spi_transfer *k_xfers;
224 struct spi_transfer *k_tmp;
225 struct spi_ioc_transfer *u_tmp;
226 unsigned n, total, tx_total, rx_total;
227 u8 *tx_buf, *rx_buf;
228 int status = -EFAULT;
229
230 spi_message_init(&msg);
231 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
232 if (k_xfers == NULL)
233 return -ENOMEM;
234
235 /* Construct spi_message, copying any tx data to bounce buffer.
236 * We walk the array of user-provided transfers, using each one
237 * to initialize a kernel version of the same transfer.
238 */
239 tx_buf = spidev->tx_buffer;
240 rx_buf = spidev->rx_buffer;
241 total = 0;
242 tx_total = 0;
243 rx_total = 0;
244 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
245 n;
246 n--, k_tmp++, u_tmp++) {
247 k_tmp->len = u_tmp->len;
248
249 total += k_tmp->len;
250 /* Since the function returns the total length of transfers
251 * on success, restrict the total to positive int values to
252 * avoid the return value looking like an error. Also check
253 * each transfer length to avoid arithmetic overflow.
254 */
255 if (total > INT_MAX || k_tmp->len > INT_MAX) {
256 status = -EMSGSIZE;
257 goto done;
258 }
259
260 if (u_tmp->rx_buf) {
261 /* this transfer needs space in RX bounce buffer */
262 rx_total += k_tmp->len;
263 if (rx_total > bufsiz) {
264 status = -EMSGSIZE;
265 goto done;
266 }
267 k_tmp->rx_buf = rx_buf;
268 if (!access_ok(VERIFY_WRITE, (u8 __user *)
269 (uintptr_t) u_tmp->rx_buf,
270 u_tmp->len))
271 goto done;
272 rx_buf += k_tmp->len;
273 }
274 if (u_tmp->tx_buf) {
275 /* this transfer needs space in TX bounce buffer */
276 tx_total += k_tmp->len;
277 if (tx_total > bufsiz) {
278 status = -EMSGSIZE;
279 goto done;
280 }
281 k_tmp->tx_buf = tx_buf;
282 if (copy_from_user(tx_buf, (const u8 __user *)
283 (uintptr_t) u_tmp->tx_buf,
284 u_tmp->len))
285 goto done;
286 tx_buf += k_tmp->len;
287 }
288
289 k_tmp->cs_change = !!u_tmp->cs_change;
290 k_tmp->tx_nbits = u_tmp->tx_nbits;
291 k_tmp->rx_nbits = u_tmp->rx_nbits;
292 k_tmp->bits_per_word = u_tmp->bits_per_word;
293 k_tmp->delay_usecs = u_tmp->delay_usecs;
294 k_tmp->speed_hz = u_tmp->speed_hz;
295 if (!k_tmp->speed_hz)
296 k_tmp->speed_hz = spidev->speed_hz;
297 #ifdef VERBOSE
298 dev_dbg(&spidev->spi->dev,
299 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
300 u_tmp->len,
301 u_tmp->rx_buf ? "rx " : "",
302 u_tmp->tx_buf ? "tx " : "",
303 u_tmp->cs_change ? "cs " : "",
304 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
305 u_tmp->delay_usecs,
306 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
307 #endif
308 spi_message_add_tail(k_tmp, &msg);
309 }
310
311 status = spidev_sync(spidev, &msg);
312 if (status < 0)
313 goto done;
314
315 /* copy any rx data out of bounce buffer */
316 rx_buf = spidev->rx_buffer;
317 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
318 if (u_tmp->rx_buf) {
319 if (__copy_to_user((u8 __user *)
320 (uintptr_t) u_tmp->rx_buf, rx_buf,
321 u_tmp->len)) {
322 status = -EFAULT;
323 goto done;
324 }
325 rx_buf += u_tmp->len;
326 }
327 }
328 status = total;
329
330 done:
331 kfree(k_xfers);
332 return status;
333 }
334
335 static struct spi_ioc_transfer *
336 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
337 unsigned *n_ioc)
338 {
339 struct spi_ioc_transfer *ioc;
340 u32 tmp;
341
342 /* Check type, command number and direction */
343 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
344 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
345 || _IOC_DIR(cmd) != _IOC_WRITE)
346 return ERR_PTR(-ENOTTY);
347
348 tmp = _IOC_SIZE(cmd);
349 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
350 return ERR_PTR(-EINVAL);
351 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
352 if (*n_ioc == 0)
353 return NULL;
354
355 /* copy into scratch area */
356 ioc = kmalloc(tmp, GFP_KERNEL);
357 if (!ioc)
358 return ERR_PTR(-ENOMEM);
359 if (__copy_from_user(ioc, u_ioc, tmp)) {
360 kfree(ioc);
361 return ERR_PTR(-EFAULT);
362 }
363 return ioc;
364 }
365
366 static long
367 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
368 {
369 int err = 0;
370 int retval = 0;
371 struct spidev_data *spidev;
372 struct spi_device *spi;
373 u32 tmp;
374 unsigned n_ioc;
375 struct spi_ioc_transfer *ioc;
376
377 /* Check type and command number */
378 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
379 return -ENOTTY;
380
381 /* Check access direction once here; don't repeat below.
382 * IOC_DIR is from the user perspective, while access_ok is
383 * from the kernel perspective; so they look reversed.
384 */
385 if (_IOC_DIR(cmd) & _IOC_READ)
386 err = !access_ok(VERIFY_WRITE,
387 (void __user *)arg, _IOC_SIZE(cmd));
388 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
389 err = !access_ok(VERIFY_READ,
390 (void __user *)arg, _IOC_SIZE(cmd));
391 if (err)
392 return -EFAULT;
393
394 /* guard against device removal before, or while,
395 * we issue this ioctl.
396 */
397 spidev = filp->private_data;
398 spin_lock_irq(&spidev->spi_lock);
399 spi = spi_dev_get(spidev->spi);
400 spin_unlock_irq(&spidev->spi_lock);
401
402 if (spi == NULL)
403 return -ESHUTDOWN;
404
405 /* use the buffer lock here for triple duty:
406 * - prevent I/O (from us) so calling spi_setup() is safe;
407 * - prevent concurrent SPI_IOC_WR_* from morphing
408 * data fields while SPI_IOC_RD_* reads them;
409 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
410 */
411 mutex_lock(&spidev->buf_lock);
412
413 switch (cmd) {
414 /* read requests */
415 case SPI_IOC_RD_MODE:
416 retval = __put_user(spi->mode & SPI_MODE_MASK,
417 (__u8 __user *)arg);
418 break;
419 case SPI_IOC_RD_MODE32:
420 retval = __put_user(spi->mode & SPI_MODE_MASK,
421 (__u32 __user *)arg);
422 break;
423 case SPI_IOC_RD_LSB_FIRST:
424 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
425 (__u8 __user *)arg);
426 break;
427 case SPI_IOC_RD_BITS_PER_WORD:
428 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
429 break;
430 case SPI_IOC_RD_MAX_SPEED_HZ:
431 retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
432 break;
433
434 /* write requests */
435 case SPI_IOC_WR_MODE:
436 case SPI_IOC_WR_MODE32:
437 if (cmd == SPI_IOC_WR_MODE)
438 retval = __get_user(tmp, (u8 __user *)arg);
439 else
440 retval = __get_user(tmp, (u32 __user *)arg);
441 if (retval == 0) {
442 u32 save = spi->mode;
443
444 if (tmp & ~SPI_MODE_MASK) {
445 retval = -EINVAL;
446 break;
447 }
448
449 tmp |= spi->mode & ~SPI_MODE_MASK;
450 spi->mode = (u16)tmp;
451 retval = spi_setup(spi);
452 if (retval < 0)
453 spi->mode = save;
454 else
455 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
456 }
457 break;
458 case SPI_IOC_WR_LSB_FIRST:
459 retval = __get_user(tmp, (__u8 __user *)arg);
460 if (retval == 0) {
461 u32 save = spi->mode;
462
463 if (tmp)
464 spi->mode |= SPI_LSB_FIRST;
465 else
466 spi->mode &= ~SPI_LSB_FIRST;
467 retval = spi_setup(spi);
468 if (retval < 0)
469 spi->mode = save;
470 else
471 dev_dbg(&spi->dev, "%csb first\n",
472 tmp ? 'l' : 'm');
473 }
474 break;
475 case SPI_IOC_WR_BITS_PER_WORD:
476 retval = __get_user(tmp, (__u8 __user *)arg);
477 if (retval == 0) {
478 u8 save = spi->bits_per_word;
479
480 spi->bits_per_word = tmp;
481 retval = spi_setup(spi);
482 if (retval < 0)
483 spi->bits_per_word = save;
484 else
485 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
486 }
487 break;
488 case SPI_IOC_WR_MAX_SPEED_HZ:
489 retval = __get_user(tmp, (__u32 __user *)arg);
490 if (retval == 0) {
491 u32 save = spi->max_speed_hz;
492
493 spi->max_speed_hz = tmp;
494 retval = spi_setup(spi);
495 if (retval >= 0)
496 spidev->speed_hz = tmp;
497 else
498 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
499 spi->max_speed_hz = save;
500 }
501 break;
502
503 default:
504 /* segmented and/or full-duplex I/O request */
505 /* Check message and copy into scratch area */
506 ioc = spidev_get_ioc_message(cmd,
507 (struct spi_ioc_transfer __user *)arg, &n_ioc);
508 if (IS_ERR(ioc)) {
509 retval = PTR_ERR(ioc);
510 break;
511 }
512 if (!ioc)
513 break; /* n_ioc is also 0 */
514
515 /* translate to spi_message, execute */
516 retval = spidev_message(spidev, ioc, n_ioc);
517 kfree(ioc);
518 break;
519 }
520
521 mutex_unlock(&spidev->buf_lock);
522 spi_dev_put(spi);
523 return retval;
524 }
525
526 #ifdef CONFIG_COMPAT
527 static long
528 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
529 unsigned long arg)
530 {
531 struct spi_ioc_transfer __user *u_ioc;
532 int retval = 0;
533 struct spidev_data *spidev;
534 struct spi_device *spi;
535 unsigned n_ioc, n;
536 struct spi_ioc_transfer *ioc;
537
538 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
539 if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
540 return -EFAULT;
541
542 /* guard against device removal before, or while,
543 * we issue this ioctl.
544 */
545 spidev = filp->private_data;
546 spin_lock_irq(&spidev->spi_lock);
547 spi = spi_dev_get(spidev->spi);
548 spin_unlock_irq(&spidev->spi_lock);
549
550 if (spi == NULL)
551 return -ESHUTDOWN;
552
553 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
554 mutex_lock(&spidev->buf_lock);
555
556 /* Check message and copy into scratch area */
557 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
558 if (IS_ERR(ioc)) {
559 retval = PTR_ERR(ioc);
560 goto done;
561 }
562 if (!ioc)
563 goto done; /* n_ioc is also 0 */
564
565 /* Convert buffer pointers */
566 for (n = 0; n < n_ioc; n++) {
567 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
568 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
569 }
570
571 /* translate to spi_message, execute */
572 retval = spidev_message(spidev, ioc, n_ioc);
573 kfree(ioc);
574
575 done:
576 mutex_unlock(&spidev->buf_lock);
577 spi_dev_put(spi);
578 return retval;
579 }
580
581 static long
582 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
583 {
584 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
585 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
586 && _IOC_DIR(cmd) == _IOC_WRITE)
587 return spidev_compat_ioc_message(filp, cmd, arg);
588
589 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
590 }
591 #else
592 #define spidev_compat_ioctl NULL
593 #endif /* CONFIG_COMPAT */
594
595 static int spidev_open(struct inode *inode, struct file *filp)
596 {
597 struct spidev_data *spidev;
598 int status = -ENXIO;
599
600 mutex_lock(&device_list_lock);
601
602 list_for_each_entry(spidev, &device_list, device_entry) {
603 if (spidev->devt == inode->i_rdev) {
604 status = 0;
605 break;
606 }
607 }
608
609 if (status) {
610 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
611 goto err_find_dev;
612 }
613
614 if (!spidev->tx_buffer) {
615 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
616 if (!spidev->tx_buffer) {
617 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
618 status = -ENOMEM;
619 goto err_find_dev;
620 }
621 }
622
623 if (!spidev->rx_buffer) {
624 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
625 if (!spidev->rx_buffer) {
626 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
627 status = -ENOMEM;
628 goto err_alloc_rx_buf;
629 }
630 }
631
632 spidev->users++;
633 filp->private_data = spidev;
634 nonseekable_open(inode, filp);
635
636 mutex_unlock(&device_list_lock);
637 return 0;
638
639 err_alloc_rx_buf:
640 kfree(spidev->tx_buffer);
641 spidev->tx_buffer = NULL;
642 err_find_dev:
643 mutex_unlock(&device_list_lock);
644 return status;
645 }
646
647 static int spidev_release(struct inode *inode, struct file *filp)
648 {
649 struct spidev_data *spidev;
650 int status = 0;
651
652 mutex_lock(&device_list_lock);
653 spidev = filp->private_data;
654 filp->private_data = NULL;
655
656 /* last close? */
657 spidev->users--;
658 if (!spidev->users) {
659 int dofree;
660
661 kfree(spidev->tx_buffer);
662 spidev->tx_buffer = NULL;
663
664 kfree(spidev->rx_buffer);
665 spidev->rx_buffer = NULL;
666
667 spidev->speed_hz = spidev->spi->max_speed_hz;
668
669 /* ... after we unbound from the underlying device? */
670 spin_lock_irq(&spidev->spi_lock);
671 dofree = (spidev->spi == NULL);
672 spin_unlock_irq(&spidev->spi_lock);
673
674 if (dofree)
675 kfree(spidev);
676 }
677 mutex_unlock(&device_list_lock);
678
679 return status;
680 }
681
682 static const struct file_operations spidev_fops = {
683 .owner = THIS_MODULE,
684 /* REVISIT switch to aio primitives, so that userspace
685 * gets more complete API coverage. It'll simplify things
686 * too, except for the locking.
687 */
688 .write = spidev_write,
689 .read = spidev_read,
690 .unlocked_ioctl = spidev_ioctl,
691 .compat_ioctl = spidev_compat_ioctl,
692 .open = spidev_open,
693 .release = spidev_release,
694 .llseek = no_llseek,
695 };
696
697 /*-------------------------------------------------------------------------*/
698
699 /* The main reason to have this class is to make mdev/udev create the
700 * /dev/spidevB.C character device nodes exposing our userspace API.
701 * It also simplifies memory management.
702 */
703
704 static struct class *spidev_class;
705
706 #ifdef CONFIG_OF
707 static const struct of_device_id spidev_dt_ids[] = {
708 { .compatible = "rohm,dh2228fv" },
709 {},
710 };
711 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
712 #endif
713
714 /*-------------------------------------------------------------------------*/
715
716 static int spidev_probe(struct spi_device *spi)
717 {
718 struct spidev_data *spidev;
719 int status;
720 unsigned long minor;
721
722 /*
723 * spidev should never be referenced in DT without a specific
724 * compatbile string, it is a Linux implementation thing
725 * rather than a description of the hardware.
726 */
727 if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
728 dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
729 WARN_ON(spi->dev.of_node &&
730 !of_match_device(spidev_dt_ids, &spi->dev));
731 }
732
733 /* Allocate driver data */
734 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
735 if (!spidev)
736 return -ENOMEM;
737
738 /* Initialize the driver data */
739 spidev->spi = spi;
740 spin_lock_init(&spidev->spi_lock);
741 mutex_init(&spidev->buf_lock);
742
743 INIT_LIST_HEAD(&spidev->device_entry);
744
745 /* If we can allocate a minor number, hook up this device.
746 * Reusing minors is fine so long as udev or mdev is working.
747 */
748 mutex_lock(&device_list_lock);
749 minor = find_first_zero_bit(minors, N_SPI_MINORS);
750 if (minor < N_SPI_MINORS) {
751 struct device *dev;
752
753 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
754 dev = device_create(spidev_class, &spi->dev, spidev->devt,
755 spidev, "spidev%d.%d",
756 spi->master->bus_num, spi->chip_select);
757 status = PTR_ERR_OR_ZERO(dev);
758 } else {
759 dev_dbg(&spi->dev, "no minor number available!\n");
760 status = -ENODEV;
761 }
762 if (status == 0) {
763 set_bit(minor, minors);
764 list_add(&spidev->device_entry, &device_list);
765 }
766 mutex_unlock(&device_list_lock);
767
768 spidev->speed_hz = spi->max_speed_hz;
769
770 if (status == 0)
771 spi_set_drvdata(spi, spidev);
772 else
773 kfree(spidev);
774
775 return status;
776 }
777
778 static int spidev_remove(struct spi_device *spi)
779 {
780 struct spidev_data *spidev = spi_get_drvdata(spi);
781
782 /* make sure ops on existing fds can abort cleanly */
783 spin_lock_irq(&spidev->spi_lock);
784 spidev->spi = NULL;
785 spin_unlock_irq(&spidev->spi_lock);
786
787 /* prevent new opens */
788 mutex_lock(&device_list_lock);
789 list_del(&spidev->device_entry);
790 device_destroy(spidev_class, spidev->devt);
791 clear_bit(MINOR(spidev->devt), minors);
792 if (spidev->users == 0)
793 kfree(spidev);
794 mutex_unlock(&device_list_lock);
795
796 return 0;
797 }
798
799 static struct spi_driver spidev_spi_driver = {
800 .driver = {
801 .name = "spidev",
802 .owner = THIS_MODULE,
803 .of_match_table = of_match_ptr(spidev_dt_ids),
804 },
805 .probe = spidev_probe,
806 .remove = spidev_remove,
807
808 /* NOTE: suspend/resume methods are not necessary here.
809 * We don't do anything except pass the requests to/from
810 * the underlying controller. The refrigerator handles
811 * most issues; the controller driver handles the rest.
812 */
813 };
814
815 /*-------------------------------------------------------------------------*/
816
817 static int __init spidev_init(void)
818 {
819 int status;
820
821 /* Claim our 256 reserved device numbers. Then register a class
822 * that will key udev/mdev to add/remove /dev nodes. Last, register
823 * the driver which manages those device numbers.
824 */
825 BUILD_BUG_ON(N_SPI_MINORS > 256);
826 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
827 if (status < 0)
828 return status;
829
830 spidev_class = class_create(THIS_MODULE, "spidev");
831 if (IS_ERR(spidev_class)) {
832 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
833 return PTR_ERR(spidev_class);
834 }
835
836 status = spi_register_driver(&spidev_spi_driver);
837 if (status < 0) {
838 class_destroy(spidev_class);
839 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
840 }
841 return status;
842 }
843 module_init(spidev_init);
844
845 static void __exit spidev_exit(void)
846 {
847 spi_unregister_driver(&spidev_spi_driver);
848 class_destroy(spidev_class);
849 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
850 }
851 module_exit(spidev_exit);
852
853 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
854 MODULE_DESCRIPTION("User mode SPI device interface");
855 MODULE_LICENSE("GPL");
856 MODULE_ALIAS("spi:spidev");
This page took 0.084992 seconds and 5 git commands to generate.