Staging: bcm: Fix ERROR: return is not a function, parentheses are not required.
[deliverable/linux.git] / drivers / staging / bcm / nvm.c
1 #include "headers.h"
2
3 #define DWORD unsigned int
4
5 static INT BcmDoChipSelect(struct bcm_mini_adapter *Adapter, UINT offset);
6 static INT BcmGetActiveDSD(struct bcm_mini_adapter *Adapter);
7 static INT BcmGetActiveISO(struct bcm_mini_adapter *Adapter);
8 static UINT BcmGetEEPROMSize(struct bcm_mini_adapter *Adapter);
9 static INT BcmGetFlashCSInfo(struct bcm_mini_adapter *Adapter);
10 static UINT BcmGetFlashSectorSize(struct bcm_mini_adapter *Adapter, UINT FlashSectorSizeSig, UINT FlashSectorSize);
11
12 static VOID BcmValidateNvmType(struct bcm_mini_adapter *Adapter);
13 static INT BcmGetNvmSize(struct bcm_mini_adapter *Adapter);
14 static UINT BcmGetFlashSize(struct bcm_mini_adapter *Adapter);
15 static NVM_TYPE BcmGetNvmType(struct bcm_mini_adapter *Adapter);
16
17 static INT BcmGetSectionValEndOffset(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal);
18
19 static B_UINT8 IsOffsetWritable(struct bcm_mini_adapter *Adapter, UINT uiOffset);
20 static INT IsSectionWritable(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL Section);
21 static INT IsSectionExistInVendorInfo(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL section);
22
23 static INT ReadDSDPriority(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL dsd);
24 static INT ReadDSDSignature(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL dsd);
25 static INT ReadISOPriority(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL iso);
26 static INT ReadISOSignature(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL iso);
27
28 static INT CorruptDSDSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal);
29 static INT CorruptISOSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal);
30 static INT SaveHeaderIfPresent(struct bcm_mini_adapter *Adapter, PUCHAR pBuff, UINT uiSectAlignAddr);
31 static INT WriteToFlashWithoutSectorErase(struct bcm_mini_adapter *Adapter, PUINT pBuff,
32 FLASH2X_SECTION_VAL eFlash2xSectionVal,
33 UINT uiOffset, UINT uiNumBytes);
34 static FLASH2X_SECTION_VAL getHighestPriDSD(struct bcm_mini_adapter *Adapter);
35 static FLASH2X_SECTION_VAL getHighestPriISO(struct bcm_mini_adapter *Adapter);
36
37 static INT BeceemFlashBulkRead(
38 struct bcm_mini_adapter *Adapter,
39 PUINT pBuffer,
40 UINT uiOffset,
41 UINT uiNumBytes);
42
43 static INT BeceemFlashBulkWrite(
44 struct bcm_mini_adapter *Adapter,
45 PUINT pBuffer,
46 UINT uiOffset,
47 UINT uiNumBytes,
48 BOOLEAN bVerify);
49
50 static INT GetFlashBaseAddr(struct bcm_mini_adapter *Adapter);
51
52 static INT ReadBeceemEEPROMBulk(struct bcm_mini_adapter *Adapter, UINT dwAddress, UINT *pdwData, UINT dwNumData);
53
54 /* Procedure: ReadEEPROMStatusRegister
55 *
56 * Description: Reads the standard EEPROM Status Register.
57 *
58 * Arguments:
59 * Adapter - ptr to Adapter object instance
60 * Returns:
61 * OSAL_STATUS_CODE
62 */
63 static UCHAR ReadEEPROMStatusRegister(struct bcm_mini_adapter *Adapter)
64 {
65 UCHAR uiData = 0;
66 DWORD dwRetries = MAX_EEPROM_RETRIES * RETRIES_PER_DELAY;
67 UINT uiStatus = 0;
68 UINT value = 0;
69 UINT value1 = 0;
70
71 /* Read the EEPROM status register */
72 value = EEPROM_READ_STATUS_REGISTER;
73 wrmalt(Adapter, EEPROM_CMDQ_SPI_REG, &value, sizeof(value));
74
75 while (dwRetries != 0) {
76 value = 0;
77 uiStatus = 0;
78 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &uiStatus, sizeof(uiStatus));
79 if (Adapter->device_removed == TRUE) {
80 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Modem has got removed hence exiting....");
81 break;
82 }
83
84 /* Wait for Avail bit to be set. */
85 if ((uiStatus & EEPROM_READ_DATA_AVAIL) != 0) {
86 /* Clear the Avail/Full bits - which ever is set. */
87 value = uiStatus & (EEPROM_READ_DATA_AVAIL | EEPROM_READ_DATA_FULL);
88 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
89
90 value = 0;
91 rdmalt(Adapter, EEPROM_READ_DATAQ_REG, &value, sizeof(value));
92 uiData = (UCHAR)value;
93
94 break;
95 }
96
97 dwRetries--;
98 if (dwRetries == 0) {
99 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
100 rdmalt(Adapter, EEPROM_SPI_Q_STATUS_REG, &value1, sizeof(value1));
101 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "0x3004 = %x 0x3008 = %x, retries = %d failed.\n", value, value1, MAX_EEPROM_RETRIES * RETRIES_PER_DELAY);
102 return uiData;
103 }
104 if (!(dwRetries%RETRIES_PER_DELAY))
105 msleep(1);
106 uiStatus = 0 ;
107 }
108 return uiData;
109 } /* ReadEEPROMStatusRegister */
110
111 /*
112 * Procedure: ReadBeceemEEPROMBulk
113 *
114 * Description: This routine reads 16Byte data from EEPROM
115 *
116 * Arguments:
117 * Adapter - ptr to Adapter object instance
118 * dwAddress - EEPROM Offset to read the data from.
119 * pdwData - Pointer to double word where data needs to be stored in. // dwNumWords - Number of words. Valid values are 4 ONLY.
120 *
121 * Returns:
122 * OSAL_STATUS_CODE:
123 */
124
125 INT ReadBeceemEEPROMBulk(struct bcm_mini_adapter *Adapter,
126 DWORD dwAddress,
127 DWORD *pdwData,
128 DWORD dwNumWords)
129 {
130 DWORD dwIndex = 0;
131 DWORD dwRetries = MAX_EEPROM_RETRIES * RETRIES_PER_DELAY;
132 UINT uiStatus = 0;
133 UINT value = 0;
134 UINT value1 = 0;
135 UCHAR *pvalue;
136
137 /* Flush the read and cmd queue. */
138 value = (EEPROM_READ_QUEUE_FLUSH | EEPROM_CMD_QUEUE_FLUSH);
139 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
140 value = 0;
141 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
142
143 /* Clear the Avail/Full bits. */
144 value = (EEPROM_READ_DATA_AVAIL | EEPROM_READ_DATA_FULL);
145 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
146
147 value = dwAddress | ((dwNumWords == 4) ? EEPROM_16_BYTE_PAGE_READ : EEPROM_4_BYTE_PAGE_READ);
148 wrmalt(Adapter, EEPROM_CMDQ_SPI_REG, &value, sizeof(value));
149
150 while (dwRetries != 0) {
151 uiStatus = 0;
152 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &uiStatus, sizeof(uiStatus));
153 if (Adapter->device_removed == TRUE) {
154 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Modem has got Removed.hence exiting from loop...");
155 return -ENODEV;
156 }
157
158 /* If we are reading 16 bytes we want to be sure that the queue
159 * is full before we read. In the other cases we are ok if the
160 * queue has data available
161 */
162 if (dwNumWords == 4) {
163 if ((uiStatus & EEPROM_READ_DATA_FULL) != 0) {
164 /* Clear the Avail/Full bits - which ever is set. */
165 value = (uiStatus & (EEPROM_READ_DATA_AVAIL | EEPROM_READ_DATA_FULL));
166 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
167 break;
168 }
169 } else if (dwNumWords == 1) {
170 if ((uiStatus & EEPROM_READ_DATA_AVAIL) != 0) {
171 /* We just got Avail and we have to read 32bits so we
172 * need this sleep for Cardbus kind of devices.
173 */
174 if (Adapter->chip_id == 0xBECE0210)
175 udelay(800);
176
177 /* Clear the Avail/Full bits - which ever is set. */
178 value = (uiStatus & (EEPROM_READ_DATA_AVAIL | EEPROM_READ_DATA_FULL));
179 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
180 break;
181 }
182 }
183
184 uiStatus = 0;
185
186 dwRetries--;
187 if (dwRetries == 0) {
188 value = 0;
189 value1 = 0;
190 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
191 rdmalt(Adapter, EEPROM_SPI_Q_STATUS_REG, &value1, sizeof(value1));
192 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "dwNumWords %d 0x3004 = %x 0x3008 = %x retries = %d failed.\n",
193 dwNumWords, value, value1, MAX_EEPROM_RETRIES * RETRIES_PER_DELAY);
194 return STATUS_FAILURE;
195 }
196
197 if (!(dwRetries%RETRIES_PER_DELAY))
198 msleep(1);
199 }
200
201 for (dwIndex = 0; dwIndex < dwNumWords; dwIndex++) {
202 /* We get only a byte at a time - from LSB to MSB. We shift it into an integer. */
203 pvalue = (PUCHAR)(pdwData + dwIndex);
204
205 value = 0;
206 rdmalt(Adapter, EEPROM_READ_DATAQ_REG, &value, sizeof(value));
207
208 pvalue[0] = value;
209
210 value = 0;
211 rdmalt(Adapter, EEPROM_READ_DATAQ_REG, &value, sizeof(value));
212
213 pvalue[1] = value;
214
215 value = 0;
216 rdmalt(Adapter, EEPROM_READ_DATAQ_REG, &value, sizeof(value));
217
218 pvalue[2] = value;
219
220 value = 0;
221 rdmalt(Adapter, EEPROM_READ_DATAQ_REG, &value, sizeof(value));
222
223 pvalue[3] = value;
224 }
225
226 return STATUS_SUCCESS;
227 } /* ReadBeceemEEPROMBulk() */
228
229 /*
230 * Procedure: ReadBeceemEEPROM
231 *
232 * Description: This routine reads 4 data from EEPROM. It uses 1 or 2 page
233 * reads to do this operation.
234 *
235 * Arguments:
236 * Adapter - ptr to Adapter object instance
237 * uiOffset - EEPROM Offset to read the data from.
238 * pBuffer - Pointer to word where data needs to be stored in.
239 *
240 * Returns:
241 * OSAL_STATUS_CODE:
242 */
243
244 INT ReadBeceemEEPROM(struct bcm_mini_adapter *Adapter,
245 DWORD uiOffset,
246 DWORD *pBuffer)
247 {
248 UINT uiData[8] = {0};
249 UINT uiByteOffset = 0;
250 UINT uiTempOffset = 0;
251
252 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, " ====> ");
253
254 uiTempOffset = uiOffset - (uiOffset % MAX_RW_SIZE);
255 uiByteOffset = uiOffset - uiTempOffset;
256
257 ReadBeceemEEPROMBulk(Adapter, uiTempOffset, (PUINT)&uiData[0], 4);
258
259 /* A word can overlap at most over 2 pages. In that case we read the
260 * next page too.
261 */
262 if (uiByteOffset > 12)
263 ReadBeceemEEPROMBulk(Adapter, uiTempOffset + MAX_RW_SIZE, (PUINT)&uiData[4], 4);
264
265 memcpy((PUCHAR)pBuffer, (((PUCHAR)&uiData[0]) + uiByteOffset), 4);
266
267 return STATUS_SUCCESS;
268 } /* ReadBeceemEEPROM() */
269
270 INT ReadMacAddressFromNVM(struct bcm_mini_adapter *Adapter)
271 {
272 INT Status;
273 unsigned char puMacAddr[6];
274
275 Status = BeceemNVMRead(Adapter,
276 (PUINT)&puMacAddr[0],
277 INIT_PARAMS_1_MACADDRESS_ADDRESS,
278 MAC_ADDRESS_SIZE);
279
280 if (Status == STATUS_SUCCESS)
281 memcpy(Adapter->dev->dev_addr, puMacAddr, MAC_ADDRESS_SIZE);
282
283 return Status;
284 }
285
286 /*
287 * Procedure: BeceemEEPROMBulkRead
288 *
289 * Description: Reads the EEPROM and returns the Data.
290 *
291 * Arguments:
292 * Adapter - ptr to Adapter object instance
293 * pBuffer - Buffer to store the data read from EEPROM
294 * uiOffset - Offset of EEPROM from where data should be read
295 * uiNumBytes - Number of bytes to be read from the EEPROM.
296 *
297 * Returns:
298 * OSAL_STATUS_SUCCESS - if EEPROM read is successful.
299 * <FAILURE> - if failed.
300 */
301
302 INT BeceemEEPROMBulkRead(struct bcm_mini_adapter *Adapter,
303 PUINT pBuffer,
304 UINT uiOffset,
305 UINT uiNumBytes)
306 {
307 UINT uiData[4] = {0};
308 /* UINT uiAddress = 0; */
309 UINT uiBytesRemaining = uiNumBytes;
310 UINT uiIndex = 0;
311 UINT uiTempOffset = 0;
312 UINT uiExtraBytes = 0;
313 UINT uiFailureRetries = 0;
314 PUCHAR pcBuff = (PUCHAR)pBuffer;
315
316 if (uiOffset % MAX_RW_SIZE && uiBytesRemaining) {
317 uiTempOffset = uiOffset - (uiOffset % MAX_RW_SIZE);
318 uiExtraBytes = uiOffset - uiTempOffset;
319 ReadBeceemEEPROMBulk(Adapter, uiTempOffset, (PUINT)&uiData[0], 4);
320 if (uiBytesRemaining >= (MAX_RW_SIZE - uiExtraBytes)) {
321 memcpy(pBuffer, (((PUCHAR)&uiData[0]) + uiExtraBytes), MAX_RW_SIZE - uiExtraBytes);
322 uiBytesRemaining -= (MAX_RW_SIZE - uiExtraBytes);
323 uiIndex += (MAX_RW_SIZE - uiExtraBytes);
324 uiOffset += (MAX_RW_SIZE - uiExtraBytes);
325 } else {
326 memcpy(pBuffer, (((PUCHAR)&uiData[0]) + uiExtraBytes), uiBytesRemaining);
327 uiIndex += uiBytesRemaining;
328 uiOffset += uiBytesRemaining;
329 uiBytesRemaining = 0;
330 }
331 }
332
333 while (uiBytesRemaining && uiFailureRetries != 128) {
334 if (Adapter->device_removed)
335 return -1;
336
337 if (uiBytesRemaining >= MAX_RW_SIZE) {
338 /* For the requests more than or equal to 16 bytes, use bulk
339 * read function to make the access faster.
340 * We read 4 Dwords of data
341 */
342 if (0 == ReadBeceemEEPROMBulk(Adapter, uiOffset, &uiData[0], 4)) {
343 memcpy(pcBuff + uiIndex, &uiData[0], MAX_RW_SIZE);
344 uiOffset += MAX_RW_SIZE;
345 uiBytesRemaining -= MAX_RW_SIZE;
346 uiIndex += MAX_RW_SIZE;
347 } else {
348 uiFailureRetries++;
349 mdelay(3); /* sleep for a while before retry... */
350 }
351 } else if (uiBytesRemaining >= 4) {
352 if (0 == ReadBeceemEEPROM(Adapter, uiOffset, &uiData[0])) {
353 memcpy(pcBuff + uiIndex, &uiData[0], 4);
354 uiOffset += 4;
355 uiBytesRemaining -= 4;
356 uiIndex += 4;
357 } else {
358 uiFailureRetries++;
359 mdelay(3); /* sleep for a while before retry... */
360 }
361 } else {
362 /* Handle the reads less than 4 bytes... */
363 PUCHAR pCharBuff = (PUCHAR)pBuffer;
364 pCharBuff += uiIndex;
365 if (0 == ReadBeceemEEPROM(Adapter, uiOffset, &uiData[0])) {
366 memcpy(pCharBuff, &uiData[0], uiBytesRemaining); /* copy only bytes requested. */
367 uiBytesRemaining = 0;
368 } else {
369 uiFailureRetries++;
370 mdelay(3); /* sleep for a while before retry... */
371 }
372 }
373 }
374
375 return 0;
376 }
377
378 /*
379 * Procedure: BeceemFlashBulkRead
380 *
381 * Description: Reads the FLASH and returns the Data.
382 *
383 * Arguments:
384 * Adapter - ptr to Adapter object instance
385 * pBuffer - Buffer to store the data read from FLASH
386 * uiOffset - Offset of FLASH from where data should be read
387 * uiNumBytes - Number of bytes to be read from the FLASH.
388 *
389 * Returns:
390 * OSAL_STATUS_SUCCESS - if FLASH read is successful.
391 * <FAILURE> - if failed.
392 */
393
394 static INT BeceemFlashBulkRead(struct bcm_mini_adapter *Adapter,
395 PUINT pBuffer,
396 UINT uiOffset,
397 UINT uiNumBytes)
398 {
399 UINT uiIndex = 0;
400 UINT uiBytesToRead = uiNumBytes;
401 INT Status = 0;
402 UINT uiPartOffset = 0;
403 int bytes;
404
405 if (Adapter->device_removed) {
406 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Device Got Removed");
407 return -ENODEV;
408 }
409
410 /* Adding flash Base address
411 * uiOffset = uiOffset + GetFlashBaseAddr(Adapter);
412 */
413 #if defined(BCM_SHM_INTERFACE) && !defined(FLASH_DIRECT_ACCESS)
414 Status = bcmflash_raw_read((uiOffset/FLASH_PART_SIZE), (uiOffset % FLASH_PART_SIZE), (unsigned char *)pBuffer, uiNumBytes);
415 return Status;
416 #endif
417
418 Adapter->SelectedChip = RESET_CHIP_SELECT;
419
420 if (uiOffset % MAX_RW_SIZE) {
421 BcmDoChipSelect(Adapter, uiOffset);
422 uiPartOffset = (uiOffset & (FLASH_PART_SIZE - 1)) + GetFlashBaseAddr(Adapter);
423
424 uiBytesToRead = MAX_RW_SIZE - (uiOffset % MAX_RW_SIZE);
425 uiBytesToRead = MIN(uiNumBytes, uiBytesToRead);
426
427 bytes = rdm(Adapter, uiPartOffset, (PCHAR)pBuffer + uiIndex, uiBytesToRead);
428 if (bytes < 0) {
429 Status = bytes;
430 Adapter->SelectedChip = RESET_CHIP_SELECT;
431 return Status;
432 }
433
434 uiIndex += uiBytesToRead;
435 uiOffset += uiBytesToRead;
436 uiNumBytes -= uiBytesToRead;
437 }
438
439 while (uiNumBytes) {
440 BcmDoChipSelect(Adapter, uiOffset);
441 uiPartOffset = (uiOffset & (FLASH_PART_SIZE - 1)) + GetFlashBaseAddr(Adapter);
442
443 uiBytesToRead = MIN(uiNumBytes, MAX_RW_SIZE);
444
445 bytes = rdm(Adapter, uiPartOffset, (PCHAR)pBuffer + uiIndex, uiBytesToRead);
446 if (bytes < 0) {
447 Status = bytes;
448 break;
449 }
450
451 uiIndex += uiBytesToRead;
452 uiOffset += uiBytesToRead;
453 uiNumBytes -= uiBytesToRead;
454 }
455 Adapter->SelectedChip = RESET_CHIP_SELECT;
456 return Status;
457 }
458
459 /*
460 * Procedure: BcmGetFlashSize
461 *
462 * Description: Finds the size of FLASH.
463 *
464 * Arguments:
465 * Adapter - ptr to Adapter object instance
466 *
467 * Returns:
468 * UINT - size of the FLASH Storage.
469 *
470 */
471
472 static UINT BcmGetFlashSize(struct bcm_mini_adapter *Adapter)
473 {
474 if (IsFlash2x(Adapter))
475 return Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + sizeof(DSD_HEADER);
476 else
477 return 32 * 1024;
478 }
479
480 /*
481 * Procedure: BcmGetEEPROMSize
482 *
483 * Description: Finds the size of EEPROM.
484 *
485 * Arguments:
486 * Adapter - ptr to Adapter object instance
487 *
488 * Returns:
489 * UINT - size of the EEPROM Storage.
490 *
491 */
492
493 static UINT BcmGetEEPROMSize(struct bcm_mini_adapter *Adapter)
494 {
495 UINT uiData = 0;
496 UINT uiIndex = 0;
497
498 /*
499 * if EEPROM is present and already Calibrated,it will have
500 * 'BECM' string at 0th offset.
501 * To find the EEPROM size read the possible boundaries of the
502 * EEPROM like 4K,8K etc..accessing the EEPROM beyond its size will
503 * result in wrap around. So when we get the End of the EEPROM we will
504 * get 'BECM' string which is indeed at offset 0.
505 */
506 BeceemEEPROMBulkRead(Adapter, &uiData, 0x0, 4);
507 if (uiData == BECM) {
508 for (uiIndex = 2; uiIndex <= 256; uiIndex *= 2) {
509 BeceemEEPROMBulkRead(Adapter, &uiData, uiIndex * 1024, 4);
510 if (uiData == BECM)
511 return uiIndex * 1024;
512 }
513 } else {
514 /*
515 * EEPROM may not be present or not programmed
516 */
517 uiData = 0xBABEFACE;
518 if (0 == BeceemEEPROMBulkWrite(Adapter, (PUCHAR)&uiData, 0, 4, TRUE)) {
519 uiData = 0;
520 for (uiIndex = 2; uiIndex <= 256; uiIndex *= 2) {
521 BeceemEEPROMBulkRead(Adapter, &uiData, uiIndex * 1024, 4);
522 if (uiData == 0xBABEFACE)
523 return uiIndex * 1024;
524 }
525 }
526 }
527 return 0;
528 }
529
530 /*
531 * Procedure: FlashSectorErase
532 *
533 * Description: Finds the sector size of the FLASH.
534 *
535 * Arguments:
536 * Adapter - ptr to Adapter object instance
537 * addr - sector start address
538 * numOfSectors - number of sectors to be erased.
539 *
540 * Returns:
541 * OSAL_STATUS_CODE
542 *
543 */
544
545 static INT FlashSectorErase(struct bcm_mini_adapter *Adapter,
546 UINT addr,
547 UINT numOfSectors)
548 {
549 UINT iIndex = 0, iRetries = 0;
550 UINT uiStatus = 0;
551 UINT value;
552 int bytes;
553
554 for (iIndex = 0; iIndex < numOfSectors; iIndex++) {
555 value = 0x06000000;
556 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
557
558 value = (0xd8000000 | (addr & 0xFFFFFF));
559 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
560 iRetries = 0;
561
562 do {
563 value = (FLASH_CMD_STATUS_REG_READ << 24);
564 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
565 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programing of FLASH_SPI_CMDQ_REG fails");
566 return STATUS_FAILURE;
567 }
568
569 bytes = rdmalt(Adapter, FLASH_SPI_READQ_REG, &uiStatus, sizeof(uiStatus));
570 if (bytes < 0) {
571 uiStatus = bytes;
572 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reading status of FLASH_SPI_READQ_REG fails");
573 return uiStatus;
574 }
575 iRetries++;
576 /* After every try lets make the CPU free for 10 ms. generally time taken by the
577 * the sector erase cycle is 500 ms to 40000 msec. hence sleeping 10 ms
578 * won't hamper performance in any case.
579 */
580 msleep(10);
581 } while ((uiStatus & 0x1) && (iRetries < 400));
582
583 if (uiStatus & 0x1) {
584 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "iRetries crossing the limit of 80000\n");
585 return STATUS_FAILURE;
586 }
587
588 addr += Adapter->uiSectorSize;
589 }
590 return 0;
591 }
592 /*
593 * Procedure: flashByteWrite
594 *
595 * Description: Performs Byte by Byte write to flash
596 *
597 * Arguments:
598 * Adapter - ptr to Adapter object instance
599 * uiOffset - Offset of the flash where data needs to be written to.
600 * pData - Address of Data to be written.
601 * Returns:
602 * OSAL_STATUS_CODE
603 *
604 */
605
606 static INT flashByteWrite(struct bcm_mini_adapter *Adapter,
607 UINT uiOffset,
608 PVOID pData)
609 {
610 UINT uiStatus = 0;
611 INT iRetries = MAX_FLASH_RETRIES * FLASH_PER_RETRIES_DELAY; /* 3 */
612 UINT value;
613 ULONG ulData = *(PUCHAR)pData;
614 int bytes;
615 /*
616 * need not write 0xFF because write requires an erase and erase will
617 * make whole sector 0xFF.
618 */
619
620 if (0xFF == ulData)
621 return STATUS_SUCCESS;
622
623 /* DumpDebug(NVM_RW,("flashWrite ====>\n")); */
624 value = (FLASH_CMD_WRITE_ENABLE << 24);
625 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
626 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write enable in FLASH_SPI_CMDQ_REG register fails");
627 return STATUS_FAILURE;
628 }
629
630 if (wrm(Adapter, FLASH_SPI_WRITEQ_REG, (PCHAR)&ulData, 4) < 0) {
631 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "DATA Write on FLASH_SPI_WRITEQ_REG fails");
632 return STATUS_FAILURE;
633 }
634 value = (0x02000000 | (uiOffset & 0xFFFFFF));
635 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
636 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programming of FLASH_SPI_CMDQ_REG fails");
637 return STATUS_FAILURE;
638 }
639
640 /* __udelay(950); */
641
642 do {
643 value = (FLASH_CMD_STATUS_REG_READ << 24);
644 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
645 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programing of FLASH_SPI_CMDQ_REG fails");
646 return STATUS_FAILURE;
647 }
648 /* __udelay(1); */
649 bytes = rdmalt(Adapter, FLASH_SPI_READQ_REG, &uiStatus, sizeof(uiStatus));
650 if (bytes < 0) {
651 uiStatus = bytes;
652 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reading status of FLASH_SPI_READQ_REG fails");
653 return uiStatus;
654 }
655 iRetries--;
656 if (iRetries && ((iRetries % FLASH_PER_RETRIES_DELAY) == 0))
657 msleep(1);
658
659 } while ((uiStatus & 0x1) && (iRetries > 0));
660
661 if (uiStatus & 0x1) {
662 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Write fails even after checking status for 200 times.");
663 return STATUS_FAILURE;
664 }
665
666 return STATUS_SUCCESS;
667 }
668
669 /*
670 * Procedure: flashWrite
671 *
672 * Description: Performs write to flash
673 *
674 * Arguments:
675 * Adapter - ptr to Adapter object instance
676 * uiOffset - Offset of the flash where data needs to be written to.
677 * pData - Address of Data to be written.
678 * Returns:
679 * OSAL_STATUS_CODE
680 *
681 */
682
683 static INT flashWrite(struct bcm_mini_adapter *Adapter,
684 UINT uiOffset,
685 PVOID pData)
686 {
687 /* UINT uiStatus = 0;
688 * INT iRetries = 0;
689 * UINT uiReadBack = 0;
690 */
691 UINT uiStatus = 0;
692 INT iRetries = MAX_FLASH_RETRIES * FLASH_PER_RETRIES_DELAY; /* 3 */
693 UINT value;
694 UINT uiErasePattern[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
695 int bytes;
696 /*
697 * need not write 0xFFFFFFFF because write requires an erase and erase will
698 * make whole sector 0xFFFFFFFF.
699 */
700 if (!memcmp(pData, uiErasePattern, MAX_RW_SIZE))
701 return 0;
702
703 value = (FLASH_CMD_WRITE_ENABLE << 24);
704
705 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
706 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write Enable of FLASH_SPI_CMDQ_REG fails");
707 return STATUS_FAILURE;
708 }
709
710 if (wrm(Adapter, uiOffset, (PCHAR)pData, MAX_RW_SIZE) < 0) {
711 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Data write fails...");
712 return STATUS_FAILURE;
713 }
714
715 /* __udelay(950); */
716 do {
717 value = (FLASH_CMD_STATUS_REG_READ << 24);
718 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
719 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programing of FLASH_SPI_CMDQ_REG fails");
720 return STATUS_FAILURE;
721 }
722 /* __udelay(1); */
723 bytes = rdmalt(Adapter, FLASH_SPI_READQ_REG, &uiStatus, sizeof(uiStatus));
724 if (bytes < 0) {
725 uiStatus = bytes;
726 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reading status of FLASH_SPI_READQ_REG fails");
727 return uiStatus;
728 }
729
730 iRetries--;
731 /* this will ensure that in there will be no changes in the current path.
732 * currently one rdm/wrm takes 125 us.
733 * Hence 125 *2 * FLASH_PER_RETRIES_DELAY > 3 ms(worst case delay)
734 * Hence current implementation cycle will intoduce no delay in current path
735 */
736 if (iRetries && ((iRetries % FLASH_PER_RETRIES_DELAY) == 0))
737 msleep(1);
738 } while ((uiStatus & 0x1) && (iRetries > 0));
739
740 if (uiStatus & 0x1) {
741 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Write fails even after checking status for 200 times.");
742 return STATUS_FAILURE;
743 }
744
745 return STATUS_SUCCESS;
746 }
747
748 /*-----------------------------------------------------------------------------
749 * Procedure: flashByteWriteStatus
750 *
751 * Description: Performs byte by byte write to flash with write done status check
752 *
753 * Arguments:
754 * Adapter - ptr to Adapter object instance
755 * uiOffset - Offset of the flash where data needs to be written to.
756 * pData - Address of the Data to be written.
757 * Returns:
758 * OSAL_STATUS_CODE
759 *
760 */
761 static INT flashByteWriteStatus(struct bcm_mini_adapter *Adapter,
762 UINT uiOffset,
763 PVOID pData)
764 {
765 UINT uiStatus = 0;
766 INT iRetries = MAX_FLASH_RETRIES * FLASH_PER_RETRIES_DELAY; /* 3 */
767 ULONG ulData = *(PUCHAR)pData;
768 UINT value;
769 int bytes;
770
771 /*
772 * need not write 0xFFFFFFFF because write requires an erase and erase will
773 * make whole sector 0xFFFFFFFF.
774 */
775
776 if (0xFF == ulData)
777 return STATUS_SUCCESS;
778
779 /* DumpDebug(NVM_RW,("flashWrite ====>\n")); */
780
781 value = (FLASH_CMD_WRITE_ENABLE << 24);
782 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
783 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write enable in FLASH_SPI_CMDQ_REG register fails");
784 return STATUS_SUCCESS;
785 }
786 if (wrm(Adapter, FLASH_SPI_WRITEQ_REG, (PCHAR)&ulData, 4) < 0) {
787 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "DATA Write on FLASH_SPI_WRITEQ_REG fails");
788 return STATUS_FAILURE;
789 }
790 value = (0x02000000 | (uiOffset & 0xFFFFFF));
791 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
792 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programming of FLASH_SPI_CMDQ_REG fails");
793 return STATUS_FAILURE;
794 }
795
796 /* msleep(1); */
797
798 do {
799 value = (FLASH_CMD_STATUS_REG_READ << 24);
800 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
801 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programing of FLASH_SPI_CMDQ_REG fails");
802 return STATUS_FAILURE;
803 }
804 /* __udelay(1); */
805 bytes = rdmalt(Adapter, FLASH_SPI_READQ_REG, &uiStatus, sizeof(uiStatus));
806 if (bytes < 0) {
807 uiStatus = bytes;
808 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reading status of FLASH_SPI_READQ_REG fails");
809 return uiStatus;
810 }
811
812 iRetries--;
813 if (iRetries && ((iRetries % FLASH_PER_RETRIES_DELAY) == 0))
814 msleep(1);
815
816 } while ((uiStatus & 0x1) && (iRetries > 0));
817
818 if (uiStatus & 0x1) {
819 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Write fails even after checking status for 200 times.");
820 return STATUS_FAILURE;
821 }
822
823 return STATUS_SUCCESS;
824 }
825 /*
826 * Procedure: flashWriteStatus
827 *
828 * Description: Performs write to flash with write done status check
829 *
830 * Arguments:
831 * Adapter - ptr to Adapter object instance
832 * uiOffset - Offset of the flash where data needs to be written to.
833 * pData - Address of the Data to be written.
834 * Returns:
835 * OSAL_STATUS_CODE
836 *
837 */
838
839 static INT flashWriteStatus(struct bcm_mini_adapter *Adapter,
840 UINT uiOffset,
841 PVOID pData)
842 {
843 UINT uiStatus = 0;
844 INT iRetries = MAX_FLASH_RETRIES * FLASH_PER_RETRIES_DELAY; /* 3 */
845 /* UINT uiReadBack = 0; */
846 UINT value;
847 UINT uiErasePattern[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
848 int bytes;
849
850 /*
851 * need not write 0xFFFFFFFF because write requires an erase and erase will
852 * make whole sector 0xFFFFFFFF.
853 */
854 if (!memcmp(pData, uiErasePattern, MAX_RW_SIZE))
855 return 0;
856
857 value = (FLASH_CMD_WRITE_ENABLE << 24);
858 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
859 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write Enable of FLASH_SPI_CMDQ_REG fails");
860 return STATUS_FAILURE;
861 }
862
863 if (wrm(Adapter, uiOffset, (PCHAR)pData, MAX_RW_SIZE) < 0) {
864 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Data write fails...");
865 return STATUS_FAILURE;
866 }
867 /* __udelay(1); */
868
869 do {
870 value = (FLASH_CMD_STATUS_REG_READ << 24);
871 if (wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value)) < 0) {
872 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Programing of FLASH_SPI_CMDQ_REG fails");
873 return STATUS_FAILURE;
874 }
875 /* __udelay(1); */
876 bytes = rdmalt(Adapter, FLASH_SPI_READQ_REG, &uiStatus, sizeof(uiStatus));
877 if (bytes < 0) {
878 uiStatus = bytes;
879 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Reading status of FLASH_SPI_READQ_REG fails");
880 return uiStatus;
881 }
882 iRetries--;
883 /* this will ensure that in there will be no changes in the current path.
884 * currently one rdm/wrm takes 125 us.
885 * Hence 125 *2 * FLASH_PER_RETRIES_DELAY >3 ms(worst case delay)
886 * Hence current implementation cycle will intoduce no delay in current path
887 */
888 if (iRetries && ((iRetries % FLASH_PER_RETRIES_DELAY) == 0))
889 msleep(1);
890
891 } while ((uiStatus & 0x1) && (iRetries > 0));
892
893 if (uiStatus & 0x1) {
894 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Write fails even after checking status for 200 times.");
895 return STATUS_FAILURE;
896 }
897
898 return STATUS_SUCCESS;
899 }
900
901 /*
902 * Procedure: BcmRestoreBlockProtectStatus
903 *
904 * Description: Restores the original block protection status.
905 *
906 * Arguments:
907 * Adapter - ptr to Adapter object instance
908 * ulWriteStatus -Original status
909 * Returns:
910 * <VOID>
911 *
912 */
913
914 static VOID BcmRestoreBlockProtectStatus(struct bcm_mini_adapter *Adapter, ULONG ulWriteStatus)
915 {
916 UINT value;
917 value = (FLASH_CMD_WRITE_ENABLE << 24);
918 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
919
920 udelay(20);
921 value = (FLASH_CMD_STATUS_REG_WRITE << 24) | (ulWriteStatus << 16);
922 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
923 udelay(20);
924 }
925
926 /*
927 * Procedure: BcmFlashUnProtectBlock
928 *
929 * Description: UnProtects appropriate blocks for writing.
930 *
931 * Arguments:
932 * Adapter - ptr to Adapter object instance
933 * uiOffset - Offset of the flash where data needs to be written to. This should be Sector aligned.
934 * Returns:
935 * ULONG - Status value before UnProtect.
936 *
937 */
938
939 static ULONG BcmFlashUnProtectBlock(struct bcm_mini_adapter *Adapter, UINT uiOffset, UINT uiLength)
940 {
941 ULONG ulStatus = 0;
942 ULONG ulWriteStatus = 0;
943 UINT value;
944
945 uiOffset = uiOffset&0x000FFFFF;
946 /*
947 * Implemented only for 1MB Flash parts.
948 */
949 if (FLASH_PART_SST25VF080B == Adapter->ulFlashID) {
950 /*
951 * Get Current BP status.
952 */
953 value = (FLASH_CMD_STATUS_REG_READ << 24);
954 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
955 udelay(10);
956 /*
957 * Read status will be WWXXYYZZ. We have to take only WW.
958 */
959 rdmalt(Adapter, FLASH_SPI_READQ_REG, (PUINT)&ulStatus, sizeof(ulStatus));
960 ulStatus >>= 24;
961 ulWriteStatus = ulStatus;
962 /*
963 * Bits [5-2] give current block level protection status.
964 * Bit5: BP3 - DONT CARE
965 * BP2-BP0: 0 - NO PROTECTION, 1 - UPPER 1/16, 2 - UPPER 1/8, 3 - UPPER 1/4
966 * 4 - UPPER 1/2. 5 to 7 - ALL BLOCKS
967 */
968
969 if (ulStatus) {
970 if ((uiOffset+uiLength) <= 0x80000) {
971 /*
972 * Offset comes in lower half of 1MB. Protect the upper half.
973 * Clear BP1 and BP0 and set BP2.
974 */
975 ulWriteStatus |= (0x4<<2);
976 ulWriteStatus &= ~(0x3<<2);
977 } else if ((uiOffset + uiLength) <= 0xC0000) {
978 /*
979 * Offset comes below Upper 1/4. Upper 1/4 can be protected.
980 * Clear BP2 and set BP1 and BP0.
981 */
982 ulWriteStatus |= (0x3<<2);
983 ulWriteStatus &= ~(0x1<<4);
984 } else if ((uiOffset + uiLength) <= 0xE0000) {
985 /*
986 * Offset comes below Upper 1/8. Upper 1/8 can be protected.
987 * Clear BP2 and BP0 and set BP1
988 */
989 ulWriteStatus |= (0x1<<3);
990 ulWriteStatus &= ~(0x5<<2);
991 } else if ((uiOffset + uiLength) <= 0xF0000) {
992 /*
993 * Offset comes below Upper 1/16. Only upper 1/16 can be protected.
994 * Set BP0 and Clear BP2,BP1.
995 */
996 ulWriteStatus |= (0x1<<2);
997 ulWriteStatus &= ~(0x3<<3);
998 } else {
999 /*
1000 * Unblock all.
1001 * Clear BP2,BP1 and BP0.
1002 */
1003 ulWriteStatus &= ~(0x7<<2);
1004 }
1005
1006 value = (FLASH_CMD_WRITE_ENABLE << 24);
1007 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
1008 udelay(20);
1009 value = (FLASH_CMD_STATUS_REG_WRITE << 24) | (ulWriteStatus << 16);
1010 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
1011 udelay(20);
1012 }
1013 }
1014 return ulStatus;
1015 }
1016
1017 /*
1018 * Procedure: BeceemFlashBulkWrite
1019 *
1020 * Description: Performs write to the flash
1021 *
1022 * Arguments:
1023 * Adapter - ptr to Adapter object instance
1024 * pBuffer - Data to be written.
1025 * uiOffset - Offset of the flash where data needs to be written to.
1026 * uiNumBytes - Number of bytes to be written.
1027 * bVerify - read verify flag.
1028 * Returns:
1029 * OSAL_STATUS_CODE
1030 *
1031 */
1032
1033 static INT BeceemFlashBulkWrite(struct bcm_mini_adapter *Adapter,
1034 PUINT pBuffer,
1035 UINT uiOffset,
1036 UINT uiNumBytes,
1037 BOOLEAN bVerify)
1038 {
1039 PCHAR pTempBuff = NULL;
1040 PUCHAR pcBuffer = (PUCHAR)pBuffer;
1041 UINT uiIndex = 0;
1042 UINT uiOffsetFromSectStart = 0;
1043 UINT uiSectAlignAddr = 0;
1044 UINT uiCurrSectOffsetAddr = 0;
1045 UINT uiSectBoundary = 0;
1046 UINT uiNumSectTobeRead = 0;
1047 UCHAR ucReadBk[16] = {0};
1048 ULONG ulStatus = 0;
1049 INT Status = STATUS_SUCCESS;
1050 UINT uiTemp = 0;
1051 UINT index = 0;
1052 UINT uiPartOffset = 0;
1053
1054 #if defined(BCM_SHM_INTERFACE) && !defined(FLASH_DIRECT_ACCESS)
1055 Status = bcmflash_raw_write((uiOffset / FLASH_PART_SIZE), (uiOffset % FLASH_PART_SIZE), (unsigned char *)pBuffer, uiNumBytes);
1056 return Status;
1057 #endif
1058
1059 uiOffsetFromSectStart = uiOffset & ~(Adapter->uiSectorSize - 1);
1060
1061 /* Adding flash Base address
1062 * uiOffset = uiOffset + GetFlashBaseAddr(Adapter);
1063 */
1064
1065 uiSectAlignAddr = uiOffset & ~(Adapter->uiSectorSize - 1);
1066 uiCurrSectOffsetAddr = uiOffset & (Adapter->uiSectorSize - 1);
1067 uiSectBoundary = uiSectAlignAddr + Adapter->uiSectorSize;
1068
1069 pTempBuff = kmalloc(Adapter->uiSectorSize, GFP_KERNEL);
1070 if (NULL == pTempBuff)
1071 goto BeceemFlashBulkWrite_EXIT;
1072 /*
1073 * check if the data to be written is overlapped across sectors
1074 */
1075 if (uiOffset+uiNumBytes < uiSectBoundary) {
1076 uiNumSectTobeRead = 1;
1077 } else {
1078 /* Number of sectors = Last sector start address/First sector start address */
1079 uiNumSectTobeRead = (uiCurrSectOffsetAddr + uiNumBytes) / Adapter->uiSectorSize;
1080 if ((uiCurrSectOffsetAddr + uiNumBytes)%Adapter->uiSectorSize)
1081 uiNumSectTobeRead++;
1082 }
1083 /* Check whether Requested sector is writable or not in case of flash2x write. But if write call is
1084 * for DSD calibration, allow it without checking of sector permission
1085 */
1086
1087 if (IsFlash2x(Adapter) && (Adapter->bAllDSDWriteAllow == FALSE)) {
1088 index = 0;
1089 uiTemp = uiNumSectTobeRead;
1090 while (uiTemp) {
1091 if (IsOffsetWritable(Adapter, uiOffsetFromSectStart + index * Adapter->uiSectorSize) == FALSE) {
1092 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Sector Starting at offset <0X%X> is not writable",
1093 (uiOffsetFromSectStart + index * Adapter->uiSectorSize));
1094 Status = SECTOR_IS_NOT_WRITABLE;
1095 goto BeceemFlashBulkWrite_EXIT;
1096 }
1097 uiTemp = uiTemp - 1;
1098 index = index + 1 ;
1099 }
1100 }
1101 Adapter->SelectedChip = RESET_CHIP_SELECT;
1102 while (uiNumSectTobeRead) {
1103 /* do_gettimeofday(&tv1);
1104 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "\nTime In start of write :%ld ms\n",(tv1.tv_sec *1000 + tv1.tv_usec /1000));
1105 */
1106 uiPartOffset = (uiSectAlignAddr & (FLASH_PART_SIZE - 1)) + GetFlashBaseAddr(Adapter);
1107
1108 BcmDoChipSelect(Adapter, uiSectAlignAddr);
1109
1110 if (0 != BeceemFlashBulkRead(Adapter,
1111 (PUINT)pTempBuff,
1112 uiOffsetFromSectStart,
1113 Adapter->uiSectorSize)) {
1114 Status = -1;
1115 goto BeceemFlashBulkWrite_EXIT;
1116 }
1117
1118 /* do_gettimeofday(&tr);
1119 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Total time taken by Read :%ld ms\n", (tr.tv_sec *1000 + tr.tv_usec/1000) - (tv1.tv_sec *1000 + tv1.tv_usec/1000));
1120 */
1121 ulStatus = BcmFlashUnProtectBlock(Adapter, uiSectAlignAddr, Adapter->uiSectorSize);
1122
1123 if (uiNumSectTobeRead > 1) {
1124 memcpy(&pTempBuff[uiCurrSectOffsetAddr], pcBuffer, uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr));
1125 pcBuffer += ((uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr)));
1126 uiNumBytes -= (uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr));
1127 } else {
1128 memcpy(&pTempBuff[uiCurrSectOffsetAddr], pcBuffer, uiNumBytes);
1129 }
1130
1131 if (IsFlash2x(Adapter))
1132 SaveHeaderIfPresent(Adapter, (PUCHAR)pTempBuff, uiOffsetFromSectStart);
1133
1134 FlashSectorErase(Adapter, uiPartOffset, 1);
1135 /* do_gettimeofday(&te);
1136 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Total time taken by Erase :%ld ms\n", (te.tv_sec *1000 + te.tv_usec/1000) - (tr.tv_sec *1000 + tr.tv_usec/1000));
1137 */
1138 for (uiIndex = 0; uiIndex < Adapter->uiSectorSize; uiIndex += Adapter->ulFlashWriteSize) {
1139 if (Adapter->device_removed) {
1140 Status = -1;
1141 goto BeceemFlashBulkWrite_EXIT;
1142 }
1143
1144 if (STATUS_SUCCESS != (*Adapter->fpFlashWrite)(Adapter, uiPartOffset + uiIndex, (&pTempBuff[uiIndex]))) {
1145 Status = -1;
1146 goto BeceemFlashBulkWrite_EXIT;
1147 }
1148 }
1149
1150 /* do_gettimeofday(&tw);
1151 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Total time taken in Write to Flash :%ld ms\n", (tw.tv_sec *1000 + tw.tv_usec/1000) - (te.tv_sec *1000 + te.tv_usec/1000));
1152 */
1153 for (uiIndex = 0; uiIndex < Adapter->uiSectorSize; uiIndex += MAX_RW_SIZE) {
1154 if (STATUS_SUCCESS == BeceemFlashBulkRead(Adapter, (PUINT)ucReadBk, uiOffsetFromSectStart + uiIndex, MAX_RW_SIZE)) {
1155 if (Adapter->ulFlashWriteSize == 1) {
1156 UINT uiReadIndex = 0;
1157 for (uiReadIndex = 0; uiReadIndex < 16; uiReadIndex++) {
1158 if (ucReadBk[uiReadIndex] != pTempBuff[uiIndex + uiReadIndex]) {
1159 if (STATUS_SUCCESS != (*Adapter->fpFlashWriteWithStatusCheck)(Adapter, uiPartOffset + uiIndex + uiReadIndex, &pTempBuff[uiIndex+uiReadIndex])) {
1160 Status = STATUS_FAILURE;
1161 goto BeceemFlashBulkWrite_EXIT;
1162 }
1163 }
1164 }
1165 } else {
1166 if (memcmp(ucReadBk, &pTempBuff[uiIndex], MAX_RW_SIZE)) {
1167 if (STATUS_SUCCESS != (*Adapter->fpFlashWriteWithStatusCheck)(Adapter, uiPartOffset + uiIndex, &pTempBuff[uiIndex])) {
1168 Status = STATUS_FAILURE;
1169 goto BeceemFlashBulkWrite_EXIT;
1170 }
1171 }
1172 }
1173 }
1174 }
1175 /* do_gettimeofday(&twv);
1176 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Total time taken in Write to Flash verification :%ld ms\n", (twv.tv_sec *1000 + twv.tv_usec/1000) - (tw.tv_sec *1000 + tw.tv_usec/1000));
1177 */
1178 if (ulStatus) {
1179 BcmRestoreBlockProtectStatus(Adapter, ulStatus);
1180 ulStatus = 0;
1181 }
1182
1183 uiCurrSectOffsetAddr = 0;
1184 uiSectAlignAddr = uiSectBoundary;
1185 uiSectBoundary += Adapter->uiSectorSize;
1186 uiOffsetFromSectStart += Adapter->uiSectorSize;
1187 uiNumSectTobeRead--;
1188 }
1189 /* do_gettimeofday(&tv2);
1190 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Time after Write :%ld ms\n",(tv2.tv_sec *1000 + tv2.tv_usec/1000));
1191 * BCM_DEBUG_PRINT(Adapter,DBG_TYPE_PRINTK, 0, 0, "Total time taken by in Write is :%ld ms\n", (tv2.tv_sec *1000 + tv2.tv_usec/1000) - (tv1.tv_sec *1000 + tv1.tv_usec/1000));
1192 *
1193 * Cleanup.
1194 */
1195 BeceemFlashBulkWrite_EXIT:
1196 if (ulStatus)
1197 BcmRestoreBlockProtectStatus(Adapter, ulStatus);
1198
1199 kfree(pTempBuff);
1200
1201 Adapter->SelectedChip = RESET_CHIP_SELECT;
1202 return Status;
1203 }
1204
1205 /*
1206 * Procedure: BeceemFlashBulkWriteStatus
1207 *
1208 * Description: Writes to Flash. Checks the SPI status after each write.
1209 *
1210 * Arguments:
1211 * Adapter - ptr to Adapter object instance
1212 * pBuffer - Data to be written.
1213 * uiOffset - Offset of the flash where data needs to be written to.
1214 * uiNumBytes - Number of bytes to be written.
1215 * bVerify - read verify flag.
1216 * Returns:
1217 * OSAL_STATUS_CODE
1218 *
1219 */
1220
1221 static INT BeceemFlashBulkWriteStatus(struct bcm_mini_adapter *Adapter,
1222 PUINT pBuffer,
1223 UINT uiOffset,
1224 UINT uiNumBytes,
1225 BOOLEAN bVerify)
1226 {
1227 PCHAR pTempBuff = NULL;
1228 PUCHAR pcBuffer = (PUCHAR)pBuffer;
1229 UINT uiIndex = 0;
1230 UINT uiOffsetFromSectStart = 0;
1231 UINT uiSectAlignAddr = 0;
1232 UINT uiCurrSectOffsetAddr = 0;
1233 UINT uiSectBoundary = 0;
1234 UINT uiNumSectTobeRead = 0;
1235 UCHAR ucReadBk[16] = {0};
1236 ULONG ulStatus = 0;
1237 UINT Status = STATUS_SUCCESS;
1238 UINT uiTemp = 0;
1239 UINT index = 0;
1240 UINT uiPartOffset = 0;
1241
1242 uiOffsetFromSectStart = uiOffset & ~(Adapter->uiSectorSize - 1);
1243
1244 /* uiOffset += Adapter->ulFlashCalStart;
1245 * Adding flash Base address
1246 * uiOffset = uiOffset + GetFlashBaseAddr(Adapter);
1247 */
1248 uiSectAlignAddr = uiOffset & ~(Adapter->uiSectorSize - 1);
1249 uiCurrSectOffsetAddr = uiOffset & (Adapter->uiSectorSize - 1);
1250 uiSectBoundary = uiSectAlignAddr + Adapter->uiSectorSize;
1251
1252 pTempBuff = kmalloc(Adapter->uiSectorSize, GFP_KERNEL);
1253 if (NULL == pTempBuff)
1254 goto BeceemFlashBulkWriteStatus_EXIT;
1255
1256 /*
1257 * check if the data to be written is overlapped across sectors
1258 */
1259 if (uiOffset+uiNumBytes < uiSectBoundary) {
1260 uiNumSectTobeRead = 1;
1261 } else {
1262 /* Number of sectors = Last sector start address/First sector start address */
1263 uiNumSectTobeRead = (uiCurrSectOffsetAddr + uiNumBytes) / Adapter->uiSectorSize;
1264 if ((uiCurrSectOffsetAddr + uiNumBytes)%Adapter->uiSectorSize)
1265 uiNumSectTobeRead++;
1266 }
1267
1268 if (IsFlash2x(Adapter) && (Adapter->bAllDSDWriteAllow == FALSE)) {
1269 index = 0;
1270 uiTemp = uiNumSectTobeRead;
1271 while (uiTemp) {
1272 if (IsOffsetWritable(Adapter, uiOffsetFromSectStart + index * Adapter->uiSectorSize) == FALSE) {
1273 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Sector Starting at offset <0X%x> is not writable",
1274 (uiOffsetFromSectStart + index * Adapter->uiSectorSize));
1275 Status = SECTOR_IS_NOT_WRITABLE;
1276 goto BeceemFlashBulkWriteStatus_EXIT;
1277 }
1278 uiTemp = uiTemp - 1;
1279 index = index + 1 ;
1280 }
1281 }
1282
1283 Adapter->SelectedChip = RESET_CHIP_SELECT;
1284 while (uiNumSectTobeRead) {
1285 uiPartOffset = (uiSectAlignAddr & (FLASH_PART_SIZE - 1)) + GetFlashBaseAddr(Adapter);
1286
1287 BcmDoChipSelect(Adapter, uiSectAlignAddr);
1288 if (0 != BeceemFlashBulkRead(Adapter,
1289 (PUINT)pTempBuff,
1290 uiOffsetFromSectStart,
1291 Adapter->uiSectorSize)) {
1292 Status = -1;
1293 goto BeceemFlashBulkWriteStatus_EXIT;
1294 }
1295
1296 ulStatus = BcmFlashUnProtectBlock(Adapter, uiOffsetFromSectStart, Adapter->uiSectorSize);
1297
1298 if (uiNumSectTobeRead > 1) {
1299 memcpy(&pTempBuff[uiCurrSectOffsetAddr], pcBuffer, uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr));
1300 pcBuffer += ((uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr)));
1301 uiNumBytes -= (uiSectBoundary - (uiSectAlignAddr + uiCurrSectOffsetAddr));
1302 } else {
1303 memcpy(&pTempBuff[uiCurrSectOffsetAddr], pcBuffer, uiNumBytes);
1304 }
1305
1306 if (IsFlash2x(Adapter))
1307 SaveHeaderIfPresent(Adapter, (PUCHAR)pTempBuff, uiOffsetFromSectStart);
1308
1309 FlashSectorErase(Adapter, uiPartOffset, 1);
1310
1311 for (uiIndex = 0; uiIndex < Adapter->uiSectorSize; uiIndex += Adapter->ulFlashWriteSize) {
1312 if (Adapter->device_removed) {
1313 Status = -1;
1314 goto BeceemFlashBulkWriteStatus_EXIT;
1315 }
1316
1317 if (STATUS_SUCCESS != (*Adapter->fpFlashWriteWithStatusCheck)(Adapter, uiPartOffset+uiIndex, &pTempBuff[uiIndex])) {
1318 Status = -1;
1319 goto BeceemFlashBulkWriteStatus_EXIT;
1320 }
1321 }
1322
1323 if (bVerify) {
1324 for (uiIndex = 0; uiIndex < Adapter->uiSectorSize; uiIndex += MAX_RW_SIZE) {
1325 if (STATUS_SUCCESS == BeceemFlashBulkRead(Adapter, (PUINT)ucReadBk, uiOffsetFromSectStart + uiIndex, MAX_RW_SIZE)) {
1326 if (memcmp(ucReadBk, &pTempBuff[uiIndex], MAX_RW_SIZE)) {
1327 Status = STATUS_FAILURE;
1328 goto BeceemFlashBulkWriteStatus_EXIT;
1329 }
1330 }
1331 }
1332 }
1333
1334 if (ulStatus) {
1335 BcmRestoreBlockProtectStatus(Adapter, ulStatus);
1336 ulStatus = 0;
1337 }
1338
1339 uiCurrSectOffsetAddr = 0;
1340 uiSectAlignAddr = uiSectBoundary;
1341 uiSectBoundary += Adapter->uiSectorSize;
1342 uiOffsetFromSectStart += Adapter->uiSectorSize;
1343 uiNumSectTobeRead--;
1344 }
1345 /*
1346 * Cleanup.
1347 */
1348 BeceemFlashBulkWriteStatus_EXIT:
1349 if (ulStatus)
1350 BcmRestoreBlockProtectStatus(Adapter, ulStatus);
1351
1352 kfree(pTempBuff);
1353 Adapter->SelectedChip = RESET_CHIP_SELECT;
1354 return Status;
1355 }
1356
1357 /*
1358 * Procedure: PropagateCalParamsFromEEPROMToMemory
1359 *
1360 * Description: Dumps the calibration section of EEPROM to DDR.
1361 *
1362 * Arguments:
1363 * Adapter - ptr to Adapter object instance
1364 * Returns:
1365 * OSAL_STATUS_CODE
1366 *
1367 */
1368
1369 INT PropagateCalParamsFromEEPROMToMemory(struct bcm_mini_adapter *Adapter)
1370 {
1371 PCHAR pBuff = kmalloc(BUFFER_4K, GFP_KERNEL);
1372 UINT uiEepromSize = 0;
1373 UINT uiIndex = 0;
1374 UINT uiBytesToCopy = 0;
1375 UINT uiCalStartAddr = EEPROM_CALPARAM_START;
1376 UINT uiMemoryLoc = EEPROM_CAL_DATA_INTERNAL_LOC;
1377 UINT value;
1378 INT Status = 0;
1379
1380 if (pBuff == NULL)
1381 return -1;
1382
1383 if (0 != BeceemEEPROMBulkRead(Adapter, &uiEepromSize, EEPROM_SIZE_OFFSET, 4)) {
1384 kfree(pBuff);
1385 return -1;
1386 }
1387
1388 uiEepromSize >>= 16;
1389 if (uiEepromSize > 1024 * 1024) {
1390 kfree(pBuff);
1391 return -1;
1392 }
1393
1394 uiBytesToCopy = MIN(BUFFER_4K, uiEepromSize);
1395
1396 while (uiBytesToCopy) {
1397 if (0 != BeceemEEPROMBulkRead(Adapter, (PUINT)pBuff, uiCalStartAddr, uiBytesToCopy)) {
1398 Status = -1;
1399 break;
1400 }
1401 wrm(Adapter, uiMemoryLoc, (PCHAR)(((PULONG)pBuff) + uiIndex), uiBytesToCopy);
1402 uiMemoryLoc += uiBytesToCopy;
1403 uiEepromSize -= uiBytesToCopy;
1404 uiCalStartAddr += uiBytesToCopy;
1405 uiIndex += uiBytesToCopy / 4;
1406 uiBytesToCopy = MIN(BUFFER_4K, uiEepromSize);
1407
1408 }
1409 value = 0xbeadbead;
1410 wrmalt(Adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 4, &value, sizeof(value));
1411 value = 0xbeadbead;
1412 wrmalt(Adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 8, &value, sizeof(value));
1413 kfree(pBuff);
1414
1415 return Status;
1416 }
1417
1418 /*
1419 * Procedure: PropagateCalParamsFromFlashToMemory
1420 *
1421 * Description: Dumps the calibration section of EEPROM to DDR.
1422 *
1423 * Arguments:
1424 * Adapter - ptr to Adapter object instance
1425 * Returns:
1426 * OSAL_STATUS_CODE
1427 *
1428 */
1429
1430 INT PropagateCalParamsFromFlashToMemory(struct bcm_mini_adapter *Adapter)
1431 {
1432 PCHAR pBuff, pPtr;
1433 UINT uiEepromSize = 0;
1434 UINT uiBytesToCopy = 0;
1435 /* UINT uiIndex = 0; */
1436 UINT uiCalStartAddr = EEPROM_CALPARAM_START;
1437 UINT uiMemoryLoc = EEPROM_CAL_DATA_INTERNAL_LOC;
1438 UINT value;
1439 INT Status = 0;
1440
1441 /*
1442 * Write the signature first. This will ensure firmware does not access EEPROM.
1443 */
1444 value = 0xbeadbead;
1445 wrmalt(Adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 4, &value, sizeof(value));
1446 value = 0xbeadbead;
1447 wrmalt(Adapter, EEPROM_CAL_DATA_INTERNAL_LOC - 8, &value, sizeof(value));
1448
1449 if (0 != BeceemNVMRead(Adapter, &uiEepromSize, EEPROM_SIZE_OFFSET, 4))
1450 return -1;
1451
1452 uiEepromSize = ntohl(uiEepromSize);
1453 uiEepromSize >>= 16;
1454
1455 /*
1456 * subtract the auto init section size
1457 */
1458 uiEepromSize -= EEPROM_CALPARAM_START;
1459
1460 if (uiEepromSize > 1024 * 1024)
1461 return -1;
1462
1463 pBuff = kmalloc(uiEepromSize, GFP_KERNEL);
1464 if (pBuff == NULL)
1465 return -1;
1466
1467 if (0 != BeceemNVMRead(Adapter, (PUINT)pBuff, uiCalStartAddr, uiEepromSize)) {
1468 kfree(pBuff);
1469 return -1;
1470 }
1471
1472 pPtr = pBuff;
1473
1474 uiBytesToCopy = MIN(BUFFER_4K, uiEepromSize);
1475
1476 while (uiBytesToCopy) {
1477 Status = wrm(Adapter, uiMemoryLoc, (PCHAR)pPtr, uiBytesToCopy);
1478 if (Status) {
1479 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "wrm failed with status :%d", Status);
1480 break;
1481 }
1482
1483 pPtr += uiBytesToCopy;
1484 uiEepromSize -= uiBytesToCopy;
1485 uiMemoryLoc += uiBytesToCopy;
1486 uiBytesToCopy = MIN(BUFFER_4K, uiEepromSize);
1487 }
1488
1489 kfree(pBuff);
1490 return Status;
1491 }
1492
1493 /*
1494 * Procedure: BeceemEEPROMReadBackandVerify
1495 *
1496 * Description: Read back the data written and verifies.
1497 *
1498 * Arguments:
1499 * Adapter - ptr to Adapter object instance
1500 * pBuffer - Data to be written.
1501 * uiOffset - Offset of the flash where data needs to be written to.
1502 * uiNumBytes - Number of bytes to be written.
1503 * Returns:
1504 * OSAL_STATUS_CODE
1505 *
1506 */
1507
1508 static INT BeceemEEPROMReadBackandVerify(struct bcm_mini_adapter *Adapter,
1509 PUINT pBuffer,
1510 UINT uiOffset,
1511 UINT uiNumBytes)
1512 {
1513 UINT uiRdbk = 0;
1514 UINT uiIndex = 0;
1515 UINT uiData = 0;
1516 UINT auiData[4] = {0};
1517
1518 while (uiNumBytes) {
1519 if (Adapter->device_removed)
1520 return -1;
1521
1522 if (uiNumBytes >= MAX_RW_SIZE) {
1523 /* for the requests more than or equal to MAX_RW_SIZE bytes, use bulk read function to make the access faster. */
1524 BeceemEEPROMBulkRead(Adapter, &auiData[0], uiOffset, MAX_RW_SIZE);
1525
1526 if (memcmp(&pBuffer[uiIndex], &auiData[0], MAX_RW_SIZE)) {
1527 /* re-write */
1528 BeceemEEPROMBulkWrite(Adapter, (PUCHAR)(pBuffer + uiIndex), uiOffset, MAX_RW_SIZE, FALSE);
1529 mdelay(3);
1530 BeceemEEPROMBulkRead(Adapter, &auiData[0], uiOffset, MAX_RW_SIZE);
1531
1532 if (memcmp(&pBuffer[uiIndex], &auiData[0], MAX_RW_SIZE))
1533 return -1;
1534 }
1535 uiOffset += MAX_RW_SIZE;
1536 uiNumBytes -= MAX_RW_SIZE;
1537 uiIndex += 4;
1538 } else if (uiNumBytes >= 4) {
1539 BeceemEEPROMBulkRead(Adapter, &uiData, uiOffset, 4);
1540 if (uiData != pBuffer[uiIndex]) {
1541 /* re-write */
1542 BeceemEEPROMBulkWrite(Adapter, (PUCHAR)(pBuffer + uiIndex), uiOffset, 4, FALSE);
1543 mdelay(3);
1544 BeceemEEPROMBulkRead(Adapter, &uiData, uiOffset, 4);
1545 if (uiData != pBuffer[uiIndex])
1546 return -1;
1547 }
1548 uiOffset += 4;
1549 uiNumBytes -= 4;
1550 uiIndex++;
1551 } else {
1552 /* Handle the reads less than 4 bytes... */
1553 uiData = 0;
1554 memcpy(&uiData, ((PUCHAR)pBuffer) + (uiIndex * sizeof(UINT)), uiNumBytes);
1555 BeceemEEPROMBulkRead(Adapter, &uiRdbk, uiOffset, 4);
1556
1557 if (memcmp(&uiData, &uiRdbk, uiNumBytes))
1558 return -1;
1559
1560 uiNumBytes = 0;
1561 }
1562 }
1563
1564 return 0;
1565 }
1566
1567 static VOID BcmSwapWord(UINT *ptr1)
1568 {
1569 UINT tempval = (UINT)*ptr1;
1570 char *ptr2 = (char *)&tempval;
1571 char *ptr = (char *)ptr1;
1572
1573 ptr[0] = ptr2[3];
1574 ptr[1] = ptr2[2];
1575 ptr[2] = ptr2[1];
1576 ptr[3] = ptr2[0];
1577 }
1578
1579 /*
1580 * Procedure: BeceemEEPROMWritePage
1581 *
1582 * Description: Performs page write (16bytes) to the EEPROM
1583 *
1584 * Arguments:
1585 * Adapter - ptr to Adapter object instance
1586 * uiData - Data to be written.
1587 * uiOffset - Offset of the EEPROM where data needs to be written to.
1588 * Returns:
1589 * OSAL_STATUS_CODE
1590 *
1591 */
1592
1593 static INT BeceemEEPROMWritePage(struct bcm_mini_adapter *Adapter, UINT uiData[], UINT uiOffset)
1594 {
1595 UINT uiRetries = MAX_EEPROM_RETRIES * RETRIES_PER_DELAY;
1596 UINT uiStatus = 0;
1597 UCHAR uiEpromStatus = 0;
1598 UINT value = 0;
1599
1600 /* Flush the Write/Read/Cmd queues. */
1601 value = (EEPROM_WRITE_QUEUE_FLUSH | EEPROM_CMD_QUEUE_FLUSH | EEPROM_READ_QUEUE_FLUSH);
1602 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
1603 value = 0;
1604 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
1605
1606 /* Clear the Empty/Avail/Full bits. After this it has been confirmed
1607 * that the bit was cleared by reading back the register. See NOTE below.
1608 * We also clear the Read queues as we do a EEPROM status register read
1609 * later.
1610 */
1611 value = (EEPROM_WRITE_QUEUE_EMPTY | EEPROM_WRITE_QUEUE_AVAIL | EEPROM_WRITE_QUEUE_FULL | EEPROM_READ_DATA_AVAIL | EEPROM_READ_DATA_FULL);
1612 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
1613
1614 /* Enable write */
1615 value = EEPROM_WRITE_ENABLE;
1616 wrmalt(Adapter, EEPROM_CMDQ_SPI_REG, &value, sizeof(value));
1617
1618 /* We can write back to back 8bits * 16 into the queue and as we have
1619 * checked for the queue to be empty we can write in a burst.
1620 */
1621
1622 value = uiData[0];
1623 BcmSwapWord(&value);
1624 wrm(Adapter, EEPROM_WRITE_DATAQ_REG, (PUCHAR)&value, 4);
1625
1626 value = uiData[1];
1627 BcmSwapWord(&value);
1628 wrm(Adapter, EEPROM_WRITE_DATAQ_REG, (PUCHAR)&value, 4);
1629
1630 value = uiData[2];
1631 BcmSwapWord(&value);
1632 wrm(Adapter, EEPROM_WRITE_DATAQ_REG, (PUCHAR)&value, 4);
1633
1634 value = uiData[3];
1635 BcmSwapWord(&value);
1636 wrm(Adapter, EEPROM_WRITE_DATAQ_REG, (PUCHAR)&value, 4);
1637
1638 /* NOTE : After this write, on readback of EEPROM_SPI_Q_STATUS1_REG
1639 * shows that we see 7 for the EEPROM data write. Which means that
1640 * queue got full, also space is available as well as the queue is empty.
1641 * This may happen in sequence.
1642 */
1643 value = EEPROM_16_BYTE_PAGE_WRITE | uiOffset;
1644 wrmalt(Adapter, EEPROM_CMDQ_SPI_REG, &value, sizeof(value));
1645
1646 /* Ideally we should loop here without tries and eventually succeed.
1647 * What we are checking if the previous write has completed, and this
1648 * may take time. We should wait till the Empty bit is set.
1649 */
1650 uiStatus = 0;
1651 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &uiStatus, sizeof(uiStatus));
1652 while ((uiStatus & EEPROM_WRITE_QUEUE_EMPTY) == 0) {
1653 uiRetries--;
1654 if (uiRetries == 0) {
1655 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "0x0f003004 = %x, %d retries failed.\n", uiStatus, MAX_EEPROM_RETRIES * RETRIES_PER_DELAY);
1656 return STATUS_FAILURE;
1657 }
1658
1659 if (!(uiRetries%RETRIES_PER_DELAY))
1660 msleep(1);
1661
1662 uiStatus = 0;
1663 rdmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &uiStatus, sizeof(uiStatus));
1664 if (Adapter->device_removed == TRUE) {
1665 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Modem got removed hence exiting from loop....");
1666 return -ENODEV;
1667 }
1668 }
1669
1670 if (uiRetries != 0) {
1671 /* Clear the ones that are set - either, Empty/Full/Avail bits */
1672 value = (uiStatus & (EEPROM_WRITE_QUEUE_EMPTY | EEPROM_WRITE_QUEUE_AVAIL | EEPROM_WRITE_QUEUE_FULL));
1673 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
1674 }
1675
1676 /* Here we should check if the EEPROM status register is correct before
1677 * proceeding. Bit 0 in the EEPROM Status register should be 0 before
1678 * we proceed further. A 1 at Bit 0 indicates that the EEPROM is busy
1679 * with the previous write. Note also that issuing this read finally
1680 * means the previous write to the EEPROM has completed.
1681 */
1682 uiRetries = MAX_EEPROM_RETRIES * RETRIES_PER_DELAY;
1683 uiEpromStatus = 0;
1684 while (uiRetries != 0) {
1685 uiEpromStatus = ReadEEPROMStatusRegister(Adapter);
1686 if (Adapter->device_removed == TRUE) {
1687 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Modem has got removed hence exiting from loop...");
1688 return -ENODEV;
1689 }
1690 if ((EEPROM_STATUS_REG_WRITE_BUSY & uiEpromStatus) == 0) {
1691 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "EEPROM status register = %x tries = %d\n", uiEpromStatus, (MAX_EEPROM_RETRIES * RETRIES_PER_DELAY - uiRetries));
1692 return STATUS_SUCCESS;
1693 }
1694 uiRetries--;
1695 if (uiRetries == 0) {
1696 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "0x0f003004 = %x, for EEPROM status read %d retries failed.\n", uiEpromStatus, MAX_EEPROM_RETRIES * RETRIES_PER_DELAY);
1697 return STATUS_FAILURE;
1698 }
1699 uiEpromStatus = 0;
1700 if (!(uiRetries%RETRIES_PER_DELAY))
1701 msleep(1);
1702 }
1703
1704 return STATUS_SUCCESS;
1705 } /* BeceemEEPROMWritePage */
1706
1707 /*
1708 * Procedure: BeceemEEPROMBulkWrite
1709 *
1710 * Description: Performs write to the EEPROM
1711 *
1712 * Arguments:
1713 * Adapter - ptr to Adapter object instance
1714 * pBuffer - Data to be written.
1715 * uiOffset - Offset of the EEPROM where data needs to be written to.
1716 * uiNumBytes - Number of bytes to be written.
1717 * bVerify - read verify flag.
1718 * Returns:
1719 * OSAL_STATUS_CODE
1720 *
1721 */
1722
1723 INT BeceemEEPROMBulkWrite(struct bcm_mini_adapter *Adapter,
1724 PUCHAR pBuffer,
1725 UINT uiOffset,
1726 UINT uiNumBytes,
1727 BOOLEAN bVerify)
1728 {
1729 UINT uiBytesToCopy = uiNumBytes;
1730 /* UINT uiRdbk = 0; */
1731 UINT uiData[4] = {0};
1732 UINT uiIndex = 0;
1733 UINT uiTempOffset = 0;
1734 UINT uiExtraBytes = 0;
1735 /* PUINT puiBuffer = (PUINT)pBuffer;
1736 * INT value;
1737 */
1738
1739 if (uiOffset % MAX_RW_SIZE && uiBytesToCopy) {
1740 uiTempOffset = uiOffset - (uiOffset % MAX_RW_SIZE);
1741 uiExtraBytes = uiOffset - uiTempOffset;
1742
1743 BeceemEEPROMBulkRead(Adapter, &uiData[0], uiTempOffset, MAX_RW_SIZE);
1744
1745 if (uiBytesToCopy >= (16 - uiExtraBytes)) {
1746 memcpy((((PUCHAR)&uiData[0]) + uiExtraBytes), pBuffer, MAX_RW_SIZE - uiExtraBytes);
1747
1748 if (STATUS_FAILURE == BeceemEEPROMWritePage(Adapter, uiData, uiTempOffset))
1749 return STATUS_FAILURE;
1750
1751 uiBytesToCopy -= (MAX_RW_SIZE - uiExtraBytes);
1752 uiIndex += (MAX_RW_SIZE - uiExtraBytes);
1753 uiOffset += (MAX_RW_SIZE - uiExtraBytes);
1754 } else {
1755 memcpy((((PUCHAR)&uiData[0]) + uiExtraBytes), pBuffer, uiBytesToCopy);
1756
1757 if (STATUS_FAILURE == BeceemEEPROMWritePage(Adapter, uiData, uiTempOffset))
1758 return STATUS_FAILURE;
1759
1760 uiIndex += uiBytesToCopy;
1761 uiOffset += uiBytesToCopy;
1762 uiBytesToCopy = 0;
1763 }
1764 }
1765
1766 while (uiBytesToCopy) {
1767 if (Adapter->device_removed)
1768 return -1;
1769
1770 if (uiBytesToCopy >= MAX_RW_SIZE) {
1771 if (STATUS_FAILURE == BeceemEEPROMWritePage(Adapter, (PUINT) &pBuffer[uiIndex], uiOffset))
1772 return STATUS_FAILURE;
1773
1774 uiIndex += MAX_RW_SIZE;
1775 uiOffset += MAX_RW_SIZE;
1776 uiBytesToCopy -= MAX_RW_SIZE;
1777 } else {
1778 /*
1779 * To program non 16byte aligned data, read 16byte and then update.
1780 */
1781 BeceemEEPROMBulkRead(Adapter, &uiData[0], uiOffset, 16);
1782 memcpy(&uiData[0], pBuffer + uiIndex, uiBytesToCopy);
1783
1784 if (STATUS_FAILURE == BeceemEEPROMWritePage(Adapter, uiData, uiOffset))
1785 return STATUS_FAILURE;
1786
1787 uiBytesToCopy = 0;
1788 }
1789 }
1790
1791 return 0;
1792 }
1793
1794 /*
1795 * Procedure: BeceemNVMRead
1796 *
1797 * Description: Reads n number of bytes from NVM.
1798 *
1799 * Arguments:
1800 * Adapter - ptr to Adapter object instance
1801 * pBuffer - Buffer to store the data read from NVM
1802 * uiOffset - Offset of NVM from where data should be read
1803 * uiNumBytes - Number of bytes to be read from the NVM.
1804 *
1805 * Returns:
1806 * OSAL_STATUS_SUCCESS - if NVM read is successful.
1807 * <FAILURE> - if failed.
1808 */
1809
1810 INT BeceemNVMRead(struct bcm_mini_adapter *Adapter,
1811 PUINT pBuffer,
1812 UINT uiOffset,
1813 UINT uiNumBytes)
1814 {
1815 INT Status = 0;
1816
1817 #if !defined(BCM_SHM_INTERFACE) || defined(FLASH_DIRECT_ACCESS)
1818 UINT uiTemp = 0, value;
1819 #endif
1820
1821 if (Adapter->eNVMType == NVM_FLASH) {
1822 if (Adapter->bFlashRawRead == FALSE) {
1823 if (IsSectionExistInVendorInfo(Adapter, Adapter->eActiveDSD))
1824 return vendorextnReadSection(Adapter, (PUCHAR)pBuffer, Adapter->eActiveDSD, uiOffset, uiNumBytes);
1825
1826 uiOffset = uiOffset + Adapter->ulFlashCalStart;
1827 }
1828
1829 #if defined(BCM_SHM_INTERFACE) && !defined(FLASH_DIRECT_ACCESS)
1830 Status = bcmflash_raw_read((uiOffset / FLASH_PART_SIZE), (uiOffset % FLASH_PART_SIZE), (unsigned char *)pBuffer, uiNumBytes);
1831 #else
1832 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
1833 value = 0;
1834 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
1835 Status = BeceemFlashBulkRead(Adapter,
1836 pBuffer,
1837 uiOffset,
1838 uiNumBytes);
1839 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
1840 #endif
1841 } else if (Adapter->eNVMType == NVM_EEPROM) {
1842 Status = BeceemEEPROMBulkRead(Adapter,
1843 pBuffer,
1844 uiOffset,
1845 uiNumBytes);
1846 } else {
1847 Status = -1;
1848 }
1849
1850 return Status;
1851 }
1852
1853 /*
1854 * Procedure: BeceemNVMWrite
1855 *
1856 * Description: Writes n number of bytes to NVM.
1857 *
1858 * Arguments:
1859 * Adapter - ptr to Adapter object instance
1860 * pBuffer - Buffer contains the data to be written.
1861 * uiOffset - Offset of NVM where data to be written to.
1862 * uiNumBytes - Number of bytes to be written..
1863 *
1864 * Returns:
1865 * OSAL_STATUS_SUCCESS - if NVM write is successful.
1866 * <FAILURE> - if failed.
1867 */
1868
1869 INT BeceemNVMWrite(struct bcm_mini_adapter *Adapter,
1870 PUINT pBuffer,
1871 UINT uiOffset,
1872 UINT uiNumBytes,
1873 BOOLEAN bVerify)
1874 {
1875 INT Status = 0;
1876 UINT uiTemp = 0;
1877 UINT uiMemoryLoc = EEPROM_CAL_DATA_INTERNAL_LOC;
1878 UINT uiIndex = 0;
1879
1880 #if !defined(BCM_SHM_INTERFACE) || defined(FLASH_DIRECT_ACCESS)
1881 UINT value;
1882 #endif
1883
1884 UINT uiFlashOffset = 0;
1885
1886 if (Adapter->eNVMType == NVM_FLASH) {
1887 if (IsSectionExistInVendorInfo(Adapter, Adapter->eActiveDSD))
1888 Status = vendorextnWriteSection(Adapter, (PUCHAR)pBuffer, Adapter->eActiveDSD, uiOffset, uiNumBytes, bVerify);
1889 else {
1890 uiFlashOffset = uiOffset + Adapter->ulFlashCalStart;
1891
1892 #if defined(BCM_SHM_INTERFACE) && !defined(FLASH_DIRECT_ACCESS)
1893 Status = bcmflash_raw_write((uiFlashOffset / FLASH_PART_SIZE), (uiFlashOffset % FLASH_PART_SIZE), (unsigned char *)pBuffer, uiNumBytes);
1894 #else
1895 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
1896 value = 0;
1897 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
1898
1899 if (Adapter->bStatusWrite == TRUE)
1900 Status = BeceemFlashBulkWriteStatus(Adapter,
1901 pBuffer,
1902 uiFlashOffset,
1903 uiNumBytes ,
1904 bVerify);
1905 else
1906
1907 Status = BeceemFlashBulkWrite(Adapter,
1908 pBuffer,
1909 uiFlashOffset,
1910 uiNumBytes,
1911 bVerify);
1912 #endif
1913 }
1914
1915 if (uiOffset >= EEPROM_CALPARAM_START) {
1916 uiMemoryLoc += (uiOffset - EEPROM_CALPARAM_START);
1917 while (uiNumBytes) {
1918 if (uiNumBytes > BUFFER_4K) {
1919 wrm(Adapter, (uiMemoryLoc+uiIndex), (PCHAR)(pBuffer + (uiIndex / 4)), BUFFER_4K);
1920 uiNumBytes -= BUFFER_4K;
1921 uiIndex += BUFFER_4K;
1922 } else {
1923 wrm(Adapter, uiMemoryLoc+uiIndex, (PCHAR)(pBuffer + (uiIndex / 4)), uiNumBytes);
1924 uiNumBytes = 0;
1925 break;
1926 }
1927 }
1928 } else {
1929 if ((uiOffset + uiNumBytes) > EEPROM_CALPARAM_START) {
1930 ULONG ulBytesTobeSkipped = 0;
1931 PUCHAR pcBuffer = (PUCHAR)pBuffer; /* char pointer to take care of odd byte cases. */
1932 uiNumBytes -= (EEPROM_CALPARAM_START - uiOffset);
1933 ulBytesTobeSkipped += (EEPROM_CALPARAM_START - uiOffset);
1934 uiOffset += (EEPROM_CALPARAM_START - uiOffset);
1935 while (uiNumBytes) {
1936 if (uiNumBytes > BUFFER_4K) {
1937 wrm(Adapter, uiMemoryLoc + uiIndex, (PCHAR)&pcBuffer[ulBytesTobeSkipped + uiIndex], BUFFER_4K);
1938 uiNumBytes -= BUFFER_4K;
1939 uiIndex += BUFFER_4K;
1940 } else {
1941 wrm(Adapter, uiMemoryLoc + uiIndex, (PCHAR)&pcBuffer[ulBytesTobeSkipped + uiIndex], uiNumBytes);
1942 uiNumBytes = 0;
1943 break;
1944 }
1945 }
1946 }
1947 }
1948 /* restore the values. */
1949 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
1950 } else if (Adapter->eNVMType == NVM_EEPROM) {
1951 Status = BeceemEEPROMBulkWrite(Adapter,
1952 (PUCHAR)pBuffer,
1953 uiOffset,
1954 uiNumBytes,
1955 bVerify);
1956 if (bVerify)
1957 Status = BeceemEEPROMReadBackandVerify(Adapter, (PUINT)pBuffer, uiOffset, uiNumBytes);
1958 } else {
1959 Status = -1;
1960 }
1961 return Status;
1962 }
1963
1964 /*
1965 * Procedure: BcmUpdateSectorSize
1966 *
1967 * Description: Updates the sector size to FLASH.
1968 *
1969 * Arguments:
1970 * Adapter - ptr to Adapter object instance
1971 * uiSectorSize - sector size
1972 *
1973 * Returns:
1974 * OSAL_STATUS_SUCCESS - if NVM write is successful.
1975 * <FAILURE> - if failed.
1976 */
1977
1978 INT BcmUpdateSectorSize(struct bcm_mini_adapter *Adapter, UINT uiSectorSize)
1979 {
1980 INT Status = -1;
1981 FLASH_CS_INFO sFlashCsInfo = {0};
1982 UINT uiTemp = 0;
1983 UINT uiSectorSig = 0;
1984 UINT uiCurrentSectorSize = 0;
1985 UINT value;
1986
1987 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
1988 value = 0;
1989 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
1990
1991 /*
1992 * Before updating the sector size in the reserved area, check if already present.
1993 */
1994 BeceemFlashBulkRead(Adapter, (PUINT)&sFlashCsInfo, Adapter->ulFlashControlSectionStart, sizeof(sFlashCsInfo));
1995 uiSectorSig = ntohl(sFlashCsInfo.FlashSectorSizeSig);
1996 uiCurrentSectorSize = ntohl(sFlashCsInfo.FlashSectorSize);
1997
1998 if (uiSectorSig == FLASH_SECTOR_SIZE_SIG) {
1999 if ((uiCurrentSectorSize <= MAX_SECTOR_SIZE) && (uiCurrentSectorSize >= MIN_SECTOR_SIZE)) {
2000 if (uiSectorSize == uiCurrentSectorSize) {
2001 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Provided sector size is same as programmed in Flash");
2002 Status = STATUS_SUCCESS;
2003 goto Restore;
2004 }
2005 }
2006 }
2007
2008 if ((uiSectorSize <= MAX_SECTOR_SIZE) && (uiSectorSize >= MIN_SECTOR_SIZE)) {
2009 sFlashCsInfo.FlashSectorSize = htonl(uiSectorSize);
2010 sFlashCsInfo.FlashSectorSizeSig = htonl(FLASH_SECTOR_SIZE_SIG);
2011
2012 Status = BeceemFlashBulkWrite(Adapter,
2013 (PUINT)&sFlashCsInfo,
2014 Adapter->ulFlashControlSectionStart,
2015 sizeof(sFlashCsInfo),
2016 TRUE);
2017 }
2018
2019 Restore:
2020 /* restore the values. */
2021 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
2022
2023 return Status;
2024 }
2025
2026 /*
2027 * Procedure: BcmGetFlashSectorSize
2028 *
2029 * Description: Finds the sector size of the FLASH.
2030 *
2031 * Arguments:
2032 * Adapter - ptr to Adapter object instance
2033 *
2034 * Returns:
2035 * UINT - sector size.
2036 *
2037 */
2038
2039 static UINT BcmGetFlashSectorSize(struct bcm_mini_adapter *Adapter, UINT FlashSectorSizeSig, UINT FlashSectorSize)
2040 {
2041 UINT uiSectorSize = 0;
2042 UINT uiSectorSig = 0;
2043
2044 if (Adapter->bSectorSizeOverride &&
2045 (Adapter->uiSectorSizeInCFG <= MAX_SECTOR_SIZE &&
2046 Adapter->uiSectorSizeInCFG >= MIN_SECTOR_SIZE)) {
2047 Adapter->uiSectorSize = Adapter->uiSectorSizeInCFG;
2048 } else {
2049 uiSectorSig = FlashSectorSizeSig;
2050
2051 if (uiSectorSig == FLASH_SECTOR_SIZE_SIG) {
2052 uiSectorSize = FlashSectorSize;
2053 /*
2054 * If the sector size stored in the FLASH makes sense then use it.
2055 */
2056 if (uiSectorSize <= MAX_SECTOR_SIZE && uiSectorSize >= MIN_SECTOR_SIZE) {
2057 Adapter->uiSectorSize = uiSectorSize;
2058 } else if (Adapter->uiSectorSizeInCFG <= MAX_SECTOR_SIZE &&
2059 Adapter->uiSectorSizeInCFG >= MIN_SECTOR_SIZE) {
2060 /* No valid size in FLASH, check if Config file has it. */
2061 Adapter->uiSectorSize = Adapter->uiSectorSizeInCFG;
2062 } else {
2063 /* Init to Default, if none of the above works. */
2064 Adapter->uiSectorSize = DEFAULT_SECTOR_SIZE;
2065 }
2066 } else {
2067 if (Adapter->uiSectorSizeInCFG <= MAX_SECTOR_SIZE &&
2068 Adapter->uiSectorSizeInCFG >= MIN_SECTOR_SIZE)
2069 Adapter->uiSectorSize = Adapter->uiSectorSizeInCFG;
2070 else
2071 Adapter->uiSectorSize = DEFAULT_SECTOR_SIZE;
2072 }
2073 }
2074
2075 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Sector size :%x\n", Adapter->uiSectorSize);
2076
2077 return Adapter->uiSectorSize;
2078 }
2079
2080 /*
2081 * Procedure: BcmInitEEPROMQueues
2082 *
2083 * Description: Initialization of EEPROM queues.
2084 *
2085 * Arguments:
2086 * Adapter - ptr to Adapter object instance
2087 *
2088 * Returns:
2089 * <OSAL_STATUS_CODE>
2090 */
2091
2092 static INT BcmInitEEPROMQueues(struct bcm_mini_adapter *Adapter)
2093 {
2094 UINT value = 0;
2095 /* CHIP Bug : Clear the Avail bits on the Read queue. The default
2096 * value on this register is supposed to be 0x00001102.
2097 * But we get 0x00001122.
2098 */
2099 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Fixing reset value on 0x0f003004 register\n");
2100 value = EEPROM_READ_DATA_AVAIL;
2101 wrmalt(Adapter, EEPROM_SPI_Q_STATUS1_REG, &value, sizeof(value));
2102
2103 /* Flush the all the EEPROM queues. */
2104 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, " Flushing the queues\n");
2105 value = EEPROM_ALL_QUEUE_FLUSH;
2106 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
2107
2108 value = 0;
2109 wrmalt(Adapter, SPI_FLUSH_REG, &value, sizeof(value));
2110
2111 /* Read the EEPROM Status Register. Just to see, no real purpose. */
2112 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "EEPROM Status register value = %x\n", ReadEEPROMStatusRegister(Adapter));
2113
2114 return STATUS_SUCCESS;
2115 } /* BcmInitEEPROMQueues() */
2116
2117 /*
2118 * Procedure: BcmInitNVM
2119 *
2120 * Description: Initialization of NVM, EEPROM size,FLASH size, sector size etc.
2121 *
2122 * Arguments:
2123 * Adapter - ptr to Adapter object instance
2124 *
2125 * Returns:
2126 * <OSAL_STATUS_CODE>
2127 */
2128
2129 INT BcmInitNVM(struct bcm_mini_adapter *ps_adapter)
2130 {
2131 BcmValidateNvmType(ps_adapter);
2132 BcmInitEEPROMQueues(ps_adapter);
2133
2134 if (ps_adapter->eNVMType == NVM_AUTODETECT) {
2135 ps_adapter->eNVMType = BcmGetNvmType(ps_adapter);
2136 if (ps_adapter->eNVMType == NVM_UNKNOWN)
2137 BCM_DEBUG_PRINT(ps_adapter, DBG_TYPE_PRINTK, 0, 0, "NVM Type is unknown!!\n");
2138 } else if (ps_adapter->eNVMType == NVM_FLASH) {
2139 BcmGetFlashCSInfo(ps_adapter);
2140 }
2141
2142 BcmGetNvmSize(ps_adapter);
2143
2144 return STATUS_SUCCESS;
2145 }
2146
2147 /* BcmGetNvmSize : set the EEPROM or flash size in Adapter.
2148 *
2149 * Input Parameter:
2150 * Adapter data structure
2151 * Return Value :
2152 * 0. means success;
2153 */
2154
2155 static INT BcmGetNvmSize(struct bcm_mini_adapter *Adapter)
2156 {
2157 if (Adapter->eNVMType == NVM_EEPROM)
2158 Adapter->uiNVMDSDSize = BcmGetEEPROMSize(Adapter);
2159 else if (Adapter->eNVMType == NVM_FLASH)
2160 Adapter->uiNVMDSDSize = BcmGetFlashSize(Adapter);
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * Procedure: BcmValidateNvm
2167 *
2168 * Description: Validates the NVM Type option selected against the device
2169 *
2170 * Arguments:
2171 * Adapter - ptr to Adapter object instance
2172 *
2173 * Returns:
2174 * <VOID>
2175 */
2176
2177 static VOID BcmValidateNvmType(struct bcm_mini_adapter *Adapter)
2178 {
2179 /*
2180 * if forcing the FLASH through CFG file, we should ensure device really has a FLASH.
2181 * Accessing the FLASH address without the FLASH being present can cause hang/freeze etc.
2182 * So if NVM_FLASH is selected for older chipsets, change it to AUTODETECT where EEPROM is 1st choice.
2183 */
2184
2185 if (Adapter->eNVMType == NVM_FLASH &&
2186 Adapter->chip_id < 0xBECE3300)
2187 Adapter->eNVMType = NVM_AUTODETECT;
2188 }
2189
2190 /*
2191 * Procedure: BcmReadFlashRDID
2192 *
2193 * Description: Reads ID from Serial Flash
2194 *
2195 * Arguments:
2196 * Adapter - ptr to Adapter object instance
2197 *
2198 * Returns:
2199 * Flash ID
2200 */
2201
2202 static ULONG BcmReadFlashRDID(struct bcm_mini_adapter *Adapter)
2203 {
2204 ULONG ulRDID = 0;
2205 UINT value;
2206
2207 /*
2208 * Read ID Instruction.
2209 */
2210 value = (FLASH_CMD_READ_ID << 24);
2211 wrmalt(Adapter, FLASH_SPI_CMDQ_REG, &value, sizeof(value));
2212
2213 /* Delay */
2214 udelay(10);
2215
2216 /*
2217 * Read SPI READQ REG. The output will be WWXXYYZZ.
2218 * The ID is 3Bytes long and is WWXXYY. ZZ needs to be Ignored.
2219 */
2220 rdmalt(Adapter, FLASH_SPI_READQ_REG, (PUINT)&ulRDID, sizeof(ulRDID));
2221
2222 return ulRDID >> 8;
2223 }
2224
2225 INT BcmAllocFlashCSStructure(struct bcm_mini_adapter *psAdapter)
2226 {
2227 if (psAdapter == NULL) {
2228 BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_PRINTK, 0, 0, "Adapter structure point is NULL");
2229 return -EINVAL;
2230 }
2231 psAdapter->psFlashCSInfo = (PFLASH_CS_INFO)kzalloc(sizeof(FLASH_CS_INFO), GFP_KERNEL);
2232 if (psAdapter->psFlashCSInfo == NULL) {
2233 BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_PRINTK, 0, 0, "Can't Allocate memory for Flash 1.x");
2234 return -ENOMEM;
2235 }
2236
2237 psAdapter->psFlash2xCSInfo = (PFLASH2X_CS_INFO)kzalloc(sizeof(FLASH2X_CS_INFO), GFP_KERNEL);
2238 if (psAdapter->psFlash2xCSInfo == NULL) {
2239 BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_PRINTK, 0, 0, "Can't Allocate memory for Flash 2.x");
2240 kfree(psAdapter->psFlashCSInfo);
2241 return -ENOMEM;
2242 }
2243
2244 psAdapter->psFlash2xVendorInfo = (PFLASH2X_VENDORSPECIFIC_INFO)kzalloc(sizeof(FLASH2X_VENDORSPECIFIC_INFO), GFP_KERNEL);
2245 if (psAdapter->psFlash2xVendorInfo == NULL) {
2246 BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_PRINTK, 0, 0, "Can't Allocate Vendor Info Memory for Flash 2.x");
2247 kfree(psAdapter->psFlashCSInfo);
2248 kfree(psAdapter->psFlash2xCSInfo);
2249 return -ENOMEM;
2250 }
2251
2252 return STATUS_SUCCESS;
2253 }
2254
2255 INT BcmDeAllocFlashCSStructure(struct bcm_mini_adapter *psAdapter)
2256 {
2257 if (psAdapter == NULL) {
2258 BCM_DEBUG_PRINT(psAdapter, DBG_TYPE_PRINTK, 0, 0, "Adapter structure point is NULL");
2259 return -EINVAL;
2260 }
2261 kfree(psAdapter->psFlashCSInfo);
2262 kfree(psAdapter->psFlash2xCSInfo);
2263 kfree(psAdapter->psFlash2xVendorInfo);
2264 return STATUS_SUCCESS;
2265 }
2266
2267 static INT BcmDumpFlash2XCSStructure(PFLASH2X_CS_INFO psFlash2xCSInfo, struct bcm_mini_adapter *Adapter)
2268 {
2269 UINT Index = 0;
2270
2271 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "**********************FLASH2X CS Structure *******************");
2272 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Signature is :%x", (psFlash2xCSInfo->MagicNumber));
2273 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Flash Major Version :%d", MAJOR_VERSION(psFlash2xCSInfo->FlashLayoutVersion));
2274 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Flash Minor Version :%d", MINOR_VERSION(psFlash2xCSInfo->FlashLayoutVersion));
2275 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, " ISOImageMajorVersion:0x%x", (psFlash2xCSInfo->ISOImageVersion));
2276 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "SCSIFirmwareMajorVersion :0x%x", (psFlash2xCSInfo->SCSIFirmwareVersion));
2277 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForPart1ISOImage :0x%x", (psFlash2xCSInfo->OffsetFromZeroForPart1ISOImage));
2278 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForScsiFirmware :0x%x", (psFlash2xCSInfo->OffsetFromZeroForScsiFirmware));
2279 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "SizeOfScsiFirmware :0x%x", (psFlash2xCSInfo->SizeOfScsiFirmware));
2280 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForPart2ISOImage :0x%x", (psFlash2xCSInfo->OffsetFromZeroForPart2ISOImage));
2281 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSDStart :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSDStart));
2282 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSDEnd :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSDEnd));
2283 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSAStart :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSAStart));
2284 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSAEnd :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSAEnd));
2285 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForControlSectionStart :0x%x", (psFlash2xCSInfo->OffsetFromZeroForControlSectionStart));
2286 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForControlSectionData :0x%x", (psFlash2xCSInfo->OffsetFromZeroForControlSectionData));
2287 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "CDLessInactivityTimeout :0x%x", (psFlash2xCSInfo->CDLessInactivityTimeout));
2288 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "NewImageSignature :0x%x", (psFlash2xCSInfo->NewImageSignature));
2289 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FlashSectorSizeSig :0x%x", (psFlash2xCSInfo->FlashSectorSizeSig));
2290 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FlashSectorSize :0x%x", (psFlash2xCSInfo->FlashSectorSize));
2291 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FlashWriteSupportSize :0x%x", (psFlash2xCSInfo->FlashWriteSupportSize));
2292 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "TotalFlashSize :0x%X", (psFlash2xCSInfo->TotalFlashSize));
2293 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FlashBaseAddr :0x%x", (psFlash2xCSInfo->FlashBaseAddr));
2294 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FlashPartMaxSize :0x%x", (psFlash2xCSInfo->FlashPartMaxSize));
2295 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "IsCDLessDeviceBootSig :0x%x", (psFlash2xCSInfo->IsCDLessDeviceBootSig));
2296 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "MassStorageTimeout :0x%x", (psFlash2xCSInfo->MassStorageTimeout));
2297 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part1Start :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part1Start));
2298 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part1End :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part1End));
2299 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part2Start :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part2Start));
2300 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part2End :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part2End));
2301 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part3Start :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part3Start));
2302 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage1Part3End :0x%x", (psFlash2xCSInfo->OffsetISOImage1Part3End));
2303 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part1Start :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part1Start));
2304 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part1End :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part1End));
2305 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part2Start :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part2Start));
2306 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part2End :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part2End));
2307 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part3Start :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part3Start));
2308 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetISOImage2Part3End :0x%x", (psFlash2xCSInfo->OffsetISOImage2Part3End));
2309 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromDSDStartForDSDHeader :0x%x", (psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader));
2310 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSD1Start :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSD1Start));
2311 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSD1End :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSD1End));
2312 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSD2Start :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSD2Start));
2313 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForDSD2End :0x%x", (psFlash2xCSInfo->OffsetFromZeroForDSD2End));
2314 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSA1Start :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSA1Start));
2315 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSA1End :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSA1End));
2316 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSA2Start :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSA2Start));
2317 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "OffsetFromZeroForVSA2End :0x%x", (psFlash2xCSInfo->OffsetFromZeroForVSA2End));
2318 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Sector Access Bit Map is Defined as :");
2319
2320 for (Index = 0; Index < (FLASH2X_TOTAL_SIZE / (DEFAULT_SECTOR_SIZE * 16)); Index++)
2321 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "SectorAccessBitMap[%d] :0x%x", Index,
2322 (psFlash2xCSInfo->SectorAccessBitMap[Index]));
2323
2324 return STATUS_SUCCESS;
2325 }
2326
2327 static INT ConvertEndianOf2XCSStructure(PFLASH2X_CS_INFO psFlash2xCSInfo)
2328 {
2329 UINT Index = 0;
2330
2331 psFlash2xCSInfo->MagicNumber = ntohl(psFlash2xCSInfo->MagicNumber);
2332 psFlash2xCSInfo->FlashLayoutVersion = ntohl(psFlash2xCSInfo->FlashLayoutVersion);
2333 /* psFlash2xCSInfo->FlashLayoutMinorVersion = ntohs(psFlash2xCSInfo->FlashLayoutMinorVersion); */
2334 psFlash2xCSInfo->ISOImageVersion = ntohl(psFlash2xCSInfo->ISOImageVersion);
2335 psFlash2xCSInfo->SCSIFirmwareVersion = ntohl(psFlash2xCSInfo->SCSIFirmwareVersion);
2336 psFlash2xCSInfo->OffsetFromZeroForPart1ISOImage = ntohl(psFlash2xCSInfo->OffsetFromZeroForPart1ISOImage);
2337 psFlash2xCSInfo->OffsetFromZeroForScsiFirmware = ntohl(psFlash2xCSInfo->OffsetFromZeroForScsiFirmware);
2338 psFlash2xCSInfo->SizeOfScsiFirmware = ntohl(psFlash2xCSInfo->SizeOfScsiFirmware);
2339 psFlash2xCSInfo->OffsetFromZeroForPart2ISOImage = ntohl(psFlash2xCSInfo->OffsetFromZeroForPart2ISOImage);
2340 psFlash2xCSInfo->OffsetFromZeroForDSDStart = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSDStart);
2341 psFlash2xCSInfo->OffsetFromZeroForDSDEnd = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSDEnd);
2342 psFlash2xCSInfo->OffsetFromZeroForVSAStart = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSAStart);
2343 psFlash2xCSInfo->OffsetFromZeroForVSAEnd = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSAEnd);
2344 psFlash2xCSInfo->OffsetFromZeroForControlSectionStart = ntohl(psFlash2xCSInfo->OffsetFromZeroForControlSectionStart);
2345 psFlash2xCSInfo->OffsetFromZeroForControlSectionData = ntohl(psFlash2xCSInfo->OffsetFromZeroForControlSectionData);
2346 psFlash2xCSInfo->CDLessInactivityTimeout = ntohl(psFlash2xCSInfo->CDLessInactivityTimeout);
2347 psFlash2xCSInfo->NewImageSignature = ntohl(psFlash2xCSInfo->NewImageSignature);
2348 psFlash2xCSInfo->FlashSectorSizeSig = ntohl(psFlash2xCSInfo->FlashSectorSizeSig);
2349 psFlash2xCSInfo->FlashSectorSize = ntohl(psFlash2xCSInfo->FlashSectorSize);
2350 psFlash2xCSInfo->FlashWriteSupportSize = ntohl(psFlash2xCSInfo->FlashWriteSupportSize);
2351 psFlash2xCSInfo->TotalFlashSize = ntohl(psFlash2xCSInfo->TotalFlashSize);
2352 psFlash2xCSInfo->FlashBaseAddr = ntohl(psFlash2xCSInfo->FlashBaseAddr);
2353 psFlash2xCSInfo->FlashPartMaxSize = ntohl(psFlash2xCSInfo->FlashPartMaxSize);
2354 psFlash2xCSInfo->IsCDLessDeviceBootSig = ntohl(psFlash2xCSInfo->IsCDLessDeviceBootSig);
2355 psFlash2xCSInfo->MassStorageTimeout = ntohl(psFlash2xCSInfo->MassStorageTimeout);
2356 psFlash2xCSInfo->OffsetISOImage1Part1Start = ntohl(psFlash2xCSInfo->OffsetISOImage1Part1Start);
2357 psFlash2xCSInfo->OffsetISOImage1Part1End = ntohl(psFlash2xCSInfo->OffsetISOImage1Part1End);
2358 psFlash2xCSInfo->OffsetISOImage1Part2Start = ntohl(psFlash2xCSInfo->OffsetISOImage1Part2Start);
2359 psFlash2xCSInfo->OffsetISOImage1Part2End = ntohl(psFlash2xCSInfo->OffsetISOImage1Part2End);
2360 psFlash2xCSInfo->OffsetISOImage1Part3Start = ntohl(psFlash2xCSInfo->OffsetISOImage1Part3Start);
2361 psFlash2xCSInfo->OffsetISOImage1Part3End = ntohl(psFlash2xCSInfo->OffsetISOImage1Part3End);
2362 psFlash2xCSInfo->OffsetISOImage2Part1Start = ntohl(psFlash2xCSInfo->OffsetISOImage2Part1Start);
2363 psFlash2xCSInfo->OffsetISOImage2Part1End = ntohl(psFlash2xCSInfo->OffsetISOImage2Part1End);
2364 psFlash2xCSInfo->OffsetISOImage2Part2Start = ntohl(psFlash2xCSInfo->OffsetISOImage2Part2Start);
2365 psFlash2xCSInfo->OffsetISOImage2Part2End = ntohl(psFlash2xCSInfo->OffsetISOImage2Part2End);
2366 psFlash2xCSInfo->OffsetISOImage2Part3Start = ntohl(psFlash2xCSInfo->OffsetISOImage2Part3Start);
2367 psFlash2xCSInfo->OffsetISOImage2Part3End = ntohl(psFlash2xCSInfo->OffsetISOImage2Part3End);
2368 psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader = ntohl(psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader);
2369 psFlash2xCSInfo->OffsetFromZeroForDSD1Start = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSD1Start);
2370 psFlash2xCSInfo->OffsetFromZeroForDSD1End = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSD1End);
2371 psFlash2xCSInfo->OffsetFromZeroForDSD2Start = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSD2Start);
2372 psFlash2xCSInfo->OffsetFromZeroForDSD2End = ntohl(psFlash2xCSInfo->OffsetFromZeroForDSD2End);
2373 psFlash2xCSInfo->OffsetFromZeroForVSA1Start = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSA1Start);
2374 psFlash2xCSInfo->OffsetFromZeroForVSA1End = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSA1End);
2375 psFlash2xCSInfo->OffsetFromZeroForVSA2Start = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSA2Start);
2376 psFlash2xCSInfo->OffsetFromZeroForVSA2End = ntohl(psFlash2xCSInfo->OffsetFromZeroForVSA2End);
2377
2378 for (Index = 0; Index < (FLASH2X_TOTAL_SIZE / (DEFAULT_SECTOR_SIZE * 16)); Index++)
2379 psFlash2xCSInfo->SectorAccessBitMap[Index] = ntohl(psFlash2xCSInfo->SectorAccessBitMap[Index]);
2380
2381 return STATUS_SUCCESS;
2382 }
2383
2384 static INT ConvertEndianOfCSStructure(PFLASH_CS_INFO psFlashCSInfo)
2385 {
2386 /* UINT Index = 0; */
2387 psFlashCSInfo->MagicNumber = ntohl(psFlashCSInfo->MagicNumber);
2388 psFlashCSInfo->FlashLayoutVersion = ntohl(psFlashCSInfo->FlashLayoutVersion);
2389 psFlashCSInfo->ISOImageVersion = ntohl(psFlashCSInfo->ISOImageVersion);
2390 /* won't convert according to old assumption */
2391 psFlashCSInfo->SCSIFirmwareVersion = (psFlashCSInfo->SCSIFirmwareVersion);
2392 psFlashCSInfo->OffsetFromZeroForPart1ISOImage = ntohl(psFlashCSInfo->OffsetFromZeroForPart1ISOImage);
2393 psFlashCSInfo->OffsetFromZeroForScsiFirmware = ntohl(psFlashCSInfo->OffsetFromZeroForScsiFirmware);
2394 psFlashCSInfo->SizeOfScsiFirmware = ntohl(psFlashCSInfo->SizeOfScsiFirmware);
2395 psFlashCSInfo->OffsetFromZeroForPart2ISOImage = ntohl(psFlashCSInfo->OffsetFromZeroForPart2ISOImage);
2396 psFlashCSInfo->OffsetFromZeroForCalibrationStart = ntohl(psFlashCSInfo->OffsetFromZeroForCalibrationStart);
2397 psFlashCSInfo->OffsetFromZeroForCalibrationEnd = ntohl(psFlashCSInfo->OffsetFromZeroForCalibrationEnd);
2398 psFlashCSInfo->OffsetFromZeroForVSAStart = ntohl(psFlashCSInfo->OffsetFromZeroForVSAStart);
2399 psFlashCSInfo->OffsetFromZeroForVSAEnd = ntohl(psFlashCSInfo->OffsetFromZeroForVSAEnd);
2400 psFlashCSInfo->OffsetFromZeroForControlSectionStart = ntohl(psFlashCSInfo->OffsetFromZeroForControlSectionStart);
2401 psFlashCSInfo->OffsetFromZeroForControlSectionData = ntohl(psFlashCSInfo->OffsetFromZeroForControlSectionData);
2402 psFlashCSInfo->CDLessInactivityTimeout = ntohl(psFlashCSInfo->CDLessInactivityTimeout);
2403 psFlashCSInfo->NewImageSignature = ntohl(psFlashCSInfo->NewImageSignature);
2404 psFlashCSInfo->FlashSectorSizeSig = ntohl(psFlashCSInfo->FlashSectorSizeSig);
2405 psFlashCSInfo->FlashSectorSize = ntohl(psFlashCSInfo->FlashSectorSize);
2406 psFlashCSInfo->FlashWriteSupportSize = ntohl(psFlashCSInfo->FlashWriteSupportSize);
2407 psFlashCSInfo->TotalFlashSize = ntohl(psFlashCSInfo->TotalFlashSize);
2408 psFlashCSInfo->FlashBaseAddr = ntohl(psFlashCSInfo->FlashBaseAddr);
2409 psFlashCSInfo->FlashPartMaxSize = ntohl(psFlashCSInfo->FlashPartMaxSize);
2410 psFlashCSInfo->IsCDLessDeviceBootSig = ntohl(psFlashCSInfo->IsCDLessDeviceBootSig);
2411 psFlashCSInfo->MassStorageTimeout = ntohl(psFlashCSInfo->MassStorageTimeout);
2412
2413 return STATUS_SUCCESS;
2414 }
2415
2416 static INT IsSectionExistInVendorInfo(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL section)
2417 {
2418 return (Adapter->uiVendorExtnFlag &&
2419 (Adapter->psFlash2xVendorInfo->VendorSection[section].AccessFlags & FLASH2X_SECTION_PRESENT) &&
2420 (Adapter->psFlash2xVendorInfo->VendorSection[section].OffsetFromZeroForSectionStart != UNINIT_PTR_IN_CS));
2421 }
2422
2423 static VOID UpdateVendorInfo(struct bcm_mini_adapter *Adapter)
2424 {
2425 B_UINT32 i = 0;
2426 UINT uiSizeSection = 0;
2427
2428 Adapter->uiVendorExtnFlag = FALSE;
2429
2430 for (i = 0; i < TOTAL_SECTIONS; i++)
2431 Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart = UNINIT_PTR_IN_CS;
2432
2433 if (STATUS_SUCCESS != vendorextnGetSectionInfo(Adapter, Adapter->psFlash2xVendorInfo))
2434 return;
2435
2436 i = 0;
2437 while (i < TOTAL_SECTIONS) {
2438 if (!(Adapter->psFlash2xVendorInfo->VendorSection[i].AccessFlags & FLASH2X_SECTION_PRESENT)) {
2439 i++;
2440 continue;
2441 }
2442
2443 Adapter->uiVendorExtnFlag = TRUE;
2444 uiSizeSection = (Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionEnd -
2445 Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart);
2446
2447 switch (i) {
2448 case DSD0:
2449 if ((uiSizeSection >= (Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + sizeof(DSD_HEADER))) &&
2450 (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart))
2451 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDEnd = VENDOR_PTR_IN_CS;
2452 else
2453 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDEnd = UNINIT_PTR_IN_CS;
2454 break;
2455
2456 case DSD1:
2457 if ((uiSizeSection >= (Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + sizeof(DSD_HEADER))) &&
2458 (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart))
2459 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1End = VENDOR_PTR_IN_CS;
2460 else
2461 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1End = UNINIT_PTR_IN_CS;
2462 break;
2463
2464 case DSD2:
2465 if ((uiSizeSection >= (Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + sizeof(DSD_HEADER))) &&
2466 (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart))
2467 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2End = VENDOR_PTR_IN_CS;
2468 else
2469 Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2End = UNINIT_PTR_IN_CS;
2470 break;
2471 case VSA0:
2472 if (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart)
2473 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAEnd = VENDOR_PTR_IN_CS;
2474 else
2475 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAEnd = UNINIT_PTR_IN_CS;
2476 break;
2477
2478 case VSA1:
2479 if (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart)
2480 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1End = VENDOR_PTR_IN_CS;
2481 else
2482 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1End = UNINIT_PTR_IN_CS;
2483 break;
2484 case VSA2:
2485 if (UNINIT_PTR_IN_CS != Adapter->psFlash2xVendorInfo->VendorSection[i].OffsetFromZeroForSectionStart)
2486 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2End = VENDOR_PTR_IN_CS;
2487 else
2488 Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2Start = Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2End = UNINIT_PTR_IN_CS;
2489 break;
2490
2491 default:
2492 break;
2493 }
2494 i++;
2495 }
2496 }
2497
2498 /*
2499 * Procedure: BcmGetFlashCSInfo
2500 *
2501 * Description: Reads control structure and gets Cal section addresses.
2502 *
2503 * Arguments:
2504 * Adapter - ptr to Adapter object instance
2505 *
2506 * Returns:
2507 * <VOID>
2508 */
2509
2510 static INT BcmGetFlashCSInfo(struct bcm_mini_adapter *Adapter)
2511 {
2512 /* FLASH_CS_INFO sFlashCsInfo = {0}; */
2513
2514 #if !defined(BCM_SHM_INTERFACE) || defined(FLASH_DIRECT_ACCESS)
2515 UINT value;
2516 #endif
2517
2518 UINT uiFlashLayoutMajorVersion;
2519 Adapter->uiFlashLayoutMinorVersion = 0;
2520 Adapter->uiFlashLayoutMajorVersion = 0;
2521 Adapter->ulFlashControlSectionStart = FLASH_CS_INFO_START_ADDR;
2522
2523 Adapter->uiFlashBaseAdd = 0;
2524 Adapter->ulFlashCalStart = 0;
2525 memset(Adapter->psFlashCSInfo, 0 , sizeof(FLASH_CS_INFO));
2526 memset(Adapter->psFlash2xCSInfo, 0 , sizeof(FLASH2X_CS_INFO));
2527
2528 if (!Adapter->bDDRInitDone) {
2529 value = FLASH_CONTIGIOUS_START_ADDR_BEFORE_INIT;
2530 wrmalt(Adapter, 0xAF00A080, &value, sizeof(value));
2531 }
2532
2533 /* Reading first 8 Bytes to get the Flash Layout
2534 * MagicNumber(4 bytes) +FlashLayoutMinorVersion(2 Bytes) +FlashLayoutMajorVersion(2 Bytes)
2535 */
2536 BeceemFlashBulkRead(Adapter, (PUINT)Adapter->psFlashCSInfo, Adapter->ulFlashControlSectionStart, 8);
2537
2538 Adapter->psFlashCSInfo->FlashLayoutVersion = ntohl(Adapter->psFlashCSInfo->FlashLayoutVersion);
2539 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Flash Layout Version :%X", (Adapter->psFlashCSInfo->FlashLayoutVersion));
2540 /* BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Flash Layout Minor Version :%d\n", ntohs(sFlashCsInfo.FlashLayoutMinorVersion)); */
2541 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Signature is :%x\n", ntohl(Adapter->psFlashCSInfo->MagicNumber));
2542
2543 if (FLASH_CONTROL_STRUCT_SIGNATURE == ntohl(Adapter->psFlashCSInfo->MagicNumber)) {
2544 uiFlashLayoutMajorVersion = MAJOR_VERSION((Adapter->psFlashCSInfo->FlashLayoutVersion));
2545 Adapter->uiFlashLayoutMinorVersion = MINOR_VERSION((Adapter->psFlashCSInfo->FlashLayoutVersion));
2546 } else {
2547 Adapter->uiFlashLayoutMinorVersion = 0;
2548 uiFlashLayoutMajorVersion = 0;
2549 }
2550
2551 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "FLASH LAYOUT MAJOR VERSION :%X", uiFlashLayoutMajorVersion);
2552
2553 if (uiFlashLayoutMajorVersion < FLASH_2X_MAJOR_NUMBER) {
2554 BeceemFlashBulkRead(Adapter, (PUINT)Adapter->psFlashCSInfo, Adapter->ulFlashControlSectionStart, sizeof(FLASH_CS_INFO));
2555 ConvertEndianOfCSStructure(Adapter->psFlashCSInfo);
2556 Adapter->ulFlashCalStart = (Adapter->psFlashCSInfo->OffsetFromZeroForCalibrationStart);
2557
2558 if (!((Adapter->uiFlashLayoutMajorVersion == 1) && (Adapter->uiFlashLayoutMinorVersion == 1)))
2559 Adapter->ulFlashControlSectionStart = Adapter->psFlashCSInfo->OffsetFromZeroForControlSectionStart;
2560
2561 if ((FLASH_CONTROL_STRUCT_SIGNATURE == (Adapter->psFlashCSInfo->MagicNumber)) &&
2562 (SCSI_FIRMWARE_MINOR_VERSION <= MINOR_VERSION(Adapter->psFlashCSInfo->SCSIFirmwareVersion)) &&
2563 (FLASH_SECTOR_SIZE_SIG == (Adapter->psFlashCSInfo->FlashSectorSizeSig)) &&
2564 (BYTE_WRITE_SUPPORT == (Adapter->psFlashCSInfo->FlashWriteSupportSize))) {
2565 Adapter->ulFlashWriteSize = (Adapter->psFlashCSInfo->FlashWriteSupportSize);
2566 Adapter->fpFlashWrite = flashByteWrite;
2567 Adapter->fpFlashWriteWithStatusCheck = flashByteWriteStatus;
2568 } else {
2569 Adapter->ulFlashWriteSize = MAX_RW_SIZE;
2570 Adapter->fpFlashWrite = flashWrite;
2571 Adapter->fpFlashWriteWithStatusCheck = flashWriteStatus;
2572 }
2573
2574 BcmGetFlashSectorSize(Adapter, (Adapter->psFlashCSInfo->FlashSectorSizeSig),
2575 (Adapter->psFlashCSInfo->FlashSectorSize));
2576 Adapter->uiFlashBaseAdd = Adapter->psFlashCSInfo->FlashBaseAddr & 0xFCFFFFFF;
2577 } else {
2578 if (BcmFlash2xBulkRead(Adapter, (PUINT)Adapter->psFlash2xCSInfo, NO_SECTION_VAL,
2579 Adapter->ulFlashControlSectionStart, sizeof(FLASH2X_CS_INFO))) {
2580 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Unable to read CS structure\n");
2581 return STATUS_FAILURE;
2582 }
2583
2584 ConvertEndianOf2XCSStructure(Adapter->psFlash2xCSInfo);
2585 BcmDumpFlash2XCSStructure(Adapter->psFlash2xCSInfo, Adapter);
2586 if ((FLASH_CONTROL_STRUCT_SIGNATURE == Adapter->psFlash2xCSInfo->MagicNumber) &&
2587 (SCSI_FIRMWARE_MINOR_VERSION <= MINOR_VERSION(Adapter->psFlash2xCSInfo->SCSIFirmwareVersion)) &&
2588 (FLASH_SECTOR_SIZE_SIG == Adapter->psFlash2xCSInfo->FlashSectorSizeSig) &&
2589 (BYTE_WRITE_SUPPORT == Adapter->psFlash2xCSInfo->FlashWriteSupportSize)) {
2590 Adapter->ulFlashWriteSize = Adapter->psFlash2xCSInfo->FlashWriteSupportSize;
2591 Adapter->fpFlashWrite = flashByteWrite;
2592 Adapter->fpFlashWriteWithStatusCheck = flashByteWriteStatus;
2593 } else {
2594 Adapter->ulFlashWriteSize = MAX_RW_SIZE;
2595 Adapter->fpFlashWrite = flashWrite;
2596 Adapter->fpFlashWriteWithStatusCheck = flashWriteStatus;
2597 }
2598
2599 BcmGetFlashSectorSize(Adapter, Adapter->psFlash2xCSInfo->FlashSectorSizeSig,
2600 Adapter->psFlash2xCSInfo->FlashSectorSize);
2601
2602 UpdateVendorInfo(Adapter);
2603
2604 BcmGetActiveDSD(Adapter);
2605 BcmGetActiveISO(Adapter);
2606 Adapter->uiFlashBaseAdd = Adapter->psFlash2xCSInfo->FlashBaseAddr & 0xFCFFFFFF;
2607 Adapter->ulFlashControlSectionStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForControlSectionStart;
2608 }
2609 /*
2610 * Concerns: what if CS sector size does not match with this sector size ???
2611 * what is the indication of AccessBitMap in CS in flash 2.x ????
2612 */
2613 Adapter->ulFlashID = BcmReadFlashRDID(Adapter);
2614 Adapter->uiFlashLayoutMajorVersion = uiFlashLayoutMajorVersion;
2615
2616 return STATUS_SUCCESS;
2617 }
2618
2619 /*
2620 * Procedure: BcmGetNvmType
2621 *
2622 * Description: Finds the type of NVM used.
2623 *
2624 * Arguments:
2625 * Adapter - ptr to Adapter object instance
2626 *
2627 * Returns:
2628 * NVM_TYPE
2629 *
2630 */
2631
2632 static NVM_TYPE BcmGetNvmType(struct bcm_mini_adapter *Adapter)
2633 {
2634 UINT uiData = 0;
2635
2636 BeceemEEPROMBulkRead(Adapter, &uiData, 0x0, 4);
2637 if (uiData == BECM)
2638 return NVM_EEPROM;
2639
2640 /*
2641 * Read control struct and get cal addresses before accessing the flash
2642 */
2643 BcmGetFlashCSInfo(Adapter);
2644
2645 BeceemFlashBulkRead(Adapter, &uiData, 0x0 + Adapter->ulFlashCalStart, 4);
2646 if (uiData == BECM)
2647 return NVM_FLASH;
2648
2649 /*
2650 * even if there is no valid signature on EEPROM/FLASH find out if they really exist.
2651 * if exist select it.
2652 */
2653 if (BcmGetEEPROMSize(Adapter))
2654 return NVM_EEPROM;
2655
2656 /* TBD for Flash. */
2657 return NVM_UNKNOWN;
2658 }
2659
2660 /*
2661 * BcmGetSectionValStartOffset - this will calculate the section's starting offset if section val is given
2662 * @Adapter : Drivers Private Data structure
2663 * @eFlashSectionVal : Flash secion value defined in enum FLASH2X_SECTION_VAL
2664 *
2665 * Return value:-
2666 * On success it return the start offset of the provided section val
2667 * On Failure -returns STATUS_FAILURE
2668 */
2669
2670 INT BcmGetSectionValStartOffset(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlashSectionVal)
2671 {
2672 /*
2673 * Considering all the section for which end offset can be calculated or directly given
2674 * in CS Structure. if matching case does not exist, return STATUS_FAILURE indicating section
2675 * endoffset can't be calculated or given in CS Structure.
2676 */
2677
2678 INT SectStartOffset = 0;
2679
2680 SectStartOffset = INVALID_OFFSET;
2681
2682 if (IsSectionExistInVendorInfo(Adapter, eFlashSectionVal))
2683 return Adapter->psFlash2xVendorInfo->VendorSection[eFlashSectionVal].OffsetFromZeroForSectionStart;
2684
2685 switch (eFlashSectionVal) {
2686 case ISO_IMAGE1:
2687 if ((Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start != UNINIT_PTR_IN_CS) &&
2688 (IsNonCDLessDevice(Adapter) == FALSE))
2689 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start);
2690 break;
2691 case ISO_IMAGE2:
2692 if ((Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start != UNINIT_PTR_IN_CS) &&
2693 (IsNonCDLessDevice(Adapter) == FALSE))
2694 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start);
2695 break;
2696 case DSD0:
2697 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart != UNINIT_PTR_IN_CS)
2698 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart);
2699 break;
2700 case DSD1:
2701 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start != UNINIT_PTR_IN_CS)
2702 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start);
2703 break;
2704 case DSD2:
2705 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start != UNINIT_PTR_IN_CS)
2706 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start);
2707 break;
2708 case VSA0:
2709 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAStart != UNINIT_PTR_IN_CS)
2710 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAStart);
2711 break;
2712 case VSA1:
2713 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1Start != UNINIT_PTR_IN_CS)
2714 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1Start);
2715 break;
2716 case VSA2:
2717 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2Start != UNINIT_PTR_IN_CS)
2718 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2Start);
2719 break;
2720 case SCSI:
2721 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForScsiFirmware != UNINIT_PTR_IN_CS)
2722 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForScsiFirmware);
2723 break;
2724 case CONTROL_SECTION:
2725 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForControlSectionStart != UNINIT_PTR_IN_CS)
2726 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForControlSectionStart);
2727 break;
2728 case ISO_IMAGE1_PART2:
2729 if (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start != UNINIT_PTR_IN_CS)
2730 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start);
2731 break;
2732 case ISO_IMAGE1_PART3:
2733 if (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3Start != UNINIT_PTR_IN_CS)
2734 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3Start);
2735 break;
2736 case ISO_IMAGE2_PART2:
2737 if (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start != UNINIT_PTR_IN_CS)
2738 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start);
2739 break;
2740 case ISO_IMAGE2_PART3:
2741 if (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3Start != UNINIT_PTR_IN_CS)
2742 SectStartOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3Start);
2743 break;
2744 default:
2745 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section Does not exist in Flash 2.x");
2746 SectStartOffset = INVALID_OFFSET;
2747 }
2748
2749 return SectStartOffset;
2750 }
2751
2752 /*
2753 * BcmGetSectionValEndOffset - this will calculate the section's Ending offset if section val is given
2754 * @Adapter : Drivers Private Data structure
2755 * @eFlashSectionVal : Flash secion value defined in enum FLASH2X_SECTION_VAL
2756 *
2757 * Return value:-
2758 * On success it return the end offset of the provided section val
2759 * On Failure -returns STATUS_FAILURE
2760 */
2761
2762 INT BcmGetSectionValEndOffset(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal)
2763 {
2764 INT SectEndOffset = 0;
2765
2766 SectEndOffset = INVALID_OFFSET;
2767 if (IsSectionExistInVendorInfo(Adapter, eFlash2xSectionVal))
2768 return Adapter->psFlash2xVendorInfo->VendorSection[eFlash2xSectionVal].OffsetFromZeroForSectionEnd;
2769
2770 switch (eFlash2xSectionVal) {
2771 case ISO_IMAGE1:
2772 if ((Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End != UNINIT_PTR_IN_CS) &&
2773 (IsNonCDLessDevice(Adapter) == FALSE))
2774 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End);
2775 break;
2776 case ISO_IMAGE2:
2777 if ((Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End != UNINIT_PTR_IN_CS) &&
2778 (IsNonCDLessDevice(Adapter) == FALSE))
2779 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End);
2780 break;
2781 case DSD0:
2782 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDEnd != UNINIT_PTR_IN_CS)
2783 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDEnd);
2784 break;
2785 case DSD1:
2786 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1End != UNINIT_PTR_IN_CS)
2787 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1End);
2788 break;
2789 case DSD2:
2790 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2End != UNINIT_PTR_IN_CS)
2791 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2End);
2792 break;
2793 case VSA0:
2794 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAEnd != UNINIT_PTR_IN_CS)
2795 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAEnd);
2796 break;
2797 case VSA1:
2798 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1End != UNINIT_PTR_IN_CS)
2799 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1End);
2800 break;
2801 case VSA2:
2802 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2End != UNINIT_PTR_IN_CS)
2803 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2End);
2804 break;
2805 case SCSI:
2806 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForScsiFirmware != UNINIT_PTR_IN_CS)
2807 SectEndOffset = ((Adapter->psFlash2xCSInfo->OffsetFromZeroForScsiFirmware) +
2808 (Adapter->psFlash2xCSInfo->SizeOfScsiFirmware));
2809 break;
2810 case CONTROL_SECTION:
2811 /* Not Clear So Putting failure. confirm and fix it. */
2812 SectEndOffset = STATUS_FAILURE;
2813 case ISO_IMAGE1_PART2:
2814 if (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End != UNINIT_PTR_IN_CS)
2815 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End);
2816 break;
2817 case ISO_IMAGE1_PART3:
2818 if (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3End != UNINIT_PTR_IN_CS)
2819 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3End);
2820 break;
2821 case ISO_IMAGE2_PART2:
2822 if (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End != UNINIT_PTR_IN_CS)
2823 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End);
2824 break;
2825 case ISO_IMAGE2_PART3:
2826 if (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3End != UNINIT_PTR_IN_CS)
2827 SectEndOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3End);
2828 break;
2829 default:
2830 SectEndOffset = INVALID_OFFSET;
2831 }
2832
2833 return SectEndOffset ;
2834 }
2835
2836 /*
2837 * BcmFlash2xBulkRead:- Read API for Flash Map 2.x .
2838 * @Adapter :Driver Private Data Structure
2839 * @pBuffer : Buffer where data has to be put after reading
2840 * @eFlashSectionVal :Flash Section Val defined in FLASH2X_SECTION_VAL
2841 * @uiOffsetWithinSectionVal :- Offset with in provided section
2842 * @uiNumBytes : Number of Bytes for Read
2843 *
2844 * Return value:-
2845 * return true on success and STATUS_FAILURE on fail.
2846 */
2847
2848 INT BcmFlash2xBulkRead(struct bcm_mini_adapter *Adapter,
2849 PUINT pBuffer,
2850 FLASH2X_SECTION_VAL eFlash2xSectionVal,
2851 UINT uiOffsetWithinSectionVal,
2852 UINT uiNumBytes)
2853 {
2854 INT Status = STATUS_SUCCESS;
2855 INT SectionStartOffset = 0;
2856 UINT uiAbsoluteOffset = 0;
2857 UINT uiTemp = 0, value = 0;
2858
2859 if (Adapter == NULL) {
2860 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Adapter structure is NULL");
2861 return -EINVAL;
2862 }
2863 if (Adapter->device_removed) {
2864 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Device has been removed");
2865 return -ENODEV;
2866 }
2867
2868 /* NO_SECTION_VAL means absolute offset is given. */
2869 if (eFlash2xSectionVal == NO_SECTION_VAL)
2870 SectionStartOffset = 0;
2871 else
2872 SectionStartOffset = BcmGetSectionValStartOffset(Adapter, eFlash2xSectionVal);
2873
2874 if (SectionStartOffset == STATUS_FAILURE) {
2875 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "This Section<%d> does not exixt in Flash 2.x Map ", eFlash2xSectionVal);
2876 return -EINVAL;
2877 }
2878
2879 if (IsSectionExistInVendorInfo(Adapter, eFlash2xSectionVal))
2880 return vendorextnReadSection(Adapter, (PUCHAR)pBuffer, eFlash2xSectionVal, uiOffsetWithinSectionVal, uiNumBytes);
2881
2882 /* calculating the absolute offset from FLASH; */
2883 uiAbsoluteOffset = uiOffsetWithinSectionVal + SectionStartOffset;
2884 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
2885 value = 0;
2886 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
2887 Status = BeceemFlashBulkRead(Adapter, pBuffer, uiAbsoluteOffset, uiNumBytes);
2888 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
2889 if (Status) {
2890 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Read Failed with Status :%d", Status);
2891 return Status;
2892 }
2893
2894 return Status;
2895 }
2896
2897 /*
2898 * BcmFlash2xBulkWrite :-API for Writing on the Flash Map 2.x.
2899 * @Adapter :Driver Private Data Structure
2900 * @pBuffer : Buffer From where data has to taken for writing
2901 * @eFlashSectionVal :Flash Section Val defined in FLASH2X_SECTION_VAL
2902 * @uiOffsetWithinSectionVal :- Offset with in provided section
2903 * @uiNumBytes : Number of Bytes for Write
2904 *
2905 * Return value:-
2906 * return true on success and STATUS_FAILURE on fail.
2907 *
2908 */
2909
2910 INT BcmFlash2xBulkWrite(struct bcm_mini_adapter *Adapter,
2911 PUINT pBuffer,
2912 FLASH2X_SECTION_VAL eFlash2xSectVal,
2913 UINT uiOffset,
2914 UINT uiNumBytes,
2915 UINT bVerify)
2916 {
2917 INT Status = STATUS_SUCCESS;
2918 UINT FlashSectValStartOffset = 0;
2919 UINT uiTemp = 0, value = 0;
2920
2921 if (Adapter == NULL) {
2922 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Adapter structure is NULL");
2923 return -EINVAL;
2924 }
2925
2926 if (Adapter->device_removed) {
2927 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Device has been removed");
2928 return -ENODEV;
2929 }
2930
2931 /* NO_SECTION_VAL means absolute offset is given. */
2932 if (eFlash2xSectVal == NO_SECTION_VAL)
2933 FlashSectValStartOffset = 0;
2934 else
2935 FlashSectValStartOffset = BcmGetSectionValStartOffset(Adapter, eFlash2xSectVal);
2936
2937 if (FlashSectValStartOffset == STATUS_FAILURE) {
2938 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "This Section<%d> does not exixt in Flash Map 2.x", eFlash2xSectVal);
2939 return -EINVAL;
2940 }
2941
2942 if (IsSectionExistInVendorInfo(Adapter, eFlash2xSectVal))
2943 return vendorextnWriteSection(Adapter, (PUCHAR)pBuffer, eFlash2xSectVal, uiOffset, uiNumBytes, bVerify);
2944
2945 /* calculating the absolute offset from FLASH; */
2946 uiOffset = uiOffset + FlashSectValStartOffset;
2947
2948 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
2949 value = 0;
2950 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
2951
2952 Status = BeceemFlashBulkWrite(Adapter, pBuffer, uiOffset, uiNumBytes, bVerify);
2953
2954 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
2955 if (Status) {
2956 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Flash Write failed with Status :%d", Status);
2957 return Status;
2958 }
2959
2960 return Status;
2961 }
2962
2963 /*
2964 * BcmGetActiveDSD : Set the Active DSD in Adapter Structure which has to be dumped in DDR
2965 * @Adapter :-Drivers private Data Structure
2966 *
2967 * Return Value:-
2968 * Return STATUS_SUCESS if get success in setting the right DSD else negaive error code
2969 *
2970 */
2971
2972 static INT BcmGetActiveDSD(struct bcm_mini_adapter *Adapter)
2973 {
2974 FLASH2X_SECTION_VAL uiHighestPriDSD = 0;
2975
2976 uiHighestPriDSD = getHighestPriDSD(Adapter);
2977 Adapter->eActiveDSD = uiHighestPriDSD;
2978
2979 if (DSD0 == uiHighestPriDSD)
2980 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart;
2981 if (DSD1 == uiHighestPriDSD)
2982 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start;
2983 if (DSD2 == uiHighestPriDSD)
2984 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start;
2985 if (Adapter->eActiveDSD)
2986 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Active DSD :%d", Adapter->eActiveDSD);
2987 if (Adapter->eActiveDSD == 0) {
2988 /* if No DSD gets Active, Make Active the DSD with WR permission */
2989 if (IsSectionWritable(Adapter, DSD2)) {
2990 Adapter->eActiveDSD = DSD2;
2991 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start;
2992 } else if (IsSectionWritable(Adapter, DSD1)) {
2993 Adapter->eActiveDSD = DSD1;
2994 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start;
2995 } else if (IsSectionWritable(Adapter, DSD0)) {
2996 Adapter->eActiveDSD = DSD0;
2997 Adapter->ulFlashCalStart = Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart;
2998 }
2999 }
3000
3001 return STATUS_SUCCESS;
3002 }
3003
3004 /*
3005 * BcmGetActiveISO :- Set the Active ISO in Adapter Data Structue
3006 * @Adapter : Driver private Data Structure
3007 *
3008 * Return Value:-
3009 * Sucsess:- STATUS_SUCESS
3010 * Failure- : negative erro code
3011 *
3012 */
3013
3014 static INT BcmGetActiveISO(struct bcm_mini_adapter *Adapter)
3015 {
3016 INT HighestPriISO = 0;
3017
3018 HighestPriISO = getHighestPriISO(Adapter);
3019
3020 Adapter->eActiveISO = HighestPriISO;
3021 if (Adapter->eActiveISO == ISO_IMAGE2)
3022 Adapter->uiActiveISOOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start);
3023 else if (Adapter->eActiveISO == ISO_IMAGE1)
3024 Adapter->uiActiveISOOffset = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start);
3025
3026 if (Adapter->eActiveISO)
3027 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Active ISO :%x", Adapter->eActiveISO);
3028
3029 return STATUS_SUCCESS;
3030 }
3031
3032 /*
3033 * IsOffsetWritable :- it will tell the access permission of the sector having passed offset
3034 * @Adapter : Drivers Private Data Structure
3035 * @uiOffset : Offset provided in the Flash
3036 *
3037 * Return Value:-
3038 * Success:-TRUE , offset is writable
3039 * Failure:-FALSE, offset is RO
3040 *
3041 */
3042
3043 B_UINT8 IsOffsetWritable(struct bcm_mini_adapter *Adapter, UINT uiOffset)
3044 {
3045 UINT uiSectorNum = 0;
3046 UINT uiWordOfSectorPermission = 0;
3047 UINT uiBitofSectorePermission = 0;
3048 B_UINT32 permissionBits = 0;
3049
3050 uiSectorNum = uiOffset/Adapter->uiSectorSize;
3051
3052 /* calculating the word having this Sector Access permission from SectorAccessBitMap Array */
3053 uiWordOfSectorPermission = Adapter->psFlash2xCSInfo->SectorAccessBitMap[uiSectorNum / 16];
3054
3055 /* calculating the bit index inside the word for this sector */
3056 uiBitofSectorePermission = 2 * (15 - uiSectorNum % 16);
3057
3058 /* Setting Access permission */
3059 permissionBits = uiWordOfSectorPermission & (0x3 << uiBitofSectorePermission);
3060 permissionBits = (permissionBits >> uiBitofSectorePermission) & 0x3;
3061 if (permissionBits == SECTOR_READWRITE_PERMISSION)
3062 return TRUE;
3063 else
3064 return FALSE;
3065 }
3066
3067 static INT BcmDumpFlash2xSectionBitMap(PFLASH2X_BITMAP psFlash2xBitMap)
3068 {
3069 struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
3070
3071 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "***************Flash 2.x Section Bitmap***************");
3072 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "ISO_IMAGE1 :0X%x", psFlash2xBitMap->ISO_IMAGE1);
3073 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "ISO_IMAGE2 :0X%x", psFlash2xBitMap->ISO_IMAGE2);
3074 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "DSD0 :0X%x", psFlash2xBitMap->DSD0);
3075 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "DSD1 :0X%x", psFlash2xBitMap->DSD1);
3076 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "DSD2 :0X%x", psFlash2xBitMap->DSD2);
3077 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "VSA0 :0X%x", psFlash2xBitMap->VSA0);
3078 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "VSA1 :0X%x", psFlash2xBitMap->VSA1);
3079 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "VSA2 :0X%x", psFlash2xBitMap->VSA2);
3080 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "SCSI :0X%x", psFlash2xBitMap->SCSI);
3081 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "CONTROL_SECTION :0X%x", psFlash2xBitMap->CONTROL_SECTION);
3082
3083 return STATUS_SUCCESS;
3084 }
3085
3086 /*
3087 * BcmGetFlash2xSectionalBitMap :- It will provide the bit map of all the section present in Flash
3088 * 8bit has been assigned to every section.
3089 * bit[0] :Section present or not
3090 * bit[1] :section is valid or not
3091 * bit[2] : Secton is read only or has write permission too.
3092 * bit[3] : Active Section -
3093 * bit[7...4] = Reserved .
3094 *
3095 * @Adapter:-Driver private Data Structure
3096 *
3097 * Return value:-
3098 * Success:- STATUS_SUCESS
3099 * Failure:- negative error code
3100 */
3101
3102 INT BcmGetFlash2xSectionalBitMap(struct bcm_mini_adapter *Adapter, PFLASH2X_BITMAP psFlash2xBitMap)
3103 {
3104 PFLASH2X_CS_INFO psFlash2xCSInfo = Adapter->psFlash2xCSInfo;
3105 FLASH2X_SECTION_VAL uiHighestPriDSD = 0;
3106 FLASH2X_SECTION_VAL uiHighestPriISO = 0;
3107 BOOLEAN SetActiveDSDDone = FALSE;
3108 BOOLEAN SetActiveISODone = FALSE;
3109
3110 /* For 1.x map all the section except DSD0 will be shown as not present
3111 * This part will be used by calibration tool to detect the number of DSD present in Flash.
3112 */
3113 if (IsFlash2x(Adapter) == FALSE) {
3114 psFlash2xBitMap->ISO_IMAGE2 = 0;
3115 psFlash2xBitMap->ISO_IMAGE1 = 0;
3116 psFlash2xBitMap->DSD0 = FLASH2X_SECTION_VALID | FLASH2X_SECTION_ACT | FLASH2X_SECTION_PRESENT; /* 0xF; 0000(Reseved)1(Active)0(RW)1(valid)1(present) */
3117 psFlash2xBitMap->DSD1 = 0;
3118 psFlash2xBitMap->DSD2 = 0;
3119 psFlash2xBitMap->VSA0 = 0;
3120 psFlash2xBitMap->VSA1 = 0;
3121 psFlash2xBitMap->VSA2 = 0;
3122 psFlash2xBitMap->CONTROL_SECTION = 0;
3123 psFlash2xBitMap->SCSI = 0;
3124 psFlash2xBitMap->Reserved0 = 0;
3125 psFlash2xBitMap->Reserved1 = 0;
3126 psFlash2xBitMap->Reserved2 = 0;
3127
3128 return STATUS_SUCCESS;
3129 }
3130
3131 uiHighestPriDSD = getHighestPriDSD(Adapter);
3132 uiHighestPriISO = getHighestPriISO(Adapter);
3133
3134 /*
3135 * IS0 IMAGE 2
3136 */
3137 if ((psFlash2xCSInfo->OffsetISOImage2Part1Start) != UNINIT_PTR_IN_CS) {
3138 /* Setting the 0th Bit representing the Section is present or not. */
3139 psFlash2xBitMap->ISO_IMAGE2 = psFlash2xBitMap->ISO_IMAGE2 | FLASH2X_SECTION_PRESENT;
3140
3141 if (ReadISOSignature(Adapter, ISO_IMAGE2) == ISO_IMAGE_MAGIC_NUMBER)
3142 psFlash2xBitMap->ISO_IMAGE2 |= FLASH2X_SECTION_VALID;
3143
3144 /* Calculation for extrating the Access permission */
3145 if (IsSectionWritable(Adapter, ISO_IMAGE2) == FALSE)
3146 psFlash2xBitMap->ISO_IMAGE2 |= FLASH2X_SECTION_RO;
3147
3148 if (SetActiveISODone == FALSE && uiHighestPriISO == ISO_IMAGE2) {
3149 psFlash2xBitMap->ISO_IMAGE2 |= FLASH2X_SECTION_ACT;
3150 SetActiveISODone = TRUE;
3151 }
3152 }
3153
3154 /*
3155 * IS0 IMAGE 1
3156 */
3157 if ((psFlash2xCSInfo->OffsetISOImage1Part1Start) != UNINIT_PTR_IN_CS) {
3158 /* Setting the 0th Bit representing the Section is present or not. */
3159 psFlash2xBitMap->ISO_IMAGE1 = psFlash2xBitMap->ISO_IMAGE1 | FLASH2X_SECTION_PRESENT;
3160
3161 if (ReadISOSignature(Adapter, ISO_IMAGE1) == ISO_IMAGE_MAGIC_NUMBER)
3162 psFlash2xBitMap->ISO_IMAGE1 |= FLASH2X_SECTION_VALID;
3163
3164 /* Calculation for extrating the Access permission */
3165 if (IsSectionWritable(Adapter, ISO_IMAGE1) == FALSE)
3166 psFlash2xBitMap->ISO_IMAGE1 |= FLASH2X_SECTION_RO;
3167
3168 if (SetActiveISODone == FALSE && uiHighestPriISO == ISO_IMAGE1) {
3169 psFlash2xBitMap->ISO_IMAGE1 |= FLASH2X_SECTION_ACT;
3170 SetActiveISODone = TRUE;
3171 }
3172 }
3173
3174 /*
3175 * DSD2
3176 */
3177 if ((psFlash2xCSInfo->OffsetFromZeroForDSD2Start) != UNINIT_PTR_IN_CS) {
3178 /* Setting the 0th Bit representing the Section is present or not. */
3179 psFlash2xBitMap->DSD2 = psFlash2xBitMap->DSD2 | FLASH2X_SECTION_PRESENT;
3180
3181 if (ReadDSDSignature(Adapter, DSD2) == DSD_IMAGE_MAGIC_NUMBER)
3182 psFlash2xBitMap->DSD2 |= FLASH2X_SECTION_VALID;
3183
3184 /* Calculation for extrating the Access permission */
3185 if (IsSectionWritable(Adapter, DSD2) == FALSE) {
3186 psFlash2xBitMap->DSD2 |= FLASH2X_SECTION_RO;
3187 } else {
3188 /* Means section is writable */
3189 if ((SetActiveDSDDone == FALSE) && (uiHighestPriDSD == DSD2)) {
3190 psFlash2xBitMap->DSD2 |= FLASH2X_SECTION_ACT;
3191 SetActiveDSDDone = TRUE;
3192 }
3193 }
3194 }
3195
3196 /*
3197 * DSD 1
3198 */
3199 if ((psFlash2xCSInfo->OffsetFromZeroForDSD1Start) != UNINIT_PTR_IN_CS) {
3200 /* Setting the 0th Bit representing the Section is present or not. */
3201 psFlash2xBitMap->DSD1 = psFlash2xBitMap->DSD1 | FLASH2X_SECTION_PRESENT;
3202
3203 if (ReadDSDSignature(Adapter, DSD1) == DSD_IMAGE_MAGIC_NUMBER)
3204 psFlash2xBitMap->DSD1 |= FLASH2X_SECTION_VALID;
3205
3206 /* Calculation for extrating the Access permission */
3207 if (IsSectionWritable(Adapter, DSD1) == FALSE) {
3208 psFlash2xBitMap->DSD1 |= FLASH2X_SECTION_RO;
3209 } else {
3210 /* Means section is writable */
3211 if ((SetActiveDSDDone == FALSE) && (uiHighestPriDSD == DSD1)) {
3212 psFlash2xBitMap->DSD1 |= FLASH2X_SECTION_ACT;
3213 SetActiveDSDDone = TRUE;
3214 }
3215 }
3216 }
3217
3218 /*
3219 * For DSD 0
3220 */
3221 if ((psFlash2xCSInfo->OffsetFromZeroForDSDStart) != UNINIT_PTR_IN_CS) {
3222 /* Setting the 0th Bit representing the Section is present or not. */
3223 psFlash2xBitMap->DSD0 = psFlash2xBitMap->DSD0 | FLASH2X_SECTION_PRESENT;
3224
3225 if (ReadDSDSignature(Adapter, DSD0) == DSD_IMAGE_MAGIC_NUMBER)
3226 psFlash2xBitMap->DSD0 |= FLASH2X_SECTION_VALID;
3227
3228 /* Setting Access permission */
3229 if (IsSectionWritable(Adapter, DSD0) == FALSE) {
3230 psFlash2xBitMap->DSD0 |= FLASH2X_SECTION_RO;
3231 } else {
3232 /* Means section is writable */
3233 if ((SetActiveDSDDone == FALSE) && (uiHighestPriDSD == DSD0)) {
3234 psFlash2xBitMap->DSD0 |= FLASH2X_SECTION_ACT;
3235 SetActiveDSDDone = TRUE;
3236 }
3237 }
3238 }
3239
3240 /*
3241 * VSA 0
3242 */
3243 if ((psFlash2xCSInfo->OffsetFromZeroForVSAStart) != UNINIT_PTR_IN_CS) {
3244 /* Setting the 0th Bit representing the Section is present or not. */
3245 psFlash2xBitMap->VSA0 = psFlash2xBitMap->VSA0 | FLASH2X_SECTION_PRESENT;
3246
3247 /* Setting the Access Bit. Map is not defined hece setting it always valid */
3248 psFlash2xBitMap->VSA0 |= FLASH2X_SECTION_VALID;
3249
3250 /* Calculation for extrating the Access permission */
3251 if (IsSectionWritable(Adapter, VSA0) == FALSE)
3252 psFlash2xBitMap->VSA0 |= FLASH2X_SECTION_RO;
3253
3254 /* By Default section is Active */
3255 psFlash2xBitMap->VSA0 |= FLASH2X_SECTION_ACT;
3256 }
3257
3258 /*
3259 * VSA 1
3260 */
3261 if ((psFlash2xCSInfo->OffsetFromZeroForVSA1Start) != UNINIT_PTR_IN_CS) {
3262 /* Setting the 0th Bit representing the Section is present or not. */
3263 psFlash2xBitMap->VSA1 = psFlash2xBitMap->VSA1 | FLASH2X_SECTION_PRESENT;
3264
3265 /* Setting the Access Bit. Map is not defined hece setting it always valid */
3266 psFlash2xBitMap->VSA1 |= FLASH2X_SECTION_VALID;
3267
3268 /* Checking For Access permission */
3269 if (IsSectionWritable(Adapter, VSA1) == FALSE)
3270 psFlash2xBitMap->VSA1 |= FLASH2X_SECTION_RO;
3271
3272 /* By Default section is Active */
3273 psFlash2xBitMap->VSA1 |= FLASH2X_SECTION_ACT;
3274 }
3275
3276 /*
3277 * VSA 2
3278 */
3279 if ((psFlash2xCSInfo->OffsetFromZeroForVSA2Start) != UNINIT_PTR_IN_CS) {
3280 /* Setting the 0th Bit representing the Section is present or not. */
3281 psFlash2xBitMap->VSA2 = psFlash2xBitMap->VSA2 | FLASH2X_SECTION_PRESENT;
3282
3283 /* Setting the Access Bit. Map is not defined hece setting it always valid */
3284 psFlash2xBitMap->VSA2 |= FLASH2X_SECTION_VALID;
3285
3286 /* Checking For Access permission */
3287 if (IsSectionWritable(Adapter, VSA2) == FALSE)
3288 psFlash2xBitMap->VSA2 |= FLASH2X_SECTION_RO;
3289
3290 /* By Default section is Active */
3291 psFlash2xBitMap->VSA2 |= FLASH2X_SECTION_ACT;
3292 }
3293
3294 /*
3295 * SCSI Section
3296 */
3297 if ((psFlash2xCSInfo->OffsetFromZeroForScsiFirmware) != UNINIT_PTR_IN_CS) {
3298 /* Setting the 0th Bit representing the Section is present or not. */
3299 psFlash2xBitMap->SCSI = psFlash2xBitMap->SCSI | FLASH2X_SECTION_PRESENT;
3300
3301 /* Setting the Access Bit. Map is not defined hece setting it always valid */
3302 psFlash2xBitMap->SCSI |= FLASH2X_SECTION_VALID;
3303
3304 /* Checking For Access permission */
3305 if (IsSectionWritable(Adapter, SCSI) == FALSE)
3306 psFlash2xBitMap->SCSI |= FLASH2X_SECTION_RO;
3307
3308 /* By Default section is Active */
3309 psFlash2xBitMap->SCSI |= FLASH2X_SECTION_ACT;
3310 }
3311
3312 /*
3313 * Control Section
3314 */
3315 if ((psFlash2xCSInfo->OffsetFromZeroForControlSectionStart) != UNINIT_PTR_IN_CS) {
3316 /* Setting the 0th Bit representing the Section is present or not. */
3317 psFlash2xBitMap->CONTROL_SECTION = psFlash2xBitMap->CONTROL_SECTION | (FLASH2X_SECTION_PRESENT);
3318
3319 /* Setting the Access Bit. Map is not defined hece setting it always valid */
3320 psFlash2xBitMap->CONTROL_SECTION |= FLASH2X_SECTION_VALID;
3321
3322 /* Checking For Access permission */
3323 if (IsSectionWritable(Adapter, CONTROL_SECTION) == FALSE)
3324 psFlash2xBitMap->CONTROL_SECTION |= FLASH2X_SECTION_RO;
3325
3326 /* By Default section is Active */
3327 psFlash2xBitMap->CONTROL_SECTION |= FLASH2X_SECTION_ACT;
3328 }
3329
3330 /*
3331 * For Reserved Sections
3332 */
3333 psFlash2xBitMap->Reserved0 = 0;
3334 psFlash2xBitMap->Reserved0 = 0;
3335 psFlash2xBitMap->Reserved0 = 0;
3336 BcmDumpFlash2xSectionBitMap(psFlash2xBitMap);
3337
3338 return STATUS_SUCCESS;
3339 }
3340
3341 /*
3342 * BcmSetActiveSection :- Set Active section is used to make priority field highest over other
3343 * section of same type.
3344 *
3345 * @Adapater :- Bcm Driver Private Data Structure
3346 * @eFlash2xSectionVal :- Flash section val whose priority has to be made highest.
3347 *
3348 * Return Value:- Make the priorit highest else return erorr code
3349 *
3350 */
3351
3352 INT BcmSetActiveSection(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectVal)
3353 {
3354 unsigned int SectImagePriority = 0;
3355 INT Status = STATUS_SUCCESS;
3356
3357 /* DSD_HEADER sDSD = {0};
3358 * ISO_HEADER sISO = {0};
3359 */
3360 INT HighestPriDSD = 0 ;
3361 INT HighestPriISO = 0;
3362
3363 Status = IsSectionWritable(Adapter, eFlash2xSectVal);
3364 if (Status != TRUE) {
3365 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Provided Section <%d> is not writable", eFlash2xSectVal);
3366 return STATUS_FAILURE;
3367 }
3368
3369 Adapter->bHeaderChangeAllowed = TRUE;
3370 switch (eFlash2xSectVal) {
3371 case ISO_IMAGE1:
3372 case ISO_IMAGE2:
3373 if (ReadISOSignature(Adapter, eFlash2xSectVal) == ISO_IMAGE_MAGIC_NUMBER) {
3374 HighestPriISO = getHighestPriISO(Adapter);
3375
3376 if (HighestPriISO == eFlash2xSectVal) {
3377 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Given ISO<%x> already has highest priority", eFlash2xSectVal);
3378 Status = STATUS_SUCCESS;
3379 break;
3380 }
3381
3382 SectImagePriority = ReadISOPriority(Adapter, HighestPriISO) + 1;
3383
3384 if ((SectImagePriority <= 0) && IsSectionWritable(Adapter, HighestPriISO)) {
3385 /* This is a SPECIAL Case which will only happen if the current highest priority ISO has priority value = 0x7FFFFFFF.
3386 * We will write 1 to the current Highest priority ISO And then shall increase the priority of the requested ISO
3387 * by user
3388 */
3389 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "SectImagePriority wraparound happened, eFlash2xSectVal: 0x%x\n", eFlash2xSectVal);
3390 SectImagePriority = htonl(0x1);
3391 Status = BcmFlash2xBulkWrite(Adapter,
3392 &SectImagePriority,
3393 HighestPriISO,
3394 0 + FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImagePriority),
3395 SIGNATURE_SIZE,
3396 TRUE);
3397 if (Status) {
3398 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Priority has not been written properly");
3399 Status = STATUS_FAILURE;
3400 break;
3401 }
3402
3403 HighestPriISO = getHighestPriISO(Adapter);
3404
3405 if (HighestPriISO == eFlash2xSectVal) {
3406 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Given ISO<%x> already has highest priority", eFlash2xSectVal);
3407 Status = STATUS_SUCCESS;
3408 break;
3409 }
3410
3411 SectImagePriority = 2;
3412 }
3413
3414 SectImagePriority = htonl(SectImagePriority);
3415
3416 Status = BcmFlash2xBulkWrite(Adapter,
3417 &SectImagePriority,
3418 eFlash2xSectVal,
3419 0 + FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImagePriority),
3420 SIGNATURE_SIZE,
3421 TRUE);
3422 if (Status) {
3423 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Priority has not been written properly");
3424 break;
3425 }
3426 } else {
3427 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Signature is currupted. Hence can't increase the priority");
3428 Status = STATUS_FAILURE;
3429 break;
3430 }
3431 break;
3432 case DSD0:
3433 case DSD1:
3434 case DSD2:
3435 if (ReadDSDSignature(Adapter, eFlash2xSectVal) == DSD_IMAGE_MAGIC_NUMBER) {
3436 HighestPriDSD = getHighestPriDSD(Adapter);
3437 if ((HighestPriDSD == eFlash2xSectVal)) {
3438 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Given DSD<%x> already has highest priority", eFlash2xSectVal);
3439 Status = STATUS_SUCCESS;
3440 break;
3441 }
3442
3443 SectImagePriority = ReadDSDPriority(Adapter, HighestPriDSD) + 1;
3444 if (SectImagePriority <= 0) {
3445 /* This is a SPECIAL Case which will only happen if the current highest priority DSD has priority value = 0x7FFFFFFF.
3446 * We will write 1 to the current Highest priority DSD And then shall increase the priority of the requested DSD
3447 * by user
3448 */
3449 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, NVM_RW, DBG_LVL_ALL, "SectImagePriority wraparound happened, eFlash2xSectVal: 0x%x\n", eFlash2xSectVal);
3450 SectImagePriority = htonl(0x1);
3451
3452 Status = BcmFlash2xBulkWrite(Adapter,
3453 &SectImagePriority,
3454 HighestPriDSD,
3455 Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImagePriority),
3456 SIGNATURE_SIZE,
3457 TRUE);
3458 if (Status) {
3459 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Priority has not been written properly");
3460 break;
3461 }
3462
3463 HighestPriDSD = getHighestPriDSD(Adapter);
3464
3465 if ((HighestPriDSD == eFlash2xSectVal)) {
3466 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Made the DSD: %x highest by reducing priority of other\n", eFlash2xSectVal);
3467 Status = STATUS_SUCCESS;
3468 break;
3469 }
3470
3471 SectImagePriority = htonl(0x2);
3472 Status = BcmFlash2xBulkWrite(Adapter,
3473 &SectImagePriority,
3474 HighestPriDSD,
3475 Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImagePriority),
3476 SIGNATURE_SIZE,
3477 TRUE);
3478 if (Status) {
3479 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Priority has not been written properly");
3480 break;
3481 }
3482
3483 HighestPriDSD = getHighestPriDSD(Adapter);
3484 if ((HighestPriDSD == eFlash2xSectVal)) {
3485 Status = STATUS_SUCCESS;
3486 break;
3487 }
3488
3489 SectImagePriority = 3;
3490 }
3491 SectImagePriority = htonl(SectImagePriority);
3492 Status = BcmFlash2xBulkWrite(Adapter,
3493 &SectImagePriority,
3494 eFlash2xSectVal,
3495 Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImagePriority),
3496 SIGNATURE_SIZE,
3497 TRUE);
3498 if (Status) {
3499 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Priority has not been written properly");
3500 Status = STATUS_FAILURE;
3501 break;
3502 }
3503 } else {
3504 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Signature is currupted. Hence can't increase the priority");
3505 Status = STATUS_FAILURE;
3506 break;
3507 }
3508 break;
3509 case VSA0:
3510 case VSA1:
3511 case VSA2:
3512 /* Has to be decided */
3513 break;
3514 default:
3515 Status = STATUS_FAILURE;
3516 break;
3517 }
3518
3519 Adapter->bHeaderChangeAllowed = FALSE;
3520 return Status;
3521 }
3522
3523 /*
3524 * BcmCopyISO - Used only for copying the ISO section
3525 * @Adapater :- Bcm Driver Private Data Structure
3526 * @sCopySectStrut :- Section copy structure
3527 *
3528 * Return value:- SUCCESS if copies successfully else negative error code
3529 *
3530 */
3531
3532 INT BcmCopyISO(struct bcm_mini_adapter *Adapter, FLASH2X_COPY_SECTION sCopySectStrut)
3533 {
3534 PCHAR Buff = NULL;
3535 FLASH2X_SECTION_VAL eISOReadPart = 0, eISOWritePart = 0;
3536 UINT uiReadOffsetWithinPart = 0, uiWriteOffsetWithinPart = 0;
3537 UINT uiTotalDataToCopy = 0;
3538 BOOLEAN IsThisHeaderSector = FALSE;
3539 UINT sigOffset = 0;
3540 UINT ISOLength = 0;
3541 UINT Status = STATUS_SUCCESS;
3542 UINT SigBuff[MAX_RW_SIZE];
3543 UINT i = 0;
3544
3545 if (ReadISOSignature(Adapter, sCopySectStrut.SrcSection) != ISO_IMAGE_MAGIC_NUMBER) {
3546 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "error as Source ISO Section does not have valid signature");
3547 return STATUS_FAILURE;
3548 }
3549
3550 Status = BcmFlash2xBulkRead(Adapter,
3551 &ISOLength,
3552 sCopySectStrut.SrcSection,
3553 0 + FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImageSize),
3554 4);
3555 if (Status) {
3556 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Read failed while copying ISO\n");
3557 return Status;
3558 }
3559
3560 ISOLength = htonl(ISOLength);
3561 if (ISOLength % Adapter->uiSectorSize)
3562 ISOLength = Adapter->uiSectorSize * (1 + ISOLength/Adapter->uiSectorSize);
3563
3564 sigOffset = FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImageMagicNumber);
3565
3566 Buff = kzalloc(Adapter->uiSectorSize, GFP_KERNEL);
3567
3568 if (Buff == NULL) {
3569 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Memory allocation failed for section size");
3570 return -ENOMEM;
3571 }
3572
3573 if (sCopySectStrut.SrcSection == ISO_IMAGE1 && sCopySectStrut.DstSection == ISO_IMAGE2) {
3574 eISOReadPart = ISO_IMAGE1;
3575 eISOWritePart = ISO_IMAGE2;
3576 uiReadOffsetWithinPart = 0;
3577 uiWriteOffsetWithinPart = 0;
3578
3579 uiTotalDataToCopy = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End) -
3580 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start) +
3581 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End) -
3582 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start) +
3583 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3End) -
3584 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3Start);
3585
3586 if (uiTotalDataToCopy < ISOLength) {
3587 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "error as Source ISO Section does not have valid signature");
3588 Status = STATUS_FAILURE;
3589 goto out;
3590 }
3591
3592 uiTotalDataToCopy = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End) -
3593 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start) +
3594 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End) -
3595 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start) +
3596 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3End) -
3597 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3Start);
3598
3599 if (uiTotalDataToCopy < ISOLength) {
3600 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "error as Dest ISO Section does not have enough section size");
3601 Status = STATUS_FAILURE;
3602 goto out;
3603 }
3604
3605 uiTotalDataToCopy = ISOLength;
3606
3607 CorruptISOSig(Adapter, ISO_IMAGE2);
3608 while (uiTotalDataToCopy) {
3609 if (uiTotalDataToCopy == Adapter->uiSectorSize) {
3610 /* Setting for write of first sector. First sector is assumed to be written in last */
3611 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Writing the signature sector");
3612 eISOReadPart = ISO_IMAGE1;
3613 uiReadOffsetWithinPart = 0;
3614 eISOWritePart = ISO_IMAGE2;
3615 uiWriteOffsetWithinPart = 0;
3616 IsThisHeaderSector = TRUE;
3617 } else {
3618 uiReadOffsetWithinPart = uiReadOffsetWithinPart + Adapter->uiSectorSize;
3619 uiWriteOffsetWithinPart = uiWriteOffsetWithinPart + Adapter->uiSectorSize;
3620
3621 if ((eISOReadPart == ISO_IMAGE1) && (uiReadOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End - Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start))) {
3622 eISOReadPart = ISO_IMAGE1_PART2;
3623 uiReadOffsetWithinPart = 0;
3624 }
3625
3626 if ((eISOReadPart == ISO_IMAGE1_PART2) && (uiReadOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End - Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start))) {
3627 eISOReadPart = ISO_IMAGE1_PART3;
3628 uiReadOffsetWithinPart = 0;
3629 }
3630
3631 if ((eISOWritePart == ISO_IMAGE2) && (uiWriteOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End - Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start))) {
3632 eISOWritePart = ISO_IMAGE2_PART2;
3633 uiWriteOffsetWithinPart = 0;
3634 }
3635
3636 if ((eISOWritePart == ISO_IMAGE2_PART2) && (uiWriteOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End - Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start))) {
3637 eISOWritePart = ISO_IMAGE2_PART3;
3638 uiWriteOffsetWithinPart = 0;
3639 }
3640 }
3641
3642 Status = BcmFlash2xBulkRead(Adapter,
3643 (PUINT)Buff,
3644 eISOReadPart,
3645 uiReadOffsetWithinPart,
3646 Adapter->uiSectorSize);
3647 if (Status) {
3648 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Read failed while copying ISO: Part: %x, OffsetWithinPart: %x\n", eISOReadPart, uiReadOffsetWithinPart);
3649 break;
3650 }
3651
3652 if (IsThisHeaderSector == TRUE) {
3653 /* If this is header sector write 0xFFFFFFFF at the sig time and in last write sig */
3654 memcpy(SigBuff, Buff + sigOffset, MAX_RW_SIZE);
3655
3656 for (i = 0; i < MAX_RW_SIZE; i++)
3657 *(Buff + sigOffset + i) = 0xFF;
3658 }
3659 Adapter->bHeaderChangeAllowed = TRUE;
3660 Status = BcmFlash2xBulkWrite(Adapter,
3661 (PUINT)Buff,
3662 eISOWritePart,
3663 uiWriteOffsetWithinPart,
3664 Adapter->uiSectorSize,
3665 TRUE);
3666 if (Status) {
3667 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write failed while copying ISO: Part: %x, OffsetWithinPart: %x\n", eISOWritePart, uiWriteOffsetWithinPart);
3668 break;
3669 }
3670
3671 Adapter->bHeaderChangeAllowed = FALSE;
3672 if (IsThisHeaderSector == TRUE) {
3673 WriteToFlashWithoutSectorErase(Adapter,
3674 SigBuff,
3675 eISOWritePart,
3676 sigOffset,
3677 MAX_RW_SIZE);
3678 IsThisHeaderSector = FALSE;
3679 }
3680 /* subtracting the written Data */
3681 uiTotalDataToCopy = uiTotalDataToCopy - Adapter->uiSectorSize;
3682 }
3683 }
3684
3685 if (sCopySectStrut.SrcSection == ISO_IMAGE2 && sCopySectStrut.DstSection == ISO_IMAGE1) {
3686 eISOReadPart = ISO_IMAGE2;
3687 eISOWritePart = ISO_IMAGE1;
3688 uiReadOffsetWithinPart = 0;
3689 uiWriteOffsetWithinPart = 0;
3690
3691 uiTotalDataToCopy = (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End) -
3692 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start) +
3693 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End) -
3694 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start) +
3695 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3End) -
3696 (Adapter->psFlash2xCSInfo->OffsetISOImage2Part3Start);
3697
3698 if (uiTotalDataToCopy < ISOLength) {
3699 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "error as Source ISO Section does not have valid signature");
3700 Status = STATUS_FAILURE;
3701 goto out;
3702 }
3703
3704 uiTotalDataToCopy = (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End) -
3705 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start) +
3706 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End) -
3707 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start) +
3708 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3End) -
3709 (Adapter->psFlash2xCSInfo->OffsetISOImage1Part3Start);
3710
3711 if (uiTotalDataToCopy < ISOLength) {
3712 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "error as Dest ISO Section does not have enough section size");
3713 Status = STATUS_FAILURE;
3714 goto out;
3715 }
3716
3717 uiTotalDataToCopy = ISOLength;
3718
3719 CorruptISOSig(Adapter, ISO_IMAGE1);
3720
3721 while (uiTotalDataToCopy) {
3722 if (uiTotalDataToCopy == Adapter->uiSectorSize) {
3723 /* Setting for write of first sector. First sector is assumed to be written in last */
3724 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Writing the signature sector");
3725 eISOReadPart = ISO_IMAGE2;
3726 uiReadOffsetWithinPart = 0;
3727 eISOWritePart = ISO_IMAGE1;
3728 uiWriteOffsetWithinPart = 0;
3729 IsThisHeaderSector = TRUE;
3730 } else {
3731 uiReadOffsetWithinPart = uiReadOffsetWithinPart + Adapter->uiSectorSize;
3732 uiWriteOffsetWithinPart = uiWriteOffsetWithinPart + Adapter->uiSectorSize;
3733
3734 if ((eISOReadPart == ISO_IMAGE2) && (uiReadOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage2Part1End - Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start))) {
3735 eISOReadPart = ISO_IMAGE2_PART2;
3736 uiReadOffsetWithinPart = 0;
3737 }
3738
3739 if ((eISOReadPart == ISO_IMAGE2_PART2) && (uiReadOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage2Part2End - Adapter->psFlash2xCSInfo->OffsetISOImage2Part2Start))) {
3740 eISOReadPart = ISO_IMAGE2_PART3;
3741 uiReadOffsetWithinPart = 0;
3742 }
3743
3744 if ((eISOWritePart == ISO_IMAGE1) && (uiWriteOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage1Part1End - Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start))) {
3745 eISOWritePart = ISO_IMAGE1_PART2;
3746 uiWriteOffsetWithinPart = 0;
3747 }
3748
3749 if ((eISOWritePart == ISO_IMAGE1_PART2) && (uiWriteOffsetWithinPart == (Adapter->psFlash2xCSInfo->OffsetISOImage1Part2End - Adapter->psFlash2xCSInfo->OffsetISOImage1Part2Start))) {
3750 eISOWritePart = ISO_IMAGE1_PART3;
3751 uiWriteOffsetWithinPart = 0;
3752 }
3753 }
3754
3755 Status = BcmFlash2xBulkRead(Adapter,
3756 (PUINT)Buff,
3757 eISOReadPart,
3758 uiReadOffsetWithinPart,
3759 Adapter->uiSectorSize);
3760 if (Status) {
3761 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Read failed while copying ISO: Part: %x, OffsetWithinPart: %x\n", eISOReadPart, uiReadOffsetWithinPart);
3762 break;
3763 }
3764
3765 if (IsThisHeaderSector == TRUE) {
3766 /* If this is header sector write 0xFFFFFFFF at the sig time and in last write sig */
3767 memcpy(SigBuff, Buff + sigOffset, MAX_RW_SIZE);
3768
3769 for (i = 0; i < MAX_RW_SIZE; i++)
3770 *(Buff + sigOffset + i) = 0xFF;
3771 }
3772 Adapter->bHeaderChangeAllowed = TRUE;
3773 Status = BcmFlash2xBulkWrite(Adapter,
3774 (PUINT)Buff,
3775 eISOWritePart,
3776 uiWriteOffsetWithinPart,
3777 Adapter->uiSectorSize,
3778 TRUE);
3779 if (Status) {
3780 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write failed while copying ISO: Part: %x, OffsetWithinPart: %x\n", eISOWritePart, uiWriteOffsetWithinPart);
3781 break;
3782 }
3783
3784 Adapter->bHeaderChangeAllowed = FALSE;
3785 if (IsThisHeaderSector == TRUE) {
3786 WriteToFlashWithoutSectorErase(Adapter,
3787 SigBuff,
3788 eISOWritePart,
3789 sigOffset,
3790 MAX_RW_SIZE);
3791
3792 IsThisHeaderSector = FALSE;
3793 }
3794
3795 /* subtracting the written Data */
3796 uiTotalDataToCopy = uiTotalDataToCopy - Adapter->uiSectorSize;
3797 }
3798 }
3799 out:
3800 kfree(Buff);
3801
3802 return Status;
3803 }
3804
3805 /*
3806 * BcmFlash2xCorruptSig : this API is used to corrupt the written sig in Bcm Header present in flash section.
3807 * It will corrupt the sig, if Section is writable, by making first bytes as zero.
3808 * @Adapater :- Bcm Driver Private Data Structure
3809 * @eFlash2xSectionVal :- Flash section val which has header
3810 *
3811 * Return Value :-
3812 * Success :- If Section is present and writable, corrupt the sig and return STATUS_SUCCESS
3813 * Failure :-Return negative error code
3814 */
3815
3816 INT BcmFlash2xCorruptSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal)
3817 {
3818 INT Status = STATUS_SUCCESS;
3819
3820 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section Value :%x\n", eFlash2xSectionVal);
3821
3822 if ((eFlash2xSectionVal == DSD0) || (eFlash2xSectionVal == DSD1) || (eFlash2xSectionVal == DSD2)) {
3823 Status = CorruptDSDSig(Adapter, eFlash2xSectionVal);
3824 } else if (eFlash2xSectionVal == ISO_IMAGE1 || eFlash2xSectionVal == ISO_IMAGE2) {
3825 Status = CorruptISOSig(Adapter, eFlash2xSectionVal);
3826 } else {
3827 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Given Section <%d>does not have Header", eFlash2xSectionVal);
3828 return STATUS_SUCCESS;
3829 }
3830 return Status;
3831 }
3832
3833 /*
3834 *BcmFlash2xWriteSig :-this API is used to Write the sig if requested Section has
3835 * header and Write Permission.
3836 * @Adapater :- Bcm Driver Private Data Structure
3837 * @eFlashSectionVal :- Flash section val which has header
3838 *
3839 * Return Value :-
3840 * Success :- If Section is present and writable write the sig and return STATUS_SUCCESS
3841 * Failure :-Return negative error code
3842 */
3843
3844 INT BcmFlash2xWriteSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlashSectionVal)
3845 {
3846 UINT uiSignature = 0;
3847 UINT uiOffset = 0;
3848
3849 /* DSD_HEADER dsdHeader = {0}; */
3850 if (Adapter->bSigCorrupted == FALSE) {
3851 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Signature is not corrupted by driver, hence not restoring\n");
3852 return STATUS_SUCCESS;
3853 }
3854
3855 if (Adapter->bAllDSDWriteAllow == FALSE) {
3856 if (IsSectionWritable(Adapter, eFlashSectionVal) == FALSE) {
3857 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section is not Writable...Hence can't Write signature");
3858 return SECTOR_IS_NOT_WRITABLE;
3859 }
3860 }
3861
3862 if ((eFlashSectionVal == DSD0) || (eFlashSectionVal == DSD1) || (eFlashSectionVal == DSD2)) {
3863 uiSignature = htonl(DSD_IMAGE_MAGIC_NUMBER);
3864 uiOffset = Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader;
3865
3866 uiOffset += FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImageMagicNumber);
3867
3868 if ((ReadDSDSignature(Adapter, eFlashSectionVal) & 0xFF000000) != CORRUPTED_PATTERN) {
3869 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Corrupted Pattern is not there. Hence won't write sig");
3870 return STATUS_FAILURE;
3871 }
3872 } else if ((eFlashSectionVal == ISO_IMAGE1) || (eFlashSectionVal == ISO_IMAGE2)) {
3873 uiSignature = htonl(ISO_IMAGE_MAGIC_NUMBER);
3874 /* uiOffset = 0; */
3875 uiOffset = FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImageMagicNumber);
3876 if ((ReadISOSignature(Adapter, eFlashSectionVal) & 0xFF000000) != CORRUPTED_PATTERN) {
3877 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Currupted Pattern is not there. Hence won't write sig");
3878 return STATUS_FAILURE;
3879 }
3880 } else {
3881 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "GIVEN SECTION< %d > IS NOT VALID FOR SIG WRITE...", eFlashSectionVal);
3882 return STATUS_FAILURE;
3883 }
3884
3885 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Restoring the signature");
3886
3887 Adapter->bHeaderChangeAllowed = TRUE;
3888 Adapter->bSigCorrupted = FALSE;
3889 BcmFlash2xBulkWrite(Adapter, &uiSignature, eFlashSectionVal, uiOffset, SIGNATURE_SIZE, TRUE);
3890 Adapter->bHeaderChangeAllowed = FALSE;
3891
3892 return STATUS_SUCCESS;
3893 }
3894
3895 /*
3896 * validateFlash2xReadWrite :- This API is used to validate the user request for Read/Write.
3897 * if requested Bytes goes beyond the Requested section, it reports error.
3898 * @Adapater :- Bcm Driver Private Data Structure
3899 * @psFlash2xReadWrite :-Flash2x Read/write structure pointer
3900 *
3901 * Return values:-Return TRUE is request is valid else FALSE.
3902 */
3903
3904 INT validateFlash2xReadWrite(struct bcm_mini_adapter *Adapter, PFLASH2X_READWRITE psFlash2xReadWrite)
3905 {
3906 UINT uiNumOfBytes = 0;
3907 UINT uiSectStartOffset = 0;
3908 UINT uiSectEndOffset = 0;
3909
3910 uiNumOfBytes = psFlash2xReadWrite->numOfBytes;
3911
3912 if (IsSectionExistInFlash(Adapter, psFlash2xReadWrite->Section) != TRUE) {
3913 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section<%x> does not exixt in Flash", psFlash2xReadWrite->Section);
3914 return FALSE;
3915 }
3916 uiSectStartOffset = BcmGetSectionValStartOffset(Adapter, psFlash2xReadWrite->Section);
3917 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Start offset :%x ,section :%d\n", uiSectStartOffset, psFlash2xReadWrite->Section);
3918 if ((psFlash2xReadWrite->Section == ISO_IMAGE1) || (psFlash2xReadWrite->Section == ISO_IMAGE2)) {
3919 if (psFlash2xReadWrite->Section == ISO_IMAGE1) {
3920 uiSectEndOffset = BcmGetSectionValEndOffset(Adapter, ISO_IMAGE1) -
3921 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE1) +
3922 BcmGetSectionValEndOffset(Adapter, ISO_IMAGE1_PART2) -
3923 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE1_PART2) +
3924 BcmGetSectionValEndOffset(Adapter, ISO_IMAGE1_PART3) -
3925 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE1_PART3);
3926 } else if (psFlash2xReadWrite->Section == ISO_IMAGE2) {
3927 uiSectEndOffset = BcmGetSectionValEndOffset(Adapter, ISO_IMAGE2) -
3928 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE2) +
3929 BcmGetSectionValEndOffset(Adapter, ISO_IMAGE2_PART2) -
3930 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE2_PART2) +
3931 BcmGetSectionValEndOffset(Adapter, ISO_IMAGE2_PART3) -
3932 BcmGetSectionValStartOffset(Adapter, ISO_IMAGE2_PART3);
3933 }
3934
3935 /* since this uiSectEndoffset is the size of iso Image. hence for calculating the vitual endoffset
3936 * it should be added in startoffset. so that check done in last of this function can be valued.
3937 */
3938 uiSectEndOffset = uiSectStartOffset + uiSectEndOffset;
3939
3940 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Total size of the ISO Image :%x", uiSectEndOffset);
3941 } else
3942 uiSectEndOffset = BcmGetSectionValEndOffset(Adapter, psFlash2xReadWrite->Section);
3943
3944 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "End offset :%x\n", uiSectEndOffset);
3945
3946 /* Checking the boundary condition */
3947 if ((uiSectStartOffset + psFlash2xReadWrite->offset + uiNumOfBytes) <= uiSectEndOffset)
3948 return TRUE;
3949 else {
3950 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Invalid Request....");
3951 return FALSE;
3952 }
3953 }
3954
3955 /*
3956 * IsFlash2x :- check for Flash 2.x
3957 * Adapater :- Bcm Driver Private Data Structure
3958 *
3959 * Return value:-
3960 * return TRUE if flah2.x of hgher version else return false.
3961 */
3962
3963 INT IsFlash2x(struct bcm_mini_adapter *Adapter)
3964 {
3965 if (Adapter->uiFlashLayoutMajorVersion >= FLASH_2X_MAJOR_NUMBER)
3966 return TRUE;
3967 else
3968 return FALSE;
3969 }
3970
3971 /*
3972 * GetFlashBaseAddr :- Calculate the Flash Base address
3973 * @Adapater :- Bcm Driver Private Data Structure
3974 *
3975 * Return Value:-
3976 * Success :- Base Address of the Flash
3977 */
3978
3979 static INT GetFlashBaseAddr(struct bcm_mini_adapter *Adapter)
3980 {
3981 UINT uiBaseAddr = 0;
3982
3983 if (Adapter->bDDRInitDone) {
3984 /*
3985 * For All Valid Flash Versions... except 1.1, take the value from FlashBaseAddr
3986 * In case of Raw Read... use the default value
3987 */
3988 if (Adapter->uiFlashLayoutMajorVersion && (Adapter->bFlashRawRead == FALSE) &&
3989 !((Adapter->uiFlashLayoutMajorVersion == 1) && (Adapter->uiFlashLayoutMinorVersion == 1)))
3990 uiBaseAddr = Adapter->uiFlashBaseAdd;
3991 else
3992 uiBaseAddr = FLASH_CONTIGIOUS_START_ADDR_AFTER_INIT;
3993 } else {
3994 /*
3995 * For All Valid Flash Versions... except 1.1, take the value from FlashBaseAddr
3996 * In case of Raw Read... use the default value
3997 */
3998 if (Adapter->uiFlashLayoutMajorVersion && (Adapter->bFlashRawRead == FALSE) &&
3999 !((Adapter->uiFlashLayoutMajorVersion == 1) && (Adapter->uiFlashLayoutMinorVersion == 1)))
4000 uiBaseAddr = Adapter->uiFlashBaseAdd | FLASH_CONTIGIOUS_START_ADDR_BEFORE_INIT;
4001 else
4002 uiBaseAddr = FLASH_CONTIGIOUS_START_ADDR_BEFORE_INIT;
4003 }
4004
4005 return uiBaseAddr;
4006 }
4007
4008 /*
4009 * BcmCopySection :- This API is used to copy the One section in another. Both section should
4010 * be contiuous and of same size. Hence this Will not be applicabe to copy ISO.
4011 *
4012 * @Adapater :- Bcm Driver Private Data Structure
4013 * @SrcSection :- Source section From where data has to be copied
4014 * @DstSection :- Destination section to which data has to be copied
4015 * @offset :- Offset from/to where data has to be copied from one section to another.
4016 * @numOfBytes :- number of byes that has to be copyed from one section to another at given offset.
4017 * in case of numofBytes equal zero complete section will be copied.
4018 * Return Values-
4019 * Success : Return STATUS_SUCCESS
4020 * Faillure :- return negative error code
4021 */
4022
4023 INT BcmCopySection(struct bcm_mini_adapter *Adapter,
4024 FLASH2X_SECTION_VAL SrcSection,
4025 FLASH2X_SECTION_VAL DstSection,
4026 UINT offset,
4027 UINT numOfBytes)
4028 {
4029 UINT BuffSize = 0;
4030 UINT BytesToBeCopied = 0;
4031 PUCHAR pBuff = NULL;
4032 INT Status = STATUS_SUCCESS;
4033
4034 if (SrcSection == DstSection) {
4035 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Source and Destination should be different ...try again");
4036 return -EINVAL;
4037 }
4038
4039 if ((SrcSection != DSD0) && (SrcSection != DSD1) && (SrcSection != DSD2)) {
4040 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Source should be DSD subsection");
4041 return -EINVAL;
4042 }
4043
4044 if ((DstSection != DSD0) && (DstSection != DSD1) && (DstSection != DSD2)) {
4045 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Destination should be DSD subsection");
4046 return -EINVAL;
4047 }
4048
4049 /* if offset zero means have to copy complete secton */
4050 if (numOfBytes == 0) {
4051 numOfBytes = BcmGetSectionValEndOffset(Adapter, SrcSection)
4052 - BcmGetSectionValStartOffset(Adapter, SrcSection);
4053
4054 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Section Size :0x%x", numOfBytes);
4055 }
4056
4057 if ((offset + numOfBytes) > BcmGetSectionValEndOffset(Adapter, SrcSection)
4058 - BcmGetSectionValStartOffset(Adapter, SrcSection)) {
4059 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, " Input parameters going beyond the section offS: %x numB: %x of Source Section\n",
4060 offset, numOfBytes);
4061 return -EINVAL;
4062 }
4063
4064 if ((offset + numOfBytes) > BcmGetSectionValEndOffset(Adapter, DstSection)
4065 - BcmGetSectionValStartOffset(Adapter, DstSection)) {
4066 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Input parameters going beyond the section offS: %x numB: %x of Destination Section\n",
4067 offset, numOfBytes);
4068 return -EINVAL;
4069 }
4070
4071 if (numOfBytes > Adapter->uiSectorSize)
4072 BuffSize = Adapter->uiSectorSize;
4073 else
4074 BuffSize = numOfBytes;
4075
4076 pBuff = (PCHAR)kzalloc(BuffSize, GFP_KERNEL);
4077 if (pBuff == NULL) {
4078 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Memory allocation failed.. ");
4079 return -ENOMEM;
4080 }
4081
4082 BytesToBeCopied = Adapter->uiSectorSize;
4083 if (offset % Adapter->uiSectorSize)
4084 BytesToBeCopied = Adapter->uiSectorSize - (offset % Adapter->uiSectorSize);
4085 if (BytesToBeCopied > numOfBytes)
4086 BytesToBeCopied = numOfBytes;
4087
4088 Adapter->bHeaderChangeAllowed = TRUE;
4089
4090 do {
4091 Status = BcmFlash2xBulkRead(Adapter, (PUINT)pBuff, SrcSection , offset, BytesToBeCopied);
4092 if (Status) {
4093 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Read failed at offset :%d for NOB :%d", SrcSection, BytesToBeCopied);
4094 break;
4095 }
4096 Status = BcmFlash2xBulkWrite(Adapter, (PUINT)pBuff, DstSection, offset, BytesToBeCopied, FALSE);
4097 if (Status) {
4098 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Write failed at offset :%d for NOB :%d", DstSection, BytesToBeCopied);
4099 break;
4100 }
4101 offset = offset + BytesToBeCopied;
4102 numOfBytes = numOfBytes - BytesToBeCopied;
4103 if (numOfBytes) {
4104 if (numOfBytes > Adapter->uiSectorSize)
4105 BytesToBeCopied = Adapter->uiSectorSize;
4106 else
4107 BytesToBeCopied = numOfBytes;
4108 }
4109 } while (numOfBytes > 0);
4110
4111 kfree(pBuff);
4112 Adapter->bHeaderChangeAllowed = FALSE;
4113
4114 return Status;
4115 }
4116
4117 /*
4118 * SaveHeaderIfPresent :- This API is use to Protect the Header in case of Header Sector write
4119 * @Adapater :- Bcm Driver Private Data Structure
4120 * @pBuff :- Data buffer that has to be written in sector having the header map.
4121 * @uiOffset :- Flash offset that has to be written.
4122 *
4123 * Return value :-
4124 * Success :- On success return STATUS_SUCCESS
4125 * Faillure :- Return negative error code
4126 */
4127
4128 INT SaveHeaderIfPresent(struct bcm_mini_adapter *Adapter, PUCHAR pBuff, UINT uiOffset)
4129 {
4130 UINT offsetToProtect = 0, HeaderSizeToProtect = 0;
4131 BOOLEAN bHasHeader = FALSE;
4132 PUCHAR pTempBuff = NULL;
4133 UINT uiSectAlignAddr = 0;
4134 UINT sig = 0;
4135
4136 /* making the offset sector aligned */
4137 uiSectAlignAddr = uiOffset & ~(Adapter->uiSectorSize - 1);
4138
4139 if ((uiSectAlignAddr == BcmGetSectionValEndOffset(Adapter, DSD2) - Adapter->uiSectorSize) ||
4140 (uiSectAlignAddr == BcmGetSectionValEndOffset(Adapter, DSD1) - Adapter->uiSectorSize) ||
4141 (uiSectAlignAddr == BcmGetSectionValEndOffset(Adapter, DSD0) - Adapter->uiSectorSize)) {
4142 /* offset from the sector boundary having the header map */
4143 offsetToProtect = Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader % Adapter->uiSectorSize;
4144 HeaderSizeToProtect = sizeof(DSD_HEADER);
4145 bHasHeader = TRUE;
4146 }
4147
4148 if (uiSectAlignAddr == BcmGetSectionValStartOffset(Adapter, ISO_IMAGE1) ||
4149 uiSectAlignAddr == BcmGetSectionValStartOffset(Adapter, ISO_IMAGE2)) {
4150 offsetToProtect = 0;
4151 HeaderSizeToProtect = sizeof(ISO_HEADER);
4152 bHasHeader = TRUE;
4153 }
4154 /* If Header is present overwrite passed buffer with this */
4155 if (bHasHeader && (Adapter->bHeaderChangeAllowed == FALSE)) {
4156 pTempBuff = (PUCHAR)kzalloc(HeaderSizeToProtect, GFP_KERNEL);
4157 if (pTempBuff == NULL) {
4158 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Memory allocation failed");
4159 return -ENOMEM;
4160 }
4161 /* Read header */
4162 BeceemFlashBulkRead(Adapter, (PUINT)pTempBuff, (uiSectAlignAddr + offsetToProtect), HeaderSizeToProtect);
4163 BCM_DEBUG_PRINT_BUFFER(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, pTempBuff, HeaderSizeToProtect);
4164 /* Replace Buffer content with Header */
4165 memcpy(pBuff + offsetToProtect, pTempBuff, HeaderSizeToProtect);
4166
4167 kfree(pTempBuff);
4168 }
4169 if (bHasHeader && Adapter->bSigCorrupted) {
4170 sig = *((PUINT)(pBuff + offsetToProtect + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImageMagicNumber)));
4171 sig = ntohl(sig);
4172 if ((sig & 0xFF000000) != CORRUPTED_PATTERN) {
4173 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Desired pattern is not at sig offset. Hence won't restore");
4174 Adapter->bSigCorrupted = FALSE;
4175 return STATUS_SUCCESS;
4176 }
4177 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, " Corrupted sig is :%X", sig);
4178 *((PUINT)(pBuff + offsetToProtect + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImageMagicNumber))) = htonl(DSD_IMAGE_MAGIC_NUMBER);
4179 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Restoring the signature in Header Write only");
4180 Adapter->bSigCorrupted = FALSE;
4181 }
4182
4183 return STATUS_SUCCESS;
4184 }
4185
4186 /*
4187 * BcmDoChipSelect : This will selcet the appropriate chip for writing.
4188 * @Adapater :- Bcm Driver Private Data Structure
4189 *
4190 * OutPut:-
4191 * Select the Appropriate chip and retrn status Success
4192 */
4193 static INT BcmDoChipSelect(struct bcm_mini_adapter *Adapter, UINT offset)
4194 {
4195 UINT FlashConfig = 0;
4196 INT ChipNum = 0;
4197 UINT GPIOConfig = 0;
4198 UINT PartNum = 0;
4199
4200 ChipNum = offset / FLASH_PART_SIZE;
4201
4202 /*
4203 * Chip Select mapping to enable flash0.
4204 * To select flash 0, we have to OR with (0<<12).
4205 * ORing 0 will have no impact so not doing that part.
4206 * In future if Chip select value changes from 0 to non zero,
4207 * That needs be taken care with backward comaptibility. No worries for now.
4208 */
4209
4210 /*
4211 * SelectedChip Variable is the selection that the host is 100% Sure the same as what the register will hold. This can be ONLY ensured
4212 * if the Chip doesn't goes to low power mode while the flash operation is in progress (NVMRdmWrmLock is taken)
4213 * Before every new Flash Write operation, we reset the variable. This is to ensure that after any wake-up from
4214 * power down modes (Idle mode/shutdown mode), the values in the register will be different.
4215 */
4216
4217 if (Adapter->SelectedChip == ChipNum)
4218 return STATUS_SUCCESS;
4219
4220 /* BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Selected Chip :%x", ChipNum); */
4221 Adapter->SelectedChip = ChipNum;
4222
4223 /* bit[13..12] will select the appropriate chip */
4224 rdmalt(Adapter, FLASH_CONFIG_REG, &FlashConfig, 4);
4225 rdmalt(Adapter, FLASH_GPIO_CONFIG_REG, &GPIOConfig, 4);
4226 {
4227 switch (ChipNum) {
4228 case 0:
4229 PartNum = 0;
4230 break;
4231 case 1:
4232 PartNum = 3;
4233 GPIOConfig |= (0x4 << CHIP_SELECT_BIT12);
4234 break;
4235 case 2:
4236 PartNum = 1;
4237 GPIOConfig |= (0x1 << CHIP_SELECT_BIT12);
4238 break;
4239 case 3:
4240 PartNum = 2;
4241 GPIOConfig |= (0x2 << CHIP_SELECT_BIT12);
4242 break;
4243 }
4244 }
4245 /* In case the bits already written in the FLASH_CONFIG_REG is same as what the user desired,
4246 * nothing to do... can return immediately.
4247 * ASSUMPTION: FLASH_GPIO_CONFIG_REG will be in sync with FLASH_CONFIG_REG.
4248 * Even if the chip goes to low power mode, it should wake with values in each register in sync with each other.
4249 * These values are not written by host other than during CHIP_SELECT.
4250 */
4251 if (PartNum == ((FlashConfig >> CHIP_SELECT_BIT12) & 0x3))
4252 return STATUS_SUCCESS;
4253
4254 /* clearing the bit[13..12] */
4255 FlashConfig &= 0xFFFFCFFF;
4256 FlashConfig = (FlashConfig | (PartNum<<CHIP_SELECT_BIT12)); /* 00 */
4257
4258 wrmalt(Adapter, FLASH_GPIO_CONFIG_REG, &GPIOConfig, 4);
4259 udelay(100);
4260
4261 wrmalt(Adapter, FLASH_CONFIG_REG, &FlashConfig, 4);
4262 udelay(100);
4263
4264 return STATUS_SUCCESS;
4265 }
4266
4267 INT ReadDSDSignature(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL dsd)
4268 {
4269 UINT uiDSDsig = 0;
4270 /* UINT sigoffsetInMap = 0;
4271 * DSD_HEADER dsdHeader = {0};
4272 */
4273
4274 /* sigoffsetInMap =(PUCHAR)&(dsdHeader.DSDImageMagicNumber) -(PUCHAR)&dsdHeader; */
4275
4276 if (dsd != DSD0 && dsd != DSD1 && dsd != DSD2) {
4277 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "passed section value is not for DSDs");
4278 return STATUS_FAILURE;
4279 }
4280 BcmFlash2xBulkRead(Adapter,
4281 &uiDSDsig,
4282 dsd,
4283 Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImageMagicNumber),
4284 SIGNATURE_SIZE);
4285
4286 uiDSDsig = ntohl(uiDSDsig);
4287 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "DSD SIG :%x", uiDSDsig);
4288
4289 return uiDSDsig;
4290 }
4291
4292 INT ReadDSDPriority(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL dsd)
4293 {
4294 /* UINT priOffsetInMap = 0 ; */
4295 unsigned int uiDSDPri = STATUS_FAILURE;
4296 /* DSD_HEADER dsdHeader = {0};
4297 * priOffsetInMap = (PUCHAR)&(dsdHeader.DSDImagePriority) -(PUCHAR)&dsdHeader;
4298 */
4299 if (IsSectionWritable(Adapter, dsd)) {
4300 if (ReadDSDSignature(Adapter, dsd) == DSD_IMAGE_MAGIC_NUMBER) {
4301 BcmFlash2xBulkRead(Adapter,
4302 &uiDSDPri,
4303 dsd,
4304 Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + FIELD_OFFSET_IN_HEADER(PDSD_HEADER, DSDImagePriority),
4305 4);
4306
4307 uiDSDPri = ntohl(uiDSDPri);
4308 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "DSD<%x> Priority :%x", dsd, uiDSDPri);
4309 }
4310 }
4311
4312 return uiDSDPri;
4313 }
4314
4315 FLASH2X_SECTION_VAL getHighestPriDSD(struct bcm_mini_adapter *Adapter)
4316 {
4317 INT DSDHighestPri = STATUS_FAILURE;
4318 INT DsdPri = 0;
4319 FLASH2X_SECTION_VAL HighestPriDSD = 0;
4320
4321 if (IsSectionWritable(Adapter, DSD2)) {
4322 DSDHighestPri = ReadDSDPriority(Adapter, DSD2);
4323 HighestPriDSD = DSD2;
4324 }
4325
4326 if (IsSectionWritable(Adapter, DSD1)) {
4327 DsdPri = ReadDSDPriority(Adapter, DSD1);
4328 if (DSDHighestPri < DsdPri) {
4329 DSDHighestPri = DsdPri;
4330 HighestPriDSD = DSD1;
4331 }
4332 }
4333
4334 if (IsSectionWritable(Adapter, DSD0)) {
4335 DsdPri = ReadDSDPriority(Adapter, DSD0);
4336 if (DSDHighestPri < DsdPri) {
4337 DSDHighestPri = DsdPri;
4338 HighestPriDSD = DSD0;
4339 }
4340 }
4341 if (HighestPriDSD)
4342 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Highest DSD :%x , and its Pri :%x", HighestPriDSD, DSDHighestPri);
4343
4344 return HighestPriDSD;
4345 }
4346
4347 INT ReadISOSignature(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL iso)
4348 {
4349 UINT uiISOsig = 0;
4350 /* UINT sigoffsetInMap = 0;
4351 * ISO_HEADER ISOHeader = {0};
4352 * sigoffsetInMap =(PUCHAR)&(ISOHeader.ISOImageMagicNumber) -(PUCHAR)&ISOHeader;
4353 */
4354 if (iso != ISO_IMAGE1 && iso != ISO_IMAGE2) {
4355 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "passed section value is not for ISOs");
4356 return STATUS_FAILURE;
4357 }
4358 BcmFlash2xBulkRead(Adapter,
4359 &uiISOsig,
4360 iso,
4361 0 + FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImageMagicNumber),
4362 SIGNATURE_SIZE);
4363
4364 uiISOsig = ntohl(uiISOsig);
4365 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "ISO SIG :%x", uiISOsig);
4366
4367 return uiISOsig;
4368 }
4369
4370 INT ReadISOPriority(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL iso)
4371 {
4372 unsigned int ISOPri = STATUS_FAILURE;
4373 if (IsSectionWritable(Adapter, iso)) {
4374 if (ReadISOSignature(Adapter, iso) == ISO_IMAGE_MAGIC_NUMBER) {
4375 BcmFlash2xBulkRead(Adapter,
4376 &ISOPri,
4377 iso,
4378 0 + FIELD_OFFSET_IN_HEADER(PISO_HEADER, ISOImagePriority),
4379 4);
4380
4381 ISOPri = ntohl(ISOPri);
4382 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "ISO<%x> Priority :%x", iso, ISOPri);
4383 }
4384 }
4385
4386 return ISOPri;
4387 }
4388
4389 FLASH2X_SECTION_VAL getHighestPriISO(struct bcm_mini_adapter *Adapter)
4390 {
4391 INT ISOHighestPri = STATUS_FAILURE;
4392 INT ISOPri = 0;
4393 FLASH2X_SECTION_VAL HighestPriISO = NO_SECTION_VAL;
4394
4395 if (IsSectionWritable(Adapter, ISO_IMAGE2)) {
4396 ISOHighestPri = ReadISOPriority(Adapter, ISO_IMAGE2);
4397 HighestPriISO = ISO_IMAGE2;
4398 }
4399
4400 if (IsSectionWritable(Adapter, ISO_IMAGE1)) {
4401 ISOPri = ReadISOPriority(Adapter, ISO_IMAGE1);
4402 if (ISOHighestPri < ISOPri) {
4403 ISOHighestPri = ISOPri;
4404 HighestPriISO = ISO_IMAGE1;
4405 }
4406 }
4407 if (HighestPriISO)
4408 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Highest ISO :%x and its Pri :%x", HighestPriISO, ISOHighestPri);
4409
4410 return HighestPriISO;
4411 }
4412
4413 INT WriteToFlashWithoutSectorErase(struct bcm_mini_adapter *Adapter,
4414 PUINT pBuff,
4415 FLASH2X_SECTION_VAL eFlash2xSectionVal,
4416 UINT uiOffset,
4417 UINT uiNumBytes)
4418 {
4419 #if !defined(BCM_SHM_INTERFACE) || defined(FLASH_DIRECT_ACCESS)
4420 UINT uiTemp = 0, value = 0;
4421 UINT i = 0;
4422 UINT uiPartOffset = 0;
4423 #endif
4424 UINT uiStartOffset = 0;
4425 /* Adding section start address */
4426 INT Status = STATUS_SUCCESS;
4427 PUCHAR pcBuff = (PUCHAR)pBuff;
4428
4429 if (uiNumBytes % Adapter->ulFlashWriteSize) {
4430 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Writing without Sector Erase for non-FlashWriteSize number of bytes 0x%x\n", uiNumBytes);
4431 return STATUS_FAILURE;
4432 }
4433
4434 uiStartOffset = BcmGetSectionValStartOffset(Adapter, eFlash2xSectionVal);
4435
4436 if (IsSectionExistInVendorInfo(Adapter, eFlash2xSectionVal))
4437 return vendorextnWriteSectionWithoutErase(Adapter, pcBuff, eFlash2xSectionVal, uiOffset, uiNumBytes);
4438
4439 uiOffset = uiOffset + uiStartOffset;
4440
4441 #if defined(BCM_SHM_INTERFACE) && !defined(FLASH_DIRECT_ACCESS)
4442 Status = bcmflash_raw_writenoerase((uiOffset / FLASH_PART_SIZE), (uiOffset % FLASH_PART_SIZE), pcBuff, uiNumBytes);
4443 #else
4444 rdmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
4445 value = 0;
4446 wrmalt(Adapter, 0x0f000C80, &value, sizeof(value));
4447
4448 Adapter->SelectedChip = RESET_CHIP_SELECT;
4449 BcmDoChipSelect(Adapter, uiOffset);
4450 uiPartOffset = (uiOffset & (FLASH_PART_SIZE - 1)) + GetFlashBaseAddr(Adapter);
4451
4452 for (i = 0 ; i < uiNumBytes; i += Adapter->ulFlashWriteSize) {
4453 if (Adapter->ulFlashWriteSize == BYTE_WRITE_SUPPORT)
4454 Status = flashByteWrite(Adapter, uiPartOffset, pcBuff);
4455 else
4456 Status = flashWrite(Adapter, uiPartOffset, pcBuff);
4457
4458 if (Status != STATUS_SUCCESS)
4459 break;
4460
4461 pcBuff = pcBuff + Adapter->ulFlashWriteSize;
4462 uiPartOffset = uiPartOffset + Adapter->ulFlashWriteSize;
4463 }
4464 wrmalt(Adapter, 0x0f000C80, &uiTemp, sizeof(uiTemp));
4465 Adapter->SelectedChip = RESET_CHIP_SELECT;
4466 #endif
4467
4468 return Status;
4469 }
4470
4471 BOOLEAN IsSectionExistInFlash(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL section)
4472 {
4473 BOOLEAN SectionPresent = FALSE;
4474
4475 switch (section) {
4476 case ISO_IMAGE1:
4477 if ((Adapter->psFlash2xCSInfo->OffsetISOImage1Part1Start != UNINIT_PTR_IN_CS) &&
4478 (IsNonCDLessDevice(Adapter) == FALSE))
4479 SectionPresent = TRUE;
4480 break;
4481 case ISO_IMAGE2:
4482 if ((Adapter->psFlash2xCSInfo->OffsetISOImage2Part1Start != UNINIT_PTR_IN_CS) &&
4483 (IsNonCDLessDevice(Adapter) == FALSE))
4484 SectionPresent = TRUE;
4485 break;
4486 case DSD0:
4487 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSDStart != UNINIT_PTR_IN_CS)
4488 SectionPresent = TRUE;
4489 break;
4490 case DSD1:
4491 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD1Start != UNINIT_PTR_IN_CS)
4492 SectionPresent = TRUE;
4493 break;
4494 case DSD2:
4495 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForDSD2Start != UNINIT_PTR_IN_CS)
4496 SectionPresent = TRUE;
4497 break;
4498 case VSA0:
4499 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSAStart != UNINIT_PTR_IN_CS)
4500 SectionPresent = TRUE;
4501 break;
4502 case VSA1:
4503 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA1Start != UNINIT_PTR_IN_CS)
4504 SectionPresent = TRUE;
4505 break;
4506 case VSA2:
4507 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForVSA2Start != UNINIT_PTR_IN_CS)
4508 SectionPresent = TRUE;
4509 break;
4510 case SCSI:
4511 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForScsiFirmware != UNINIT_PTR_IN_CS)
4512 SectionPresent = TRUE;
4513 break;
4514 case CONTROL_SECTION:
4515 if (Adapter->psFlash2xCSInfo->OffsetFromZeroForControlSectionStart != UNINIT_PTR_IN_CS)
4516 SectionPresent = TRUE;
4517 break;
4518 default:
4519 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section Does not exist in Flash 2.x");
4520 SectionPresent = FALSE;
4521 }
4522
4523 return SectionPresent;
4524 }
4525
4526 INT IsSectionWritable(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL Section)
4527 {
4528 INT offset = STATUS_FAILURE;
4529 INT Status = FALSE;
4530
4531 if (IsSectionExistInFlash(Adapter, Section) == FALSE) {
4532 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section <%d> does not exixt", Section);
4533 return FALSE;
4534 }
4535
4536 offset = BcmGetSectionValStartOffset(Adapter, Section);
4537 if (offset == INVALID_OFFSET) {
4538 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section<%d> does not exixt", Section);
4539 return FALSE;
4540 }
4541
4542 if (IsSectionExistInVendorInfo(Adapter, Section))
4543 return !(Adapter->psFlash2xVendorInfo->VendorSection[Section].AccessFlags & FLASH2X_SECTION_RO);
4544
4545 Status = IsOffsetWritable(Adapter, offset);
4546 return Status;
4547 }
4548
4549 static INT CorruptDSDSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal)
4550 {
4551 PUCHAR pBuff = NULL;
4552 UINT sig = 0;
4553 UINT uiOffset = 0;
4554 UINT BlockStatus = 0;
4555 UINT uiSectAlignAddr = 0;
4556
4557 Adapter->bSigCorrupted = FALSE;
4558 if (Adapter->bAllDSDWriteAllow == FALSE) {
4559 if (IsSectionWritable(Adapter, eFlash2xSectionVal) != TRUE) {
4560 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section is not Writable...Hence can't Corrupt signature");
4561 return SECTOR_IS_NOT_WRITABLE;
4562 }
4563 }
4564
4565 pBuff = (PUCHAR)kzalloc(MAX_RW_SIZE, GFP_KERNEL);
4566 if (pBuff == NULL) {
4567 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Can't allocate memorey");
4568 return -ENOMEM;
4569 }
4570
4571 uiOffset = Adapter->psFlash2xCSInfo->OffsetFromDSDStartForDSDHeader + sizeof(DSD_HEADER);
4572 uiOffset -= MAX_RW_SIZE;
4573
4574 BcmFlash2xBulkRead(Adapter, (PUINT)pBuff, eFlash2xSectionVal, uiOffset, MAX_RW_SIZE);
4575
4576 sig = *((PUINT)(pBuff + 12));
4577 sig = ntohl(sig);
4578 BCM_DEBUG_PRINT_BUFFER(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, pBuff, MAX_RW_SIZE);
4579 /* Now corrupting the sig by corrupting 4th last Byte. */
4580 *(pBuff + 12) = 0;
4581
4582 if (sig == DSD_IMAGE_MAGIC_NUMBER) {
4583 Adapter->bSigCorrupted = TRUE;
4584 if (Adapter->ulFlashWriteSize == BYTE_WRITE_SUPPORT) {
4585 uiSectAlignAddr = uiOffset & ~(Adapter->uiSectorSize - 1);
4586 BlockStatus = BcmFlashUnProtectBlock(Adapter, uiSectAlignAddr, Adapter->uiSectorSize);
4587
4588 WriteToFlashWithoutSectorErase(Adapter, (PUINT)(pBuff + 12), eFlash2xSectionVal,
4589 (uiOffset + 12), BYTE_WRITE_SUPPORT);
4590 if (BlockStatus) {
4591 BcmRestoreBlockProtectStatus(Adapter, BlockStatus);
4592 BlockStatus = 0;
4593 }
4594 } else {
4595 WriteToFlashWithoutSectorErase(Adapter, (PUINT)pBuff, eFlash2xSectionVal,
4596 uiOffset, MAX_RW_SIZE);
4597 }
4598 } else {
4599 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "BCM Signature is not present in header");
4600 kfree(pBuff);
4601
4602 return STATUS_FAILURE;
4603 }
4604
4605 kfree(pBuff);
4606 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Corrupted the signature");
4607
4608 return STATUS_SUCCESS;
4609 }
4610
4611 static INT CorruptISOSig(struct bcm_mini_adapter *Adapter, FLASH2X_SECTION_VAL eFlash2xSectionVal)
4612 {
4613 PUCHAR pBuff = NULL;
4614 UINT sig = 0;
4615 UINT uiOffset = 0;
4616
4617 Adapter->bSigCorrupted = FALSE;
4618
4619 if (IsSectionWritable(Adapter, eFlash2xSectionVal) != TRUE) {
4620 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Section is not Writable...Hence can't Corrupt signature");
4621 return SECTOR_IS_NOT_WRITABLE;
4622 }
4623
4624 pBuff = (PUCHAR)kzalloc(MAX_RW_SIZE, GFP_KERNEL);
4625 if (pBuff == NULL) {
4626 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "Can't allocate memorey");
4627 return -ENOMEM;
4628 }
4629
4630 uiOffset = 0;
4631
4632 BcmFlash2xBulkRead(Adapter, (PUINT)pBuff, eFlash2xSectionVal, uiOffset, MAX_RW_SIZE);
4633
4634 sig = *((PUINT)pBuff);
4635 sig = ntohl(sig);
4636
4637 /* corrupt signature */
4638 *pBuff = 0;
4639
4640 if (sig == ISO_IMAGE_MAGIC_NUMBER) {
4641 Adapter->bSigCorrupted = TRUE;
4642 WriteToFlashWithoutSectorErase(Adapter, (PUINT)pBuff, eFlash2xSectionVal,
4643 uiOffset, Adapter->ulFlashWriteSize);
4644 } else {
4645 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_PRINTK, 0, 0, "BCM Signature is not present in header");
4646 kfree(pBuff);
4647
4648 return STATUS_FAILURE;
4649 }
4650
4651 BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, "Corrupted the signature");
4652 BCM_DEBUG_PRINT_BUFFER(Adapter, DBG_TYPE_OTHERS, NVM_RW, DBG_LVL_ALL, pBuff, MAX_RW_SIZE);
4653
4654 kfree(pBuff);
4655 return STATUS_SUCCESS;
4656 }
4657
4658 BOOLEAN IsNonCDLessDevice(struct bcm_mini_adapter *Adapter)
4659 {
4660 if (Adapter->psFlash2xCSInfo->IsCDLessDeviceBootSig == NON_CDLESS_DEVICE_BOOT_SIG)
4661 return TRUE;
4662 else
4663 return FALSE;
4664 }
This page took 0.202332 seconds and 5 git commands to generate.