Merge 3.9-rc5 into staging-next
[deliverable/linux.git] / drivers / staging / comedi / drivers / rtd520.c
1 /*
2 * comedi/drivers/rtd520.c
3 * Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
4 *
5 * COMEDI - Linux Control and Measurement Device Interface
6 * Copyright (C) 2001 David A. Schleef <ds@schleef.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Driver: rtd520
25 * Description: Real Time Devices PCI4520/DM7520
26 * Devices: (Real Time Devices) DM7520HR-1 [DM7520]
27 * (Real Time Devices) DM7520HR-8 [DM7520]
28 * (Real Time Devices) PCI4520 [PCI4520]
29 * (Real Time Devices) PCI4520-8 [PCI4520]
30 * Author: Dan Christian
31 * Status: Works. Only tested on DM7520-8. Not SMP safe.
32 *
33 * Configuration options: not applicable, uses PCI auto config
34 */
35
36 /*
37 * Created by Dan Christian, NASA Ames Research Center.
38 *
39 * The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
40 * Both have:
41 * 8/16 12 bit ADC with FIFO and channel gain table
42 * 8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
43 * 8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
44 * 2 12 bit DACs with FIFOs
45 * 2 bits output
46 * 2 bits input
47 * bus mastering DMA
48 * timers: ADC sample, pacer, burst, about, delay, DA1, DA2
49 * sample counter
50 * 3 user timer/counters (8254)
51 * external interrupt
52 *
53 * The DM7520 has slightly fewer features (fewer gain steps).
54 *
55 * These boards can support external multiplexors and multi-board
56 * synchronization, but this driver doesn't support that.
57 *
58 * Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
59 * Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
60 * Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
61 * Call them and ask for the register level manual.
62 * PCI chip: http://www.plxtech.com/products/io/pci9080
63 *
64 * Notes:
65 * This board is memory mapped. There is some IO stuff, but it isn't needed.
66 *
67 * I use a pretty loose naming style within the driver (rtd_blah).
68 * All externally visible names should be rtd520_blah.
69 * I use camelCase for structures (and inside them).
70 * I may also use upper CamelCase for function names (old habit).
71 *
72 * This board is somewhat related to the RTD PCI4400 board.
73 *
74 * I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
75 * das1800, since they have the best documented code. Driver cb_pcidas64.c
76 * uses the same DMA controller.
77 *
78 * As far as I can tell, the About interrupt doesn't work if Sample is
79 * also enabled. It turns out that About really isn't needed, since
80 * we always count down samples read.
81 *
82 * There was some timer/counter code, but it didn't follow the right API.
83 */
84
85 /*
86 * driver status:
87 *
88 * Analog-In supports instruction and command mode.
89 *
90 * With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
91 * (single channel, 64K read buffer). I get random system lockups when
92 * using DMA with ALI-15xx based systems. I haven't been able to test
93 * any other chipsets. The lockups happen soon after the start of an
94 * acquistion, not in the middle of a long run.
95 *
96 * Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
97 * (with a 256K read buffer).
98 *
99 * Digital-IO and Analog-Out only support instruction mode.
100 */
101
102 #include <linux/pci.h>
103 #include <linux/delay.h>
104 #include <linux/interrupt.h>
105
106 #include "../comedidev.h"
107
108 #include "comedi_fc.h"
109 #include "plx9080.h"
110
111 /*
112 * Local Address Space 0 Offsets
113 */
114 #define LAS0_USER_IO 0x0008 /* User I/O */
115 #define LAS0_ADC 0x0010 /* FIFO Status/Software A/D Start */
116 #define FS_DAC1_NOT_EMPTY (1 << 0) /* DAC1 FIFO not empty */
117 #define FS_DAC1_HEMPTY (1 << 1) /* DAC1 FIFO half empty */
118 #define FS_DAC1_NOT_FULL (1 << 2) /* DAC1 FIFO not full */
119 #define FS_DAC2_NOT_EMPTY (1 << 4) /* DAC2 FIFO not empty */
120 #define FS_DAC2_HEMPTY (1 << 5) /* DAC2 FIFO half empty */
121 #define FS_DAC2_NOT_FULL (1 << 6) /* DAC2 FIFO not full */
122 #define FS_ADC_NOT_EMPTY (1 << 8) /* ADC FIFO not empty */
123 #define FS_ADC_HEMPTY (1 << 9) /* ADC FIFO half empty */
124 #define FS_ADC_NOT_FULL (1 << 10) /* ADC FIFO not full */
125 #define FS_DIN_NOT_EMPTY (1 << 12) /* DIN FIFO not empty */
126 #define FS_DIN_HEMPTY (1 << 13) /* DIN FIFO half empty */
127 #define FS_DIN_NOT_FULL (1 << 14) /* DIN FIFO not full */
128 #define LAS0_DAC1 0x0014 /* Software D/A1 Update (w) */
129 #define LAS0_DAC2 0x0018 /* Software D/A2 Update (w) */
130 #define LAS0_DAC 0x0024 /* Software Simultaneous Update (w) */
131 #define LAS0_PACER 0x0028 /* Software Pacer Start/Stop */
132 #define LAS0_TIMER 0x002c /* Timer Status/HDIN Software Trig. */
133 #define LAS0_IT 0x0030 /* Interrupt Status/Enable */
134 #define IRQM_ADC_FIFO_WRITE (1 << 0) /* ADC FIFO Write */
135 #define IRQM_CGT_RESET (1 << 1) /* Reset CGT */
136 #define IRQM_CGT_PAUSE (1 << 3) /* Pause CGT */
137 #define IRQM_ADC_ABOUT_CNT (1 << 4) /* About Counter out */
138 #define IRQM_ADC_DELAY_CNT (1 << 5) /* Delay Counter out */
139 #define IRQM_ADC_SAMPLE_CNT (1 << 6) /* ADC Sample Counter */
140 #define IRQM_DAC1_UCNT (1 << 7) /* DAC1 Update Counter */
141 #define IRQM_DAC2_UCNT (1 << 8) /* DAC2 Update Counter */
142 #define IRQM_UTC1 (1 << 9) /* User TC1 out */
143 #define IRQM_UTC1_INV (1 << 10) /* User TC1 out, inverted */
144 #define IRQM_UTC2 (1 << 11) /* User TC2 out */
145 #define IRQM_DIGITAL_IT (1 << 12) /* Digital Interrupt */
146 #define IRQM_EXTERNAL_IT (1 << 13) /* External Interrupt */
147 #define IRQM_ETRIG_RISING (1 << 14) /* Ext Trigger rising-edge */
148 #define IRQM_ETRIG_FALLING (1 << 15) /* Ext Trigger falling-edge */
149 #define LAS0_CLEAR 0x0034 /* Clear/Set Interrupt Clear Mask */
150 #define LAS0_OVERRUN 0x0038 /* Pending interrupts/Clear Overrun */
151 #define LAS0_PCLK 0x0040 /* Pacer Clock (24bit) */
152 #define LAS0_BCLK 0x0044 /* Burst Clock (10bit) */
153 #define LAS0_ADC_SCNT 0x0048 /* A/D Sample counter (10bit) */
154 #define LAS0_DAC1_UCNT 0x004c /* D/A1 Update counter (10 bit) */
155 #define LAS0_DAC2_UCNT 0x0050 /* D/A2 Update counter (10 bit) */
156 #define LAS0_DCNT 0x0054 /* Delay counter (16 bit) */
157 #define LAS0_ACNT 0x0058 /* About counter (16 bit) */
158 #define LAS0_DAC_CLK 0x005c /* DAC clock (16bit) */
159 #define LAS0_UTC0 0x0060 /* 8254 TC Counter 0 */
160 #define LAS0_UTC1 0x0064 /* 8254 TC Counter 1 */
161 #define LAS0_UTC2 0x0068 /* 8254 TC Counter 2 */
162 #define LAS0_UTC_CTRL 0x006c /* 8254 TC Control */
163 #define LAS0_DIO0 0x0070 /* Digital I/O Port 0 */
164 #define LAS0_DIO1 0x0074 /* Digital I/O Port 1 */
165 #define LAS0_DIO0_CTRL 0x0078 /* Digital I/O Control */
166 #define LAS0_DIO_STATUS 0x007c /* Digital I/O Status */
167 #define LAS0_BOARD_RESET 0x0100 /* Board reset */
168 #define LAS0_DMA0_SRC 0x0104 /* DMA 0 Sources select */
169 #define LAS0_DMA1_SRC 0x0108 /* DMA 1 Sources select */
170 #define LAS0_ADC_CONVERSION 0x010c /* A/D Conversion Signal select */
171 #define LAS0_BURST_START 0x0110 /* Burst Clock Start Trigger select */
172 #define LAS0_PACER_START 0x0114 /* Pacer Clock Start Trigger select */
173 #define LAS0_PACER_STOP 0x0118 /* Pacer Clock Stop Trigger select */
174 #define LAS0_ACNT_STOP_ENABLE 0x011c /* About Counter Stop Enable */
175 #define LAS0_PACER_REPEAT 0x0120 /* Pacer Start Trigger Mode select */
176 #define LAS0_DIN_START 0x0124 /* HiSpd DI Sampling Signal select */
177 #define LAS0_DIN_FIFO_CLEAR 0x0128 /* Digital Input FIFO Clear */
178 #define LAS0_ADC_FIFO_CLEAR 0x012c /* A/D FIFO Clear */
179 #define LAS0_CGT_WRITE 0x0130 /* Channel Gain Table Write */
180 #define LAS0_CGL_WRITE 0x0134 /* Channel Gain Latch Write */
181 #define LAS0_CG_DATA 0x0138 /* Digital Table Write */
182 #define LAS0_CGT_ENABLE 0x013c /* Channel Gain Table Enable */
183 #define LAS0_CG_ENABLE 0x0140 /* Digital Table Enable */
184 #define LAS0_CGT_PAUSE 0x0144 /* Table Pause Enable */
185 #define LAS0_CGT_RESET 0x0148 /* Reset Channel Gain Table */
186 #define LAS0_CGT_CLEAR 0x014c /* Clear Channel Gain Table */
187 #define LAS0_DAC1_CTRL 0x0150 /* D/A1 output type/range */
188 #define LAS0_DAC1_SRC 0x0154 /* D/A1 update source */
189 #define LAS0_DAC1_CYCLE 0x0158 /* D/A1 cycle mode */
190 #define LAS0_DAC1_RESET 0x015c /* D/A1 FIFO reset */
191 #define LAS0_DAC1_FIFO_CLEAR 0x0160 /* D/A1 FIFO clear */
192 #define LAS0_DAC2_CTRL 0x0164 /* D/A2 output type/range */
193 #define LAS0_DAC2_SRC 0x0168 /* D/A2 update source */
194 #define LAS0_DAC2_CYCLE 0x016c /* D/A2 cycle mode */
195 #define LAS0_DAC2_RESET 0x0170 /* D/A2 FIFO reset */
196 #define LAS0_DAC2_FIFO_CLEAR 0x0174 /* D/A2 FIFO clear */
197 #define LAS0_ADC_SCNT_SRC 0x0178 /* A/D Sample Counter Source select */
198 #define LAS0_PACER_SELECT 0x0180 /* Pacer Clock select */
199 #define LAS0_SBUS0_SRC 0x0184 /* SyncBus 0 Source select */
200 #define LAS0_SBUS0_ENABLE 0x0188 /* SyncBus 0 enable */
201 #define LAS0_SBUS1_SRC 0x018c /* SyncBus 1 Source select */
202 #define LAS0_SBUS1_ENABLE 0x0190 /* SyncBus 1 enable */
203 #define LAS0_SBUS2_SRC 0x0198 /* SyncBus 2 Source select */
204 #define LAS0_SBUS2_ENABLE 0x019c /* SyncBus 2 enable */
205 #define LAS0_ETRG_POLARITY 0x01a4 /* Ext. Trigger polarity select */
206 #define LAS0_EINT_POLARITY 0x01a8 /* Ext. Interrupt polarity select */
207 #define LAS0_UTC0_CLOCK 0x01ac /* UTC0 Clock select */
208 #define LAS0_UTC0_GATE 0x01b0 /* UTC0 Gate select */
209 #define LAS0_UTC1_CLOCK 0x01b4 /* UTC1 Clock select */
210 #define LAS0_UTC1_GATE 0x01b8 /* UTC1 Gate select */
211 #define LAS0_UTC2_CLOCK 0x01bc /* UTC2 Clock select */
212 #define LAS0_UTC2_GATE 0x01c0 /* UTC2 Gate select */
213 #define LAS0_UOUT0_SELECT 0x01c4 /* User Output 0 source select */
214 #define LAS0_UOUT1_SELECT 0x01c8 /* User Output 1 source select */
215 #define LAS0_DMA0_RESET 0x01cc /* DMA0 Request state machine reset */
216 #define LAS0_DMA1_RESET 0x01d0 /* DMA1 Request state machine reset */
217
218 /*
219 * Local Address Space 1 Offsets
220 */
221 #define LAS1_ADC_FIFO 0x0000 /* A/D FIFO (16bit) */
222 #define LAS1_HDIO_FIFO 0x0004 /* HiSpd DI FIFO (16bit) */
223 #define LAS1_DAC1_FIFO 0x0008 /* D/A1 FIFO (16bit) */
224 #define LAS1_DAC2_FIFO 0x000c /* D/A2 FIFO (16bit) */
225
226 /*======================================================================
227 Driver specific stuff (tunable)
228 ======================================================================*/
229
230 /* We really only need 2 buffers. More than that means being much
231 smarter about knowing which ones are full. */
232 #define DMA_CHAIN_COUNT 2 /* max DMA segments/buffers in a ring (min 2) */
233
234 /* Target period for periodic transfers. This sets the user read latency. */
235 /* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
236 /* If this is too low, efficiency is poor */
237 #define TRANS_TARGET_PERIOD 10000000 /* 10 ms (in nanoseconds) */
238
239 /* Set a practical limit on how long a list to support (affects memory use) */
240 /* The board support a channel list up to the FIFO length (1K or 8K) */
241 #define RTD_MAX_CHANLIST 128 /* max channel list that we allow */
242
243 /* tuning for ai/ao instruction done polling */
244 #ifdef FAST_SPIN
245 #define WAIT_QUIETLY /* as nothing, spin on done bit */
246 #define RTD_ADC_TIMEOUT 66000 /* 2 msec at 33mhz bus rate */
247 #define RTD_DAC_TIMEOUT 66000
248 #define RTD_DMA_TIMEOUT 33000 /* 1 msec */
249 #else
250 /* by delaying, power and electrical noise are reduced somewhat */
251 #define WAIT_QUIETLY udelay(1)
252 #define RTD_ADC_TIMEOUT 2000 /* in usec */
253 #define RTD_DAC_TIMEOUT 2000 /* in usec */
254 #define RTD_DMA_TIMEOUT 1000 /* in usec */
255 #endif
256
257 /*======================================================================
258 Board specific stuff
259 ======================================================================*/
260
261 #define RTD_CLOCK_RATE 8000000 /* 8Mhz onboard clock */
262 #define RTD_CLOCK_BASE 125 /* clock period in ns */
263
264 /* Note: these speed are slower than the spec, but fit the counter resolution*/
265 #define RTD_MAX_SPEED 1625 /* when sampling, in nanoseconds */
266 /* max speed if we don't have to wait for settling */
267 #define RTD_MAX_SPEED_1 875 /* if single channel, in nanoseconds */
268
269 #define RTD_MIN_SPEED 2097151875 /* (24bit counter) in nanoseconds */
270 /* min speed when only 1 channel (no burst counter) */
271 #define RTD_MIN_SPEED_1 5000000 /* 200Hz, in nanoseconds */
272
273 /* Setup continuous ring of 1/2 FIFO transfers. See RTD manual p91 */
274 #define DMA_MODE_BITS (\
275 PLX_LOCAL_BUS_16_WIDE_BITS \
276 | PLX_DMA_EN_READYIN_BIT \
277 | PLX_DMA_LOCAL_BURST_EN_BIT \
278 | PLX_EN_CHAIN_BIT \
279 | PLX_DMA_INTR_PCI_BIT \
280 | PLX_LOCAL_ADDR_CONST_BIT \
281 | PLX_DEMAND_MODE_BIT)
282
283 #define DMA_TRANSFER_BITS (\
284 /* descriptors in PCI memory*/ PLX_DESC_IN_PCI_BIT \
285 /* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
286 /* from board to PCI */ | PLX_XFER_LOCAL_TO_PCI)
287
288 /*======================================================================
289 Comedi specific stuff
290 ======================================================================*/
291
292 /*
293 * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
294 */
295 static const struct comedi_lrange rtd_ai_7520_range = {
296 18, {
297 /* +-5V input range gain steps */
298 BIP_RANGE(5.0),
299 BIP_RANGE(5.0 / 2),
300 BIP_RANGE(5.0 / 4),
301 BIP_RANGE(5.0 / 8),
302 BIP_RANGE(5.0 / 16),
303 BIP_RANGE(5.0 / 32),
304 /* +-10V input range gain steps */
305 BIP_RANGE(10.0),
306 BIP_RANGE(10.0 / 2),
307 BIP_RANGE(10.0 / 4),
308 BIP_RANGE(10.0 / 8),
309 BIP_RANGE(10.0 / 16),
310 BIP_RANGE(10.0 / 32),
311 /* +10V input range gain steps */
312 UNI_RANGE(10.0),
313 UNI_RANGE(10.0 / 2),
314 UNI_RANGE(10.0 / 4),
315 UNI_RANGE(10.0 / 8),
316 UNI_RANGE(10.0 / 16),
317 UNI_RANGE(10.0 / 32),
318 }
319 };
320
321 /* PCI4520 has two more gains (6 more entries) */
322 static const struct comedi_lrange rtd_ai_4520_range = {
323 24, {
324 /* +-5V input range gain steps */
325 BIP_RANGE(5.0),
326 BIP_RANGE(5.0 / 2),
327 BIP_RANGE(5.0 / 4),
328 BIP_RANGE(5.0 / 8),
329 BIP_RANGE(5.0 / 16),
330 BIP_RANGE(5.0 / 32),
331 BIP_RANGE(5.0 / 64),
332 BIP_RANGE(5.0 / 128),
333 /* +-10V input range gain steps */
334 BIP_RANGE(10.0),
335 BIP_RANGE(10.0 / 2),
336 BIP_RANGE(10.0 / 4),
337 BIP_RANGE(10.0 / 8),
338 BIP_RANGE(10.0 / 16),
339 BIP_RANGE(10.0 / 32),
340 BIP_RANGE(10.0 / 64),
341 BIP_RANGE(10.0 / 128),
342 /* +10V input range gain steps */
343 UNI_RANGE(10.0),
344 UNI_RANGE(10.0 / 2),
345 UNI_RANGE(10.0 / 4),
346 UNI_RANGE(10.0 / 8),
347 UNI_RANGE(10.0 / 16),
348 UNI_RANGE(10.0 / 32),
349 UNI_RANGE(10.0 / 64),
350 UNI_RANGE(10.0 / 128),
351 }
352 };
353
354 /* Table order matches range values */
355 static const struct comedi_lrange rtd_ao_range = {
356 4, {
357 UNI_RANGE(5),
358 UNI_RANGE(10),
359 BIP_RANGE(5),
360 BIP_RANGE(10),
361 }
362 };
363
364 enum rtd_boardid {
365 BOARD_DM7520,
366 BOARD_PCI4520,
367 };
368
369 struct rtdBoard {
370 const char *name;
371 int range10Start; /* start of +-10V range */
372 int rangeUniStart; /* start of +10V range */
373 const struct comedi_lrange *ai_range;
374 };
375
376 static const struct rtdBoard rtd520Boards[] = {
377 [BOARD_DM7520] = {
378 .name = "DM7520",
379 .range10Start = 6,
380 .rangeUniStart = 12,
381 .ai_range = &rtd_ai_7520_range,
382 },
383 [BOARD_PCI4520] = {
384 .name = "PCI4520",
385 .range10Start = 8,
386 .rangeUniStart = 16,
387 .ai_range = &rtd_ai_4520_range,
388 },
389 };
390
391 /*
392 This structure is for data unique to this hardware driver.
393 This is also unique for each board in the system.
394 */
395 struct rtdPrivate {
396 /* memory mapped board structures */
397 void __iomem *las0;
398 void __iomem *las1;
399 void __iomem *lcfg;
400
401 long aiCount; /* total transfer size (samples) */
402 int transCount; /* # to transfer data. 0->1/2FIFO */
403 int flags; /* flag event modes */
404
405 /* channel list info */
406 /* chanBipolar tracks whether a channel is bipolar (and needs +2048) */
407 unsigned char chanBipolar[RTD_MAX_CHANLIST / 8]; /* bit array */
408
409 /* read back data */
410 unsigned int aoValue[2]; /* Used for AO read back */
411
412 unsigned fifoLen;
413 };
414
415 /* bit defines for "flags" */
416 #define SEND_EOS 0x01 /* send End Of Scan events */
417 #define DMA0_ACTIVE 0x02 /* DMA0 is active */
418 #define DMA1_ACTIVE 0x04 /* DMA1 is active */
419
420 /* Macros for accessing channel list bit array */
421 #define CHAN_ARRAY_TEST(array, index) \
422 (((array)[(index)/8] >> ((index) & 0x7)) & 0x1)
423 #define CHAN_ARRAY_SET(array, index) \
424 (((array)[(index)/8] |= 1 << ((index) & 0x7)))
425 #define CHAN_ARRAY_CLEAR(array, index) \
426 (((array)[(index)/8] &= ~(1 << ((index) & 0x7))))
427
428 /*
429 Given a desired period and the clock period (both in ns),
430 return the proper counter value (divider-1).
431 Sets the original period to be the true value.
432 Note: you have to check if the value is larger than the counter range!
433 */
434 static int rtd_ns_to_timer_base(unsigned int *nanosec,
435 int round_mode, int base)
436 {
437 int divider;
438
439 switch (round_mode) {
440 case TRIG_ROUND_NEAREST:
441 default:
442 divider = (*nanosec + base / 2) / base;
443 break;
444 case TRIG_ROUND_DOWN:
445 divider = (*nanosec) / base;
446 break;
447 case TRIG_ROUND_UP:
448 divider = (*nanosec + base - 1) / base;
449 break;
450 }
451 if (divider < 2)
452 divider = 2; /* min is divide by 2 */
453
454 /* Note: we don't check for max, because different timers
455 have different ranges */
456
457 *nanosec = base * divider;
458 return divider - 1; /* countdown is divisor+1 */
459 }
460
461 /*
462 Given a desired period (in ns),
463 return the proper counter value (divider-1) for the internal clock.
464 Sets the original period to be the true value.
465 */
466 static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
467 {
468 return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
469 }
470
471 /*
472 Convert a single comedi channel-gain entry to a RTD520 table entry
473 */
474 static unsigned short rtdConvertChanGain(struct comedi_device *dev,
475 unsigned int comediChan, int chanIndex)
476 { /* index in channel list */
477 const struct rtdBoard *thisboard = comedi_board(dev);
478 struct rtdPrivate *devpriv = dev->private;
479 unsigned int chan, range, aref;
480 unsigned short r = 0;
481
482 chan = CR_CHAN(comediChan);
483 range = CR_RANGE(comediChan);
484 aref = CR_AREF(comediChan);
485
486 r |= chan & 0xf;
487
488 /* Note: we also setup the channel list bipolar flag array */
489 if (range < thisboard->range10Start) {
490 /* +-5 range */
491 r |= 0x000;
492 r |= (range & 0x7) << 4;
493 CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
494 } else if (range < thisboard->rangeUniStart) {
495 /* +-10 range */
496 r |= 0x100;
497 r |= ((range - thisboard->range10Start) & 0x7) << 4;
498 CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
499 } else {
500 /* +10 range */
501 r |= 0x200;
502 r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
503 CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
504 }
505
506 switch (aref) {
507 case AREF_GROUND: /* on-board ground */
508 break;
509
510 case AREF_COMMON:
511 r |= 0x80; /* ref external analog common */
512 break;
513
514 case AREF_DIFF:
515 r |= 0x400; /* differential inputs */
516 break;
517
518 case AREF_OTHER: /* ??? */
519 break;
520 }
521 /*printk ("chan=%d r=%d a=%d -> 0x%x\n",
522 chan, range, aref, r); */
523 return r;
524 }
525
526 /*
527 Setup the channel-gain table from a comedi list
528 */
529 static void rtd_load_channelgain_list(struct comedi_device *dev,
530 unsigned int n_chan, unsigned int *list)
531 {
532 struct rtdPrivate *devpriv = dev->private;
533
534 if (n_chan > 1) { /* setup channel gain table */
535 int ii;
536
537 writel(0, devpriv->las0 + LAS0_CGT_CLEAR);
538 writel(1, devpriv->las0 + LAS0_CGT_ENABLE);
539 for (ii = 0; ii < n_chan; ii++) {
540 writel(rtdConvertChanGain(dev, list[ii], ii),
541 devpriv->las0 + LAS0_CGT_WRITE);
542 }
543 } else { /* just use the channel gain latch */
544 writel(0, devpriv->las0 + LAS0_CGT_ENABLE);
545 writel(rtdConvertChanGain(dev, list[0], 0),
546 devpriv->las0 + LAS0_CGL_WRITE);
547 }
548 }
549
550 /* determine fifo size by doing adc conversions until the fifo half
551 empty status flag clears */
552 static int rtd520_probe_fifo_depth(struct comedi_device *dev)
553 {
554 struct rtdPrivate *devpriv = dev->private;
555 unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
556 unsigned i;
557 static const unsigned limit = 0x2000;
558 unsigned fifo_size = 0;
559
560 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
561 rtd_load_channelgain_list(dev, 1, &chanspec);
562 /* ADC conversion trigger source: SOFTWARE */
563 writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
564 /* convert samples */
565 for (i = 0; i < limit; ++i) {
566 unsigned fifo_status;
567 /* trigger conversion */
568 writew(0, devpriv->las0 + LAS0_ADC);
569 udelay(1);
570 fifo_status = readl(devpriv->las0 + LAS0_ADC);
571 if ((fifo_status & FS_ADC_HEMPTY) == 0) {
572 fifo_size = 2 * i;
573 break;
574 }
575 }
576 if (i == limit) {
577 dev_info(dev->class_dev, "failed to probe fifo size.\n");
578 return -EIO;
579 }
580 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
581 if (fifo_size != 0x400 && fifo_size != 0x2000) {
582 dev_info(dev->class_dev,
583 "unexpected fifo size of %i, expected 1024 or 8192.\n",
584 fifo_size);
585 return -EIO;
586 }
587 return fifo_size;
588 }
589
590 /*
591 "instructions" read/write data in "one-shot" or "software-triggered"
592 mode (simplest case).
593 This doesn't use interrupts.
594
595 Note, we don't do any settling delays. Use a instruction list to
596 select, delay, then read.
597 */
598 static int rtd_ai_rinsn(struct comedi_device *dev,
599 struct comedi_subdevice *s, struct comedi_insn *insn,
600 unsigned int *data)
601 {
602 struct rtdPrivate *devpriv = dev->private;
603 int n, ii;
604 int stat;
605
606 /* clear any old fifo data */
607 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
608
609 /* write channel to multiplexer and clear channel gain table */
610 rtd_load_channelgain_list(dev, 1, &insn->chanspec);
611
612 /* ADC conversion trigger source: SOFTWARE */
613 writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
614
615 /* convert n samples */
616 for (n = 0; n < insn->n; n++) {
617 s16 d;
618 /* trigger conversion */
619 writew(0, devpriv->las0 + LAS0_ADC);
620
621 for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
622 stat = readl(devpriv->las0 + LAS0_ADC);
623 if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
624 break;
625 WAIT_QUIETLY;
626 }
627 if (ii >= RTD_ADC_TIMEOUT)
628 return -ETIMEDOUT;
629
630 /* read data */
631 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
632 /*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
633 d = d >> 3; /* low 3 bits are marker lines */
634 if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
635 /* convert to comedi unsigned data */
636 data[n] = d + 2048;
637 else
638 data[n] = d;
639 }
640
641 /* return the number of samples read/written */
642 return n;
643 }
644
645 /*
646 Get what we know is there.... Fast!
647 This uses 1/2 the bus cycles of read_dregs (below).
648
649 The manual claims that we can do a lword read, but it doesn't work here.
650 */
651 static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
652 int count)
653 {
654 struct rtdPrivate *devpriv = dev->private;
655 int ii;
656
657 for (ii = 0; ii < count; ii++) {
658 short sample;
659 s16 d;
660
661 if (0 == devpriv->aiCount) { /* done */
662 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
663 continue;
664 }
665
666 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
667 d = d >> 3; /* low 3 bits are marker lines */
668 if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
669 /* convert to comedi unsigned data */
670 sample = d + 2048;
671 } else
672 sample = d;
673
674 if (!comedi_buf_put(s->async, sample))
675 return -1;
676
677 if (devpriv->aiCount > 0) /* < 0, means read forever */
678 devpriv->aiCount--;
679 }
680 return 0;
681 }
682
683 /*
684 unknown amout of data is waiting in fifo.
685 */
686 static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
687 {
688 struct rtdPrivate *devpriv = dev->private;
689
690 while (readl(devpriv->las0 + LAS0_ADC) & FS_ADC_NOT_EMPTY) {
691 short sample;
692 s16 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
693
694 if (0 == devpriv->aiCount) { /* done */
695 continue; /* read rest */
696 }
697
698 d = d >> 3; /* low 3 bits are marker lines */
699 if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
700 /* convert to comedi unsigned data */
701 sample = d + 2048;
702 } else
703 sample = d;
704
705 if (!comedi_buf_put(s->async, sample))
706 return -1;
707
708 if (devpriv->aiCount > 0) /* < 0, means read forever */
709 devpriv->aiCount--;
710 }
711 return 0;
712 }
713
714 /*
715 Handle all rtd520 interrupts.
716 Runs atomically and is never re-entered.
717 This is a "slow handler"; other interrupts may be active.
718 The data conversion may someday happen in a "bottom half".
719 */
720 static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
721 void *d)
722 { /* our data *//* cpu context (ignored) */
723 struct comedi_device *dev = d;
724 struct comedi_subdevice *s = &dev->subdevices[0];
725 struct rtdPrivate *devpriv = dev->private;
726 u32 overrun;
727 u16 status;
728 u16 fifoStatus;
729
730 if (!dev->attached)
731 return IRQ_NONE;
732
733 fifoStatus = readl(devpriv->las0 + LAS0_ADC);
734 /* check for FIFO full, this automatically halts the ADC! */
735 if (!(fifoStatus & FS_ADC_NOT_FULL)) /* 0 -> full */
736 goto abortTransfer;
737
738 status = readw(devpriv->las0 + LAS0_IT);
739 /* if interrupt was not caused by our board, or handled above */
740 if (0 == status)
741 return IRQ_HANDLED;
742
743 if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
744 /*
745 * since the priority interrupt controller may have queued
746 * a sample counter interrupt, even though we have already
747 * finished, we must handle the possibility that there is
748 * no data here
749 */
750 if (!(fifoStatus & FS_ADC_HEMPTY)) {
751 /* FIFO half full */
752 if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0)
753 goto abortTransfer;
754
755 if (0 == devpriv->aiCount)
756 goto transferDone;
757
758 comedi_event(dev, s);
759 } else if (devpriv->transCount > 0) {
760 if (fifoStatus & FS_ADC_NOT_EMPTY) {
761 /* FIFO not empty */
762 if (ai_read_n(dev, s, devpriv->transCount) < 0)
763 goto abortTransfer;
764
765 if (0 == devpriv->aiCount)
766 goto transferDone;
767
768 comedi_event(dev, s);
769 }
770 }
771 }
772
773 overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
774 if (overrun)
775 goto abortTransfer;
776
777 /* clear the interrupt */
778 writew(status, devpriv->las0 + LAS0_CLEAR);
779 readw(devpriv->las0 + LAS0_CLEAR);
780 return IRQ_HANDLED;
781
782 abortTransfer:
783 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
784 s->async->events |= COMEDI_CB_ERROR;
785 devpriv->aiCount = 0; /* stop and don't transfer any more */
786 /* fall into transferDone */
787
788 transferDone:
789 /* pacer stop source: SOFTWARE */
790 writel(0, devpriv->las0 + LAS0_PACER_STOP);
791 writel(0, devpriv->las0 + LAS0_PACER); /* stop pacer */
792 writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
793 writew(0, devpriv->las0 + LAS0_IT);
794
795 if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
796 fifoStatus = readl(devpriv->las0 + LAS0_ADC);
797 ai_read_dregs(dev, s); /* read anything left in FIFO */
798 }
799
800 s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
801 comedi_event(dev, s);
802
803 /* clear the interrupt */
804 status = readw(devpriv->las0 + LAS0_IT);
805 writew(status, devpriv->las0 + LAS0_CLEAR);
806 readw(devpriv->las0 + LAS0_CLEAR);
807
808 fifoStatus = readl(devpriv->las0 + LAS0_ADC);
809 overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
810
811 return IRQ_HANDLED;
812 }
813
814 /*
815 cmdtest tests a particular command to see if it is valid.
816 Using the cmdtest ioctl, a user can create a valid cmd
817 and then have it executed by the cmd ioctl (asynchronously).
818
819 cmdtest returns 1,2,3,4 or 0, depending on which tests
820 the command passes.
821 */
822
823 static int rtd_ai_cmdtest(struct comedi_device *dev,
824 struct comedi_subdevice *s, struct comedi_cmd *cmd)
825 {
826 int err = 0;
827 int tmp;
828
829 /* Step 1 : check if triggers are trivially valid */
830
831 err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
832 err |= cfc_check_trigger_src(&cmd->scan_begin_src,
833 TRIG_TIMER | TRIG_EXT);
834 err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER | TRIG_EXT);
835 err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
836 err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
837
838 if (err)
839 return 1;
840
841 /* Step 2a : make sure trigger sources are unique */
842
843 err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
844 err |= cfc_check_trigger_is_unique(cmd->convert_src);
845 err |= cfc_check_trigger_is_unique(cmd->stop_src);
846
847 /* Step 2b : and mutually compatible */
848
849 if (err)
850 return 2;
851
852 /* Step 3: check if arguments are trivially valid */
853
854 err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
855
856 if (cmd->scan_begin_src == TRIG_TIMER) {
857 /* Note: these are time periods, not actual rates */
858 if (1 == cmd->chanlist_len) { /* no scanning */
859 if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
860 RTD_MAX_SPEED_1)) {
861 rtd_ns_to_timer(&cmd->scan_begin_arg,
862 TRIG_ROUND_UP);
863 err |= -EINVAL;
864 }
865 if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
866 RTD_MIN_SPEED_1)) {
867 rtd_ns_to_timer(&cmd->scan_begin_arg,
868 TRIG_ROUND_DOWN);
869 err |= -EINVAL;
870 }
871 } else {
872 if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
873 RTD_MAX_SPEED)) {
874 rtd_ns_to_timer(&cmd->scan_begin_arg,
875 TRIG_ROUND_UP);
876 err |= -EINVAL;
877 }
878 if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
879 RTD_MIN_SPEED)) {
880 rtd_ns_to_timer(&cmd->scan_begin_arg,
881 TRIG_ROUND_DOWN);
882 err |= -EINVAL;
883 }
884 }
885 } else {
886 /* external trigger */
887 /* should be level/edge, hi/lo specification here */
888 /* should specify multiple external triggers */
889 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
890 }
891
892 if (cmd->convert_src == TRIG_TIMER) {
893 if (1 == cmd->chanlist_len) { /* no scanning */
894 if (cfc_check_trigger_arg_min(&cmd->convert_arg,
895 RTD_MAX_SPEED_1)) {
896 rtd_ns_to_timer(&cmd->convert_arg,
897 TRIG_ROUND_UP);
898 err |= -EINVAL;
899 }
900 if (cfc_check_trigger_arg_max(&cmd->convert_arg,
901 RTD_MIN_SPEED_1)) {
902 rtd_ns_to_timer(&cmd->convert_arg,
903 TRIG_ROUND_DOWN);
904 err |= -EINVAL;
905 }
906 } else {
907 if (cfc_check_trigger_arg_min(&cmd->convert_arg,
908 RTD_MAX_SPEED)) {
909 rtd_ns_to_timer(&cmd->convert_arg,
910 TRIG_ROUND_UP);
911 err |= -EINVAL;
912 }
913 if (cfc_check_trigger_arg_max(&cmd->convert_arg,
914 RTD_MIN_SPEED)) {
915 rtd_ns_to_timer(&cmd->convert_arg,
916 TRIG_ROUND_DOWN);
917 err |= -EINVAL;
918 }
919 }
920 } else {
921 /* external trigger */
922 /* see above */
923 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 9);
924 }
925
926 if (cmd->stop_src == TRIG_COUNT) {
927 /* TODO check for rounding error due to counter wrap */
928 } else {
929 /* TRIG_NONE */
930 err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
931 }
932
933 if (err)
934 return 3;
935
936
937 /* step 4: fix up any arguments */
938
939 if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
940 cmd->chanlist_len = RTD_MAX_CHANLIST;
941 err++;
942 }
943 if (cmd->scan_begin_src == TRIG_TIMER) {
944 tmp = cmd->scan_begin_arg;
945 rtd_ns_to_timer(&cmd->scan_begin_arg,
946 cmd->flags & TRIG_ROUND_MASK);
947 if (tmp != cmd->scan_begin_arg)
948 err++;
949
950 }
951 if (cmd->convert_src == TRIG_TIMER) {
952 tmp = cmd->convert_arg;
953 rtd_ns_to_timer(&cmd->convert_arg,
954 cmd->flags & TRIG_ROUND_MASK);
955 if (tmp != cmd->convert_arg)
956 err++;
957
958 if (cmd->scan_begin_src == TRIG_TIMER
959 && (cmd->scan_begin_arg
960 < (cmd->convert_arg * cmd->scan_end_arg))) {
961 cmd->scan_begin_arg =
962 cmd->convert_arg * cmd->scan_end_arg;
963 err++;
964 }
965 }
966
967 if (err)
968 return 4;
969
970 return 0;
971 }
972
973 /*
974 Execute a analog in command with many possible triggering options.
975 The data get stored in the async structure of the subdevice.
976 This is usually done by an interrupt handler.
977 Userland gets to the data using read calls.
978 */
979 static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
980 {
981 struct rtdPrivate *devpriv = dev->private;
982 struct comedi_cmd *cmd = &s->async->cmd;
983 int timer;
984
985 /* stop anything currently running */
986 /* pacer stop source: SOFTWARE */
987 writel(0, devpriv->las0 + LAS0_PACER_STOP);
988 writel(0, devpriv->las0 + LAS0_PACER); /* stop pacer */
989 writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
990 writew(0, devpriv->las0 + LAS0_IT);
991 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
992 writel(0, devpriv->las0 + LAS0_OVERRUN);
993
994 /* start configuration */
995 /* load channel list and reset CGT */
996 rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
997
998 /* setup the common case and override if needed */
999 if (cmd->chanlist_len > 1) {
1000 /* pacer start source: SOFTWARE */
1001 writel(0, devpriv->las0 + LAS0_PACER_START);
1002 /* burst trigger source: PACER */
1003 writel(1, devpriv->las0 + LAS0_BURST_START);
1004 /* ADC conversion trigger source: BURST */
1005 writel(2, devpriv->las0 + LAS0_ADC_CONVERSION);
1006 } else { /* single channel */
1007 /* pacer start source: SOFTWARE */
1008 writel(0, devpriv->las0 + LAS0_PACER_START);
1009 /* ADC conversion trigger source: PACER */
1010 writel(1, devpriv->las0 + LAS0_ADC_CONVERSION);
1011 }
1012 writel((devpriv->fifoLen / 2 - 1) & 0xffff, devpriv->las0 + LAS0_ACNT);
1013
1014 if (TRIG_TIMER == cmd->scan_begin_src) {
1015 /* scan_begin_arg is in nanoseconds */
1016 /* find out how many samples to wait before transferring */
1017 if (cmd->flags & TRIG_WAKE_EOS) {
1018 /*
1019 * this may generate un-sustainable interrupt rates
1020 * the application is responsible for doing the
1021 * right thing
1022 */
1023 devpriv->transCount = cmd->chanlist_len;
1024 devpriv->flags |= SEND_EOS;
1025 } else {
1026 /* arrange to transfer data periodically */
1027 devpriv->transCount
1028 =
1029 (TRANS_TARGET_PERIOD * cmd->chanlist_len) /
1030 cmd->scan_begin_arg;
1031 if (devpriv->transCount < cmd->chanlist_len) {
1032 /* transfer after each scan (and avoid 0) */
1033 devpriv->transCount = cmd->chanlist_len;
1034 } else { /* make a multiple of scan length */
1035 devpriv->transCount =
1036 (devpriv->transCount +
1037 cmd->chanlist_len - 1)
1038 / cmd->chanlist_len;
1039 devpriv->transCount *= cmd->chanlist_len;
1040 }
1041 devpriv->flags |= SEND_EOS;
1042 }
1043 if (devpriv->transCount >= (devpriv->fifoLen / 2)) {
1044 /* out of counter range, use 1/2 fifo instead */
1045 devpriv->transCount = 0;
1046 devpriv->flags &= ~SEND_EOS;
1047 } else {
1048 /* interrupt for each transfer */
1049 writel((devpriv->transCount - 1) & 0xffff,
1050 devpriv->las0 + LAS0_ACNT);
1051 }
1052 } else { /* unknown timing, just use 1/2 FIFO */
1053 devpriv->transCount = 0;
1054 devpriv->flags &= ~SEND_EOS;
1055 }
1056 /* pacer clock source: INTERNAL 8MHz */
1057 writel(1, devpriv->las0 + LAS0_PACER_SELECT);
1058 /* just interrupt, don't stop */
1059 writel(1, devpriv->las0 + LAS0_ACNT_STOP_ENABLE);
1060
1061 /* BUG??? these look like enumerated values, but they are bit fields */
1062
1063 /* First, setup when to stop */
1064 switch (cmd->stop_src) {
1065 case TRIG_COUNT: /* stop after N scans */
1066 devpriv->aiCount = cmd->stop_arg * cmd->chanlist_len;
1067 if ((devpriv->transCount > 0)
1068 && (devpriv->transCount > devpriv->aiCount)) {
1069 devpriv->transCount = devpriv->aiCount;
1070 }
1071 break;
1072
1073 case TRIG_NONE: /* stop when cancel is called */
1074 devpriv->aiCount = -1; /* read forever */
1075 break;
1076 }
1077
1078 /* Scan timing */
1079 switch (cmd->scan_begin_src) {
1080 case TRIG_TIMER: /* periodic scanning */
1081 timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
1082 TRIG_ROUND_NEAREST);
1083 /* set PACER clock */
1084 writel(timer & 0xffffff, devpriv->las0 + LAS0_PCLK);
1085
1086 break;
1087
1088 case TRIG_EXT:
1089 /* pacer start source: EXTERNAL */
1090 writel(1, devpriv->las0 + LAS0_PACER_START);
1091 break;
1092 }
1093
1094 /* Sample timing within a scan */
1095 switch (cmd->convert_src) {
1096 case TRIG_TIMER: /* periodic */
1097 if (cmd->chanlist_len > 1) {
1098 /* only needed for multi-channel */
1099 timer = rtd_ns_to_timer(&cmd->convert_arg,
1100 TRIG_ROUND_NEAREST);
1101 /* setup BURST clock */
1102 writel(timer & 0x3ff, devpriv->las0 + LAS0_BCLK);
1103 }
1104
1105 break;
1106
1107 case TRIG_EXT: /* external */
1108 /* burst trigger source: EXTERNAL */
1109 writel(2, devpriv->las0 + LAS0_BURST_START);
1110 break;
1111 }
1112 /* end configuration */
1113
1114 /* This doesn't seem to work. There is no way to clear an interrupt
1115 that the priority controller has queued! */
1116 writew(~0, devpriv->las0 + LAS0_CLEAR);
1117 readw(devpriv->las0 + LAS0_CLEAR);
1118
1119 /* TODO: allow multiple interrupt sources */
1120 if (devpriv->transCount > 0) { /* transfer every N samples */
1121 writew(IRQM_ADC_ABOUT_CNT, devpriv->las0 + LAS0_IT);
1122 } else { /* 1/2 FIFO transfers */
1123 writew(IRQM_ADC_ABOUT_CNT, devpriv->las0 + LAS0_IT);
1124 }
1125
1126 /* BUG: start_src is ASSUMED to be TRIG_NOW */
1127 /* BUG? it seems like things are running before the "start" */
1128 readl(devpriv->las0 + LAS0_PACER); /* start pacer */
1129 return 0;
1130 }
1131
1132 /*
1133 Stop a running data acquisition.
1134 */
1135 static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1136 {
1137 struct rtdPrivate *devpriv = dev->private;
1138 u32 overrun;
1139 u16 status;
1140
1141 /* pacer stop source: SOFTWARE */
1142 writel(0, devpriv->las0 + LAS0_PACER_STOP);
1143 writel(0, devpriv->las0 + LAS0_PACER); /* stop pacer */
1144 writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
1145 writew(0, devpriv->las0 + LAS0_IT);
1146 devpriv->aiCount = 0; /* stop and don't transfer any more */
1147 status = readw(devpriv->las0 + LAS0_IT);
1148 overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
1149 return 0;
1150 }
1151
1152 /*
1153 Output one (or more) analog values to a single port as fast as possible.
1154 */
1155 static int rtd_ao_winsn(struct comedi_device *dev,
1156 struct comedi_subdevice *s, struct comedi_insn *insn,
1157 unsigned int *data)
1158 {
1159 struct rtdPrivate *devpriv = dev->private;
1160 int i;
1161 int chan = CR_CHAN(insn->chanspec);
1162 int range = CR_RANGE(insn->chanspec);
1163
1164 /* Configure the output range (table index matches the range values) */
1165 writew(range & 7, devpriv->las0 +
1166 ((chan == 0) ? LAS0_DAC1_CTRL : LAS0_DAC2_CTRL));
1167
1168 /* Writing a list of values to an AO channel is probably not
1169 * very useful, but that's how the interface is defined. */
1170 for (i = 0; i < insn->n; ++i) {
1171 int val = data[i] << 3;
1172 int stat = 0; /* initialize to avoid bogus warning */
1173 int ii;
1174
1175 /* VERIFY: comedi range and offset conversions */
1176
1177 if ((range > 1) /* bipolar */
1178 && (data[i] < 2048)) {
1179 /* offset and sign extend */
1180 val = (((int)data[i]) - 2048) << 3;
1181 } else { /* unipolor */
1182 val = data[i] << 3;
1183 }
1184
1185 /* a typical programming sequence */
1186 writew(val, devpriv->las1 +
1187 ((chan == 0) ? LAS1_DAC1_FIFO : LAS1_DAC2_FIFO));
1188 writew(0, devpriv->las0 +
1189 ((chan == 0) ? LAS0_DAC1 : LAS0_DAC2));
1190
1191 devpriv->aoValue[chan] = data[i]; /* save for read back */
1192
1193 for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) {
1194 stat = readl(devpriv->las0 + LAS0_ADC);
1195 /* 1 -> not empty */
1196 if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY :
1197 FS_DAC2_NOT_EMPTY))
1198 break;
1199 WAIT_QUIETLY;
1200 }
1201 if (ii >= RTD_DAC_TIMEOUT)
1202 return -ETIMEDOUT;
1203 }
1204
1205 /* return the number of samples read/written */
1206 return i;
1207 }
1208
1209 /* AO subdevices should have a read insn as well as a write insn.
1210 * Usually this means copying a value stored in devpriv. */
1211 static int rtd_ao_rinsn(struct comedi_device *dev,
1212 struct comedi_subdevice *s, struct comedi_insn *insn,
1213 unsigned int *data)
1214 {
1215 struct rtdPrivate *devpriv = dev->private;
1216 int i;
1217 int chan = CR_CHAN(insn->chanspec);
1218
1219 for (i = 0; i < insn->n; i++)
1220 data[i] = devpriv->aoValue[chan];
1221
1222
1223 return i;
1224 }
1225
1226 static int rtd_dio_insn_bits(struct comedi_device *dev,
1227 struct comedi_subdevice *s,
1228 struct comedi_insn *insn,
1229 unsigned int *data)
1230 {
1231 struct rtdPrivate *devpriv = dev->private;
1232 unsigned int mask = data[0];
1233 unsigned int bits = data[1];
1234
1235 if (mask) {
1236 s->state &= ~mask;
1237 s->state |= (bits & mask);
1238
1239 writew(s->state & 0xff, devpriv->las0 + LAS0_DIO0);
1240 }
1241
1242 data[1] = readw(devpriv->las0 + LAS0_DIO0) & 0xff;
1243
1244 return insn->n;
1245 }
1246
1247 /*
1248 Configure one bit on a IO port as Input or Output (hence the name :-).
1249 */
1250 static int rtd_dio_insn_config(struct comedi_device *dev,
1251 struct comedi_subdevice *s,
1252 struct comedi_insn *insn, unsigned int *data)
1253 {
1254 struct rtdPrivate *devpriv = dev->private;
1255 int chan = CR_CHAN(insn->chanspec);
1256
1257 /* The input or output configuration of each digital line is
1258 * configured by a special insn_config instruction. chanspec
1259 * contains the channel to be changed, and data[0] contains the
1260 * value COMEDI_INPUT or COMEDI_OUTPUT. */
1261 switch (data[0]) {
1262 case INSN_CONFIG_DIO_OUTPUT:
1263 s->io_bits |= 1 << chan; /* 1 means Out */
1264 break;
1265 case INSN_CONFIG_DIO_INPUT:
1266 s->io_bits &= ~(1 << chan);
1267 break;
1268 case INSN_CONFIG_DIO_QUERY:
1269 data[1] =
1270 (s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
1271 return insn->n;
1272 break;
1273 default:
1274 return -EINVAL;
1275 }
1276
1277 /* TODO support digital match interrupts and strobes */
1278
1279 /* set direction */
1280 writew(0x01, devpriv->las0 + LAS0_DIO_STATUS);
1281 writew(s->io_bits & 0xff, devpriv->las0 + LAS0_DIO0_CTRL);
1282
1283 /* clear interrupts */
1284 writew(0x00, devpriv->las0 + LAS0_DIO_STATUS);
1285
1286 /* port1 can only be all input or all output */
1287
1288 /* there are also 2 user input lines and 2 user output lines */
1289
1290 return 1;
1291 }
1292
1293 static void rtd_reset(struct comedi_device *dev)
1294 {
1295 struct rtdPrivate *devpriv = dev->private;
1296
1297 writel(0, devpriv->las0 + LAS0_BOARD_RESET);
1298 udelay(100); /* needed? */
1299 writel(0, devpriv->lcfg + PLX_INTRCS_REG);
1300 writew(0, devpriv->las0 + LAS0_IT);
1301 writew(~0, devpriv->las0 + LAS0_CLEAR);
1302 readw(devpriv->las0 + LAS0_CLEAR);
1303 }
1304
1305 /*
1306 * initialize board, per RTD spec
1307 * also, initialize shadow registers
1308 */
1309 static void rtd_init_board(struct comedi_device *dev)
1310 {
1311 struct rtdPrivate *devpriv = dev->private;
1312
1313 rtd_reset(dev);
1314
1315 writel(0, devpriv->las0 + LAS0_OVERRUN);
1316 writel(0, devpriv->las0 + LAS0_CGT_CLEAR);
1317 writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
1318 writel(0, devpriv->las0 + LAS0_DAC1_RESET);
1319 writel(0, devpriv->las0 + LAS0_DAC2_RESET);
1320 /* clear digital IO fifo */
1321 writew(0, devpriv->las0 + LAS0_DIO_STATUS);
1322 writeb((0 << 6) | 0x30, devpriv->las0 + LAS0_UTC_CTRL);
1323 writeb((1 << 6) | 0x30, devpriv->las0 + LAS0_UTC_CTRL);
1324 writeb((2 << 6) | 0x30, devpriv->las0 + LAS0_UTC_CTRL);
1325 writeb((3 << 6) | 0x00, devpriv->las0 + LAS0_UTC_CTRL);
1326 /* TODO: set user out source ??? */
1327 }
1328
1329 /* The RTD driver does this */
1330 static void rtd_pci_latency_quirk(struct comedi_device *dev,
1331 struct pci_dev *pcidev)
1332 {
1333 unsigned char pci_latency;
1334
1335 pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency);
1336 if (pci_latency < 32) {
1337 dev_info(dev->class_dev,
1338 "PCI latency changed from %d to %d\n",
1339 pci_latency, 32);
1340 pci_write_config_byte(pcidev, PCI_LATENCY_TIMER, 32);
1341 }
1342 }
1343
1344 static int rtd_auto_attach(struct comedi_device *dev,
1345 unsigned long context)
1346 {
1347 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
1348 const struct rtdBoard *thisboard = NULL;
1349 struct rtdPrivate *devpriv;
1350 struct comedi_subdevice *s;
1351 int ret;
1352
1353 if (context < ARRAY_SIZE(rtd520Boards))
1354 thisboard = &rtd520Boards[context];
1355 if (!thisboard)
1356 return -ENODEV;
1357 dev->board_ptr = thisboard;
1358 dev->board_name = thisboard->name;
1359
1360 devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL);
1361 if (!devpriv)
1362 return -ENOMEM;
1363 dev->private = devpriv;
1364
1365 ret = comedi_pci_enable(dev);
1366 if (ret)
1367 return ret;
1368
1369 devpriv->las0 = pci_ioremap_bar(pcidev, 2);
1370 devpriv->las1 = pci_ioremap_bar(pcidev, 3);
1371 devpriv->lcfg = pci_ioremap_bar(pcidev, 0);
1372 if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg)
1373 return -ENOMEM;
1374
1375 rtd_pci_latency_quirk(dev, pcidev);
1376
1377 if (pcidev->irq) {
1378 ret = request_irq(pcidev->irq, rtd_interrupt, IRQF_SHARED,
1379 dev->board_name, dev);
1380 if (ret == 0)
1381 dev->irq = pcidev->irq;
1382 }
1383
1384 ret = comedi_alloc_subdevices(dev, 4);
1385 if (ret)
1386 return ret;
1387
1388 s = &dev->subdevices[0];
1389 /* analog input subdevice */
1390 s->type = COMEDI_SUBD_AI;
1391 s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF;
1392 s->n_chan = 16;
1393 s->maxdata = 0x0fff;
1394 s->range_table = thisboard->ai_range;
1395 s->len_chanlist = RTD_MAX_CHANLIST;
1396 s->insn_read = rtd_ai_rinsn;
1397 if (dev->irq) {
1398 dev->read_subdev = s;
1399 s->subdev_flags |= SDF_CMD_READ;
1400 s->do_cmd = rtd_ai_cmd;
1401 s->do_cmdtest = rtd_ai_cmdtest;
1402 s->cancel = rtd_ai_cancel;
1403 }
1404
1405 s = &dev->subdevices[1];
1406 /* analog output subdevice */
1407 s->type = COMEDI_SUBD_AO;
1408 s->subdev_flags = SDF_WRITABLE;
1409 s->n_chan = 2;
1410 s->maxdata = 0x0fff;
1411 s->range_table = &rtd_ao_range;
1412 s->insn_write = rtd_ao_winsn;
1413 s->insn_read = rtd_ao_rinsn;
1414
1415 s = &dev->subdevices[2];
1416 /* digital i/o subdevice */
1417 s->type = COMEDI_SUBD_DIO;
1418 s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
1419 /* we only support port 0 right now. Ignoring port 1 and user IO */
1420 s->n_chan = 8;
1421 s->maxdata = 1;
1422 s->range_table = &range_digital;
1423 s->insn_bits = rtd_dio_insn_bits;
1424 s->insn_config = rtd_dio_insn_config;
1425
1426 /* timer/counter subdevices (not currently supported) */
1427 s = &dev->subdevices[3];
1428 s->type = COMEDI_SUBD_COUNTER;
1429 s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
1430 s->n_chan = 3;
1431 s->maxdata = 0xffff;
1432
1433 rtd_init_board(dev);
1434
1435 ret = rtd520_probe_fifo_depth(dev);
1436 if (ret < 0)
1437 return ret;
1438 devpriv->fifoLen = ret;
1439
1440 if (dev->irq)
1441 writel(ICS_PIE | ICS_PLIE, devpriv->lcfg + PLX_INTRCS_REG);
1442
1443 dev_info(dev->class_dev, "%s attached\n", dev->board_name);
1444
1445 return 0;
1446 }
1447
1448 static void rtd_detach(struct comedi_device *dev)
1449 {
1450 struct rtdPrivate *devpriv = dev->private;
1451
1452 if (devpriv) {
1453 /* Shut down any board ops by resetting it */
1454 if (devpriv->las0 && devpriv->lcfg)
1455 rtd_reset(dev);
1456 if (dev->irq) {
1457 writel(readl(devpriv->lcfg + PLX_INTRCS_REG) &
1458 ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E),
1459 devpriv->lcfg + PLX_INTRCS_REG);
1460 free_irq(dev->irq, dev);
1461 }
1462 if (devpriv->las0)
1463 iounmap(devpriv->las0);
1464 if (devpriv->las1)
1465 iounmap(devpriv->las1);
1466 if (devpriv->lcfg)
1467 iounmap(devpriv->lcfg);
1468 }
1469 comedi_pci_disable(dev);
1470 }
1471
1472 static struct comedi_driver rtd520_driver = {
1473 .driver_name = "rtd520",
1474 .module = THIS_MODULE,
1475 .auto_attach = rtd_auto_attach,
1476 .detach = rtd_detach,
1477 };
1478
1479 static int rtd520_pci_probe(struct pci_dev *dev,
1480 const struct pci_device_id *id)
1481 {
1482 return comedi_pci_auto_config(dev, &rtd520_driver, id->driver_data);
1483 }
1484
1485 static DEFINE_PCI_DEVICE_TABLE(rtd520_pci_table) = {
1486 { PCI_VDEVICE(RTD, 0x7520), BOARD_DM7520 },
1487 { PCI_VDEVICE(RTD, 0x4520), BOARD_PCI4520 },
1488 { 0 }
1489 };
1490 MODULE_DEVICE_TABLE(pci, rtd520_pci_table);
1491
1492 static struct pci_driver rtd520_pci_driver = {
1493 .name = "rtd520",
1494 .id_table = rtd520_pci_table,
1495 .probe = rtd520_pci_probe,
1496 .remove = comedi_pci_auto_unconfig,
1497 };
1498 module_comedi_pci_driver(rtd520_driver, rtd520_pci_driver);
1499
1500 MODULE_AUTHOR("Comedi http://www.comedi.org");
1501 MODULE_DESCRIPTION("Comedi low-level driver");
1502 MODULE_LICENSE("GPL");
This page took 0.064391 seconds and 5 git commands to generate.