staging: et131x: Use braces on all arms of if/else in et131x_handle_recv_pkts
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
168
169 /* RX defines */
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
176 #define NUM_FBRS 2
177
178 #define MAX_PACKETS_HANDLED 256
179
180 #define ALCATEL_MULTICAST_PKT 0x01000000
181 #define ALCATEL_BROADCAST_PKT 0x02000000
182
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185 u32 addr_lo;
186 u32 addr_hi;
187 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
188 };
189
190 /* Packet Status Ring Descriptors
191 *
192 * Word 0:
193 *
194 * top 16 bits are from the Alcatel Status Word as enumerated in
195 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196 *
197 * 0: hp hash pass
198 * 1: ipa IP checksum assist
199 * 2: ipp IP checksum pass
200 * 3: tcpa TCP checksum assist
201 * 4: tcpp TCP checksum pass
202 * 5: wol WOL Event
203 * 6: rxmac_error RXMAC Error Indicator
204 * 7: drop Drop packet
205 * 8: ft Frame Truncated
206 * 9: jp Jumbo Packet
207 * 10: vp VLAN Packet
208 * 11-15: unused
209 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
210 * 17: asw_RX_DV_event short receive event detected
211 * 18: asw_false_carrier_event bad carrier since last good packet
212 * 19: asw_code_err one or more nibbles signalled as errors
213 * 20: asw_CRC_err CRC error
214 * 21: asw_len_chk_err frame length field incorrect
215 * 22: asw_too_long frame length > 1518 bytes
216 * 23: asw_OK valid CRC + no code error
217 * 24: asw_multicast has a multicast address
218 * 25: asw_broadcast has a broadcast address
219 * 26: asw_dribble_nibble spurious bits after EOP
220 * 27: asw_control_frame is a control frame
221 * 28: asw_pause_frame is a pause frame
222 * 29: asw_unsupported_op unsupported OP code
223 * 30: asw_VLAN_tag VLAN tag detected
224 * 31: asw_long_evt Rx long event
225 *
226 * Word 1:
227 * 0-15: length length in bytes
228 * 16-25: bi Buffer Index
229 * 26-27: ri Ring Index
230 * 28-31: reserved
231 */
232 struct pkt_stat_desc {
233 u32 word0;
234 u32 word1;
235 };
236
237 /* Typedefs for the RX DMA status word */
238
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
241 * which contains the Free Buffer ring 0 and 1 available offset.
242 *
243 * bit 0-9 FBR1 offset
244 * bit 10 Wrap flag for FBR1
245 * bit 16-25 FBR0 offset
246 * bit 26 Wrap flag for FBR0
247 */
248
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
251 * which contains the Packet Status Ring available offset.
252 *
253 * bit 0-15 reserved
254 * bit 16-27 PSRoffset
255 * bit 28 PSRwrap
256 * bit 29-31 unused
257 */
258
259 /* struct rx_status_block is a structure representing the status of the Rx
260 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261 */
262 struct rx_status_block {
263 u32 word0;
264 u32 word1;
265 };
266
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268 * and state.
269 */
270 struct fbr_lookup {
271 void *virt[MAX_DESC_PER_RING_RX];
272 u32 bus_high[MAX_DESC_PER_RING_RX];
273 u32 bus_low[MAX_DESC_PER_RING_RX];
274 void *ring_virtaddr;
275 dma_addr_t ring_physaddr;
276 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278 u32 local_full;
279 u32 num_entries;
280 dma_addr_t buffsize;
281 };
282
283 /* struct rx_ring is the structure representing the adaptor's local
284 * reference(s) to the rings
285 */
286 struct rx_ring {
287 struct fbr_lookup *fbr[NUM_FBRS];
288 void *ps_ring_virtaddr;
289 dma_addr_t ps_ring_physaddr;
290 u32 local_psr_full;
291 u32 psr_entries;
292
293 struct rx_status_block *rx_status_block;
294 dma_addr_t rx_status_bus;
295
296 /* RECV */
297 struct list_head recv_list;
298 u32 num_ready_recv;
299
300 u32 num_rfd;
301
302 bool unfinished_receives;
303 };
304
305 /* TX defines */
306 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
307 *
308 * 0-15: length of packet
309 * 16-27: VLAN tag
310 * 28: VLAN CFI
311 * 29-31: VLAN priority
312 *
313 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
314 *
315 * 0: last packet in the sequence
316 * 1: first packet in the sequence
317 * 2: interrupt the processor when this pkt sent
318 * 3: Control word - no packet data
319 * 4: Issue half-duplex backpressure : XON/XOFF
320 * 5: send pause frame
321 * 6: Tx frame has error
322 * 7: append CRC
323 * 8: MAC override
324 * 9: pad packet
325 * 10: Packet is a Huge packet
326 * 11: append VLAN tag
327 * 12: IP checksum assist
328 * 13: TCP checksum assist
329 * 14: UDP checksum assist
330 */
331 #define TXDESC_FLAG_LASTPKT 0x0001
332 #define TXDESC_FLAG_FIRSTPKT 0x0002
333 #define TXDESC_FLAG_INTPROC 0x0004
334
335 /* struct tx_desc represents each descriptor on the ring */
336 struct tx_desc {
337 u32 addr_hi;
338 u32 addr_lo;
339 u32 len_vlan; /* control words how to xmit the */
340 u32 flags; /* data (detailed above) */
341 };
342
343 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
344 * by 0x101c / 0x1020. This is a DMA10 type
345 */
346
347 /* TCB (Transmit Control Block: Host Side) */
348 struct tcb {
349 struct tcb *next; /* Next entry in ring */
350 u32 count; /* Used to spot stuck/lost packets */
351 u32 stale; /* Used to spot stuck/lost packets */
352 struct sk_buff *skb; /* Network skb we are tied to */
353 u32 index; /* Ring indexes */
354 u32 index_start;
355 };
356
357 /* Structure representing our local reference(s) to the ring */
358 struct tx_ring {
359 /* TCB (Transmit Control Block) memory and lists */
360 struct tcb *tcb_ring;
361
362 /* List of TCBs that are ready to be used */
363 struct tcb *tcb_qhead;
364 struct tcb *tcb_qtail;
365
366 /* list of TCBs that are currently being sent. NOTE that access to all
367 * three of these (including used) are controlled via the
368 * TCBSendQLock. This lock should be secured prior to incementing /
369 * decrementing used, or any queue manipulation on send_head /
370 * tail
371 */
372 struct tcb *send_head;
373 struct tcb *send_tail;
374 int used;
375
376 /* The actual descriptor ring */
377 struct tx_desc *tx_desc_ring;
378 dma_addr_t tx_desc_ring_pa;
379
380 /* send_idx indicates where we last wrote to in the descriptor ring. */
381 u32 send_idx;
382
383 /* The location of the write-back status block */
384 u32 *tx_status;
385 dma_addr_t tx_status_pa;
386
387 /* Packets since the last IRQ: used for interrupt coalescing */
388 int since_irq;
389 };
390
391 /* Do not change these values: if changed, then change also in respective
392 * TXdma and Rxdma engines
393 */
394 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
395 #define NUM_TCB 64
396
397 /* These values are all superseded by registry entries to facilitate tuning.
398 * Once the desired performance has been achieved, the optimal registry values
399 * should be re-populated to these #defines:
400 */
401 #define TX_ERROR_PERIOD 1000
402
403 #define LO_MARK_PERCENT_FOR_PSR 15
404 #define LO_MARK_PERCENT_FOR_RX 15
405
406 /* RFD (Receive Frame Descriptor) */
407 struct rfd {
408 struct list_head list_node;
409 struct sk_buff *skb;
410 u32 len; /* total size of receive frame */
411 u16 bufferindex;
412 u8 ringindex;
413 };
414
415 /* Flow Control */
416 #define FLOW_BOTH 0
417 #define FLOW_TXONLY 1
418 #define FLOW_RXONLY 2
419 #define FLOW_NONE 3
420
421 /* Struct to define some device statistics */
422 struct ce_stats {
423 /* MIB II variables
424 *
425 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
426 * MUST have 32, then we'll need another way to perform atomic
427 * operations
428 */
429 u32 multicast_pkts_rcvd;
430 u32 rcvd_pkts_dropped;
431
432 /* Tx Statistics. */
433 u32 tx_underflows;
434 u32 tx_collisions;
435 u32 tx_excessive_collisions;
436 u32 tx_first_collisions;
437 u32 tx_late_collisions;
438 u32 tx_max_pkt_errs;
439 u32 tx_deferred;
440
441 /* Rx Statistics. */
442 u32 rx_overflows;
443 u32 rx_length_errs;
444 u32 rx_align_errs;
445 u32 rx_crc_errs;
446 u32 rx_code_violations;
447 u32 rx_other_errs;
448
449 u32 interrupt_status;
450 };
451
452 /* The private adapter structure */
453 struct et131x_adapter {
454 struct net_device *netdev;
455 struct pci_dev *pdev;
456 struct mii_bus *mii_bus;
457 struct phy_device *phydev;
458 struct napi_struct napi;
459
460 /* Flags that indicate current state of the adapter */
461 u32 flags;
462
463 /* local link state, to determine if a state change has occurred */
464 int link;
465
466 /* Configuration */
467 u8 rom_addr[ETH_ALEN];
468 u8 addr[ETH_ALEN];
469 bool has_eeprom;
470 u8 eeprom_data[2];
471
472 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
473 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
474 spinlock_t rcv_lock; /* protects the rx_ring receive list */
475
476 /* Packet Filter and look ahead size */
477 u32 packet_filter;
478
479 /* multicast list */
480 u32 multicast_addr_count;
481 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
482
483 /* Pointer to the device's PCI register space */
484 struct address_map __iomem *regs;
485
486 /* Registry parameters */
487 u8 wanted_flow; /* Flow we want for 802.3x flow control */
488 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
489
490 /* Derived from the registry: */
491 u8 flowcontrol; /* flow control validated by the far-end */
492
493 /* Minimize init-time */
494 struct timer_list error_timer;
495
496 /* variable putting the phy into coma mode when boot up with no cable
497 * plugged in after 5 seconds
498 */
499 u8 boot_coma;
500
501 /* Tx Memory Variables */
502 struct tx_ring tx_ring;
503
504 /* Rx Memory Variables */
505 struct rx_ring rx_ring;
506
507 /* Stats */
508 struct ce_stats stats;
509 };
510
511 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
512 {
513 u32 reg;
514 int i;
515
516 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
517 * bits 7,1:0 both equal to 1, at least once after reset.
518 * Subsequent operations need only to check that bits 1:0 are equal
519 * to 1 prior to starting a single byte read/write
520 */
521 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
522 /* Read registers grouped in DWORD1 */
523 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
524 return -EIO;
525
526 /* I2C idle and Phy Queue Avail both true */
527 if ((reg & 0x3000) == 0x3000) {
528 if (status)
529 *status = reg;
530 return reg & 0xFF;
531 }
532 }
533 return -ETIMEDOUT;
534 }
535
536 /* eeprom_write - Write a byte to the ET1310's EEPROM
537 * @adapter: pointer to our private adapter structure
538 * @addr: the address to write
539 * @data: the value to write
540 *
541 * Returns 1 for a successful write.
542 */
543 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
544 {
545 struct pci_dev *pdev = adapter->pdev;
546 int index = 0;
547 int retries;
548 int err = 0;
549 int writeok = 0;
550 u32 status;
551 u32 val = 0;
552
553 /* For an EEPROM, an I2C single byte write is defined as a START
554 * condition followed by the device address, EEPROM address, one byte
555 * of data and a STOP condition. The STOP condition will trigger the
556 * EEPROM's internally timed write cycle to the nonvolatile memory.
557 * All inputs are disabled during this write cycle and the EEPROM will
558 * not respond to any access until the internal write is complete.
559 */
560 err = eeprom_wait_ready(pdev, NULL);
561 if (err < 0)
562 return err;
563
564 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
565 * and bits 1:0 both =0. Bit 5 should be set according to the
566 * type of EEPROM being accessed (1=two byte addressing, 0=one
567 * byte addressing).
568 */
569 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
570 LBCIF_CONTROL_LBCIF_ENABLE |
571 LBCIF_CONTROL_I2C_WRITE))
572 return -EIO;
573
574 /* Prepare EEPROM address for Step 3 */
575 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
576 /* Write the address to the LBCIF Address Register */
577 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
578 break;
579 /* Write the data to the LBCIF Data Register (the I2C write
580 * will begin).
581 */
582 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
583 break;
584 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
585 * 1:0 are both equal to 1, the I2C write has completed and the
586 * internal write cycle of the EEPROM is about to start.
587 * (bits 1:0 = 01 is a legal state while waiting from both
588 * equal to 1, but bits 1:0 = 10 is invalid and implies that
589 * something is broken).
590 */
591 err = eeprom_wait_ready(pdev, &status);
592 if (err < 0)
593 return 0;
594
595 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
596 * an error has occurred.Don't break here if we are revision
597 * 1, this is so we do a blind write for load bug.
598 */
599 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
600 adapter->pdev->revision == 0)
601 break;
602
603 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
604 * ACK error has occurred on the address phase of the write.
605 * This could be due to an actual hardware failure or the
606 * EEPROM may still be in its internal write cycle from a
607 * previous write. This write operation was ignored and must be
608 *repeated later.
609 */
610 if (status & LBCIF_STATUS_ACK_ERROR) {
611 /* This could be due to an actual hardware failure
612 * or the EEPROM may still be in its internal write
613 * cycle from a previous write. This write operation
614 * was ignored and must be repeated later.
615 */
616 udelay(10);
617 continue;
618 }
619
620 writeok = 1;
621 break;
622 }
623
624 /* Set bit 6 of the LBCIF Control Register = 0.
625 */
626 udelay(10);
627
628 while (1) {
629 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
630 LBCIF_CONTROL_LBCIF_ENABLE))
631 writeok = 0;
632
633 /* Do read until internal ACK_ERROR goes away meaning write
634 * completed
635 */
636 do {
637 pci_write_config_dword(pdev,
638 LBCIF_ADDRESS_REGISTER,
639 addr);
640 do {
641 pci_read_config_dword(pdev,
642 LBCIF_DATA_REGISTER,
643 &val);
644 } while ((val & 0x00010000) == 0);
645 } while (val & 0x00040000);
646
647 if ((val & 0xFF00) != 0xC000 || index == 10000)
648 break;
649 index++;
650 }
651 return writeok ? 0 : -EIO;
652 }
653
654 /* eeprom_read - Read a byte from the ET1310's EEPROM
655 * @adapter: pointer to our private adapter structure
656 * @addr: the address from which to read
657 * @pdata: a pointer to a byte in which to store the value of the read
658 * @eeprom_id: the ID of the EEPROM
659 * @addrmode: how the EEPROM is to be accessed
660 *
661 * Returns 1 for a successful read
662 */
663 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
664 {
665 struct pci_dev *pdev = adapter->pdev;
666 int err;
667 u32 status;
668
669 /* A single byte read is similar to the single byte write, with the
670 * exception of the data flow:
671 */
672 err = eeprom_wait_ready(pdev, NULL);
673 if (err < 0)
674 return err;
675 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
676 * and bits 1:0 both =0. Bit 5 should be set according to the type
677 * of EEPROM being accessed (1=two byte addressing, 0=one byte
678 * addressing).
679 */
680 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
681 LBCIF_CONTROL_LBCIF_ENABLE))
682 return -EIO;
683 /* Write the address to the LBCIF Address Register (I2C read will
684 * begin).
685 */
686 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
687 return -EIO;
688 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
689 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
690 * has occurred).
691 */
692 err = eeprom_wait_ready(pdev, &status);
693 if (err < 0)
694 return err;
695 /* Regardless of error status, read data byte from LBCIF Data
696 * Register.
697 */
698 *pdata = err;
699 /* Check bit 2 of the LBCIF Status Register. If = 1,
700 * then an error has occurred.
701 */
702 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
703 }
704
705 static int et131x_init_eeprom(struct et131x_adapter *adapter)
706 {
707 struct pci_dev *pdev = adapter->pdev;
708 u8 eestatus;
709
710 /* We first need to check the EEPROM Status code located at offset
711 * 0xB2 of config space
712 */
713 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
714
715 /* THIS IS A WORKAROUND:
716 * I need to call this function twice to get my card in a
717 * LG M1 Express Dual running. I tried also a msleep before this
718 * function, because I thought there could be some time conditions
719 * but it didn't work. Call the whole function twice also work.
720 */
721 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
722 dev_err(&pdev->dev,
723 "Could not read PCI config space for EEPROM Status\n");
724 return -EIO;
725 }
726
727 /* Determine if the error(s) we care about are present. If they are
728 * present we need to fail.
729 */
730 if (eestatus & 0x4C) {
731 int write_failed = 0;
732
733 if (pdev->revision == 0x01) {
734 int i;
735 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
736
737 /* Re-write the first 4 bytes if we have an eeprom
738 * present and the revision id is 1, this fixes the
739 * corruption seen with 1310 B Silicon
740 */
741 for (i = 0; i < 3; i++)
742 if (eeprom_write(adapter, i, eedata[i]) < 0)
743 write_failed = 1;
744 }
745 if (pdev->revision != 0x01 || write_failed) {
746 dev_err(&pdev->dev,
747 "Fatal EEPROM Status Error - 0x%04x\n",
748 eestatus);
749
750 /* This error could mean that there was an error
751 * reading the eeprom or that the eeprom doesn't exist.
752 * We will treat each case the same and not try to
753 * gather additional information that normally would
754 * come from the eeprom, like MAC Address
755 */
756 adapter->has_eeprom = 0;
757 return -EIO;
758 }
759 }
760 adapter->has_eeprom = 1;
761
762 /* Read the EEPROM for information regarding LED behavior. Refer to
763 * ET1310_phy.c, et131x_xcvr_init(), for its use.
764 */
765 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
766 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
767
768 if (adapter->eeprom_data[0] != 0xcd)
769 /* Disable all optional features */
770 adapter->eeprom_data[1] = 0x00;
771
772 return 0;
773 }
774
775 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
776 * @adapter: pointer to our adapter structure
777 */
778 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
779 {
780 /* Setup the receive dma configuration register for normal operation */
781 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
782 struct rx_ring *rx_ring = &adapter->rx_ring;
783
784 if (rx_ring->fbr[1]->buffsize == 4096)
785 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
786 else if (rx_ring->fbr[1]->buffsize == 8192)
787 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
788 else if (rx_ring->fbr[1]->buffsize == 16384)
789 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
790
791 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
792 if (rx_ring->fbr[0]->buffsize == 256)
793 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
794 else if (rx_ring->fbr[0]->buffsize == 512)
795 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
796 else if (rx_ring->fbr[0]->buffsize == 1024)
797 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
798 writel(csr, &adapter->regs->rxdma.csr);
799
800 csr = readl(&adapter->regs->rxdma.csr);
801 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
802 udelay(5);
803 csr = readl(&adapter->regs->rxdma.csr);
804 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
805 dev_err(&adapter->pdev->dev,
806 "RX Dma failed to exit halt state. CSR 0x%08x\n",
807 csr);
808 }
809 }
810 }
811
812 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
813 * @adapter: pointer to our adapter structure
814 */
815 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
816 {
817 u32 csr;
818 /* Setup the receive dma configuration register */
819 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
820 &adapter->regs->rxdma.csr);
821 csr = readl(&adapter->regs->rxdma.csr);
822 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
823 udelay(5);
824 csr = readl(&adapter->regs->rxdma.csr);
825 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
826 dev_err(&adapter->pdev->dev,
827 "RX Dma failed to enter halt state. CSR 0x%08x\n",
828 csr);
829 }
830 }
831
832 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
833 * @adapter: pointer to our adapter structure
834 *
835 * Mainly used after a return to the D0 (full-power) state from a lower state.
836 */
837 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
838 {
839 /* Setup the transmit dma configuration register for normal
840 * operation
841 */
842 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
843 &adapter->regs->txdma.csr);
844 }
845
846 static inline void add_10bit(u32 *v, int n)
847 {
848 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
849 }
850
851 static inline void add_12bit(u32 *v, int n)
852 {
853 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
854 }
855
856 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
857 * @adapter: pointer to our adapter structure
858 */
859 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
860 {
861 struct mac_regs __iomem *macregs = &adapter->regs->mac;
862 u32 station1;
863 u32 station2;
864 u32 ipg;
865
866 /* First we need to reset everything. Write to MAC configuration
867 * register 1 to perform reset.
868 */
869 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
870 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
871 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
872 &macregs->cfg1);
873
874 /* Next lets configure the MAC Inter-packet gap register */
875 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
876 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
877 writel(ipg, &macregs->ipg);
878
879 /* Next lets configure the MAC Half Duplex register */
880 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
881 writel(0x00A1F037, &macregs->hfdp);
882
883 /* Next lets configure the MAC Interface Control register */
884 writel(0, &macregs->if_ctrl);
885
886 /* Let's move on to setting up the mii management configuration */
887 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
888
889 /* Next lets configure the MAC Station Address register. These
890 * values are read from the EEPROM during initialization and stored
891 * in the adapter structure. We write what is stored in the adapter
892 * structure to the MAC Station Address registers high and low. This
893 * station address is used for generating and checking pause control
894 * packets.
895 */
896 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
897 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
898 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
899 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
900 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
901 adapter->addr[2];
902 writel(station1, &macregs->station_addr_1);
903 writel(station2, &macregs->station_addr_2);
904
905 /* Max ethernet packet in bytes that will be passed by the mac without
906 * being truncated. Allow the MAC to pass 4 more than our max packet
907 * size. This is 4 for the Ethernet CRC.
908 *
909 * Packets larger than (registry_jumbo_packet) that do not contain a
910 * VLAN ID will be dropped by the Rx function.
911 */
912 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
913
914 /* clear out MAC config reset */
915 writel(0, &macregs->cfg1);
916 }
917
918 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
919 * @adapter: pointer to our adapter structure
920 */
921 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
922 {
923 int32_t delay = 0;
924 struct mac_regs __iomem *mac = &adapter->regs->mac;
925 struct phy_device *phydev = adapter->phydev;
926 u32 cfg1;
927 u32 cfg2;
928 u32 ifctrl;
929 u32 ctl;
930
931 ctl = readl(&adapter->regs->txmac.ctl);
932 cfg1 = readl(&mac->cfg1);
933 cfg2 = readl(&mac->cfg2);
934 ifctrl = readl(&mac->if_ctrl);
935
936 /* Set up the if mode bits */
937 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
938 if (phydev->speed == SPEED_1000) {
939 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
940 /* Phy mode bit */
941 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
942 } else {
943 cfg2 |= ET_MAC_CFG2_IFMODE_100;
944 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
945 }
946
947 /* We need to enable Rx/Tx */
948 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
949 ET_MAC_CFG1_TX_FLOW;
950 /* Initialize loop back to off */
951 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
952 if (adapter->flowcontrol == FLOW_RXONLY ||
953 adapter->flowcontrol == FLOW_BOTH)
954 cfg1 |= ET_MAC_CFG1_RX_FLOW;
955 writel(cfg1, &mac->cfg1);
956
957 /* Now we need to initialize the MAC Configuration 2 register */
958 /* preamble 7, check length, huge frame off, pad crc, crc enable
959 * full duplex off
960 */
961 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
962 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
963 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
964 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
965 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
966 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
967
968 /* Turn on duplex if needed */
969 if (phydev->duplex == DUPLEX_FULL)
970 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
971
972 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
973 if (phydev->duplex == DUPLEX_HALF)
974 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
975
976 writel(ifctrl, &mac->if_ctrl);
977 writel(cfg2, &mac->cfg2);
978
979 do {
980 udelay(10);
981 delay++;
982 cfg1 = readl(&mac->cfg1);
983 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
984
985 if (delay == 100) {
986 dev_warn(&adapter->pdev->dev,
987 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
988 cfg1);
989 }
990
991 /* Enable txmac */
992 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
993 writel(ctl, &adapter->regs->txmac.ctl);
994
995 /* Ready to start the RXDMA/TXDMA engine */
996 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
997 et131x_rx_dma_enable(adapter);
998 et131x_tx_dma_enable(adapter);
999 }
1000 }
1001
1002 /* et1310_in_phy_coma - check if the device is in phy coma
1003 * @adapter: pointer to our adapter structure
1004 *
1005 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1006 */
1007 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1008 {
1009 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1010
1011 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1012 }
1013
1014 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1015 {
1016 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1017 u32 hash1 = 0;
1018 u32 hash2 = 0;
1019 u32 hash3 = 0;
1020 u32 hash4 = 0;
1021 u32 pm_csr;
1022
1023 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1024 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1025 * specified) then we should pass NO multi-cast addresses to the
1026 * driver.
1027 */
1028 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1029 int i;
1030
1031 /* Loop through our multicast array and set up the device */
1032 for (i = 0; i < adapter->multicast_addr_count; i++) {
1033 u32 result;
1034
1035 result = ether_crc(6, adapter->multicast_list[i]);
1036
1037 result = (result & 0x3F800000) >> 23;
1038
1039 if (result < 32) {
1040 hash1 |= (1 << result);
1041 } else if ((31 < result) && (result < 64)) {
1042 result -= 32;
1043 hash2 |= (1 << result);
1044 } else if ((63 < result) && (result < 96)) {
1045 result -= 64;
1046 hash3 |= (1 << result);
1047 } else {
1048 result -= 96;
1049 hash4 |= (1 << result);
1050 }
1051 }
1052 }
1053
1054 /* Write out the new hash to the device */
1055 pm_csr = readl(&adapter->regs->global.pm_csr);
1056 if (!et1310_in_phy_coma(adapter)) {
1057 writel(hash1, &rxmac->multi_hash1);
1058 writel(hash2, &rxmac->multi_hash2);
1059 writel(hash3, &rxmac->multi_hash3);
1060 writel(hash4, &rxmac->multi_hash4);
1061 }
1062 }
1063
1064 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1065 {
1066 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1067 u32 uni_pf1;
1068 u32 uni_pf2;
1069 u32 uni_pf3;
1070 u32 pm_csr;
1071
1072 /* Set up unicast packet filter reg 3 to be the first two octets of
1073 * the MAC address for both address
1074 *
1075 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1076 * MAC address for second address
1077 *
1078 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1079 * MAC address for first address
1080 */
1081 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1082 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1083 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1084 adapter->addr[1];
1085
1086 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1087 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1088 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1089 adapter->addr[5];
1090
1091 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1092 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1093 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1094 adapter->addr[5];
1095
1096 pm_csr = readl(&adapter->regs->global.pm_csr);
1097 if (!et1310_in_phy_coma(adapter)) {
1098 writel(uni_pf1, &rxmac->uni_pf_addr1);
1099 writel(uni_pf2, &rxmac->uni_pf_addr2);
1100 writel(uni_pf3, &rxmac->uni_pf_addr3);
1101 }
1102 }
1103
1104 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1105 {
1106 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1107 struct phy_device *phydev = adapter->phydev;
1108 u32 sa_lo;
1109 u32 sa_hi = 0;
1110 u32 pf_ctrl = 0;
1111 u32 __iomem *wolw;
1112
1113 /* Disable the MAC while it is being configured (also disable WOL) */
1114 writel(0x8, &rxmac->ctrl);
1115
1116 /* Initialize WOL to disabled. */
1117 writel(0, &rxmac->crc0);
1118 writel(0, &rxmac->crc12);
1119 writel(0, &rxmac->crc34);
1120
1121 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1122 * its default Values of 0x00000000 because there are not WOL masks
1123 * as of this time.
1124 */
1125 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1126 writel(0, wolw);
1127
1128 /* Lets setup the WOL Source Address */
1129 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1130 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1131 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1132 adapter->addr[5];
1133 writel(sa_lo, &rxmac->sa_lo);
1134
1135 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1136 adapter->addr[1];
1137 writel(sa_hi, &rxmac->sa_hi);
1138
1139 /* Disable all Packet Filtering */
1140 writel(0, &rxmac->pf_ctrl);
1141
1142 /* Let's initialize the Unicast Packet filtering address */
1143 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1144 et1310_setup_device_for_unicast(adapter);
1145 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1146 } else {
1147 writel(0, &rxmac->uni_pf_addr1);
1148 writel(0, &rxmac->uni_pf_addr2);
1149 writel(0, &rxmac->uni_pf_addr3);
1150 }
1151
1152 /* Let's initialize the Multicast hash */
1153 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1154 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1155 et1310_setup_device_for_multicast(adapter);
1156 }
1157
1158 /* Runt packet filtering. Didn't work in version A silicon. */
1159 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1160 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1161
1162 if (adapter->registry_jumbo_packet > 8192)
1163 /* In order to transmit jumbo packets greater than 8k, the
1164 * FIFO between RxMAC and RxDMA needs to be reduced in size
1165 * to (16k - Jumbo packet size). In order to implement this,
1166 * we must use "cut through" mode in the RxMAC, which chops
1167 * packets down into segments which are (max_size * 16). In
1168 * this case we selected 256 bytes, since this is the size of
1169 * the PCI-Express TLP's that the 1310 uses.
1170 *
1171 * seg_en on, fc_en off, size 0x10
1172 */
1173 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1174 else
1175 writel(0, &rxmac->mcif_ctrl_max_seg);
1176
1177 /* Initialize the MCIF water marks */
1178 writel(0, &rxmac->mcif_water_mark);
1179
1180 /* Initialize the MIF control */
1181 writel(0, &rxmac->mif_ctrl);
1182
1183 /* Initialize the Space Available Register */
1184 writel(0, &rxmac->space_avail);
1185
1186 /* Initialize the the mif_ctrl register
1187 * bit 3: Receive code error. One or more nibbles were signaled as
1188 * errors during the reception of the packet. Clear this
1189 * bit in Gigabit, set it in 100Mbit. This was derived
1190 * experimentally at UNH.
1191 * bit 4: Receive CRC error. The packet's CRC did not match the
1192 * internally generated CRC.
1193 * bit 5: Receive length check error. Indicates that frame length
1194 * field value in the packet does not match the actual data
1195 * byte length and is not a type field.
1196 * bit 16: Receive frame truncated.
1197 * bit 17: Drop packet enable
1198 */
1199 if (phydev && phydev->speed == SPEED_100)
1200 writel(0x30038, &rxmac->mif_ctrl);
1201 else
1202 writel(0x30030, &rxmac->mif_ctrl);
1203
1204 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1205 * filter is always enabled since it is where the runt packets are
1206 * supposed to be dropped. For version A silicon, runt packet
1207 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1208 * but we still leave the packet filter on.
1209 */
1210 writel(pf_ctrl, &rxmac->pf_ctrl);
1211 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1212 }
1213
1214 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1215 {
1216 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1217
1218 /* We need to update the Control Frame Parameters
1219 * cfpt - control frame pause timer set to 64 (0x40)
1220 * cfep - control frame extended pause timer set to 0x0
1221 */
1222 if (adapter->flowcontrol == FLOW_NONE)
1223 writel(0, &txmac->cf_param);
1224 else
1225 writel(0x40, &txmac->cf_param);
1226 }
1227
1228 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1229 {
1230 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1231 u32 __iomem *reg;
1232
1233 /* initialize all the macstat registers to zero on the device */
1234 for (reg = &macstat->txrx_0_64_byte_frames;
1235 reg <= &macstat->carry_reg2; reg++)
1236 writel(0, reg);
1237
1238 /* Unmask any counters that we want to track the overflow of.
1239 * Initially this will be all counters. It may become clear later
1240 * that we do not need to track all counters.
1241 */
1242 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1243 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1244 }
1245
1246 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1247 * @adapter: pointer to our private adapter structure
1248 * @addr: the address of the transceiver
1249 * @reg: the register to read
1250 * @value: pointer to a 16-bit value in which the value will be stored
1251 */
1252 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1253 u8 reg, u16 *value)
1254 {
1255 struct mac_regs __iomem *mac = &adapter->regs->mac;
1256 int status = 0;
1257 u32 delay = 0;
1258 u32 mii_addr;
1259 u32 mii_cmd;
1260 u32 mii_indicator;
1261
1262 /* Save a local copy of the registers we are dealing with so we can
1263 * set them back
1264 */
1265 mii_addr = readl(&mac->mii_mgmt_addr);
1266 mii_cmd = readl(&mac->mii_mgmt_cmd);
1267
1268 /* Stop the current operation */
1269 writel(0, &mac->mii_mgmt_cmd);
1270
1271 /* Set up the register we need to read from on the correct PHY */
1272 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1273
1274 writel(0x1, &mac->mii_mgmt_cmd);
1275
1276 do {
1277 udelay(50);
1278 delay++;
1279 mii_indicator = readl(&mac->mii_mgmt_indicator);
1280 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1281
1282 /* If we hit the max delay, we could not read the register */
1283 if (delay == 50) {
1284 dev_warn(&adapter->pdev->dev,
1285 "reg 0x%08x could not be read\n", reg);
1286 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1287 mii_indicator);
1288
1289 status = -EIO;
1290 goto out;
1291 }
1292
1293 /* If we hit here we were able to read the register and we need to
1294 * return the value to the caller
1295 */
1296 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1297
1298 out:
1299 /* Stop the read operation */
1300 writel(0, &mac->mii_mgmt_cmd);
1301
1302 /* set the registers we touched back to the state at which we entered
1303 * this function
1304 */
1305 writel(mii_addr, &mac->mii_mgmt_addr);
1306 writel(mii_cmd, &mac->mii_mgmt_cmd);
1307
1308 return status;
1309 }
1310
1311 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1312 {
1313 struct phy_device *phydev = adapter->phydev;
1314
1315 if (!phydev)
1316 return -EIO;
1317
1318 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1319 }
1320
1321 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1322 * @adapter: pointer to our private adapter structure
1323 * @reg: the register to read
1324 * @value: 16-bit value to write
1325 */
1326 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1327 u16 value)
1328 {
1329 struct mac_regs __iomem *mac = &adapter->regs->mac;
1330 int status = 0;
1331 u32 delay = 0;
1332 u32 mii_addr;
1333 u32 mii_cmd;
1334 u32 mii_indicator;
1335
1336 /* Save a local copy of the registers we are dealing with so we can
1337 * set them back
1338 */
1339 mii_addr = readl(&mac->mii_mgmt_addr);
1340 mii_cmd = readl(&mac->mii_mgmt_cmd);
1341
1342 /* Stop the current operation */
1343 writel(0, &mac->mii_mgmt_cmd);
1344
1345 /* Set up the register we need to write to on the correct PHY */
1346 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1347
1348 /* Add the value to write to the registers to the mac */
1349 writel(value, &mac->mii_mgmt_ctrl);
1350
1351 do {
1352 udelay(50);
1353 delay++;
1354 mii_indicator = readl(&mac->mii_mgmt_indicator);
1355 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1356
1357 /* If we hit the max delay, we could not write the register */
1358 if (delay == 100) {
1359 u16 tmp;
1360
1361 dev_warn(&adapter->pdev->dev,
1362 "reg 0x%08x could not be written", reg);
1363 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1364 mii_indicator);
1365 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1366 readl(&mac->mii_mgmt_cmd));
1367
1368 et131x_mii_read(adapter, reg, &tmp);
1369
1370 status = -EIO;
1371 }
1372 /* Stop the write operation */
1373 writel(0, &mac->mii_mgmt_cmd);
1374
1375 /* set the registers we touched back to the state at which we entered
1376 * this function
1377 */
1378 writel(mii_addr, &mac->mii_mgmt_addr);
1379 writel(mii_cmd, &mac->mii_mgmt_cmd);
1380
1381 return status;
1382 }
1383
1384 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1385 u16 regnum,
1386 u16 bitnum,
1387 u8 *value)
1388 {
1389 u16 reg;
1390 u16 mask = 1 << bitnum;
1391
1392 /* Read the requested register */
1393 et131x_mii_read(adapter, regnum, &reg);
1394
1395 *value = (reg & mask) >> bitnum;
1396 }
1397
1398 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1399 {
1400 struct phy_device *phydev = adapter->phydev;
1401
1402 if (phydev->duplex == DUPLEX_HALF) {
1403 adapter->flowcontrol = FLOW_NONE;
1404 } else {
1405 char remote_pause, remote_async_pause;
1406
1407 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1408 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1409
1410 if (remote_pause && remote_async_pause) {
1411 adapter->flowcontrol = adapter->wanted_flow;
1412 } else if (remote_pause && !remote_async_pause) {
1413 if (adapter->wanted_flow == FLOW_BOTH)
1414 adapter->flowcontrol = FLOW_BOTH;
1415 else
1416 adapter->flowcontrol = FLOW_NONE;
1417 } else if (!remote_pause && !remote_async_pause) {
1418 adapter->flowcontrol = FLOW_NONE;
1419 } else {
1420 if (adapter->wanted_flow == FLOW_BOTH)
1421 adapter->flowcontrol = FLOW_RXONLY;
1422 else
1423 adapter->flowcontrol = FLOW_NONE;
1424 }
1425 }
1426 }
1427
1428 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1429 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1430 {
1431 struct ce_stats *stats = &adapter->stats;
1432 struct macstat_regs __iomem *macstat =
1433 &adapter->regs->macstat;
1434
1435 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1436 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1437 stats->tx_deferred += readl(&macstat->tx_deferred);
1438 stats->tx_excessive_collisions +=
1439 readl(&macstat->tx_multiple_collisions);
1440 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1441 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1442 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1443
1444 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1445 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1446 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1447 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1448 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1449 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1450 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1451 }
1452
1453 /* et1310_handle_macstat_interrupt
1454 *
1455 * One of the MACSTAT counters has wrapped. Update the local copy of
1456 * the statistics held in the adapter structure, checking the "wrap"
1457 * bit for each counter.
1458 */
1459 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1460 {
1461 u32 carry_reg1;
1462 u32 carry_reg2;
1463
1464 /* Read the interrupt bits from the register(s). These are Clear On
1465 * Write.
1466 */
1467 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1468 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1469
1470 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1471 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1472
1473 /* We need to do update the host copy of all the MAC_STAT counters.
1474 * For each counter, check it's overflow bit. If the overflow bit is
1475 * set, then increment the host version of the count by one complete
1476 * revolution of the counter. This routine is called when the counter
1477 * block indicates that one of the counters has wrapped.
1478 */
1479 if (carry_reg1 & (1 << 14))
1480 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1481 if (carry_reg1 & (1 << 8))
1482 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1483 if (carry_reg1 & (1 << 7))
1484 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1485 if (carry_reg1 & (1 << 2))
1486 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1487 if (carry_reg1 & (1 << 6))
1488 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1489 if (carry_reg1 & (1 << 3))
1490 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1491 if (carry_reg1 & (1 << 0))
1492 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1493 if (carry_reg2 & (1 << 16))
1494 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1495 if (carry_reg2 & (1 << 15))
1496 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1497 if (carry_reg2 & (1 << 6))
1498 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1499 if (carry_reg2 & (1 << 8))
1500 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1501 if (carry_reg2 & (1 << 5))
1502 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1503 if (carry_reg2 & (1 << 4))
1504 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1505 if (carry_reg2 & (1 << 2))
1506 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1507 }
1508
1509 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1510 {
1511 struct net_device *netdev = bus->priv;
1512 struct et131x_adapter *adapter = netdev_priv(netdev);
1513 u16 value;
1514 int ret;
1515
1516 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1517
1518 if (ret < 0)
1519 return ret;
1520
1521 return value;
1522 }
1523
1524 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1525 int reg, u16 value)
1526 {
1527 struct net_device *netdev = bus->priv;
1528 struct et131x_adapter *adapter = netdev_priv(netdev);
1529
1530 return et131x_mii_write(adapter, phy_addr, reg, value);
1531 }
1532
1533 /* et1310_phy_power_switch - PHY power control
1534 * @adapter: device to control
1535 * @down: true for off/false for back on
1536 *
1537 * one hundred, ten, one thousand megs
1538 * How would you like to have your LAN accessed
1539 * Can't you see that this code processed
1540 * Phy power, phy power..
1541 */
1542 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1543 {
1544 u16 data;
1545 struct phy_device *phydev = adapter->phydev;
1546
1547 et131x_mii_read(adapter, MII_BMCR, &data);
1548 data &= ~BMCR_PDOWN;
1549 if (down)
1550 data |= BMCR_PDOWN;
1551 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
1552 }
1553
1554 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1555 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1556 {
1557 u16 lcr2;
1558 struct phy_device *phydev = adapter->phydev;
1559
1560 /* Set the LED behavior such that LED 1 indicates speed (off =
1561 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1562 * link and activity (on for link, blink off for activity).
1563 *
1564 * NOTE: Some customizations have been added here for specific
1565 * vendors; The LED behavior is now determined by vendor data in the
1566 * EEPROM. However, the above description is the default.
1567 */
1568 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1569 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1570
1571 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1572 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1573
1574 if ((adapter->eeprom_data[1] & 0x8) == 0)
1575 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1576 else
1577 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1578
1579 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
1580 }
1581 }
1582
1583 /* et131x_configure_global_regs - configure JAGCore global regs
1584 *
1585 * Used to configure the global registers on the JAGCore
1586 */
1587 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1588 {
1589 struct global_regs __iomem *regs = &adapter->regs->global;
1590
1591 writel(0, &regs->rxq_start_addr);
1592 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1593
1594 if (adapter->registry_jumbo_packet < 2048) {
1595 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1596 * block of RAM that the driver can split between Tx
1597 * and Rx as it desires. Our default is to split it
1598 * 50/50:
1599 */
1600 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1601 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1602 } else if (adapter->registry_jumbo_packet < 8192) {
1603 /* For jumbo packets > 2k but < 8k, split 50-50. */
1604 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1605 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1606 } else {
1607 /* 9216 is the only packet size greater than 8k that
1608 * is available. The Tx buffer has to be big enough
1609 * for one whole packet on the Tx side. We'll make
1610 * the Tx 9408, and give the rest to Rx
1611 */
1612 writel(0x01b3, &regs->rxq_end_addr);
1613 writel(0x01b4, &regs->txq_start_addr);
1614 }
1615
1616 /* Initialize the loopback register. Disable all loopbacks. */
1617 writel(0, &regs->loopback);
1618
1619 /* MSI Register */
1620 writel(0, &regs->msi_config);
1621
1622 /* By default, disable the watchdog timer. It will be enabled when
1623 * a packet is queued.
1624 */
1625 writel(0, &regs->watchdog_timer);
1626 }
1627
1628 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1629 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1630 {
1631 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1632 struct rx_ring *rx_local = &adapter->rx_ring;
1633 struct fbr_desc *fbr_entry;
1634 u32 entry;
1635 u32 psr_num_des;
1636 unsigned long flags;
1637 u8 id;
1638
1639 /* Halt RXDMA to perform the reconfigure. */
1640 et131x_rx_dma_disable(adapter);
1641
1642 /* Load the completion writeback physical address */
1643 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1644 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1645
1646 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1647
1648 /* Set the address and parameters of the packet status ring into the
1649 * 1310's registers
1650 */
1651 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1652 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1653 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1654 writel(0, &rx_dma->psr_full_offset);
1655
1656 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1657 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1658 &rx_dma->psr_min_des);
1659
1660 spin_lock_irqsave(&adapter->rcv_lock, flags);
1661
1662 /* These local variables track the PSR in the adapter structure */
1663 rx_local->local_psr_full = 0;
1664
1665 for (id = 0; id < NUM_FBRS; id++) {
1666 u32 __iomem *num_des;
1667 u32 __iomem *full_offset;
1668 u32 __iomem *min_des;
1669 u32 __iomem *base_hi;
1670 u32 __iomem *base_lo;
1671 struct fbr_lookup *fbr = rx_local->fbr[id];
1672
1673 if (id == 0) {
1674 num_des = &rx_dma->fbr0_num_des;
1675 full_offset = &rx_dma->fbr0_full_offset;
1676 min_des = &rx_dma->fbr0_min_des;
1677 base_hi = &rx_dma->fbr0_base_hi;
1678 base_lo = &rx_dma->fbr0_base_lo;
1679 } else {
1680 num_des = &rx_dma->fbr1_num_des;
1681 full_offset = &rx_dma->fbr1_full_offset;
1682 min_des = &rx_dma->fbr1_min_des;
1683 base_hi = &rx_dma->fbr1_base_hi;
1684 base_lo = &rx_dma->fbr1_base_lo;
1685 }
1686
1687 /* Now's the best time to initialize FBR contents */
1688 fbr_entry = fbr->ring_virtaddr;
1689 for (entry = 0; entry < fbr->num_entries; entry++) {
1690 fbr_entry->addr_hi = fbr->bus_high[entry];
1691 fbr_entry->addr_lo = fbr->bus_low[entry];
1692 fbr_entry->word2 = entry;
1693 fbr_entry++;
1694 }
1695
1696 /* Set the address and parameters of Free buffer ring 1 and 0
1697 * into the 1310's registers
1698 */
1699 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1700 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1701 writel(fbr->num_entries - 1, num_des);
1702 writel(ET_DMA10_WRAP, full_offset);
1703
1704 /* This variable tracks the free buffer ring 1 full position,
1705 * so it has to match the above.
1706 */
1707 fbr->local_full = ET_DMA10_WRAP;
1708 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1709 min_des);
1710 }
1711
1712 /* Program the number of packets we will receive before generating an
1713 * interrupt.
1714 * For version B silicon, this value gets updated once autoneg is
1715 *complete.
1716 */
1717 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1718
1719 /* The "time_done" is not working correctly to coalesce interrupts
1720 * after a given time period, but rather is giving us an interrupt
1721 * regardless of whether we have received packets.
1722 * This value gets updated once autoneg is complete.
1723 */
1724 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1725
1726 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1727 }
1728
1729 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1730 *
1731 * Configure the transmit engine with the ring buffers we have created
1732 * and prepare it for use.
1733 */
1734 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1735 {
1736 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1737 struct tx_ring *tx_ring = &adapter->tx_ring;
1738
1739 /* Load the hardware with the start of the transmit descriptor ring. */
1740 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1741 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1742
1743 /* Initialise the transmit DMA engine */
1744 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1745
1746 /* Load the completion writeback physical address */
1747 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1748 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1749
1750 *tx_ring->tx_status = 0;
1751
1752 writel(0, &txdma->service_request);
1753 tx_ring->send_idx = 0;
1754 }
1755
1756 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1757 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1758 {
1759 /* Configure the JAGCore */
1760 et131x_configure_global_regs(adapter);
1761
1762 et1310_config_mac_regs1(adapter);
1763
1764 /* Configure the MMC registers */
1765 /* All we need to do is initialize the Memory Control Register */
1766 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1767
1768 et1310_config_rxmac_regs(adapter);
1769 et1310_config_txmac_regs(adapter);
1770
1771 et131x_config_rx_dma_regs(adapter);
1772 et131x_config_tx_dma_regs(adapter);
1773
1774 et1310_config_macstat_regs(adapter);
1775
1776 et1310_phy_power_switch(adapter, 0);
1777 et131x_xcvr_init(adapter);
1778 }
1779
1780 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1781 static void et131x_soft_reset(struct et131x_adapter *adapter)
1782 {
1783 u32 reg;
1784
1785 /* Disable MAC Core */
1786 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1787 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1788 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1789 writel(reg, &adapter->regs->mac.cfg1);
1790
1791 reg = ET_RESET_ALL;
1792 writel(reg, &adapter->regs->global.sw_reset);
1793
1794 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1795 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1796 writel(reg, &adapter->regs->mac.cfg1);
1797 writel(0, &adapter->regs->mac.cfg1);
1798 }
1799
1800 /* et131x_enable_interrupts - enable interrupt
1801 *
1802 * Enable the appropriate interrupts on the ET131x according to our
1803 * configuration
1804 */
1805 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1806 {
1807 u32 mask;
1808
1809 /* Enable all global interrupts */
1810 if (adapter->flowcontrol == FLOW_TXONLY ||
1811 adapter->flowcontrol == FLOW_BOTH)
1812 mask = INT_MASK_ENABLE;
1813 else
1814 mask = INT_MASK_ENABLE_NO_FLOW;
1815
1816 writel(mask, &adapter->regs->global.int_mask);
1817 }
1818
1819 /* et131x_disable_interrupts - interrupt disable
1820 *
1821 * Block all interrupts from the et131x device at the device itself
1822 */
1823 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1824 {
1825 /* Disable all global interrupts */
1826 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1827 }
1828
1829 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1830 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1831 {
1832 /* Setup the transmit dma configuration register */
1833 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1834 &adapter->regs->txdma.csr);
1835 }
1836
1837 /* et131x_enable_txrx - Enable tx/rx queues */
1838 static void et131x_enable_txrx(struct net_device *netdev)
1839 {
1840 struct et131x_adapter *adapter = netdev_priv(netdev);
1841
1842 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1843 et131x_rx_dma_enable(adapter);
1844 et131x_tx_dma_enable(adapter);
1845
1846 /* Enable device interrupts */
1847 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1848 et131x_enable_interrupts(adapter);
1849
1850 /* We're ready to move some data, so start the queue */
1851 netif_start_queue(netdev);
1852 }
1853
1854 /* et131x_disable_txrx - Disable tx/rx queues */
1855 static void et131x_disable_txrx(struct net_device *netdev)
1856 {
1857 struct et131x_adapter *adapter = netdev_priv(netdev);
1858
1859 /* First thing is to stop the queue */
1860 netif_stop_queue(netdev);
1861
1862 /* Stop the Tx and Rx DMA engines */
1863 et131x_rx_dma_disable(adapter);
1864 et131x_tx_dma_disable(adapter);
1865
1866 /* Disable device interrupts */
1867 et131x_disable_interrupts(adapter);
1868 }
1869
1870 /* et131x_init_send - Initialize send data structures */
1871 static void et131x_init_send(struct et131x_adapter *adapter)
1872 {
1873 u32 ct;
1874 struct tx_ring *tx_ring = &adapter->tx_ring;
1875 struct tcb *tcb = tx_ring->tcb_ring;
1876
1877 tx_ring->tcb_qhead = tcb;
1878
1879 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1880
1881 /* Go through and set up each TCB */
1882 for (ct = 0; ct++ < NUM_TCB; tcb++)
1883 /* Set the link pointer in HW TCB to the next TCB in the
1884 * chain
1885 */
1886 tcb->next = tcb + 1;
1887
1888 /* Set the tail pointer */
1889 tcb--;
1890 tx_ring->tcb_qtail = tcb;
1891 tcb->next = NULL;
1892 /* Curr send queue should now be empty */
1893 tx_ring->send_head = NULL;
1894 tx_ring->send_tail = NULL;
1895 }
1896
1897 /* et1310_enable_phy_coma - called when network cable is unplugged
1898 *
1899 * driver receive an phy status change interrupt while in D0 and check that
1900 * phy_status is down.
1901 *
1902 * -- gate off JAGCore;
1903 * -- set gigE PHY in Coma mode
1904 * -- wake on phy_interrupt; Perform software reset JAGCore,
1905 * re-initialize jagcore and gigE PHY
1906 *
1907 * Add D0-ASPM-PhyLinkDown Support:
1908 * -- while in D0, when there is a phy_interrupt indicating phy link
1909 * down status, call the MPSetPhyComa routine to enter this active
1910 * state power saving mode
1911 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
1912 * indicating linkup status, call the MPDisablePhyComa routine to
1913 * restore JAGCore and gigE PHY
1914 */
1915 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1916 {
1917 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1918
1919 /* Save the GbE PHY speed and duplex modes. Need to restore this
1920 * when cable is plugged back in
1921 */
1922
1923 /* Stop sending packets. */
1924 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1925
1926 /* Wait for outstanding Receive packets */
1927 et131x_disable_txrx(adapter->netdev);
1928
1929 /* Gate off JAGCore 3 clock domains */
1930 pmcsr &= ~ET_PMCSR_INIT;
1931 writel(pmcsr, &adapter->regs->global.pm_csr);
1932
1933 /* Program gigE PHY in to Coma mode */
1934 pmcsr |= ET_PM_PHY_SW_COMA;
1935 writel(pmcsr, &adapter->regs->global.pm_csr);
1936 }
1937
1938 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
1939 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1940 {
1941 u32 pmcsr;
1942
1943 pmcsr = readl(&adapter->regs->global.pm_csr);
1944
1945 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1946 pmcsr |= ET_PMCSR_INIT;
1947 pmcsr &= ~ET_PM_PHY_SW_COMA;
1948 writel(pmcsr, &adapter->regs->global.pm_csr);
1949
1950 /* Restore the GbE PHY speed and duplex modes;
1951 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1952 */
1953
1954 /* Re-initialize the send structures */
1955 et131x_init_send(adapter);
1956
1957 /* Bring the device back to the state it was during init prior to
1958 * autonegotiation being complete. This way, when we get the auto-neg
1959 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1960 */
1961 et131x_soft_reset(adapter);
1962
1963 /* setup et1310 as per the documentation ?? */
1964 et131x_adapter_setup(adapter);
1965
1966 /* Allow Tx to restart */
1967 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1968
1969 et131x_enable_txrx(adapter->netdev);
1970 }
1971
1972 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1973 {
1974 u32 tmp_free_buff_ring = *free_buff_ring;
1975
1976 tmp_free_buff_ring++;
1977 /* This works for all cases where limit < 1024. The 1023 case
1978 * works because 1023++ is 1024 which means the if condition is not
1979 * taken but the carry of the bit into the wrap bit toggles the wrap
1980 * value correctly
1981 */
1982 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1983 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1984 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1985 }
1986 /* For the 1023 case */
1987 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1988 *free_buff_ring = tmp_free_buff_ring;
1989 return tmp_free_buff_ring;
1990 }
1991
1992 /* et131x_rx_dma_memory_alloc
1993 *
1994 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1995 * and the Packet Status Ring.
1996 */
1997 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1998 {
1999 u8 id;
2000 u32 i, j;
2001 u32 bufsize;
2002 u32 psr_size;
2003 u32 fbr_chunksize;
2004 struct rx_ring *rx_ring = &adapter->rx_ring;
2005 struct fbr_lookup *fbr;
2006
2007 /* Alloc memory for the lookup table */
2008 rx_ring->fbr[0] = kmalloc(sizeof(*fbr), GFP_KERNEL);
2009 if (rx_ring->fbr[0] == NULL)
2010 return -ENOMEM;
2011 rx_ring->fbr[1] = kmalloc(sizeof(*fbr), GFP_KERNEL);
2012 if (rx_ring->fbr[1] == NULL)
2013 return -ENOMEM;
2014
2015 /* The first thing we will do is configure the sizes of the buffer
2016 * rings. These will change based on jumbo packet support. Larger
2017 * jumbo packets increases the size of each entry in FBR0, and the
2018 * number of entries in FBR0, while at the same time decreasing the
2019 * number of entries in FBR1.
2020 *
2021 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2022 * entries are huge in order to accommodate a "jumbo" frame, then it
2023 * will have less entries. Conversely, FBR1 will now be relied upon
2024 * to carry more "normal" frames, thus it's entry size also increases
2025 * and the number of entries goes up too (since it now carries
2026 * "small" + "regular" packets.
2027 *
2028 * In this scheme, we try to maintain 512 entries between the two
2029 * rings. Also, FBR1 remains a constant size - when it's size doubles
2030 * the number of entries halves. FBR0 increases in size, however.
2031 */
2032 if (adapter->registry_jumbo_packet < 2048) {
2033 rx_ring->fbr[0]->buffsize = 256;
2034 rx_ring->fbr[0]->num_entries = 512;
2035 rx_ring->fbr[1]->buffsize = 2048;
2036 rx_ring->fbr[1]->num_entries = 512;
2037 } else if (adapter->registry_jumbo_packet < 4096) {
2038 rx_ring->fbr[0]->buffsize = 512;
2039 rx_ring->fbr[0]->num_entries = 1024;
2040 rx_ring->fbr[1]->buffsize = 4096;
2041 rx_ring->fbr[1]->num_entries = 512;
2042 } else {
2043 rx_ring->fbr[0]->buffsize = 1024;
2044 rx_ring->fbr[0]->num_entries = 768;
2045 rx_ring->fbr[1]->buffsize = 16384;
2046 rx_ring->fbr[1]->num_entries = 128;
2047 }
2048
2049 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
2050 rx_ring->fbr[1]->num_entries;
2051
2052 for (id = 0; id < NUM_FBRS; id++) {
2053 fbr = rx_ring->fbr[id];
2054 /* Allocate an area of memory for Free Buffer Ring */
2055 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2056 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2057 bufsize,
2058 &fbr->ring_physaddr,
2059 GFP_KERNEL);
2060 if (!fbr->ring_virtaddr) {
2061 dev_err(&adapter->pdev->dev,
2062 "Cannot alloc memory for Free Buffer Ring %d\n",
2063 id);
2064 return -ENOMEM;
2065 }
2066 }
2067
2068 for (id = 0; id < NUM_FBRS; id++) {
2069 fbr = rx_ring->fbr[id];
2070 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2071
2072 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2073 dma_addr_t fbr_physaddr;
2074
2075 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2076 &adapter->pdev->dev, fbr_chunksize,
2077 &fbr->mem_physaddrs[i],
2078 GFP_KERNEL);
2079
2080 if (!fbr->mem_virtaddrs[i]) {
2081 dev_err(&adapter->pdev->dev,
2082 "Could not alloc memory\n");
2083 return -ENOMEM;
2084 }
2085
2086 /* See NOTE in "Save Physical Address" comment above */
2087 fbr_physaddr = fbr->mem_physaddrs[i];
2088
2089 for (j = 0; j < FBR_CHUNKS; j++) {
2090 u32 k = (i * FBR_CHUNKS) + j;
2091
2092 /* Save the Virtual address of this index for
2093 * quick access later
2094 */
2095 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
2096 (j * fbr->buffsize);
2097
2098 /* now store the physical address in the
2099 * descriptor so the device can access it
2100 */
2101 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
2102 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
2103 fbr_physaddr += fbr->buffsize;
2104 }
2105 }
2106 }
2107
2108 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2109 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2110
2111 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2112 psr_size,
2113 &rx_ring->ps_ring_physaddr,
2114 GFP_KERNEL);
2115
2116 if (!rx_ring->ps_ring_virtaddr) {
2117 dev_err(&adapter->pdev->dev,
2118 "Cannot alloc memory for Packet Status Ring\n");
2119 return -ENOMEM;
2120 }
2121
2122 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2123 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2124 * are ever returned, make sure the high part is retrieved here before
2125 * storing the adjusted address.
2126 */
2127
2128 /* Allocate an area of memory for writeback of status information */
2129 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2130 sizeof(struct rx_status_block),
2131 &rx_ring->rx_status_bus,
2132 GFP_KERNEL);
2133 if (!rx_ring->rx_status_block) {
2134 dev_err(&adapter->pdev->dev,
2135 "Cannot alloc memory for Status Block\n");
2136 return -ENOMEM;
2137 }
2138 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2139
2140 /* The RFDs are going to be put on lists later on, so initialize the
2141 * lists now.
2142 */
2143 INIT_LIST_HEAD(&rx_ring->recv_list);
2144 return 0;
2145 }
2146
2147 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2148 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2149 {
2150 u8 id;
2151 u32 ii;
2152 u32 bufsize;
2153 u32 psr_size;
2154 struct rfd *rfd;
2155 struct rx_ring *rx_ring = &adapter->rx_ring;
2156 struct fbr_lookup *fbr;
2157
2158 /* Free RFDs and associated packet descriptors */
2159 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2160
2161 while (!list_empty(&rx_ring->recv_list)) {
2162 rfd = list_entry(rx_ring->recv_list.next,
2163 struct rfd, list_node);
2164
2165 list_del(&rfd->list_node);
2166 rfd->skb = NULL;
2167 kfree(rfd);
2168 }
2169
2170 /* Free Free Buffer Rings */
2171 for (id = 0; id < NUM_FBRS; id++) {
2172 fbr = rx_ring->fbr[id];
2173
2174 if (!fbr || !fbr->ring_virtaddr)
2175 continue;
2176
2177 /* First the packet memory */
2178 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2179 if (fbr->mem_virtaddrs[ii]) {
2180 bufsize = fbr->buffsize * FBR_CHUNKS;
2181
2182 dma_free_coherent(&adapter->pdev->dev,
2183 bufsize,
2184 fbr->mem_virtaddrs[ii],
2185 fbr->mem_physaddrs[ii]);
2186
2187 fbr->mem_virtaddrs[ii] = NULL;
2188 }
2189 }
2190
2191 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2192
2193 dma_free_coherent(&adapter->pdev->dev,
2194 bufsize,
2195 fbr->ring_virtaddr,
2196 fbr->ring_physaddr);
2197
2198 fbr->ring_virtaddr = NULL;
2199 }
2200
2201 /* Free Packet Status Ring */
2202 if (rx_ring->ps_ring_virtaddr) {
2203 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2204
2205 dma_free_coherent(&adapter->pdev->dev, psr_size,
2206 rx_ring->ps_ring_virtaddr,
2207 rx_ring->ps_ring_physaddr);
2208
2209 rx_ring->ps_ring_virtaddr = NULL;
2210 }
2211
2212 /* Free area of memory for the writeback of status information */
2213 if (rx_ring->rx_status_block) {
2214 dma_free_coherent(&adapter->pdev->dev,
2215 sizeof(struct rx_status_block),
2216 rx_ring->rx_status_block,
2217 rx_ring->rx_status_bus);
2218 rx_ring->rx_status_block = NULL;
2219 }
2220
2221 /* Free the FBR Lookup Table */
2222 kfree(rx_ring->fbr[0]);
2223 kfree(rx_ring->fbr[1]);
2224
2225 /* Reset Counters */
2226 rx_ring->num_ready_recv = 0;
2227 }
2228
2229 /* et131x_init_recv - Initialize receive data structures */
2230 static int et131x_init_recv(struct et131x_adapter *adapter)
2231 {
2232 struct rfd *rfd;
2233 u32 rfdct;
2234 struct rx_ring *rx_ring = &adapter->rx_ring;
2235
2236 /* Setup each RFD */
2237 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2238 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2239 if (!rfd)
2240 return -ENOMEM;
2241
2242 rfd->skb = NULL;
2243
2244 /* Add this RFD to the recv_list */
2245 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2246
2247 /* Increment the available RFD's */
2248 rx_ring->num_ready_recv++;
2249 }
2250
2251 return 0;
2252 }
2253
2254 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2255 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2256 {
2257 struct phy_device *phydev = adapter->phydev;
2258
2259 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2260 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2261 */
2262 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2263 writel(0, &adapter->regs->rxdma.max_pkt_time);
2264 writel(1, &adapter->regs->rxdma.num_pkt_done);
2265 }
2266 }
2267
2268 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2269 * @adapter: pointer to our adapter
2270 * @rfd: pointer to the RFD
2271 */
2272 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2273 {
2274 struct rx_ring *rx_local = &adapter->rx_ring;
2275 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2276 u16 buff_index = rfd->bufferindex;
2277 u8 ring_index = rfd->ringindex;
2278 unsigned long flags;
2279 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2280
2281 /* We don't use any of the OOB data besides status. Otherwise, we
2282 * need to clean up OOB data
2283 */
2284 if (buff_index < fbr->num_entries) {
2285 u32 free_buff_ring;
2286 u32 __iomem *offset;
2287 struct fbr_desc *next;
2288
2289 if (ring_index == 0)
2290 offset = &rx_dma->fbr0_full_offset;
2291 else
2292 offset = &rx_dma->fbr1_full_offset;
2293
2294 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2295 INDEX10(fbr->local_full);
2296
2297 /* Handle the Free Buffer Ring advancement here. Write
2298 * the PA / Buffer Index for the returned buffer into
2299 * the oldest (next to be freed)FBR entry
2300 */
2301 next->addr_hi = fbr->bus_high[buff_index];
2302 next->addr_lo = fbr->bus_low[buff_index];
2303 next->word2 = buff_index;
2304
2305 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2306 fbr->num_entries - 1);
2307 writel(free_buff_ring, offset);
2308 } else {
2309 dev_err(&adapter->pdev->dev,
2310 "%s illegal Buffer Index returned\n", __func__);
2311 }
2312
2313 /* The processing on this RFD is done, so put it back on the tail of
2314 * our list
2315 */
2316 spin_lock_irqsave(&adapter->rcv_lock, flags);
2317 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2318 rx_local->num_ready_recv++;
2319 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2320
2321 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2322 }
2323
2324 /* nic_rx_pkts - Checks the hardware for available packets
2325 *
2326 * Returns rfd, a pointer to our MPRFD.
2327 *
2328 * Checks the hardware for available packets, using completion ring
2329 * If packets are available, it gets an RFD from the recv_list, attaches
2330 * the packet to it, puts the RFD in the RecvPendList, and also returns
2331 * the pointer to the RFD.
2332 */
2333 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2334 {
2335 struct rx_ring *rx_local = &adapter->rx_ring;
2336 struct rx_status_block *status;
2337 struct pkt_stat_desc *psr;
2338 struct rfd *rfd;
2339 unsigned long flags;
2340 struct list_head *element;
2341 u8 ring_index;
2342 u16 buff_index;
2343 u32 len;
2344 u32 word0;
2345 u32 word1;
2346 struct sk_buff *skb;
2347 struct fbr_lookup *fbr;
2348
2349 /* RX Status block is written by the DMA engine prior to every
2350 * interrupt. It contains the next to be used entry in the Packet
2351 * Status Ring, and also the two Free Buffer rings.
2352 */
2353 status = rx_local->rx_status_block;
2354 word1 = status->word1 >> 16; /* Get the useful bits */
2355
2356 /* Check the PSR and wrap bits do not match */
2357 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2358 return NULL; /* Looks like this ring is not updated yet */
2359
2360 /* The packet status ring indicates that data is available. */
2361 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2362 (rx_local->local_psr_full & 0xFFF);
2363
2364 /* Grab any information that is required once the PSR is advanced,
2365 * since we can no longer rely on the memory being accurate
2366 */
2367 len = psr->word1 & 0xFFFF;
2368 ring_index = (psr->word1 >> 26) & 0x03;
2369 fbr = rx_local->fbr[ring_index];
2370 buff_index = (psr->word1 >> 16) & 0x3FF;
2371 word0 = psr->word0;
2372
2373 /* Indicate that we have used this PSR entry. */
2374 /* FIXME wrap 12 */
2375 add_12bit(&rx_local->local_psr_full, 1);
2376 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2377 /* Clear psr full and toggle the wrap bit */
2378 rx_local->local_psr_full &= ~0xFFF;
2379 rx_local->local_psr_full ^= 0x1000;
2380 }
2381
2382 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2383
2384 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2385 /* Illegal buffer or ring index cannot be used by S/W*/
2386 dev_err(&adapter->pdev->dev,
2387 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2388 rx_local->local_psr_full & 0xFFF, len, buff_index);
2389 return NULL;
2390 }
2391
2392 /* Get and fill the RFD. */
2393 spin_lock_irqsave(&adapter->rcv_lock, flags);
2394
2395 element = rx_local->recv_list.next;
2396 rfd = list_entry(element, struct rfd, list_node);
2397
2398 if (!rfd) {
2399 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2400 return NULL;
2401 }
2402
2403 list_del(&rfd->list_node);
2404 rx_local->num_ready_recv--;
2405
2406 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2407
2408 rfd->bufferindex = buff_index;
2409 rfd->ringindex = ring_index;
2410
2411 /* In V1 silicon, there is a bug which screws up filtering of runt
2412 * packets. Therefore runt packet filtering is disabled in the MAC and
2413 * the packets are dropped here. They are also counted here.
2414 */
2415 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2416 adapter->stats.rx_other_errs++;
2417 rfd->len = 0;
2418 goto out;
2419 }
2420
2421 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2422 adapter->stats.multicast_pkts_rcvd++;
2423
2424 rfd->len = len;
2425
2426 skb = dev_alloc_skb(rfd->len + 2);
2427 if (!skb) {
2428 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2429 return NULL;
2430 }
2431
2432 adapter->netdev->stats.rx_bytes += rfd->len;
2433
2434 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2435
2436 skb->protocol = eth_type_trans(skb, adapter->netdev);
2437 skb->ip_summed = CHECKSUM_NONE;
2438 netif_receive_skb(skb);
2439
2440 out:
2441 nic_return_rfd(adapter, rfd);
2442 return rfd;
2443 }
2444
2445 /* et131x_handle_recv_pkts - Interrupt handler for receive processing
2446 *
2447 * Assumption, Rcv spinlock has been acquired.
2448 */
2449 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2450 {
2451 struct rfd *rfd = NULL;
2452 int count = 0;
2453 int limit = budget;
2454 bool done = true;
2455 struct rx_ring *rx_ring = &adapter->rx_ring;
2456
2457 if (budget > MAX_PACKETS_HANDLED)
2458 limit = MAX_PACKETS_HANDLED;
2459
2460 /* Process up to available RFD's */
2461 while (count < limit) {
2462 if (list_empty(&rx_ring->recv_list)) {
2463 WARN_ON(rx_ring->num_ready_recv != 0);
2464 done = false;
2465 break;
2466 }
2467
2468 rfd = nic_rx_pkts(adapter);
2469
2470 if (rfd == NULL)
2471 break;
2472
2473 /* Do not receive any packets until a filter has been set.
2474 * Do not receive any packets until we have link.
2475 * If length is zero, return the RFD in order to advance the
2476 * Free buffer ring.
2477 */
2478 if (!adapter->packet_filter ||
2479 !netif_carrier_ok(adapter->netdev) ||
2480 rfd->len == 0)
2481 continue;
2482
2483 /* Increment the number of packets we received */
2484 adapter->netdev->stats.rx_packets++;
2485
2486 /* Set the status on the packet, either resources or success */
2487 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2488 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2489
2490 count++;
2491 }
2492
2493 if (count == limit || !done) {
2494 rx_ring->unfinished_receives = true;
2495 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2496 &adapter->regs->global.watchdog_timer);
2497 } else {
2498 /* Watchdog timer will disable itself if appropriate. */
2499 rx_ring->unfinished_receives = false;
2500 }
2501
2502 return count;
2503 }
2504
2505 /* et131x_tx_dma_memory_alloc
2506 *
2507 * Allocates memory that will be visible both to the device and to the CPU.
2508 * The OS will pass us packets, pointers to which we will insert in the Tx
2509 * Descriptor queue. The device will read this queue to find the packets in
2510 * memory. The device will update the "status" in memory each time it xmits a
2511 * packet.
2512 */
2513 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2514 {
2515 int desc_size = 0;
2516 struct tx_ring *tx_ring = &adapter->tx_ring;
2517
2518 /* Allocate memory for the TCB's (Transmit Control Block) */
2519 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2520 GFP_ATOMIC | GFP_DMA);
2521 if (!tx_ring->tcb_ring)
2522 return -ENOMEM;
2523
2524 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2525 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2526 desc_size,
2527 &tx_ring->tx_desc_ring_pa,
2528 GFP_KERNEL);
2529 if (!tx_ring->tx_desc_ring) {
2530 dev_err(&adapter->pdev->dev,
2531 "Cannot alloc memory for Tx Ring\n");
2532 return -ENOMEM;
2533 }
2534
2535 /* Save physical address
2536 *
2537 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2538 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2539 * are ever returned, make sure the high part is retrieved here before
2540 * storing the adjusted address.
2541 */
2542 /* Allocate memory for the Tx status block */
2543 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2544 sizeof(u32),
2545 &tx_ring->tx_status_pa,
2546 GFP_KERNEL);
2547 if (!tx_ring->tx_status_pa) {
2548 dev_err(&adapter->pdev->dev,
2549 "Cannot alloc memory for Tx status block\n");
2550 return -ENOMEM;
2551 }
2552 return 0;
2553 }
2554
2555 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2556 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2557 {
2558 int desc_size = 0;
2559 struct tx_ring *tx_ring = &adapter->tx_ring;
2560
2561 if (tx_ring->tx_desc_ring) {
2562 /* Free memory relating to Tx rings here */
2563 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2564 dma_free_coherent(&adapter->pdev->dev,
2565 desc_size,
2566 tx_ring->tx_desc_ring,
2567 tx_ring->tx_desc_ring_pa);
2568 tx_ring->tx_desc_ring = NULL;
2569 }
2570
2571 /* Free memory for the Tx status block */
2572 if (tx_ring->tx_status) {
2573 dma_free_coherent(&adapter->pdev->dev,
2574 sizeof(u32),
2575 tx_ring->tx_status,
2576 tx_ring->tx_status_pa);
2577
2578 tx_ring->tx_status = NULL;
2579 }
2580 /* Free the memory for the tcb structures */
2581 kfree(tx_ring->tcb_ring);
2582 }
2583
2584 /* nic_send_packet - NIC specific send handler for version B silicon.
2585 * @adapter: pointer to our adapter
2586 * @tcb: pointer to struct tcb
2587 */
2588 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2589 {
2590 u32 i;
2591 struct tx_desc desc[24]; /* 24 x 16 byte */
2592 u32 frag = 0;
2593 u32 thiscopy, remainder;
2594 struct sk_buff *skb = tcb->skb;
2595 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2596 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2597 struct phy_device *phydev = adapter->phydev;
2598 dma_addr_t dma_addr;
2599 struct tx_ring *tx_ring = &adapter->tx_ring;
2600
2601 /* Part of the optimizations of this send routine restrict us to
2602 * sending 24 fragments at a pass. In practice we should never see
2603 * more than 5 fragments.
2604 *
2605 * NOTE: The older version of this function (below) can handle any
2606 * number of fragments. If needed, we can call this function,
2607 * although it is less efficient.
2608 */
2609
2610 /* nr_frags should be no more than 18. */
2611 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2612
2613 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2614
2615 for (i = 0; i < nr_frags; i++) {
2616 /* If there is something in this element, lets get a
2617 * descriptor from the ring and get the necessary data
2618 */
2619 if (i == 0) {
2620 /* If the fragments are smaller than a standard MTU,
2621 * then map them to a single descriptor in the Tx
2622 * Desc ring. However, if they're larger, as is
2623 * possible with support for jumbo packets, then
2624 * split them each across 2 descriptors.
2625 *
2626 * This will work until we determine why the hardware
2627 * doesn't seem to like large fragments.
2628 */
2629 if (skb_headlen(skb) <= 1514) {
2630 /* Low 16bits are length, high is vlan and
2631 * unused currently so zero
2632 */
2633 desc[frag].len_vlan = skb_headlen(skb);
2634 dma_addr = dma_map_single(&adapter->pdev->dev,
2635 skb->data,
2636 skb_headlen(skb),
2637 DMA_TO_DEVICE);
2638 desc[frag].addr_lo = lower_32_bits(dma_addr);
2639 desc[frag].addr_hi = upper_32_bits(dma_addr);
2640 frag++;
2641 } else {
2642 desc[frag].len_vlan = skb_headlen(skb) / 2;
2643 dma_addr = dma_map_single(&adapter->pdev->dev,
2644 skb->data,
2645 (skb_headlen(skb) / 2),
2646 DMA_TO_DEVICE);
2647 desc[frag].addr_lo = lower_32_bits(dma_addr);
2648 desc[frag].addr_hi = upper_32_bits(dma_addr);
2649 frag++;
2650
2651 desc[frag].len_vlan = skb_headlen(skb) / 2;
2652 dma_addr = dma_map_single(&adapter->pdev->dev,
2653 skb->data +
2654 (skb_headlen(skb) / 2),
2655 (skb_headlen(skb) / 2),
2656 DMA_TO_DEVICE);
2657 desc[frag].addr_lo = lower_32_bits(dma_addr);
2658 desc[frag].addr_hi = upper_32_bits(dma_addr);
2659 frag++;
2660 }
2661 } else {
2662 desc[frag].len_vlan = frags[i - 1].size;
2663 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2664 &frags[i - 1],
2665 0,
2666 frags[i - 1].size,
2667 DMA_TO_DEVICE);
2668 desc[frag].addr_lo = lower_32_bits(dma_addr);
2669 desc[frag].addr_hi = upper_32_bits(dma_addr);
2670 frag++;
2671 }
2672 }
2673
2674 if (phydev && phydev->speed == SPEED_1000) {
2675 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2676 /* Last element & Interrupt flag */
2677 desc[frag - 1].flags =
2678 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2679 tx_ring->since_irq = 0;
2680 } else { /* Last element */
2681 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2682 }
2683 } else {
2684 desc[frag - 1].flags =
2685 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2686 }
2687
2688 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2689
2690 tcb->index_start = tx_ring->send_idx;
2691 tcb->stale = 0;
2692
2693 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2694
2695 if (thiscopy >= frag) {
2696 remainder = 0;
2697 thiscopy = frag;
2698 } else {
2699 remainder = frag - thiscopy;
2700 }
2701
2702 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2703 desc,
2704 sizeof(struct tx_desc) * thiscopy);
2705
2706 add_10bit(&tx_ring->send_idx, thiscopy);
2707
2708 if (INDEX10(tx_ring->send_idx) == 0 ||
2709 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2710 tx_ring->send_idx &= ~ET_DMA10_MASK;
2711 tx_ring->send_idx ^= ET_DMA10_WRAP;
2712 }
2713
2714 if (remainder) {
2715 memcpy(tx_ring->tx_desc_ring,
2716 desc + thiscopy,
2717 sizeof(struct tx_desc) * remainder);
2718
2719 add_10bit(&tx_ring->send_idx, remainder);
2720 }
2721
2722 if (INDEX10(tx_ring->send_idx) == 0) {
2723 if (tx_ring->send_idx)
2724 tcb->index = NUM_DESC_PER_RING_TX - 1;
2725 else
2726 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2727 } else {
2728 tcb->index = tx_ring->send_idx - 1;
2729 }
2730
2731 spin_lock(&adapter->tcb_send_qlock);
2732
2733 if (tx_ring->send_tail)
2734 tx_ring->send_tail->next = tcb;
2735 else
2736 tx_ring->send_head = tcb;
2737
2738 tx_ring->send_tail = tcb;
2739
2740 WARN_ON(tcb->next != NULL);
2741
2742 tx_ring->used++;
2743
2744 spin_unlock(&adapter->tcb_send_qlock);
2745
2746 /* Write the new write pointer back to the device. */
2747 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2748
2749 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2750 * timer to wake us up if this packet isn't followed by N more.
2751 */
2752 if (phydev && phydev->speed == SPEED_1000) {
2753 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2754 &adapter->regs->global.watchdog_timer);
2755 }
2756 return 0;
2757 }
2758
2759 /* send_packet - Do the work to send a packet
2760 *
2761 * Assumption: Send spinlock has been acquired
2762 */
2763 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2764 {
2765 int status;
2766 struct tcb *tcb;
2767 unsigned long flags;
2768 struct tx_ring *tx_ring = &adapter->tx_ring;
2769
2770 /* All packets must have at least a MAC address and a protocol type */
2771 if (skb->len < ETH_HLEN)
2772 return -EIO;
2773
2774 /* Get a TCB for this packet */
2775 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2776
2777 tcb = tx_ring->tcb_qhead;
2778
2779 if (tcb == NULL) {
2780 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2781 return -ENOMEM;
2782 }
2783
2784 tx_ring->tcb_qhead = tcb->next;
2785
2786 if (tx_ring->tcb_qhead == NULL)
2787 tx_ring->tcb_qtail = NULL;
2788
2789 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2790
2791 tcb->skb = skb;
2792 tcb->next = NULL;
2793
2794 /* Call the NIC specific send handler. */
2795 status = nic_send_packet(adapter, tcb);
2796
2797 if (status != 0) {
2798 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2799
2800 if (tx_ring->tcb_qtail)
2801 tx_ring->tcb_qtail->next = tcb;
2802 else
2803 /* Apparently ready Q is empty. */
2804 tx_ring->tcb_qhead = tcb;
2805
2806 tx_ring->tcb_qtail = tcb;
2807 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2808 return status;
2809 }
2810 WARN_ON(tx_ring->used > NUM_TCB);
2811 return 0;
2812 }
2813
2814 /* free_send_packet - Recycle a struct tcb
2815 * @adapter: pointer to our adapter
2816 * @tcb: pointer to struct tcb
2817 *
2818 * Complete the packet if necessary
2819 * Assumption - Send spinlock has been acquired
2820 */
2821 static inline void free_send_packet(struct et131x_adapter *adapter,
2822 struct tcb *tcb)
2823 {
2824 unsigned long flags;
2825 struct tx_desc *desc = NULL;
2826 struct net_device_stats *stats = &adapter->netdev->stats;
2827 struct tx_ring *tx_ring = &adapter->tx_ring;
2828 u64 dma_addr;
2829
2830 if (tcb->skb) {
2831 stats->tx_bytes += tcb->skb->len;
2832
2833 /* Iterate through the TX descriptors on the ring
2834 * corresponding to this packet and umap the fragments
2835 * they point to
2836 */
2837 do {
2838 desc = tx_ring->tx_desc_ring +
2839 INDEX10(tcb->index_start);
2840
2841 dma_addr = desc->addr_lo;
2842 dma_addr |= (u64)desc->addr_hi << 32;
2843
2844 dma_unmap_single(&adapter->pdev->dev,
2845 dma_addr,
2846 desc->len_vlan, DMA_TO_DEVICE);
2847
2848 add_10bit(&tcb->index_start, 1);
2849 if (INDEX10(tcb->index_start) >=
2850 NUM_DESC_PER_RING_TX) {
2851 tcb->index_start &= ~ET_DMA10_MASK;
2852 tcb->index_start ^= ET_DMA10_WRAP;
2853 }
2854 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2855
2856 dev_kfree_skb_any(tcb->skb);
2857 }
2858
2859 memset(tcb, 0, sizeof(struct tcb));
2860
2861 /* Add the TCB to the Ready Q */
2862 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2863
2864 stats->tx_packets++;
2865
2866 if (tx_ring->tcb_qtail)
2867 tx_ring->tcb_qtail->next = tcb;
2868 else
2869 /* Apparently ready Q is empty. */
2870 tx_ring->tcb_qhead = tcb;
2871
2872 tx_ring->tcb_qtail = tcb;
2873
2874 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2875 WARN_ON(tx_ring->used < 0);
2876 }
2877
2878 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
2879 *
2880 * Assumption - Send spinlock has been acquired
2881 */
2882 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2883 {
2884 struct tcb *tcb;
2885 unsigned long flags;
2886 u32 freed = 0;
2887 struct tx_ring *tx_ring = &adapter->tx_ring;
2888
2889 /* Any packets being sent? Check the first TCB on the send list */
2890 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2891
2892 tcb = tx_ring->send_head;
2893
2894 while (tcb != NULL && freed < NUM_TCB) {
2895 struct tcb *next = tcb->next;
2896
2897 tx_ring->send_head = next;
2898
2899 if (next == NULL)
2900 tx_ring->send_tail = NULL;
2901
2902 tx_ring->used--;
2903
2904 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2905
2906 freed++;
2907 free_send_packet(adapter, tcb);
2908
2909 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2910
2911 tcb = tx_ring->send_head;
2912 }
2913
2914 WARN_ON(freed == NUM_TCB);
2915
2916 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2917
2918 tx_ring->used = 0;
2919 }
2920
2921 /* et131x_handle_send_pkts - Interrupt handler for sending processing
2922 *
2923 * Re-claim the send resources, complete sends and get more to send from
2924 * the send wait queue.
2925 *
2926 * Assumption - Send spinlock has been acquired
2927 */
2928 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2929 {
2930 unsigned long flags;
2931 u32 serviced;
2932 struct tcb *tcb;
2933 u32 index;
2934 struct tx_ring *tx_ring = &adapter->tx_ring;
2935
2936 serviced = readl(&adapter->regs->txdma.new_service_complete);
2937 index = INDEX10(serviced);
2938
2939 /* Has the ring wrapped? Process any descriptors that do not have
2940 * the same "wrap" indicator as the current completion indicator
2941 */
2942 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2943
2944 tcb = tx_ring->send_head;
2945
2946 while (tcb &&
2947 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2948 index < INDEX10(tcb->index)) {
2949 tx_ring->used--;
2950 tx_ring->send_head = tcb->next;
2951 if (tcb->next == NULL)
2952 tx_ring->send_tail = NULL;
2953
2954 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2955 free_send_packet(adapter, tcb);
2956 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2957
2958 /* Goto the next packet */
2959 tcb = tx_ring->send_head;
2960 }
2961 while (tcb &&
2962 !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2963 index > (tcb->index & ET_DMA10_MASK)) {
2964 tx_ring->used--;
2965 tx_ring->send_head = tcb->next;
2966 if (tcb->next == NULL)
2967 tx_ring->send_tail = NULL;
2968
2969 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2970 free_send_packet(adapter, tcb);
2971 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2972
2973 /* Goto the next packet */
2974 tcb = tx_ring->send_head;
2975 }
2976
2977 /* Wake up the queue when we hit a low-water mark */
2978 if (tx_ring->used <= NUM_TCB / 3)
2979 netif_wake_queue(adapter->netdev);
2980
2981 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2982 }
2983
2984 static int et131x_get_settings(struct net_device *netdev,
2985 struct ethtool_cmd *cmd)
2986 {
2987 struct et131x_adapter *adapter = netdev_priv(netdev);
2988
2989 return phy_ethtool_gset(adapter->phydev, cmd);
2990 }
2991
2992 static int et131x_set_settings(struct net_device *netdev,
2993 struct ethtool_cmd *cmd)
2994 {
2995 struct et131x_adapter *adapter = netdev_priv(netdev);
2996
2997 return phy_ethtool_sset(adapter->phydev, cmd);
2998 }
2999
3000 static int et131x_get_regs_len(struct net_device *netdev)
3001 {
3002 #define ET131X_REGS_LEN 256
3003 return ET131X_REGS_LEN * sizeof(u32);
3004 }
3005
3006 static void et131x_get_regs(struct net_device *netdev,
3007 struct ethtool_regs *regs, void *regs_data)
3008 {
3009 struct et131x_adapter *adapter = netdev_priv(netdev);
3010 struct address_map __iomem *aregs = adapter->regs;
3011 u32 *regs_buff = regs_data;
3012 u32 num = 0;
3013 u16 tmp;
3014
3015 memset(regs_data, 0, et131x_get_regs_len(netdev));
3016
3017 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3018 adapter->pdev->device;
3019
3020 /* PHY regs */
3021 et131x_mii_read(adapter, MII_BMCR, &tmp);
3022 regs_buff[num++] = tmp;
3023 et131x_mii_read(adapter, MII_BMSR, &tmp);
3024 regs_buff[num++] = tmp;
3025 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3026 regs_buff[num++] = tmp;
3027 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3028 regs_buff[num++] = tmp;
3029 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3030 regs_buff[num++] = tmp;
3031 et131x_mii_read(adapter, MII_LPA, &tmp);
3032 regs_buff[num++] = tmp;
3033 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3034 regs_buff[num++] = tmp;
3035 /* Autoneg next page transmit reg */
3036 et131x_mii_read(adapter, 0x07, &tmp);
3037 regs_buff[num++] = tmp;
3038 /* Link partner next page reg */
3039 et131x_mii_read(adapter, 0x08, &tmp);
3040 regs_buff[num++] = tmp;
3041 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3042 regs_buff[num++] = tmp;
3043 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3044 regs_buff[num++] = tmp;
3045 et131x_mii_read(adapter, 0x0b, &tmp);
3046 regs_buff[num++] = tmp;
3047 et131x_mii_read(adapter, 0x0c, &tmp);
3048 regs_buff[num++] = tmp;
3049 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3050 regs_buff[num++] = tmp;
3051 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3052 regs_buff[num++] = tmp;
3053 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3054 regs_buff[num++] = tmp;
3055
3056 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3057 regs_buff[num++] = tmp;
3058 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3059 regs_buff[num++] = tmp;
3060 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3061 regs_buff[num++] = tmp;
3062 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3063 regs_buff[num++] = tmp;
3064 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3065 regs_buff[num++] = tmp;
3066
3067 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3068 regs_buff[num++] = tmp;
3069 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3070 regs_buff[num++] = tmp;
3071 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3072 regs_buff[num++] = tmp;
3073 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3074 regs_buff[num++] = tmp;
3075 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3076 regs_buff[num++] = tmp;
3077 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3078 regs_buff[num++] = tmp;
3079 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3080 regs_buff[num++] = tmp;
3081 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3082 regs_buff[num++] = tmp;
3083
3084 /* Global regs */
3085 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3086 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3087 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3088 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3089 regs_buff[num++] = readl(&aregs->global.pm_csr);
3090 regs_buff[num++] = adapter->stats.interrupt_status;
3091 regs_buff[num++] = readl(&aregs->global.int_mask);
3092 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3093 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3094 regs_buff[num++] = readl(&aregs->global.sw_reset);
3095 regs_buff[num++] = readl(&aregs->global.slv_timer);
3096 regs_buff[num++] = readl(&aregs->global.msi_config);
3097 regs_buff[num++] = readl(&aregs->global.loopback);
3098 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3099
3100 /* TXDMA regs */
3101 regs_buff[num++] = readl(&aregs->txdma.csr);
3102 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3103 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3104 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3105 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3106 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3107 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3108 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3109 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3110 regs_buff[num++] = readl(&aregs->txdma.service_request);
3111 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3112 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3113 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3114 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3115 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3116 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3117 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3118 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3119 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3120 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3121 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3122 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3123 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3124 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3125 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3126 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3127
3128 /* RXDMA regs */
3129 regs_buff[num++] = readl(&aregs->rxdma.csr);
3130 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3131 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3132 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3133 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3134 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3135 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3136 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3137 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3138 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3139 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3140 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3141 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3142 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3143 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3144 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3145 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3146 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3147 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3148 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3149 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3150 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3151 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3152 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3153 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3154 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3155 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3156 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3157 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3158 }
3159
3160 static void et131x_get_drvinfo(struct net_device *netdev,
3161 struct ethtool_drvinfo *info)
3162 {
3163 struct et131x_adapter *adapter = netdev_priv(netdev);
3164
3165 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3166 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3167 strlcpy(info->bus_info, pci_name(adapter->pdev),
3168 sizeof(info->bus_info));
3169 }
3170
3171 static struct ethtool_ops et131x_ethtool_ops = {
3172 .get_settings = et131x_get_settings,
3173 .set_settings = et131x_set_settings,
3174 .get_drvinfo = et131x_get_drvinfo,
3175 .get_regs_len = et131x_get_regs_len,
3176 .get_regs = et131x_get_regs,
3177 .get_link = ethtool_op_get_link,
3178 };
3179
3180 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3181 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3182 {
3183 /* If have our default mac from init and no mac address from
3184 * EEPROM then we need to generate the last octet and set it on the
3185 * device
3186 */
3187 if (is_zero_ether_addr(adapter->rom_addr)) {
3188 /* We need to randomly generate the last octet so we
3189 * decrease our chances of setting the mac address to
3190 * same as another one of our cards in the system
3191 */
3192 get_random_bytes(&adapter->addr[5], 1);
3193 /* We have the default value in the register we are
3194 * working with so we need to copy the current
3195 * address into the permanent address
3196 */
3197 memcpy(adapter->rom_addr,
3198 adapter->addr, ETH_ALEN);
3199 } else {
3200 /* We do not have an override address, so set the
3201 * current address to the permanent address and add
3202 * it to the device
3203 */
3204 memcpy(adapter->addr,
3205 adapter->rom_addr, ETH_ALEN);
3206 }
3207 }
3208
3209 /* et131x_pci_init - initial PCI setup
3210 *
3211 * Perform the initial setup of PCI registers and if possible initialise
3212 * the MAC address. At this point the I/O registers have yet to be mapped
3213 */
3214 static int et131x_pci_init(struct et131x_adapter *adapter,
3215 struct pci_dev *pdev)
3216 {
3217 u16 max_payload;
3218 int i, rc;
3219
3220 rc = et131x_init_eeprom(adapter);
3221 if (rc < 0)
3222 goto out;
3223
3224 if (!pci_is_pcie(pdev)) {
3225 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3226 goto err_out;
3227 }
3228
3229 /* Let's set up the PORT LOGIC Register. */
3230
3231 /* Program the Ack/Nak latency and replay timers */
3232 max_payload = pdev->pcie_mpss;
3233
3234 if (max_payload < 2) {
3235 static const u16 acknak[2] = { 0x76, 0xD0 };
3236 static const u16 replay[2] = { 0x1E0, 0x2ED };
3237
3238 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3239 acknak[max_payload])) {
3240 dev_err(&pdev->dev,
3241 "Could not write PCI config space for ACK/NAK\n");
3242 goto err_out;
3243 }
3244 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3245 replay[max_payload])) {
3246 dev_err(&pdev->dev,
3247 "Could not write PCI config space for Replay Timer\n");
3248 goto err_out;
3249 }
3250 }
3251
3252 /* l0s and l1 latency timers. We are using default values.
3253 * Representing 001 for L0s and 010 for L1
3254 */
3255 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3256 dev_err(&pdev->dev,
3257 "Could not write PCI config space for Latency Timers\n");
3258 goto err_out;
3259 }
3260
3261 /* Change the max read size to 2k */
3262 if (pcie_set_readrq(pdev, 2048)) {
3263 dev_err(&pdev->dev,
3264 "Couldn't change PCI config space for Max read size\n");
3265 goto err_out;
3266 }
3267
3268 /* Get MAC address from config space if an eeprom exists, otherwise
3269 * the MAC address there will not be valid
3270 */
3271 if (!adapter->has_eeprom) {
3272 et131x_hwaddr_init(adapter);
3273 return 0;
3274 }
3275
3276 for (i = 0; i < ETH_ALEN; i++) {
3277 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3278 adapter->rom_addr + i)) {
3279 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3280 goto err_out;
3281 }
3282 }
3283 ether_addr_copy(adapter->addr, adapter->rom_addr);
3284 out:
3285 return rc;
3286 err_out:
3287 rc = -EIO;
3288 goto out;
3289 }
3290
3291 /* et131x_error_timer_handler
3292 * @data: timer-specific variable; here a pointer to our adapter structure
3293 *
3294 * The routine called when the error timer expires, to track the number of
3295 * recurring errors.
3296 */
3297 static void et131x_error_timer_handler(unsigned long data)
3298 {
3299 struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3300 struct phy_device *phydev = adapter->phydev;
3301
3302 if (et1310_in_phy_coma(adapter)) {
3303 /* Bring the device immediately out of coma, to
3304 * prevent it from sleeping indefinitely, this
3305 * mechanism could be improved!
3306 */
3307 et1310_disable_phy_coma(adapter);
3308 adapter->boot_coma = 20;
3309 } else {
3310 et1310_update_macstat_host_counters(adapter);
3311 }
3312
3313 if (!phydev->link && adapter->boot_coma < 11)
3314 adapter->boot_coma++;
3315
3316 if (adapter->boot_coma == 10) {
3317 if (!phydev->link) {
3318 if (!et1310_in_phy_coma(adapter)) {
3319 /* NOTE - This was originally a 'sync with
3320 * interrupt'. How to do that under Linux?
3321 */
3322 et131x_enable_interrupts(adapter);
3323 et1310_enable_phy_coma(adapter);
3324 }
3325 }
3326 }
3327
3328 /* This is a periodic timer, so reschedule */
3329 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3330 }
3331
3332 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3333 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3334 {
3335 et131x_tx_dma_memory_free(adapter);
3336 et131x_rx_dma_memory_free(adapter);
3337 }
3338
3339 /* et131x_adapter_memory_alloc
3340 * Allocate all the memory blocks for send, receive and others.
3341 */
3342 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3343 {
3344 int status;
3345
3346 /* Allocate memory for the Tx Ring */
3347 status = et131x_tx_dma_memory_alloc(adapter);
3348 if (status) {
3349 dev_err(&adapter->pdev->dev,
3350 "et131x_tx_dma_memory_alloc FAILED\n");
3351 et131x_tx_dma_memory_free(adapter);
3352 return status;
3353 }
3354 /* Receive buffer memory allocation */
3355 status = et131x_rx_dma_memory_alloc(adapter);
3356 if (status) {
3357 dev_err(&adapter->pdev->dev,
3358 "et131x_rx_dma_memory_alloc FAILED\n");
3359 et131x_adapter_memory_free(adapter);
3360 return status;
3361 }
3362
3363 /* Init receive data structures */
3364 status = et131x_init_recv(adapter);
3365 if (status) {
3366 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3367 et131x_adapter_memory_free(adapter);
3368 }
3369 return status;
3370 }
3371
3372 static void et131x_adjust_link(struct net_device *netdev)
3373 {
3374 struct et131x_adapter *adapter = netdev_priv(netdev);
3375 struct phy_device *phydev = adapter->phydev;
3376
3377 if (!phydev)
3378 return;
3379 if (phydev->link == adapter->link)
3380 return;
3381
3382 /* Check to see if we are in coma mode and if
3383 * so, disable it because we will not be able
3384 * to read PHY values until we are out.
3385 */
3386 if (et1310_in_phy_coma(adapter))
3387 et1310_disable_phy_coma(adapter);
3388
3389 adapter->link = phydev->link;
3390 phy_print_status(phydev);
3391
3392 if (phydev->link) {
3393 adapter->boot_coma = 20;
3394 if (phydev->speed == SPEED_10) {
3395 u16 register18;
3396
3397 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3398 &register18);
3399 et131x_mii_write(adapter, phydev->addr,
3400 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3401 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
3402 register18 | 0x8402);
3403 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
3404 register18 | 511);
3405 et131x_mii_write(adapter, phydev->addr,
3406 PHY_MPHY_CONTROL_REG, register18);
3407 }
3408
3409 et1310_config_flow_control(adapter);
3410
3411 if (phydev->speed == SPEED_1000 &&
3412 adapter->registry_jumbo_packet > 2048) {
3413 u16 reg;
3414
3415 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3416 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3417 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3418 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3419 reg);
3420 }
3421
3422 et131x_set_rx_dma_timer(adapter);
3423 et1310_config_mac_regs2(adapter);
3424 } else {
3425 adapter->boot_coma = 0;
3426
3427 if (phydev->speed == SPEED_10) {
3428 u16 register18;
3429
3430 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3431 &register18);
3432 et131x_mii_write(adapter, phydev->addr,
3433 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3434 et131x_mii_write(adapter, phydev->addr,
3435 PHY_INDEX_REG, register18 | 0x8402);
3436 et131x_mii_write(adapter, phydev->addr,
3437 PHY_DATA_REG, register18 | 511);
3438 et131x_mii_write(adapter, phydev->addr,
3439 PHY_MPHY_CONTROL_REG, register18);
3440 }
3441
3442 /* Free the packets being actively sent & stopped */
3443 et131x_free_busy_send_packets(adapter);
3444
3445 /* Re-initialize the send structures */
3446 et131x_init_send(adapter);
3447
3448 /* Bring the device back to the state it was during
3449 * init prior to autonegotiation being complete. This
3450 * way, when we get the auto-neg complete interrupt,
3451 * we can complete init by calling config_mac_regs2.
3452 */
3453 et131x_soft_reset(adapter);
3454
3455 /* Setup ET1310 as per the documentation */
3456 et131x_adapter_setup(adapter);
3457
3458 /* perform reset of tx/rx */
3459 et131x_disable_txrx(netdev);
3460 et131x_enable_txrx(netdev);
3461 }
3462 }
3463
3464 static int et131x_mii_probe(struct net_device *netdev)
3465 {
3466 struct et131x_adapter *adapter = netdev_priv(netdev);
3467 struct phy_device *phydev = NULL;
3468
3469 phydev = phy_find_first(adapter->mii_bus);
3470 if (!phydev) {
3471 dev_err(&adapter->pdev->dev, "no PHY found\n");
3472 return -ENODEV;
3473 }
3474
3475 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3476 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3477
3478 if (IS_ERR(phydev)) {
3479 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3480 return PTR_ERR(phydev);
3481 }
3482
3483 phydev->supported &= (SUPPORTED_10baseT_Half |
3484 SUPPORTED_10baseT_Full |
3485 SUPPORTED_100baseT_Half |
3486 SUPPORTED_100baseT_Full |
3487 SUPPORTED_Autoneg |
3488 SUPPORTED_MII |
3489 SUPPORTED_TP);
3490
3491 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3492 phydev->supported |= SUPPORTED_1000baseT_Half |
3493 SUPPORTED_1000baseT_Full;
3494
3495 phydev->advertising = phydev->supported;
3496 phydev->autoneg = AUTONEG_ENABLE;
3497 adapter->phydev = phydev;
3498
3499 dev_info(&adapter->pdev->dev,
3500 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3501 phydev->drv->name, dev_name(&phydev->dev));
3502
3503 return 0;
3504 }
3505
3506 /* et131x_adapter_init
3507 *
3508 * Initialize the data structures for the et131x_adapter object and link
3509 * them together with the platform provided device structures.
3510 */
3511 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3512 struct pci_dev *pdev)
3513 {
3514 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3515
3516 struct et131x_adapter *adapter;
3517
3518 /* Allocate private adapter struct and copy in relevant information */
3519 adapter = netdev_priv(netdev);
3520 adapter->pdev = pci_dev_get(pdev);
3521 adapter->netdev = netdev;
3522
3523 /* Initialize spinlocks here */
3524 spin_lock_init(&adapter->tcb_send_qlock);
3525 spin_lock_init(&adapter->tcb_ready_qlock);
3526 spin_lock_init(&adapter->rcv_lock);
3527
3528 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3529
3530 /* Set the MAC address to a default */
3531 ether_addr_copy(adapter->addr, default_mac);
3532
3533 return adapter;
3534 }
3535
3536 /* et131x_pci_remove
3537 *
3538 * Registered in the pci_driver structure, this function is called when the
3539 * PCI subsystem detects that a PCI device which matches the information
3540 * contained in the pci_device_id table has been removed.
3541 */
3542 static void et131x_pci_remove(struct pci_dev *pdev)
3543 {
3544 struct net_device *netdev = pci_get_drvdata(pdev);
3545 struct et131x_adapter *adapter = netdev_priv(netdev);
3546
3547 unregister_netdev(netdev);
3548 netif_napi_del(&adapter->napi);
3549 phy_disconnect(adapter->phydev);
3550 mdiobus_unregister(adapter->mii_bus);
3551 kfree(adapter->mii_bus->irq);
3552 mdiobus_free(adapter->mii_bus);
3553
3554 et131x_adapter_memory_free(adapter);
3555 iounmap(adapter->regs);
3556 pci_dev_put(pdev);
3557
3558 free_netdev(netdev);
3559 pci_release_regions(pdev);
3560 pci_disable_device(pdev);
3561 }
3562
3563 /* et131x_up - Bring up a device for use. */
3564 static void et131x_up(struct net_device *netdev)
3565 {
3566 struct et131x_adapter *adapter = netdev_priv(netdev);
3567
3568 et131x_enable_txrx(netdev);
3569 phy_start(adapter->phydev);
3570 }
3571
3572 /* et131x_down - Bring down the device */
3573 static void et131x_down(struct net_device *netdev)
3574 {
3575 struct et131x_adapter *adapter = netdev_priv(netdev);
3576
3577 /* Save the timestamp for the TX watchdog, prevent a timeout */
3578 netdev->trans_start = jiffies;
3579
3580 phy_stop(adapter->phydev);
3581 et131x_disable_txrx(netdev);
3582 }
3583
3584 #ifdef CONFIG_PM_SLEEP
3585 static int et131x_suspend(struct device *dev)
3586 {
3587 struct pci_dev *pdev = to_pci_dev(dev);
3588 struct net_device *netdev = pci_get_drvdata(pdev);
3589
3590 if (netif_running(netdev)) {
3591 netif_device_detach(netdev);
3592 et131x_down(netdev);
3593 pci_save_state(pdev);
3594 }
3595
3596 return 0;
3597 }
3598
3599 static int et131x_resume(struct device *dev)
3600 {
3601 struct pci_dev *pdev = to_pci_dev(dev);
3602 struct net_device *netdev = pci_get_drvdata(pdev);
3603
3604 if (netif_running(netdev)) {
3605 pci_restore_state(pdev);
3606 et131x_up(netdev);
3607 netif_device_attach(netdev);
3608 }
3609
3610 return 0;
3611 }
3612
3613 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3614 #define ET131X_PM_OPS (&et131x_pm_ops)
3615 #else
3616 #define ET131X_PM_OPS NULL
3617 #endif
3618
3619 /* et131x_isr - The Interrupt Service Routine for the driver.
3620 * @irq: the IRQ on which the interrupt was received.
3621 * @dev_id: device-specific info (here a pointer to a net_device struct)
3622 *
3623 * Returns a value indicating if the interrupt was handled.
3624 */
3625 static irqreturn_t et131x_isr(int irq, void *dev_id)
3626 {
3627 bool handled = true;
3628 bool enable_interrupts = true;
3629 struct net_device *netdev = (struct net_device *)dev_id;
3630 struct et131x_adapter *adapter = netdev_priv(netdev);
3631 struct address_map __iomem *iomem = adapter->regs;
3632 struct rx_ring *rx_ring = &adapter->rx_ring;
3633 struct tx_ring *tx_ring = &adapter->tx_ring;
3634 u32 status;
3635
3636 if (!netif_device_present(netdev)) {
3637 handled = false;
3638 enable_interrupts = false;
3639 goto out;
3640 }
3641
3642 /* If the adapter is in low power state, then it should not
3643 * recognize any interrupt
3644 */
3645
3646 /* Disable Device Interrupts */
3647 et131x_disable_interrupts(adapter);
3648
3649 /* Get a copy of the value in the interrupt status register
3650 * so we can process the interrupting section
3651 */
3652 status = readl(&adapter->regs->global.int_status);
3653
3654 if (adapter->flowcontrol == FLOW_TXONLY ||
3655 adapter->flowcontrol == FLOW_BOTH) {
3656 status &= ~INT_MASK_ENABLE;
3657 } else {
3658 status &= ~INT_MASK_ENABLE_NO_FLOW;
3659 }
3660
3661 /* Make sure this is our interrupt */
3662 if (!status) {
3663 handled = false;
3664 et131x_enable_interrupts(adapter);
3665 goto out;
3666 }
3667
3668 /* This is our interrupt, so process accordingly */
3669 if (status & ET_INTR_WATCHDOG) {
3670 struct tcb *tcb = tx_ring->send_head;
3671
3672 if (tcb)
3673 if (++tcb->stale > 1)
3674 status |= ET_INTR_TXDMA_ISR;
3675
3676 if (rx_ring->unfinished_receives)
3677 status |= ET_INTR_RXDMA_XFR_DONE;
3678 else if (tcb == NULL)
3679 writel(0, &adapter->regs->global.watchdog_timer);
3680
3681 status &= ~ET_INTR_WATCHDOG;
3682 }
3683
3684 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3685 enable_interrupts = false;
3686 napi_schedule(&adapter->napi);
3687 }
3688
3689 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3690
3691 if (!status)
3692 goto out;
3693
3694 /* Handle the TXDMA Error interrupt */
3695 if (status & ET_INTR_TXDMA_ERR) {
3696 /* Following read also clears the register (COR) */
3697 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3698
3699 dev_warn(&adapter->pdev->dev,
3700 "TXDMA_ERR interrupt, error = %d\n",
3701 txdma_err);
3702 }
3703
3704 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3705 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3706 /* This indicates the number of unused buffers in RXDMA free
3707 * buffer ring 0 is <= the limit you programmed. Free buffer
3708 * resources need to be returned. Free buffers are consumed as
3709 * packets are passed from the network to the host. The host
3710 * becomes aware of the packets from the contents of the packet
3711 * status ring. This ring is queried when the packet done
3712 * interrupt occurs. Packets are then passed to the OS. When
3713 * the OS is done with the packets the resources can be
3714 * returned to the ET1310 for re-use. This interrupt is one
3715 * method of returning resources.
3716 */
3717
3718 /* If the user has flow control on, then we will
3719 * send a pause packet, otherwise just exit
3720 */
3721 if (adapter->flowcontrol == FLOW_TXONLY ||
3722 adapter->flowcontrol == FLOW_BOTH) {
3723 u32 pm_csr;
3724
3725 /* Tell the device to send a pause packet via the back
3726 * pressure register (bp req and bp xon/xoff)
3727 */
3728 pm_csr = readl(&iomem->global.pm_csr);
3729 if (!et1310_in_phy_coma(adapter))
3730 writel(3, &iomem->txmac.bp_ctrl);
3731 }
3732 }
3733
3734 /* Handle Packet Status Ring Low Interrupt */
3735 if (status & ET_INTR_RXDMA_STAT_LOW) {
3736 /* Same idea as with the two Free Buffer Rings. Packets going
3737 * from the network to the host each consume a free buffer
3738 * resource and a packet status resource. These resources are
3739 * passed to the OS. When the OS is done with the resources,
3740 * they need to be returned to the ET1310. This is one method
3741 * of returning the resources.
3742 */
3743 }
3744
3745 /* Handle RXDMA Error Interrupt */
3746 if (status & ET_INTR_RXDMA_ERR) {
3747 /* The rxdma_error interrupt is sent when a time-out on a
3748 * request issued by the JAGCore has occurred or a completion is
3749 * returned with an un-successful status. In both cases the
3750 * request is considered complete. The JAGCore will
3751 * automatically re-try the request in question. Normally
3752 * information on events like these are sent to the host using
3753 * the "Advanced Error Reporting" capability. This interrupt is
3754 * another way of getting similar information. The only thing
3755 * required is to clear the interrupt by reading the ISR in the
3756 * global resources. The JAGCore will do a re-try on the
3757 * request. Normally you should never see this interrupt. If
3758 * you start to see this interrupt occurring frequently then
3759 * something bad has occurred. A reset might be the thing to do.
3760 */
3761 /* TRAP();*/
3762
3763 dev_warn(&adapter->pdev->dev,
3764 "RxDMA_ERR interrupt, error %x\n",
3765 readl(&iomem->txmac.tx_test));
3766 }
3767
3768 /* Handle the Wake on LAN Event */
3769 if (status & ET_INTR_WOL) {
3770 /* This is a secondary interrupt for wake on LAN. The driver
3771 * should never see this, if it does, something serious is
3772 * wrong. We will TRAP the message when we are in DBG mode,
3773 * otherwise we will ignore it.
3774 */
3775 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3776 }
3777
3778 /* Let's move on to the TxMac */
3779 if (status & ET_INTR_TXMAC) {
3780 u32 err = readl(&iomem->txmac.err);
3781
3782 /* When any of the errors occur and TXMAC generates an
3783 * interrupt to report these errors, it usually means that
3784 * TXMAC has detected an error in the data stream retrieved
3785 * from the on-chip Tx Q. All of these errors are catastrophic
3786 * and TXMAC won't be able to recover data when these errors
3787 * occur. In a nutshell, the whole Tx path will have to be reset
3788 * and re-configured afterwards.
3789 */
3790 dev_warn(&adapter->pdev->dev,
3791 "TXMAC interrupt, error 0x%08x\n",
3792 err);
3793
3794 /* If we are debugging, we want to see this error, otherwise we
3795 * just want the device to be reset and continue
3796 */
3797 }
3798
3799 /* Handle RXMAC Interrupt */
3800 if (status & ET_INTR_RXMAC) {
3801 /* These interrupts are catastrophic to the device, what we need
3802 * to do is disable the interrupts and set the flag to cause us
3803 * to reset so we can solve this issue.
3804 */
3805 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
3806
3807 dev_warn(&adapter->pdev->dev,
3808 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3809 readl(&iomem->rxmac.err_reg));
3810
3811 dev_warn(&adapter->pdev->dev,
3812 "Enable 0x%08x, Diag 0x%08x\n",
3813 readl(&iomem->rxmac.ctrl),
3814 readl(&iomem->rxmac.rxq_diag));
3815
3816 /* If we are debugging, we want to see this error, otherwise we
3817 * just want the device to be reset and continue
3818 */
3819 }
3820
3821 /* Handle MAC_STAT Interrupt */
3822 if (status & ET_INTR_MAC_STAT) {
3823 /* This means at least one of the un-masked counters in the
3824 * MAC_STAT block has rolled over. Use this to maintain the top,
3825 * software managed bits of the counter(s).
3826 */
3827 et1310_handle_macstat_interrupt(adapter);
3828 }
3829
3830 /* Handle SLV Timeout Interrupt */
3831 if (status & ET_INTR_SLV_TIMEOUT) {
3832 /* This means a timeout has occurred on a read or write request
3833 * to one of the JAGCore registers. The Global Resources block
3834 * has terminated the request and on a read request, returned a
3835 * "fake" value. The most likely reasons are: Bad Address or the
3836 * addressed module is in a power-down state and can't respond.
3837 */
3838 }
3839
3840 out:
3841 if (enable_interrupts)
3842 et131x_enable_interrupts(adapter);
3843
3844 return IRQ_RETVAL(handled);
3845 }
3846
3847 static int et131x_poll(struct napi_struct *napi, int budget)
3848 {
3849 struct et131x_adapter *adapter =
3850 container_of(napi, struct et131x_adapter, napi);
3851 int work_done = et131x_handle_recv_pkts(adapter, budget);
3852
3853 et131x_handle_send_pkts(adapter);
3854
3855 if (work_done < budget) {
3856 napi_complete(&adapter->napi);
3857 et131x_enable_interrupts(adapter);
3858 }
3859
3860 return work_done;
3861 }
3862
3863 /* et131x_stats - Return the current device statistics */
3864 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3865 {
3866 struct et131x_adapter *adapter = netdev_priv(netdev);
3867 struct net_device_stats *stats = &adapter->netdev->stats;
3868 struct ce_stats *devstat = &adapter->stats;
3869
3870 stats->rx_errors = devstat->rx_length_errs +
3871 devstat->rx_align_errs +
3872 devstat->rx_crc_errs +
3873 devstat->rx_code_violations +
3874 devstat->rx_other_errs;
3875 stats->tx_errors = devstat->tx_max_pkt_errs;
3876 stats->multicast = devstat->multicast_pkts_rcvd;
3877 stats->collisions = devstat->tx_collisions;
3878
3879 stats->rx_length_errors = devstat->rx_length_errs;
3880 stats->rx_over_errors = devstat->rx_overflows;
3881 stats->rx_crc_errors = devstat->rx_crc_errs;
3882 stats->rx_dropped = devstat->rcvd_pkts_dropped;
3883
3884 /* NOTE: Not used, can't find analogous statistics */
3885 /* stats->rx_frame_errors = devstat->; */
3886 /* stats->rx_fifo_errors = devstat->; */
3887 /* stats->rx_missed_errors = devstat->; */
3888
3889 /* stats->tx_aborted_errors = devstat->; */
3890 /* stats->tx_carrier_errors = devstat->; */
3891 /* stats->tx_fifo_errors = devstat->; */
3892 /* stats->tx_heartbeat_errors = devstat->; */
3893 /* stats->tx_window_errors = devstat->; */
3894 return stats;
3895 }
3896
3897 /* et131x_open - Open the device for use. */
3898 static int et131x_open(struct net_device *netdev)
3899 {
3900 struct et131x_adapter *adapter = netdev_priv(netdev);
3901 struct pci_dev *pdev = adapter->pdev;
3902 unsigned int irq = pdev->irq;
3903 int result;
3904
3905 /* Start the timer to track NIC errors */
3906 init_timer(&adapter->error_timer);
3907 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
3908 adapter->error_timer.function = et131x_error_timer_handler;
3909 adapter->error_timer.data = (unsigned long)adapter;
3910 add_timer(&adapter->error_timer);
3911
3912 result = request_irq(irq, et131x_isr,
3913 IRQF_SHARED, netdev->name, netdev);
3914 if (result) {
3915 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3916 return result;
3917 }
3918
3919 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3920
3921 napi_enable(&adapter->napi);
3922
3923 et131x_up(netdev);
3924
3925 return result;
3926 }
3927
3928 /* et131x_close - Close the device */
3929 static int et131x_close(struct net_device *netdev)
3930 {
3931 struct et131x_adapter *adapter = netdev_priv(netdev);
3932
3933 et131x_down(netdev);
3934 napi_disable(&adapter->napi);
3935
3936 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3937 free_irq(adapter->pdev->irq, netdev);
3938
3939 /* Stop the error timer */
3940 return del_timer_sync(&adapter->error_timer);
3941 }
3942
3943 /* et131x_ioctl - The I/O Control handler for the driver
3944 * @netdev: device on which the control request is being made
3945 * @reqbuf: a pointer to the IOCTL request buffer
3946 * @cmd: the IOCTL command code
3947 */
3948 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3949 int cmd)
3950 {
3951 struct et131x_adapter *adapter = netdev_priv(netdev);
3952
3953 if (!adapter->phydev)
3954 return -EINVAL;
3955
3956 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
3957 }
3958
3959 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
3960 * @adapter: pointer to our private adapter structure
3961 *
3962 * FIXME: lot of dups with MAC code
3963 */
3964 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3965 {
3966 int filter = adapter->packet_filter;
3967 u32 ctrl;
3968 u32 pf_ctrl;
3969
3970 ctrl = readl(&adapter->regs->rxmac.ctrl);
3971 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3972
3973 /* Default to disabled packet filtering. Enable it in the individual
3974 * case statements that require the device to filter something
3975 */
3976 ctrl |= 0x04;
3977
3978 /* Set us to be in promiscuous mode so we receive everything, this
3979 * is also true when we get a packet filter of 0
3980 */
3981 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3982 pf_ctrl &= ~7; /* Clear filter bits */
3983 else {
3984 /* Set us up with Multicast packet filtering. Three cases are
3985 * possible - (1) we have a multi-cast list, (2) we receive ALL
3986 * multicast entries or (3) we receive none.
3987 */
3988 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3989 pf_ctrl &= ~2; /* Multicast filter bit */
3990 else {
3991 et1310_setup_device_for_multicast(adapter);
3992 pf_ctrl |= 2;
3993 ctrl &= ~0x04;
3994 }
3995
3996 /* Set us up with Unicast packet filtering */
3997 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3998 et1310_setup_device_for_unicast(adapter);
3999 pf_ctrl |= 4;
4000 ctrl &= ~0x04;
4001 }
4002
4003 /* Set us up with Broadcast packet filtering */
4004 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4005 pf_ctrl |= 1; /* Broadcast filter bit */
4006 ctrl &= ~0x04;
4007 } else {
4008 pf_ctrl &= ~1;
4009 }
4010
4011 /* Setup the receive mac configuration registers - Packet
4012 * Filter control + the enable / disable for packet filter
4013 * in the control reg.
4014 */
4015 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4016 writel(ctrl, &adapter->regs->rxmac.ctrl);
4017 }
4018 return 0;
4019 }
4020
4021 /* et131x_multicast - The handler to configure multicasting on the interface */
4022 static void et131x_multicast(struct net_device *netdev)
4023 {
4024 struct et131x_adapter *adapter = netdev_priv(netdev);
4025 int packet_filter;
4026 struct netdev_hw_addr *ha;
4027 int i;
4028
4029 /* Before we modify the platform-independent filter flags, store them
4030 * locally. This allows us to determine if anything's changed and if
4031 * we even need to bother the hardware
4032 */
4033 packet_filter = adapter->packet_filter;
4034
4035 /* Clear the 'multicast' flag locally; because we only have a single
4036 * flag to check multicast, and multiple multicast addresses can be
4037 * set, this is the easiest way to determine if more than one
4038 * multicast address is being set.
4039 */
4040 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4041
4042 /* Check the net_device flags and set the device independent flags
4043 * accordingly
4044 */
4045 if (netdev->flags & IFF_PROMISC)
4046 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4047 else
4048 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4049
4050 if ((netdev->flags & IFF_ALLMULTI) ||
4051 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
4052 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4053
4054 if (netdev_mc_count(netdev) < 1) {
4055 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4056 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4057 } else {
4058 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4059 }
4060
4061 /* Set values in the private adapter struct */
4062 i = 0;
4063 netdev_for_each_mc_addr(ha, netdev) {
4064 if (i == NIC_MAX_MCAST_LIST)
4065 break;
4066 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4067 }
4068 adapter->multicast_addr_count = i;
4069
4070 /* Are the new flags different from the previous ones? If not, then no
4071 * action is required
4072 *
4073 * NOTE - This block will always update the multicast_list with the
4074 * hardware, even if the addresses aren't the same.
4075 */
4076 if (packet_filter != adapter->packet_filter)
4077 et131x_set_packet_filter(adapter);
4078 }
4079
4080 /* et131x_tx - The handler to tx a packet on the device */
4081 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4082 {
4083 struct et131x_adapter *adapter = netdev_priv(netdev);
4084 struct tx_ring *tx_ring = &adapter->tx_ring;
4085
4086 /* stop the queue if it's getting full */
4087 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4088 netif_stop_queue(netdev);
4089
4090 /* Save the timestamp for the TX timeout watchdog */
4091 netdev->trans_start = jiffies;
4092
4093 /* TCB is not available */
4094 if (tx_ring->used >= NUM_TCB)
4095 goto drop_err;
4096
4097 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
4098 !netif_carrier_ok(netdev))
4099 goto drop_err;
4100
4101 if (send_packet(skb, adapter))
4102 goto drop_err;
4103
4104 return NETDEV_TX_OK;
4105
4106 drop_err:
4107 dev_kfree_skb_any(skb);
4108 adapter->netdev->stats.tx_dropped++;
4109 return NETDEV_TX_OK;
4110 }
4111
4112 /* et131x_tx_timeout - Timeout handler
4113 *
4114 * The handler called when a Tx request times out. The timeout period is
4115 * specified by the 'tx_timeo" element in the net_device structure (see
4116 * et131x_alloc_device() to see how this value is set).
4117 */
4118 static void et131x_tx_timeout(struct net_device *netdev)
4119 {
4120 struct et131x_adapter *adapter = netdev_priv(netdev);
4121 struct tx_ring *tx_ring = &adapter->tx_ring;
4122 struct tcb *tcb;
4123 unsigned long flags;
4124
4125 /* If the device is closed, ignore the timeout */
4126 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4127 return;
4128
4129 /* Any nonrecoverable hardware error?
4130 * Checks adapter->flags for any failure in phy reading
4131 */
4132 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4133 return;
4134
4135 /* Hardware failure? */
4136 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4137 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4138 return;
4139 }
4140
4141 /* Is send stuck? */
4142 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4143 tcb = tx_ring->send_head;
4144 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4145
4146 if (tcb) {
4147 tcb->count++;
4148
4149 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4150 dev_warn(&adapter->pdev->dev,
4151 "Send stuck - reset. tcb->WrIndex %x\n",
4152 tcb->index);
4153
4154 adapter->netdev->stats.tx_errors++;
4155
4156 /* perform reset of tx/rx */
4157 et131x_disable_txrx(netdev);
4158 et131x_enable_txrx(netdev);
4159 }
4160 }
4161 }
4162
4163 /* et131x_change_mtu - The handler called to change the MTU for the device */
4164 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4165 {
4166 int result = 0;
4167 struct et131x_adapter *adapter = netdev_priv(netdev);
4168
4169 /* Make sure the requested MTU is valid */
4170 if (new_mtu < 64 || new_mtu > 9216)
4171 return -EINVAL;
4172
4173 et131x_disable_txrx(netdev);
4174
4175 /* Set the new MTU */
4176 netdev->mtu = new_mtu;
4177
4178 /* Free Rx DMA memory */
4179 et131x_adapter_memory_free(adapter);
4180
4181 /* Set the config parameter for Jumbo Packet support */
4182 adapter->registry_jumbo_packet = new_mtu + 14;
4183 et131x_soft_reset(adapter);
4184
4185 /* Alloc and init Rx DMA memory */
4186 result = et131x_adapter_memory_alloc(adapter);
4187 if (result != 0) {
4188 dev_warn(&adapter->pdev->dev,
4189 "Change MTU failed; couldn't re-alloc DMA memory\n");
4190 return result;
4191 }
4192
4193 et131x_init_send(adapter);
4194
4195 et131x_hwaddr_init(adapter);
4196 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4197
4198 /* Init the device with the new settings */
4199 et131x_adapter_setup(adapter);
4200 et131x_enable_txrx(netdev);
4201
4202 return result;
4203 }
4204
4205 static const struct net_device_ops et131x_netdev_ops = {
4206 .ndo_open = et131x_open,
4207 .ndo_stop = et131x_close,
4208 .ndo_start_xmit = et131x_tx,
4209 .ndo_set_rx_mode = et131x_multicast,
4210 .ndo_tx_timeout = et131x_tx_timeout,
4211 .ndo_change_mtu = et131x_change_mtu,
4212 .ndo_set_mac_address = eth_mac_addr,
4213 .ndo_validate_addr = eth_validate_addr,
4214 .ndo_get_stats = et131x_stats,
4215 .ndo_do_ioctl = et131x_ioctl,
4216 };
4217
4218 /* et131x_pci_setup - Perform device initialization
4219 * @pdev: a pointer to the device's pci_dev structure
4220 * @ent: this device's entry in the pci_device_id table
4221 *
4222 * Registered in the pci_driver structure, this function is called when the
4223 * PCI subsystem finds a new PCI device which matches the information
4224 * contained in the pci_device_id table. This routine is the equivalent to
4225 * a device insertion routine.
4226 */
4227 static int et131x_pci_setup(struct pci_dev *pdev,
4228 const struct pci_device_id *ent)
4229 {
4230 struct net_device *netdev;
4231 struct et131x_adapter *adapter;
4232 int rc;
4233 int ii;
4234
4235 rc = pci_enable_device(pdev);
4236 if (rc < 0) {
4237 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4238 goto out;
4239 }
4240
4241 /* Perform some basic PCI checks */
4242 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4243 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4244 rc = -ENODEV;
4245 goto err_disable;
4246 }
4247
4248 rc = pci_request_regions(pdev, DRIVER_NAME);
4249 if (rc < 0) {
4250 dev_err(&pdev->dev, "Can't get PCI resources\n");
4251 goto err_disable;
4252 }
4253
4254 pci_set_master(pdev);
4255
4256 /* Check the DMA addressing support of this device */
4257 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4258 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4259 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4260 rc = -EIO;
4261 goto err_release_res;
4262 }
4263
4264 /* Allocate netdev and private adapter structs */
4265 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4266 if (!netdev) {
4267 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4268 rc = -ENOMEM;
4269 goto err_release_res;
4270 }
4271
4272 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4273 netdev->netdev_ops = &et131x_netdev_ops;
4274
4275 SET_NETDEV_DEV(netdev, &pdev->dev);
4276 netdev->ethtool_ops = &et131x_ethtool_ops;
4277
4278 adapter = et131x_adapter_init(netdev, pdev);
4279
4280 rc = et131x_pci_init(adapter, pdev);
4281 if (rc < 0)
4282 goto err_free_dev;
4283
4284 /* Map the bus-relative registers to system virtual memory */
4285 adapter->regs = pci_ioremap_bar(pdev, 0);
4286 if (!adapter->regs) {
4287 dev_err(&pdev->dev, "Cannot map device registers\n");
4288 rc = -ENOMEM;
4289 goto err_free_dev;
4290 }
4291
4292 /* If Phy COMA mode was enabled when we went down, disable it here. */
4293 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4294
4295 /* Issue a global reset to the et1310 */
4296 et131x_soft_reset(adapter);
4297
4298 /* Disable all interrupts (paranoid) */
4299 et131x_disable_interrupts(adapter);
4300
4301 /* Allocate DMA memory */
4302 rc = et131x_adapter_memory_alloc(adapter);
4303 if (rc < 0) {
4304 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
4305 goto err_iounmap;
4306 }
4307
4308 /* Init send data structures */
4309 et131x_init_send(adapter);
4310
4311 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
4312
4313 /* Copy address into the net_device struct */
4314 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4315
4316 rc = -ENOMEM;
4317
4318 /* Setup the mii_bus struct */
4319 adapter->mii_bus = mdiobus_alloc();
4320 if (!adapter->mii_bus) {
4321 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4322 goto err_mem_free;
4323 }
4324
4325 adapter->mii_bus->name = "et131x_eth_mii";
4326 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4327 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4328 adapter->mii_bus->priv = netdev;
4329 adapter->mii_bus->read = et131x_mdio_read;
4330 adapter->mii_bus->write = et131x_mdio_write;
4331 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4332 GFP_KERNEL);
4333 if (!adapter->mii_bus->irq)
4334 goto err_mdio_free;
4335
4336 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4337 adapter->mii_bus->irq[ii] = PHY_POLL;
4338
4339 rc = mdiobus_register(adapter->mii_bus);
4340 if (rc < 0) {
4341 dev_err(&pdev->dev, "failed to register MII bus\n");
4342 goto err_mdio_free_irq;
4343 }
4344
4345 rc = et131x_mii_probe(netdev);
4346 if (rc < 0) {
4347 dev_err(&pdev->dev, "failed to probe MII bus\n");
4348 goto err_mdio_unregister;
4349 }
4350
4351 /* Setup et1310 as per the documentation */
4352 et131x_adapter_setup(adapter);
4353
4354 /* Init variable for counting how long we do not have link status */
4355 adapter->boot_coma = 0;
4356 et1310_disable_phy_coma(adapter);
4357
4358 /* We can enable interrupts now
4359 *
4360 * NOTE - Because registration of interrupt handler is done in the
4361 * device's open(), defer enabling device interrupts to that
4362 * point
4363 */
4364
4365 /* Register the net_device struct with the Linux network layer */
4366 rc = register_netdev(netdev);
4367 if (rc < 0) {
4368 dev_err(&pdev->dev, "register_netdev() failed\n");
4369 goto err_phy_disconnect;
4370 }
4371
4372 /* Register the net_device struct with the PCI subsystem. Save a copy
4373 * of the PCI config space for this device now that the device has
4374 * been initialized, just in case it needs to be quickly restored.
4375 */
4376 pci_set_drvdata(pdev, netdev);
4377 out:
4378 return rc;
4379
4380 err_phy_disconnect:
4381 phy_disconnect(adapter->phydev);
4382 err_mdio_unregister:
4383 mdiobus_unregister(adapter->mii_bus);
4384 err_mdio_free_irq:
4385 kfree(adapter->mii_bus->irq);
4386 err_mdio_free:
4387 mdiobus_free(adapter->mii_bus);
4388 err_mem_free:
4389 et131x_adapter_memory_free(adapter);
4390 err_iounmap:
4391 iounmap(adapter->regs);
4392 err_free_dev:
4393 pci_dev_put(pdev);
4394 free_netdev(netdev);
4395 err_release_res:
4396 pci_release_regions(pdev);
4397 err_disable:
4398 pci_disable_device(pdev);
4399 goto out;
4400 }
4401
4402 static const struct pci_device_id et131x_pci_table[] = {
4403 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4404 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4405 {0,}
4406 };
4407 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4408
4409 static struct pci_driver et131x_driver = {
4410 .name = DRIVER_NAME,
4411 .id_table = et131x_pci_table,
4412 .probe = et131x_pci_setup,
4413 .remove = et131x_pci_remove,
4414 .driver.pm = ET131X_PM_OPS,
4415 };
4416
4417 module_pci_driver(et131x_driver);
This page took 0.217306 seconds and 5 git commands to generate.