bb1e9d695c2748e814cba21deb533f41c0dcc1af
[deliverable/linux.git] / drivers / staging / ft1000 / ft1000-usb / ft1000_hw.c
1 //=====================================================
2 // CopyRight (C) 2007 Qualcomm Inc. All Rights Reserved.
3 //
4 //
5 // This file is part of Express Card USB Driver
6 //
7 // $Id:
8 //====================================================
9 // 20090926; aelias; removed compiler warnings & errors; ubuntu 9.04; 2.6.28-15-generic
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/usb.h>
17 #include "ft1000_usb.h"
18 #include <linux/types.h>
19
20 #define HARLEY_READ_REGISTER 0x0
21 #define HARLEY_WRITE_REGISTER 0x01
22 #define HARLEY_READ_DPRAM_32 0x02
23 #define HARLEY_READ_DPRAM_LOW 0x03
24 #define HARLEY_READ_DPRAM_HIGH 0x04
25 #define HARLEY_WRITE_DPRAM_32 0x05
26 #define HARLEY_WRITE_DPRAM_LOW 0x06
27 #define HARLEY_WRITE_DPRAM_HIGH 0x07
28
29 #define HARLEY_READ_OPERATION 0xc1
30 #define HARLEY_WRITE_OPERATION 0x41
31
32 //#define JDEBUG
33
34 static int ft1000_reset(struct net_device *ft1000dev);
35 static int ft1000_submit_rx_urb(struct ft1000_info *info);
36 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
37 static int ft1000_open (struct net_device *dev);
38 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev);
39 static int ft1000_chkcard (struct ft1000_device *dev);
40
41 //Jim
42
43 static u8 tempbuffer[1600];
44
45 #define MAX_RCV_LOOP 100
46
47 //---------------------------------------------------------------------------
48 // Function: ft1000_control
49 //
50 // Parameters: ft1000_device - device structure
51 // pipe - usb control message pipe
52 // request - control request
53 // requesttype - control message request type
54 // value - value to be written or 0
55 // index - register index
56 // data - data buffer to hold the read/write values
57 // size - data size
58 // timeout - control message time out value
59 //
60 // Returns: STATUS_SUCCESS - success
61 // STATUS_FAILURE - failure
62 //
63 // Description: This function sends a control message via USB interface synchronously
64 //
65 // Notes:
66 //
67 //---------------------------------------------------------------------------
68 static int ft1000_control(struct ft1000_device *ft1000dev, unsigned int pipe,
69 u8 request, u8 requesttype, u16 value, u16 index,
70 void *data, u16 size, int timeout)
71 {
72 u16 ret;
73
74 if ((ft1000dev == NULL) || (ft1000dev->dev == NULL)) {
75 DEBUG("ft1000dev or ft1000dev->dev == NULL, failure\n");
76 return -ENODEV;
77 }
78
79 ret = usb_control_msg(ft1000dev->dev, pipe, request, requesttype,
80 value, index, data, size, LARGE_TIMEOUT);
81
82 if (ret > 0)
83 ret = 0;
84
85 return ret;
86 }
87
88 //---------------------------------------------------------------------------
89 // Function: ft1000_read_register
90 //
91 // Parameters: ft1000_device - device structure
92 // Data - data buffer to hold the value read
93 // nRegIndex - register index
94 //
95 // Returns: STATUS_SUCCESS - success
96 // STATUS_FAILURE - failure
97 //
98 // Description: This function returns the value in a register
99 //
100 // Notes:
101 //
102 //---------------------------------------------------------------------------
103
104 int ft1000_read_register(struct ft1000_device *ft1000dev, u16* Data,
105 u16 nRegIndx)
106 {
107 int ret = STATUS_SUCCESS;
108
109 ret = ft1000_control(ft1000dev,
110 usb_rcvctrlpipe(ft1000dev->dev, 0),
111 HARLEY_READ_REGISTER,
112 HARLEY_READ_OPERATION,
113 0,
114 nRegIndx,
115 Data,
116 2,
117 LARGE_TIMEOUT);
118
119 return ret;
120 }
121
122 //---------------------------------------------------------------------------
123 // Function: ft1000_write_register
124 //
125 // Parameters: ft1000_device - device structure
126 // value - value to write into a register
127 // nRegIndex - register index
128 //
129 // Returns: STATUS_SUCCESS - success
130 // STATUS_FAILURE - failure
131 //
132 // Description: This function writes the value in a register
133 //
134 // Notes:
135 //
136 //---------------------------------------------------------------------------
137 int ft1000_write_register(struct ft1000_device *ft1000dev, u16 value,
138 u16 nRegIndx)
139 {
140 int ret = STATUS_SUCCESS;
141
142 ret = ft1000_control(ft1000dev,
143 usb_sndctrlpipe(ft1000dev->dev, 0),
144 HARLEY_WRITE_REGISTER,
145 HARLEY_WRITE_OPERATION,
146 value,
147 nRegIndx,
148 NULL,
149 0,
150 LARGE_TIMEOUT);
151
152 return ret;
153 }
154
155 //---------------------------------------------------------------------------
156 // Function: ft1000_read_dpram32
157 //
158 // Parameters: ft1000_device - device structure
159 // indx - starting address to read
160 // buffer - data buffer to hold the data read
161 // cnt - number of byte read from DPRAM
162 //
163 // Returns: STATUS_SUCCESS - success
164 // STATUS_FAILURE - failure
165 //
166 // Description: This function read a number of bytes from DPRAM
167 //
168 // Notes:
169 //
170 //---------------------------------------------------------------------------
171
172 int ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
173 u16 cnt)
174 {
175 int ret = STATUS_SUCCESS;
176
177 ret = ft1000_control(ft1000dev,
178 usb_rcvctrlpipe(ft1000dev->dev, 0),
179 HARLEY_READ_DPRAM_32,
180 HARLEY_READ_OPERATION,
181 0,
182 indx,
183 buffer,
184 cnt,
185 LARGE_TIMEOUT);
186
187 return ret;
188 }
189
190 //---------------------------------------------------------------------------
191 // Function: ft1000_write_dpram32
192 //
193 // Parameters: ft1000_device - device structure
194 // indx - starting address to write the data
195 // buffer - data buffer to write into DPRAM
196 // cnt - number of bytes to write
197 //
198 // Returns: STATUS_SUCCESS - success
199 // STATUS_FAILURE - failure
200 //
201 // Description: This function writes into DPRAM a number of bytes
202 //
203 // Notes:
204 //
205 //---------------------------------------------------------------------------
206 int ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
207 u16 cnt)
208 {
209 int ret = STATUS_SUCCESS;
210
211 if (cnt % 4)
212 cnt += cnt - (cnt % 4);
213
214 ret = ft1000_control(ft1000dev,
215 usb_sndctrlpipe(ft1000dev->dev, 0),
216 HARLEY_WRITE_DPRAM_32,
217 HARLEY_WRITE_OPERATION,
218 0,
219 indx,
220 buffer,
221 cnt,
222 LARGE_TIMEOUT);
223
224 return ret;
225 }
226
227 //---------------------------------------------------------------------------
228 // Function: ft1000_read_dpram16
229 //
230 // Parameters: ft1000_device - device structure
231 // indx - starting address to read
232 // buffer - data buffer to hold the data read
233 // hightlow - high or low 16 bit word
234 //
235 // Returns: STATUS_SUCCESS - success
236 // STATUS_FAILURE - failure
237 //
238 // Description: This function read 16 bits from DPRAM
239 //
240 // Notes:
241 //
242 //---------------------------------------------------------------------------
243 int ft1000_read_dpram16(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
244 u8 highlow)
245 {
246 int ret = STATUS_SUCCESS;
247 u8 request;
248
249 if (highlow == 0)
250 request = HARLEY_READ_DPRAM_LOW;
251 else
252 request = HARLEY_READ_DPRAM_HIGH;
253
254 ret = ft1000_control(ft1000dev,
255 usb_rcvctrlpipe(ft1000dev->dev, 0),
256 request,
257 HARLEY_READ_OPERATION,
258 0,
259 indx,
260 buffer,
261 2,
262 LARGE_TIMEOUT);
263
264 return ret;
265 }
266
267 //---------------------------------------------------------------------------
268 // Function: ft1000_write_dpram16
269 //
270 // Parameters: ft1000_device - device structure
271 // indx - starting address to write the data
272 // value - 16bits value to write
273 // hightlow - high or low 16 bit word
274 //
275 // Returns: STATUS_SUCCESS - success
276 // STATUS_FAILURE - failure
277 //
278 // Description: This function writes into DPRAM a number of bytes
279 //
280 // Notes:
281 //
282 //---------------------------------------------------------------------------
283 int ft1000_write_dpram16(struct ft1000_device *ft1000dev, u16 indx, u16 value, u8 highlow)
284 {
285 int ret = STATUS_SUCCESS;
286 u8 request;
287
288 if (highlow == 0)
289 request = HARLEY_WRITE_DPRAM_LOW;
290 else
291 request = HARLEY_WRITE_DPRAM_HIGH;
292
293 ret = ft1000_control(ft1000dev,
294 usb_sndctrlpipe(ft1000dev->dev, 0),
295 request,
296 HARLEY_WRITE_OPERATION,
297 value,
298 indx,
299 NULL,
300 0,
301 LARGE_TIMEOUT);
302
303 return ret;
304 }
305
306 //---------------------------------------------------------------------------
307 // Function: fix_ft1000_read_dpram32
308 //
309 // Parameters: ft1000_device - device structure
310 // indx - starting address to read
311 // buffer - data buffer to hold the data read
312 //
313 //
314 // Returns: STATUS_SUCCESS - success
315 // STATUS_FAILURE - failure
316 //
317 // Description: This function read DPRAM 4 words at a time
318 //
319 // Notes:
320 //
321 //---------------------------------------------------------------------------
322 int fix_ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx,
323 u8 *buffer)
324 {
325 u8 buf[16];
326 u16 pos;
327 int ret = STATUS_SUCCESS;
328
329 pos = (indx / 4) * 4;
330 ret = ft1000_read_dpram32(ft1000dev, pos, buf, 16);
331
332 if (ret == STATUS_SUCCESS) {
333 pos = (indx % 4) * 4;
334 *buffer++ = buf[pos++];
335 *buffer++ = buf[pos++];
336 *buffer++ = buf[pos++];
337 *buffer++ = buf[pos++];
338 } else {
339 DEBUG("fix_ft1000_read_dpram32: DPRAM32 Read failed\n");
340 *buffer++ = 0;
341 *buffer++ = 0;
342 *buffer++ = 0;
343 *buffer++ = 0;
344 }
345
346 return ret;
347 }
348
349
350 //---------------------------------------------------------------------------
351 // Function: fix_ft1000_write_dpram32
352 //
353 // Parameters: ft1000_device - device structure
354 // indx - starting address to write
355 // buffer - data buffer to write
356 //
357 //
358 // Returns: STATUS_SUCCESS - success
359 // STATUS_FAILURE - failure
360 //
361 // Description: This function write to DPRAM 4 words at a time
362 //
363 // Notes:
364 //
365 //---------------------------------------------------------------------------
366 int fix_ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer)
367 {
368 u16 pos1;
369 u16 pos2;
370 u16 i;
371 u8 buf[32];
372 u8 resultbuffer[32];
373 u8 *pdata;
374 int ret = STATUS_SUCCESS;
375
376 pos1 = (indx / 4) * 4;
377 pdata = buffer;
378 ret = ft1000_read_dpram32(ft1000dev, pos1, buf, 16);
379
380 if (ret == STATUS_SUCCESS) {
381 pos2 = (indx % 4)*4;
382 buf[pos2++] = *buffer++;
383 buf[pos2++] = *buffer++;
384 buf[pos2++] = *buffer++;
385 buf[pos2++] = *buffer++;
386 ret = ft1000_write_dpram32(ft1000dev, pos1, buf, 16);
387 } else {
388 DEBUG("fix_ft1000_write_dpram32: DPRAM32 Read failed\n");
389 return ret;
390 }
391
392 ret = ft1000_read_dpram32(ft1000dev, pos1, (u8 *)&resultbuffer[0], 16);
393
394 if (ret == STATUS_SUCCESS) {
395 buffer = pdata;
396 for (i = 0; i < 16; i++) {
397 if (buf[i] != resultbuffer[i])
398 ret = STATUS_FAILURE;
399 }
400 }
401
402 if (ret == STATUS_FAILURE) {
403 ret = ft1000_write_dpram32(ft1000dev, pos1,
404 (u8 *)&tempbuffer[0], 16);
405 ret = ft1000_read_dpram32(ft1000dev, pos1,
406 (u8 *)&resultbuffer[0], 16);
407 if (ret == STATUS_SUCCESS) {
408 buffer = pdata;
409 for (i = 0; i < 16; i++) {
410 if (tempbuffer[i] != resultbuffer[i]) {
411 ret = STATUS_FAILURE;
412 DEBUG("%s Failed to write\n",
413 __func__);
414 }
415 }
416 }
417 }
418
419 return ret;
420 }
421
422
423 //------------------------------------------------------------------------
424 //
425 // Function: card_reset_dsp
426 //
427 // Synopsis: This function is called to reset or activate the DSP
428 //
429 // Arguments: value - reset or activate
430 //
431 // Returns: None
432 //-----------------------------------------------------------------------
433 static void card_reset_dsp(struct ft1000_device *ft1000dev, bool value)
434 {
435 u16 status = STATUS_SUCCESS;
436 u16 tempword;
437
438 status = ft1000_write_register(ft1000dev, HOST_INTF_BE,
439 FT1000_REG_SUP_CTRL);
440 status = ft1000_read_register(ft1000dev, &tempword,
441 FT1000_REG_SUP_CTRL);
442
443 if (value) {
444 DEBUG("Reset DSP\n");
445 status = ft1000_read_register(ft1000dev, &tempword,
446 FT1000_REG_RESET);
447 tempword |= DSP_RESET_BIT;
448 status = ft1000_write_register(ft1000dev, tempword,
449 FT1000_REG_RESET);
450 } else {
451 DEBUG("Activate DSP\n");
452 status = ft1000_read_register(ft1000dev, &tempword,
453 FT1000_REG_RESET);
454 tempword |= DSP_ENCRYPTED;
455 tempword &= ~DSP_UNENCRYPTED;
456 status = ft1000_write_register(ft1000dev, tempword,
457 FT1000_REG_RESET);
458 status = ft1000_read_register(ft1000dev, &tempword,
459 FT1000_REG_RESET);
460 tempword &= ~EFUSE_MEM_DISABLE;
461 tempword &= ~DSP_RESET_BIT;
462 status = ft1000_write_register(ft1000dev, tempword,
463 FT1000_REG_RESET);
464 status = ft1000_read_register(ft1000dev, &tempword,
465 FT1000_REG_RESET);
466 }
467 }
468
469 //---------------------------------------------------------------------------
470 // Function: card_send_command
471 //
472 // Parameters: ft1000_device - device structure
473 // ptempbuffer - command buffer
474 // size - command buffer size
475 //
476 // Returns: STATUS_SUCCESS - success
477 // STATUS_FAILURE - failure
478 //
479 // Description: This function sends a command to ASIC
480 //
481 // Notes:
482 //
483 //---------------------------------------------------------------------------
484 void card_send_command(struct ft1000_device *ft1000dev, void *ptempbuffer,
485 int size)
486 {
487 unsigned short temp;
488 unsigned char *commandbuf;
489
490 DEBUG("card_send_command: enter card_send_command... size=%d\n", size);
491
492 commandbuf = (unsigned char *)kmalloc(size + 2, GFP_KERNEL);
493 memcpy((void *)commandbuf + 2, (void *)ptempbuffer, size);
494
495 //DEBUG("card_send_command: Command Send\n");
496
497 ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
498
499 if (temp & 0x0100)
500 msleep(10);
501
502 /* check for odd word */
503 size = size + 2;
504
505 /* Must force to be 32 bit aligned */
506 if (size % 4)
507 size += 4 - (size % 4);
508
509 //DEBUG("card_send_command: write dpram ... size=%d\n", size);
510 ft1000_write_dpram32(ft1000dev, 0, commandbuf, size);
511 msleep(1);
512 //DEBUG("card_send_command: write into doorbell ...\n");
513 ft1000_write_register(ft1000dev, FT1000_DB_DPRAM_TX,
514 FT1000_REG_DOORBELL);
515 msleep(1);
516
517 ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
518 //DEBUG("card_send_command: read doorbell ...temp=%x\n", temp);
519 if ((temp & 0x0100) == 0) {
520 //DEBUG("card_send_command: Message sent\n");
521 }
522
523 }
524
525 //--------------------------------------------------------------------------
526 //
527 // Function: dsp_reload
528 //
529 // Synopsis: This function is called to load or reload the DSP
530 //
531 // Arguments: ft1000dev - device structure
532 //
533 // Returns: None
534 //-----------------------------------------------------------------------
535 int dsp_reload(struct ft1000_device *ft1000dev)
536 {
537 u16 status;
538 u16 tempword;
539 u32 templong;
540
541 struct ft1000_info *pft1000info;
542
543 pft1000info = netdev_priv(ft1000dev->net);
544
545 pft1000info->CardReady = 0;
546
547 /* Program Interrupt Mask register */
548 status = ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_SUP_IMASK);
549
550 status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
551 tempword |= ASIC_RESET_BIT;
552 status = ft1000_write_register(ft1000dev, tempword, FT1000_REG_RESET);
553 msleep(1000);
554 status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
555 DEBUG("Reset Register = 0x%x\n", tempword);
556
557 /* Toggle DSP reset */
558 card_reset_dsp(ft1000dev, 1);
559 msleep(1000);
560 card_reset_dsp(ft1000dev, 0);
561 msleep(1000);
562
563 status =
564 ft1000_write_register(ft1000dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
565
566 /* Let's check for FEFE */
567 status =
568 ft1000_read_dpram32(ft1000dev, FT1000_MAG_DPRAM_FEFE_INDX,
569 (u8 *) &templong, 4);
570 DEBUG("templong (fefe) = 0x%8x\n", templong);
571
572 /* call codeloader */
573 status = scram_dnldr(ft1000dev, pFileStart, FileLength);
574
575 if (status != STATUS_SUCCESS)
576 return -EIO;
577
578 msleep(1000);
579
580 DEBUG("dsp_reload returned\n");
581
582 return 0;
583 }
584
585 //---------------------------------------------------------------------------
586 //
587 // Function: ft1000_reset_asic
588 // Descripton: This function will call the Card Service function to reset the
589 // ASIC.
590 // Input:
591 // dev - device structure
592 // Output:
593 // none
594 //
595 //---------------------------------------------------------------------------
596 static void ft1000_reset_asic(struct net_device *dev)
597 {
598 struct ft1000_info *info = netdev_priv(dev);
599 struct ft1000_device *ft1000dev = info->pFt1000Dev;
600 u16 tempword;
601
602 DEBUG("ft1000_hw:ft1000_reset_asic called\n");
603
604 info->ASICResetNum++;
605
606 /* Let's use the register provided by the Magnemite ASIC to reset the
607 * ASIC and DSP.
608 */
609 ft1000_write_register(ft1000dev, (DSP_RESET_BIT | ASIC_RESET_BIT),
610 FT1000_REG_RESET);
611
612 mdelay(1);
613
614 /* set watermark to -1 in order to not generate an interrrupt */
615 ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_MAG_WATERMARK);
616
617 /* clear interrupts */
618 ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
619 DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
620 ft1000_write_register(ft1000dev, tempword, FT1000_REG_SUP_ISR);
621 ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
622 DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
623 }
624
625
626 //---------------------------------------------------------------------------
627 //
628 // Function: ft1000_reset_card
629 // Descripton: This function will reset the card
630 // Input:
631 // dev - device structure
632 // Output:
633 // status - FALSE (card reset fail)
634 // TRUE (card reset successful)
635 //
636 //---------------------------------------------------------------------------
637 static int ft1000_reset_card(struct net_device *dev)
638 {
639 struct ft1000_info *info = netdev_priv(dev);
640 struct ft1000_device *ft1000dev = info->pFt1000Dev;
641 u16 tempword;
642 struct prov_record *ptr;
643
644 DEBUG("ft1000_hw:ft1000_reset_card called.....\n");
645
646 info->fCondResetPend = 1;
647 info->CardReady = 0;
648 info->fProvComplete = 0;
649
650 /* Make sure we free any memory reserve for provisioning */
651 while (list_empty(&info->prov_list) == 0) {
652 DEBUG("ft1000_reset_card:deleting provisioning record\n");
653 ptr =
654 list_entry(info->prov_list.next, struct prov_record, list);
655 list_del(&ptr->list);
656 kfree(ptr->pprov_data);
657 kfree(ptr);
658 }
659
660 DEBUG("ft1000_hw:ft1000_reset_card: reset asic\n");
661 ft1000_reset_asic(dev);
662
663 info->DSPResetNum++;
664
665 DEBUG("ft1000_hw:ft1000_reset_card: call dsp_reload\n");
666 dsp_reload(ft1000dev);
667
668 DEBUG("dsp reload successful\n");
669
670 mdelay(10);
671
672 /* Initialize DSP heartbeat area */
673 ft1000_write_dpram16(ft1000dev, FT1000_MAG_HI_HO, ho_mag,
674 FT1000_MAG_HI_HO_INDX);
675 ft1000_read_dpram16(ft1000dev, FT1000_MAG_HI_HO, (u8 *) &tempword,
676 FT1000_MAG_HI_HO_INDX);
677 DEBUG("ft1000_hw:ft1000_reset_card:hi_ho value = 0x%x\n", tempword);
678
679 info->CardReady = 1;
680
681 info->fCondResetPend = 0;
682
683 return TRUE;
684 }
685
686
687 //mbelian
688 #ifdef HAVE_NET_DEVICE_OPS
689 static const struct net_device_ops ftnet_ops =
690 {
691 .ndo_open = &ft1000_open,
692 .ndo_stop = &ft1000_close,
693 .ndo_start_xmit = &ft1000_start_xmit,
694 .ndo_get_stats = &ft1000_netdev_stats,
695 };
696 #endif
697
698
699 //---------------------------------------------------------------------------
700 // Function: init_ft1000_netdev
701 //
702 // Parameters: ft1000dev - device structure
703 //
704 //
705 // Returns: STATUS_SUCCESS - success
706 // STATUS_FAILURE - failure
707 //
708 // Description: This function initialize the network device
709 //
710 // Notes:
711 //
712 //---------------------------------------------------------------------------
713 int init_ft1000_netdev(struct ft1000_device *ft1000dev)
714 {
715 struct net_device *netdev;
716 struct ft1000_info *pInfo = NULL;
717 struct dpram_blk *pdpram_blk;
718 int i, ret_val;
719 struct list_head *cur, *tmp;
720 char card_nr[2];
721 unsigned long gCardIndex = 0;
722
723 DEBUG("Enter init_ft1000_netdev...\n");
724
725 netdev = alloc_etherdev(sizeof(struct ft1000_info));
726 if (!netdev) {
727 DEBUG("init_ft1000_netdev: can not allocate network device\n");
728 return -ENOMEM;
729 }
730
731 pInfo = netdev_priv(netdev);
732
733 memset(pInfo, 0, sizeof(struct ft1000_info));
734
735 dev_alloc_name(netdev, netdev->name);
736
737 DEBUG("init_ft1000_netdev: network device name is %s\n", netdev->name);
738
739 if (strncmp(netdev->name, "eth", 3) == 0) {
740 card_nr[0] = netdev->name[3];
741 card_nr[1] = '\0';
742 ret_val = strict_strtoul(card_nr, 10, &gCardIndex);
743 if (ret_val) {
744 printk(KERN_ERR "Can't parse netdev\n");
745 goto err_net;
746 }
747
748 pInfo->CardNumber = gCardIndex;
749 DEBUG("card number = %d\n", pInfo->CardNumber);
750 } else {
751 printk(KERN_ERR "ft1000: Invalid device name\n");
752 ret_val = -ENXIO;
753 goto err_net;
754 }
755
756 memset(&pInfo->stats, 0, sizeof(struct net_device_stats));
757
758 spin_lock_init(&pInfo->dpram_lock);
759 pInfo->pFt1000Dev = ft1000dev;
760 pInfo->DrvErrNum = 0;
761 pInfo->ASICResetNum = 0;
762 pInfo->registered = 1;
763 pInfo->ft1000_reset = ft1000_reset;
764 pInfo->mediastate = 0;
765 pInfo->fifo_cnt = 0;
766 pInfo->DeviceCreated = FALSE;
767 pInfo->CurrentInterruptEnableMask = ISR_DEFAULT_MASK;
768 pInfo->InterruptsEnabled = FALSE;
769 pInfo->CardReady = 0;
770 pInfo->DSP_TIME[0] = 0;
771 pInfo->DSP_TIME[1] = 0;
772 pInfo->DSP_TIME[2] = 0;
773 pInfo->DSP_TIME[3] = 0;
774 pInfo->fAppMsgPend = 0;
775 pInfo->fCondResetPend = 0;
776 pInfo->usbboot = 0;
777 pInfo->dspalive = 0;
778 memset(&pInfo->tempbuf[0], 0, sizeof(pInfo->tempbuf));
779
780 INIT_LIST_HEAD(&pInfo->prov_list);
781
782 INIT_LIST_HEAD(&pInfo->nodes.list);
783
784 #ifdef HAVE_NET_DEVICE_OPS
785 netdev->netdev_ops = &ftnet_ops;
786 #else
787 netdev->hard_start_xmit = &ft1000_start_xmit;
788 netdev->get_stats = &ft1000_netdev_stats;
789 netdev->open = &ft1000_open;
790 netdev->stop = &ft1000_close;
791 #endif
792
793 ft1000dev->net = netdev;
794
795 DEBUG("Initialize free_buff_lock and freercvpool\n");
796 spin_lock_init(&free_buff_lock);
797
798 /* initialize a list of buffers to be use for queuing
799 * up receive command data
800 */
801 INIT_LIST_HEAD(&freercvpool);
802
803 /* create list of free buffers */
804 for (i = 0; i < NUM_OF_FREE_BUFFERS; i++) {
805 /* Get memory for DPRAM_DATA link list */
806 pdpram_blk = kmalloc(sizeof(struct dpram_blk), GFP_KERNEL);
807 if (pdpram_blk == NULL) {
808 ret_val = -ENOMEM;
809 goto err_free;
810 }
811 /* Get a block of memory to store command data */
812 pdpram_blk->pbuffer = kmalloc(MAX_CMD_SQSIZE, GFP_KERNEL);
813 if (pdpram_blk->pbuffer == NULL) {
814 ret_val = -ENOMEM;
815 kfree(pdpram_blk);
816 goto err_free;
817 }
818 /* link provisioning data */
819 list_add_tail(&pdpram_blk->list, &freercvpool);
820 }
821 numofmsgbuf = NUM_OF_FREE_BUFFERS;
822
823 return 0;
824
825 err_free:
826 list_for_each_safe(cur, tmp, &freercvpool) {
827 pdpram_blk = list_entry(cur, struct dpram_blk, list);
828 list_del(&pdpram_blk->list);
829 kfree(pdpram_blk->pbuffer);
830 kfree(pdpram_blk);
831 }
832 err_net:
833 free_netdev(netdev);
834 return ret_val;
835 }
836
837 //---------------------------------------------------------------------------
838 // Function: reg_ft1000_netdev
839 //
840 // Parameters: ft1000dev - device structure
841 //
842 //
843 // Returns: STATUS_SUCCESS - success
844 // STATUS_FAILURE - failure
845 //
846 // Description: This function register the network driver
847 //
848 // Notes:
849 //
850 //---------------------------------------------------------------------------
851 int reg_ft1000_netdev(struct ft1000_device *ft1000dev,
852 struct usb_interface *intf)
853 {
854 struct net_device *netdev;
855 struct ft1000_info *pInfo;
856 int rc;
857
858 netdev = ft1000dev->net;
859 pInfo = netdev_priv(ft1000dev->net);
860 DEBUG("Enter reg_ft1000_netdev...\n");
861
862 ft1000_read_register(ft1000dev, &pInfo->AsicID, FT1000_REG_ASIC_ID);
863
864 usb_set_intfdata(intf, pInfo);
865 SET_NETDEV_DEV(netdev, &intf->dev);
866
867 rc = register_netdev(netdev);
868 if (rc) {
869 DEBUG("reg_ft1000_netdev: could not register network device\n");
870 free_netdev(netdev);
871 return rc;
872 }
873
874 ft1000_create_dev(ft1000dev);
875
876 DEBUG("reg_ft1000_netdev returned\n");
877
878 pInfo->CardReady = 1;
879
880 return 0;
881 }
882
883 static int ft1000_reset(struct net_device *dev)
884 {
885 ft1000_reset_card(dev);
886 return 0;
887 }
888
889 //---------------------------------------------------------------------------
890 // Function: ft1000_usb_transmit_complete
891 //
892 // Parameters: urb - transmitted usb urb
893 //
894 //
895 // Returns: none
896 //
897 // Description: This is the callback function when a urb is transmitted
898 //
899 // Notes:
900 //
901 //---------------------------------------------------------------------------
902 static void ft1000_usb_transmit_complete(struct urb *urb)
903 {
904
905 struct ft1000_device *ft1000dev = urb->context;
906
907 //DEBUG("ft1000_usb_transmit_complete entered\n");
908
909 if (urb->status)
910 pr_err("%s: TX status %d\n", ft1000dev->net->name, urb->status);
911
912 netif_wake_queue(ft1000dev->net);
913
914 //DEBUG("Return from ft1000_usb_transmit_complete\n");
915 }
916
917 //---------------------------------------------------------------------------
918 //
919 // Function: ft1000_copy_down_pkt
920 // Descripton: This function will take an ethernet packet and convert it to
921 // a Flarion packet prior to sending it to the ASIC Downlink
922 // FIFO.
923 // Input:
924 // dev - device structure
925 // packet - address of ethernet packet
926 // len - length of IP packet
927 // Output:
928 // status - FAILURE
929 // SUCCESS
930 //
931 //---------------------------------------------------------------------------
932 static int ft1000_copy_down_pkt(struct net_device *netdev, u8 * packet, u16 len)
933 {
934 struct ft1000_info *pInfo = netdev_priv(netdev);
935 struct ft1000_device *pFt1000Dev = pInfo->pFt1000Dev;
936
937 int count, ret;
938 u8 *t;
939 struct pseudo_hdr hdr;
940
941 if (!pInfo->CardReady) {
942 DEBUG("ft1000_copy_down_pkt::Card Not Ready\n");
943 return -ENODEV;
944 }
945
946 //DEBUG("ft1000_copy_down_pkt() entered, len = %d\n", len);
947
948 count = sizeof(struct pseudo_hdr) + len;
949 if (count > MAX_BUF_SIZE) {
950 DEBUG("Error:ft1000_copy_down_pkt:Message Size Overflow!\n");
951 DEBUG("size = %d\n", count);
952 return -EINVAL;
953 }
954
955 if (count % 4)
956 count = count + (4 - (count % 4));
957
958 memset(&hdr, 0, sizeof(struct pseudo_hdr));
959
960 hdr.length = ntohs(count);
961 hdr.source = 0x10;
962 hdr.destination = 0x20;
963 hdr.portdest = 0x20;
964 hdr.portsrc = 0x10;
965 hdr.sh_str_id = 0x91;
966 hdr.control = 0x00;
967
968 hdr.checksum = hdr.length ^ hdr.source ^ hdr.destination ^
969 hdr.portdest ^ hdr.portsrc ^ hdr.sh_str_id ^ hdr.control;
970
971 memcpy(&pFt1000Dev->tx_buf[0], &hdr, sizeof(hdr));
972 memcpy(&(pFt1000Dev->tx_buf[sizeof(struct pseudo_hdr)]), packet, len);
973
974 netif_stop_queue(netdev);
975
976 //DEBUG ("ft1000_copy_down_pkt: count = %d\n", count);
977
978 usb_fill_bulk_urb(pFt1000Dev->tx_urb,
979 pFt1000Dev->dev,
980 usb_sndbulkpipe(pFt1000Dev->dev,
981 pFt1000Dev->bulk_out_endpointAddr),
982 pFt1000Dev->tx_buf, count,
983 ft1000_usb_transmit_complete, (void *)pFt1000Dev);
984
985 t = (u8 *) pFt1000Dev->tx_urb->transfer_buffer;
986 //DEBUG("transfer_length=%d\n", pFt1000Dev->tx_urb->transfer_buffer_length);
987 /*for (i=0; i<count; i++ )
988 {
989 DEBUG("%x ", *t++ );
990 } */
991
992 ret = usb_submit_urb(pFt1000Dev->tx_urb, GFP_ATOMIC);
993
994 if (ret) {
995 DEBUG("ft1000 failed tx_urb %d\n", ret);
996 return ret;
997 } else {
998 pInfo->stats.tx_packets++;
999 pInfo->stats.tx_bytes += (len + 14);
1000 }
1001
1002 //DEBUG("ft1000_copy_down_pkt() exit\n");
1003
1004 return 0;
1005 }
1006
1007
1008 //---------------------------------------------------------------------------
1009 // Function: ft1000_start_xmit
1010 //
1011 // Parameters: skb - socket buffer to be sent
1012 // dev - network device
1013 //
1014 //
1015 // Returns: none
1016 //
1017 // Description: transmit a ethernet packet
1018 //
1019 // Notes:
1020 //
1021 //---------------------------------------------------------------------------
1022 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1023 {
1024 struct ft1000_info *pInfo = netdev_priv(dev);
1025 struct ft1000_device *pFt1000Dev= pInfo->pFt1000Dev;
1026 u8 *pdata;
1027 int maxlen, pipe;
1028
1029
1030 //DEBUG(" ft1000_start_xmit() entered\n");
1031
1032 if ( skb == NULL )
1033 {
1034 DEBUG ("ft1000_hw: ft1000_start_xmit:skb == NULL!!!\n" );
1035 return NETDEV_TX_OK;
1036 }
1037
1038 if ( pFt1000Dev->status & FT1000_STATUS_CLOSING)
1039 {
1040 DEBUG("network driver is closed, return\n");
1041 goto err;
1042 }
1043
1044 //DEBUG("ft1000_start_xmit 1:length of packet = %d\n", skb->len);
1045 pipe = usb_sndbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_out_endpointAddr);
1046 maxlen = usb_maxpacket(pFt1000Dev->dev, pipe, usb_pipeout(pipe));
1047 //DEBUG("ft1000_start_xmit 2: pipe=%d dev->maxpacket = %d\n", pipe, maxlen);
1048
1049 pdata = (u8 *)skb->data;
1050 /*for (i=0; i<skb->len; i++)
1051 DEBUG("skb->data[%d]=%x ", i, *(skb->data+i));
1052
1053 DEBUG("\n");*/
1054
1055
1056 if (pInfo->mediastate == 0)
1057 {
1058 /* Drop packet is mediastate is down */
1059 DEBUG("ft1000_hw:ft1000_start_xmit:mediastate is down\n");
1060 goto err;
1061 }
1062
1063 if ( (skb->len < ENET_HEADER_SIZE) || (skb->len > ENET_MAX_SIZE) )
1064 {
1065 /* Drop packet which has invalid size */
1066 DEBUG("ft1000_hw:ft1000_start_xmit:invalid ethernet length\n");
1067 goto err;
1068 }
1069 //mbelian
1070 ft1000_copy_down_pkt(dev, (pdata+ENET_HEADER_SIZE-2),
1071 skb->len - ENET_HEADER_SIZE + 2);
1072
1073 err:
1074 dev_kfree_skb(skb);
1075 //DEBUG(" ft1000_start_xmit() exit\n");
1076
1077 return NETDEV_TX_OK;
1078 }
1079
1080 //---------------------------------------------------------------------------
1081 //
1082 // Function: ft1000_copy_up_pkt
1083 // Descripton: This function will take a packet from the FIFO up link and
1084 // convert it into an ethernet packet and deliver it to the IP stack
1085 // Input:
1086 // urb - the receving usb urb
1087 //
1088 // Output:
1089 // status - FAILURE
1090 // SUCCESS
1091 //
1092 //---------------------------------------------------------------------------
1093 static int ft1000_copy_up_pkt (struct urb *urb)
1094 {
1095 struct ft1000_info *info = urb->context;
1096 struct ft1000_device *ft1000dev = info->pFt1000Dev;
1097 struct net_device *net = ft1000dev->net;
1098
1099 u16 tempword;
1100 u16 len;
1101 u16 lena; //mbelian
1102 struct sk_buff *skb;
1103 u16 i;
1104 u8 *pbuffer=NULL;
1105 u8 *ptemp=NULL;
1106 u16 *chksum;
1107
1108
1109 //DEBUG("ft1000_copy_up_pkt entered\n");
1110
1111 if ( ft1000dev->status & FT1000_STATUS_CLOSING)
1112 {
1113 DEBUG("network driver is closed, return\n");
1114 return STATUS_SUCCESS;
1115 }
1116
1117 // Read length
1118 len = urb->transfer_buffer_length;
1119 lena = urb->actual_length; //mbelian
1120 //DEBUG("ft1000_copy_up_pkt: transfer_buffer_length=%d, actual_buffer_len=%d\n",
1121 // urb->transfer_buffer_length, urb->actual_length);
1122
1123 chksum = (u16 *)ft1000dev->rx_buf;
1124
1125 tempword = *chksum++;
1126 for (i=1; i<7; i++)
1127 {
1128 tempword ^= *chksum++;
1129 }
1130
1131 if (tempword != *chksum)
1132 {
1133 info->stats.rx_errors ++;
1134 ft1000_submit_rx_urb(info);
1135 return STATUS_FAILURE;
1136 }
1137
1138
1139 //DEBUG("ft1000_copy_up_pkt: checksum is correct %x\n", *chksum);
1140
1141 skb = dev_alloc_skb(len+12+2);
1142
1143 if (skb == NULL)
1144 {
1145 DEBUG("ft1000_copy_up_pkt: No Network buffers available\n");
1146 info->stats.rx_errors++;
1147 ft1000_submit_rx_urb(info);
1148 return STATUS_FAILURE;
1149 }
1150
1151 pbuffer = (u8 *)skb_put(skb, len+12);
1152
1153 //subtract the number of bytes read already
1154 ptemp = pbuffer;
1155
1156 // fake MAC address
1157 *pbuffer++ = net->dev_addr[0];
1158 *pbuffer++ = net->dev_addr[1];
1159 *pbuffer++ = net->dev_addr[2];
1160 *pbuffer++ = net->dev_addr[3];
1161 *pbuffer++ = net->dev_addr[4];
1162 *pbuffer++ = net->dev_addr[5];
1163 *pbuffer++ = 0x00;
1164 *pbuffer++ = 0x07;
1165 *pbuffer++ = 0x35;
1166 *pbuffer++ = 0xff;
1167 *pbuffer++ = 0xff;
1168 *pbuffer++ = 0xfe;
1169
1170
1171
1172
1173 memcpy(pbuffer, ft1000dev->rx_buf+sizeof(struct pseudo_hdr), len-sizeof(struct pseudo_hdr));
1174
1175 //DEBUG("ft1000_copy_up_pkt: Data passed to Protocol layer\n");
1176 /*for (i=0; i<len+12; i++)
1177 {
1178 DEBUG("ft1000_copy_up_pkt: Protocol Data: 0x%x\n ", *ptemp++);
1179 }*/
1180
1181 skb->dev = net;
1182
1183 skb->protocol = eth_type_trans(skb, net);
1184 skb->ip_summed = CHECKSUM_UNNECESSARY;
1185 netif_rx(skb);
1186
1187 info->stats.rx_packets++;
1188 // Add on 12 bytes for MAC address which was removed
1189 info->stats.rx_bytes += (lena+12); //mbelian
1190
1191 ft1000_submit_rx_urb(info);
1192 //DEBUG("ft1000_copy_up_pkt exited\n");
1193 return SUCCESS;
1194 }
1195
1196 //---------------------------------------------------------------------------
1197 //
1198 // Function: ft1000_submit_rx_urb
1199 // Descripton: the receiving function of the network driver
1200 //
1201 // Input:
1202 // info - a private structure contains the device information
1203 //
1204 // Output:
1205 // status - FAILURE
1206 // SUCCESS
1207 //
1208 //---------------------------------------------------------------------------
1209 static int ft1000_submit_rx_urb(struct ft1000_info *info)
1210 {
1211 int result;
1212 struct ft1000_device *pFt1000Dev = info->pFt1000Dev;
1213
1214
1215 //DEBUG ("ft1000_submit_rx_urb entered: sizeof rx_urb is %d\n", sizeof(*pFt1000Dev->rx_urb));
1216 if ( pFt1000Dev->status & FT1000_STATUS_CLOSING)
1217 {
1218 DEBUG("network driver is closed, return\n");
1219 //usb_kill_urb(pFt1000Dev->rx_urb); //mbelian
1220 return -ENODEV;
1221 }
1222
1223 usb_fill_bulk_urb(pFt1000Dev->rx_urb,
1224 pFt1000Dev->dev,
1225 usb_rcvbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_in_endpointAddr),
1226 pFt1000Dev->rx_buf,
1227 MAX_BUF_SIZE,
1228 (usb_complete_t)ft1000_copy_up_pkt,
1229 info);
1230
1231
1232 if((result = usb_submit_urb(pFt1000Dev->rx_urb, GFP_ATOMIC)))
1233 {
1234 printk("ft1000_submit_rx_urb: submitting rx_urb %d failed\n", result);
1235 return result;
1236 }
1237
1238 //DEBUG("ft1000_submit_rx_urb exit: result=%d\n", result);
1239
1240 return 0;
1241 }
1242
1243 //---------------------------------------------------------------------------
1244 // Function: ft1000_open
1245 //
1246 // Parameters:
1247 // dev - network device
1248 //
1249 //
1250 // Returns: none
1251 //
1252 // Description: open the network driver
1253 //
1254 // Notes:
1255 //
1256 //---------------------------------------------------------------------------
1257 static int ft1000_open (struct net_device *dev)
1258 {
1259 struct ft1000_info *pInfo = netdev_priv(dev);
1260 struct timeval tv; //mbelian
1261 int ret;
1262
1263 DEBUG("ft1000_open is called for card %d\n", pInfo->CardNumber);
1264 //DEBUG("ft1000_open: dev->addr=%x, dev->addr_len=%d\n", dev->addr, dev->addr_len);
1265
1266 pInfo->stats.rx_bytes = 0; //mbelian
1267 pInfo->stats.tx_bytes = 0; //mbelian
1268 pInfo->stats.rx_packets = 0; //mbelian
1269 pInfo->stats.tx_packets = 0; //mbelian
1270 do_gettimeofday(&tv);
1271 pInfo->ConTm = tv.tv_sec;
1272 pInfo->ProgConStat = 0; //mbelian
1273
1274
1275 netif_start_queue(dev);
1276
1277 netif_carrier_on(dev); //mbelian
1278
1279 ret = ft1000_submit_rx_urb(pInfo);
1280
1281 return ret;
1282 }
1283
1284 //---------------------------------------------------------------------------
1285 // Function: ft1000_close
1286 //
1287 // Parameters:
1288 // net - network device
1289 //
1290 //
1291 // Returns: none
1292 //
1293 // Description: close the network driver
1294 //
1295 // Notes:
1296 //
1297 //---------------------------------------------------------------------------
1298 int ft1000_close(struct net_device *net)
1299 {
1300 struct ft1000_info *pInfo = netdev_priv(net);
1301 struct ft1000_device *ft1000dev = pInfo->pFt1000Dev;
1302
1303 //DEBUG ("ft1000_close: netdev->refcnt=%d\n", net->refcnt);
1304
1305 ft1000dev->status |= FT1000_STATUS_CLOSING;
1306
1307 //DEBUG("ft1000_close: calling usb_kill_urb \n");
1308
1309 DEBUG("ft1000_close: pInfo=%p, ft1000dev=%p\n", pInfo, ft1000dev);
1310 netif_carrier_off(net);//mbelian
1311 netif_stop_queue(net);
1312 //DEBUG("ft1000_close: netif_stop_queue called\n");
1313 ft1000dev->status &= ~FT1000_STATUS_CLOSING;
1314
1315 pInfo->ProgConStat = 0xff; //mbelian
1316
1317
1318 return 0;
1319 }
1320
1321 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev)
1322 {
1323 struct ft1000_info *info = netdev_priv(dev);
1324
1325 return &(info->stats); //mbelian
1326 }
1327
1328
1329 /*********************************************************************************
1330 Jim
1331 */
1332
1333
1334 //---------------------------------------------------------------------------
1335 //
1336 // Function: ft1000_chkcard
1337 // Descripton: This function will check if the device is presently available on
1338 // the system.
1339 // Input:
1340 // dev - device structure
1341 // Output:
1342 // status - FALSE (device is not present)
1343 // TRUE (device is present)
1344 //
1345 //---------------------------------------------------------------------------
1346 static int ft1000_chkcard (struct ft1000_device *dev) {
1347 u16 tempword;
1348 u16 status;
1349 struct ft1000_info *info = netdev_priv(dev->net);
1350
1351 if (info->fCondResetPend)
1352 {
1353 DEBUG("ft1000_hw:ft1000_chkcard:Card is being reset, return FALSE\n");
1354 return TRUE;
1355 }
1356
1357 // Mask register is used to check for device presence since it is never
1358 // set to zero.
1359 status = ft1000_read_register(dev, &tempword, FT1000_REG_SUP_IMASK);
1360 //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_SUP_IMASK = %x\n", tempword);
1361 if (tempword == 0) {
1362 DEBUG("ft1000_hw:ft1000_chkcard: IMASK = 0 Card not detected\n");
1363 return FALSE;
1364 }
1365
1366 // The system will return the value of 0xffff for the version register
1367 // if the device is not present.
1368 status = ft1000_read_register(dev, &tempword, FT1000_REG_ASIC_ID);
1369 //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_ASIC_ID = %x\n", tempword);
1370 if (tempword != 0x1b01 ){
1371 dev->status |= FT1000_STATUS_CLOSING; //mbelian
1372 DEBUG("ft1000_hw:ft1000_chkcard: Version = 0xffff Card not detected\n");
1373 return FALSE;
1374 }
1375 return TRUE;
1376 }
1377
1378
1379
1380 //---------------------------------------------------------------------------
1381 //
1382 // Function: ft1000_receive_cmd
1383 // Descripton: This function will read a message from the dpram area.
1384 // Input:
1385 // dev - network device structure
1386 // pbuffer - caller supply address to buffer
1387 // pnxtph - pointer to next pseudo header
1388 // Output:
1389 // Status = 0 (unsuccessful)
1390 // = 1 (successful)
1391 //
1392 //---------------------------------------------------------------------------
1393 static bool ft1000_receive_cmd (struct ft1000_device *dev, u16 *pbuffer, int maxsz, u16 *pnxtph) {
1394 u16 size, ret;
1395 u16 *ppseudohdr;
1396 int i;
1397 u16 tempword;
1398
1399 ret = ft1000_read_dpram16(dev, FT1000_MAG_PH_LEN, (u8 *)&size, FT1000_MAG_PH_LEN_INDX);
1400 size = ntohs(size) + PSEUDOSZ;
1401 if (size > maxsz) {
1402 DEBUG("FT1000:ft1000_receive_cmd:Invalid command length = %d\n", size);
1403 return FALSE;
1404 }
1405 else {
1406 ppseudohdr = (u16 *)pbuffer;
1407 ft1000_write_register(dev, FT1000_DPRAM_MAG_RX_BASE, FT1000_REG_DPRAM_ADDR);
1408 ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1409 //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1410 pbuffer++;
1411 ft1000_write_register(dev, FT1000_DPRAM_MAG_RX_BASE+1, FT1000_REG_DPRAM_ADDR);
1412 for (i=0; i<=(size>>2); i++) {
1413 ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1414 pbuffer++;
1415 ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1416 pbuffer++;
1417 }
1418 //copy odd aligned word
1419 ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1420 //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1421 pbuffer++;
1422 ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1423 //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1424 pbuffer++;
1425 if (size & 0x0001) {
1426 //copy odd byte from fifo
1427 ret = ft1000_read_register(dev, &tempword, FT1000_REG_DPRAM_DATA);
1428 *pbuffer = ntohs(tempword);
1429 }
1430
1431 // Check if pseudo header checksum is good
1432 // Calculate pseudo header checksum
1433 tempword = *ppseudohdr++;
1434 for (i=1; i<7; i++) {
1435 tempword ^= *ppseudohdr++;
1436 }
1437 if ( (tempword != *ppseudohdr) ) {
1438 return FALSE;
1439 }
1440
1441 return TRUE;
1442 }
1443 }
1444
1445
1446 static int ft1000_dsp_prov(void *arg)
1447 {
1448 struct ft1000_device *dev = (struct ft1000_device *)arg;
1449 struct ft1000_info *info = netdev_priv(dev->net);
1450 u16 tempword;
1451 u16 len;
1452 u16 i=0;
1453 struct prov_record *ptr;
1454 struct pseudo_hdr *ppseudo_hdr;
1455 u16 *pmsg;
1456 u16 status;
1457 u16 TempShortBuf [256];
1458
1459 DEBUG("*** DspProv Entered\n");
1460
1461 while (list_empty(&info->prov_list) == 0)
1462 {
1463 DEBUG("DSP Provisioning List Entry\n");
1464
1465 // Check if doorbell is available
1466 DEBUG("check if doorbell is cleared\n");
1467 status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1468 if (status)
1469 {
1470 DEBUG("ft1000_dsp_prov::ft1000_read_register error\n");
1471 break;
1472 }
1473
1474 while (tempword & FT1000_DB_DPRAM_TX) {
1475 mdelay(10);
1476 i++;
1477 if (i==10) {
1478 DEBUG("FT1000:ft1000_dsp_prov:message drop\n");
1479 return STATUS_FAILURE;
1480 }
1481 ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1482 }
1483
1484 if ( !(tempword & FT1000_DB_DPRAM_TX) ) {
1485 DEBUG("*** Provision Data Sent to DSP\n");
1486
1487 // Send provisioning data
1488 ptr = list_entry(info->prov_list.next, struct prov_record, list);
1489 len = *(u16 *)ptr->pprov_data;
1490 len = htons(len);
1491 len += PSEUDOSZ;
1492
1493 pmsg = (u16 *)ptr->pprov_data;
1494 ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1495 // Insert slow queue sequence number
1496 ppseudo_hdr->seq_num = info->squeseqnum++;
1497 ppseudo_hdr->portsrc = 0;
1498 // Calculate new checksum
1499 ppseudo_hdr->checksum = *pmsg++;
1500 //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1501 for (i=1; i<7; i++) {
1502 ppseudo_hdr->checksum ^= *pmsg++;
1503 //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1504 }
1505
1506 TempShortBuf[0] = 0;
1507 TempShortBuf[1] = htons (len);
1508 memcpy(&TempShortBuf[2], ppseudo_hdr, len);
1509
1510 status = ft1000_write_dpram32 (dev, 0, (u8 *)&TempShortBuf[0], (unsigned short)(len+2));
1511 status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1512
1513 list_del(&ptr->list);
1514 kfree(ptr->pprov_data);
1515 kfree(ptr);
1516 }
1517 msleep(10);
1518 }
1519
1520 DEBUG("DSP Provisioning List Entry finished\n");
1521
1522 msleep(100);
1523
1524 info->fProvComplete = 1;
1525 info->CardReady = 1;
1526 return STATUS_SUCCESS;
1527
1528 }
1529
1530
1531 static int ft1000_proc_drvmsg (struct ft1000_device *dev, u16 size) {
1532 struct ft1000_info *info = netdev_priv(dev->net);
1533 u16 msgtype;
1534 u16 tempword;
1535 struct media_msg *pmediamsg;
1536 struct dsp_init_msg *pdspinitmsg;
1537 struct drv_msg *pdrvmsg;
1538 u16 i;
1539 struct pseudo_hdr *ppseudo_hdr;
1540 u16 *pmsg;
1541 u16 status;
1542 union {
1543 u8 byte[2];
1544 u16 wrd;
1545 } convert;
1546
1547
1548 char *cmdbuffer = kmalloc(1600, GFP_KERNEL);
1549 if (!cmdbuffer)
1550 return STATUS_FAILURE;
1551
1552 status = ft1000_read_dpram32(dev, 0x200, cmdbuffer, size);
1553
1554
1555
1556 #ifdef JDEBUG
1557 DEBUG("ft1000_proc_drvmsg:cmdbuffer\n");
1558 for(i = 0; i < size; i+=5)
1559 {
1560 if( (i + 5) < size )
1561 DEBUG("0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", cmdbuffer[i], cmdbuffer[i+1], cmdbuffer[i+2], cmdbuffer[i+3], cmdbuffer[i+4]);
1562 else
1563 {
1564 for (j = i; j < size; j++)
1565 DEBUG("0x%x ", cmdbuffer[j]);
1566 DEBUG("\n");
1567 break;
1568 }
1569 }
1570 #endif
1571 pdrvmsg = (struct drv_msg *)&cmdbuffer[2];
1572 msgtype = ntohs(pdrvmsg->type);
1573 DEBUG("ft1000_proc_drvmsg:Command message type = 0x%x\n", msgtype);
1574 switch (msgtype) {
1575 case MEDIA_STATE: {
1576 DEBUG("ft1000_proc_drvmsg:Command message type = MEDIA_STATE");
1577
1578 pmediamsg = (struct media_msg *)&cmdbuffer[0];
1579 if (info->ProgConStat != 0xFF) {
1580 if (pmediamsg->state) {
1581 DEBUG("Media is up\n");
1582 if (info->mediastate == 0) {
1583 if ( info->NetDevRegDone )
1584 {
1585 //netif_carrier_on(dev->net);//mbelian
1586 netif_wake_queue(dev->net);
1587 }
1588 info->mediastate = 1;
1589 /*do_gettimeofday(&tv);
1590 info->ConTm = tv.tv_sec;*/ //mbelian
1591 }
1592 }
1593 else {
1594 DEBUG("Media is down\n");
1595 if (info->mediastate == 1) {
1596 info->mediastate = 0;
1597 if ( info->NetDevRegDone )
1598 {
1599 //netif_carrier_off(dev->net); mbelian
1600 //netif_stop_queue(dev->net);
1601 }
1602 info->ConTm = 0;
1603 }
1604 }
1605 }
1606 else {
1607 DEBUG("Media is down\n");
1608 if (info->mediastate == 1) {
1609 info->mediastate = 0;
1610 if ( info->NetDevRegDone)
1611 {
1612 //netif_carrier_off(dev->net); //mbelian
1613 //netif_stop_queue(dev->net);
1614 }
1615 info->ConTm = 0;
1616 }
1617 }
1618 break;
1619 }
1620 case DSP_INIT_MSG: {
1621 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_INIT_MSG");
1622
1623 pdspinitmsg = (struct dsp_init_msg *)&cmdbuffer[2];
1624 memcpy(info->DspVer, pdspinitmsg->DspVer, DSPVERSZ);
1625 DEBUG("DSPVER = 0x%2x 0x%2x 0x%2x 0x%2x\n", info->DspVer[0], info->DspVer[1], info->DspVer[2], info->DspVer[3]);
1626 memcpy(info->HwSerNum, pdspinitmsg->HwSerNum, HWSERNUMSZ);
1627 memcpy(info->Sku, pdspinitmsg->Sku, SKUSZ);
1628 memcpy(info->eui64, pdspinitmsg->eui64, EUISZ);
1629 DEBUG("EUI64=%2x.%2x.%2x.%2x.%2x.%2x.%2x.%2x\n", info->eui64[0],info->eui64[1], info->eui64[2], info->eui64[3], info->eui64[4], info->eui64[5],info->eui64[6], info->eui64[7]);
1630 dev->net->dev_addr[0] = info->eui64[0];
1631 dev->net->dev_addr[1] = info->eui64[1];
1632 dev->net->dev_addr[2] = info->eui64[2];
1633 dev->net->dev_addr[3] = info->eui64[5];
1634 dev->net->dev_addr[4] = info->eui64[6];
1635 dev->net->dev_addr[5] = info->eui64[7];
1636
1637 if (ntohs(pdspinitmsg->length) == (sizeof(struct dsp_init_msg) - 20)) {
1638 memcpy(info->ProductMode, pdspinitmsg->ProductMode, MODESZ);
1639 memcpy(info->RfCalVer, pdspinitmsg->RfCalVer, CALVERSZ);
1640 memcpy(info->RfCalDate, pdspinitmsg->RfCalDate, CALDATESZ);
1641 DEBUG("RFCalVer = 0x%2x 0x%2x\n", info->RfCalVer[0], info->RfCalVer[1]);
1642 }
1643 break;
1644 }
1645 case DSP_PROVISION: {
1646 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_PROVISION\n");
1647
1648 // kick off dspprov routine to start provisioning
1649 // Send provisioning data to DSP
1650 if (list_empty(&info->prov_list) == 0)
1651 {
1652 info->fProvComplete = 0;
1653 status = ft1000_dsp_prov(dev);
1654 if (status != STATUS_SUCCESS)
1655 goto out;
1656 }
1657 else {
1658 info->fProvComplete = 1;
1659 status = ft1000_write_register (dev, FT1000_DB_HB, FT1000_REG_DOORBELL);
1660 DEBUG("FT1000:drivermsg:No more DSP provisioning data in dsp image\n");
1661 }
1662 DEBUG("ft1000_proc_drvmsg:DSP PROVISION is done\n");
1663 break;
1664 }
1665 case DSP_STORE_INFO: {
1666 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_STORE_INFO");
1667
1668 DEBUG("FT1000:drivermsg:Got DSP_STORE_INFO\n");
1669 tempword = ntohs(pdrvmsg->length);
1670 info->DSPInfoBlklen = tempword;
1671 if (tempword < (MAX_DSP_SESS_REC-4) ) {
1672 pmsg = (u16 *)&pdrvmsg->data[0];
1673 for (i=0; i<((tempword+1)/2); i++) {
1674 DEBUG("FT1000:drivermsg:dsp info data = 0x%x\n", *pmsg);
1675 info->DSPInfoBlk[i+10] = *pmsg++;
1676 }
1677 }
1678 else {
1679 info->DSPInfoBlklen = 0;
1680 }
1681 break;
1682 }
1683 case DSP_GET_INFO: {
1684 DEBUG("FT1000:drivermsg:Got DSP_GET_INFO\n");
1685 // copy dsp info block to dsp
1686 info->DrvMsgPend = 1;
1687 // allow any outstanding ioctl to finish
1688 mdelay(10);
1689 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1690 if (tempword & FT1000_DB_DPRAM_TX) {
1691 mdelay(10);
1692 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1693 if (tempword & FT1000_DB_DPRAM_TX) {
1694 mdelay(10);
1695 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1696 if (tempword & FT1000_DB_DPRAM_TX) {
1697 break;
1698 }
1699 }
1700 }
1701
1702 // Put message into Slow Queue
1703 // Form Pseudo header
1704 pmsg = (u16 *)info->DSPInfoBlk;
1705 *pmsg++ = 0;
1706 *pmsg++ = htons(info->DSPInfoBlklen+20+info->DSPInfoBlklen);
1707 ppseudo_hdr = (struct pseudo_hdr *)(u16 *)&info->DSPInfoBlk[2];
1708 ppseudo_hdr->length = htons(info->DSPInfoBlklen+4+info->DSPInfoBlklen);
1709 ppseudo_hdr->source = 0x10;
1710 ppseudo_hdr->destination = 0x20;
1711 ppseudo_hdr->portdest = 0;
1712 ppseudo_hdr->portsrc = 0;
1713 ppseudo_hdr->sh_str_id = 0;
1714 ppseudo_hdr->control = 0;
1715 ppseudo_hdr->rsvd1 = 0;
1716 ppseudo_hdr->rsvd2 = 0;
1717 ppseudo_hdr->qos_class = 0;
1718 // Insert slow queue sequence number
1719 ppseudo_hdr->seq_num = info->squeseqnum++;
1720 // Insert application id
1721 ppseudo_hdr->portsrc = 0;
1722 // Calculate new checksum
1723 ppseudo_hdr->checksum = *pmsg++;
1724 for (i=1; i<7; i++) {
1725 ppseudo_hdr->checksum ^= *pmsg++;
1726 }
1727 info->DSPInfoBlk[10] = 0x7200;
1728 info->DSPInfoBlk[11] = htons(info->DSPInfoBlklen);
1729 status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPInfoBlk[0], (unsigned short)(info->DSPInfoBlklen+22));
1730 status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1731 info->DrvMsgPend = 0;
1732
1733 break;
1734 }
1735
1736 case GET_DRV_ERR_RPT_MSG: {
1737 DEBUG("FT1000:drivermsg:Got GET_DRV_ERR_RPT_MSG\n");
1738 // copy driver error message to dsp
1739 info->DrvMsgPend = 1;
1740 // allow any outstanding ioctl to finish
1741 mdelay(10);
1742 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1743 if (tempword & FT1000_DB_DPRAM_TX) {
1744 mdelay(10);
1745 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1746 if (tempword & FT1000_DB_DPRAM_TX) {
1747 mdelay(10);
1748 }
1749 }
1750
1751 if ( (tempword & FT1000_DB_DPRAM_TX) == 0) {
1752 // Put message into Slow Queue
1753 // Form Pseudo header
1754 pmsg = (u16 *)&tempbuffer[0];
1755 ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1756 ppseudo_hdr->length = htons(0x0012);
1757 ppseudo_hdr->source = 0x10;
1758 ppseudo_hdr->destination = 0x20;
1759 ppseudo_hdr->portdest = 0;
1760 ppseudo_hdr->portsrc = 0;
1761 ppseudo_hdr->sh_str_id = 0;
1762 ppseudo_hdr->control = 0;
1763 ppseudo_hdr->rsvd1 = 0;
1764 ppseudo_hdr->rsvd2 = 0;
1765 ppseudo_hdr->qos_class = 0;
1766 // Insert slow queue sequence number
1767 ppseudo_hdr->seq_num = info->squeseqnum++;
1768 // Insert application id
1769 ppseudo_hdr->portsrc = 0;
1770 // Calculate new checksum
1771 ppseudo_hdr->checksum = *pmsg++;
1772 for (i=1; i<7; i++) {
1773 ppseudo_hdr->checksum ^= *pmsg++;
1774 }
1775 pmsg = (u16 *)&tempbuffer[16];
1776 *pmsg++ = htons(RSP_DRV_ERR_RPT_MSG);
1777 *pmsg++ = htons(0x000e);
1778 *pmsg++ = htons(info->DSP_TIME[0]);
1779 *pmsg++ = htons(info->DSP_TIME[1]);
1780 *pmsg++ = htons(info->DSP_TIME[2]);
1781 *pmsg++ = htons(info->DSP_TIME[3]);
1782 convert.byte[0] = info->DspVer[0];
1783 convert.byte[1] = info->DspVer[1];
1784 *pmsg++ = convert.wrd;
1785 convert.byte[0] = info->DspVer[2];
1786 convert.byte[1] = info->DspVer[3];
1787 *pmsg++ = convert.wrd;
1788 *pmsg++ = htons(info->DrvErrNum);
1789
1790 card_send_command (dev, (unsigned char*)&tempbuffer[0], (u16)(0x0012 + PSEUDOSZ));
1791 info->DrvErrNum = 0;
1792 }
1793 info->DrvMsgPend = 0;
1794
1795 break;
1796 }
1797
1798 default:
1799 break;
1800 }
1801
1802
1803 status = STATUS_SUCCESS;
1804 out:
1805 kfree(cmdbuffer);
1806 DEBUG("return from ft1000_proc_drvmsg\n");
1807 return status;
1808 }
1809
1810
1811
1812 int ft1000_poll(void* dev_id) {
1813
1814 struct ft1000_device *dev = (struct ft1000_device *)dev_id;
1815 struct ft1000_info *info = netdev_priv(dev->net);
1816
1817 u16 tempword;
1818 u16 status;
1819 u16 size;
1820 int i;
1821 u16 data;
1822 u16 modulo;
1823 u16 portid;
1824 u16 nxtph;
1825 struct dpram_blk *pdpram_blk;
1826 struct pseudo_hdr *ppseudo_hdr;
1827 unsigned long flags;
1828
1829 //DEBUG("Enter ft1000_poll...\n");
1830 if (ft1000_chkcard(dev) == FALSE) {
1831 DEBUG("ft1000_poll::ft1000_chkcard: failed\n");
1832 return STATUS_FAILURE;
1833 }
1834
1835 status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1836 // DEBUG("ft1000_poll: read FT1000_REG_DOORBELL message 0x%x\n", tempword);
1837
1838 if ( !status )
1839 {
1840
1841 if (tempword & FT1000_DB_DPRAM_RX) {
1842 //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX\n");
1843
1844 status = ft1000_read_dpram16(dev, 0x200, (u8 *)&data, 0);
1845 //DEBUG("ft1000_poll:FT1000_DB_DPRAM_RX:ft1000_read_dpram16:size = 0x%x\n", data);
1846 size = ntohs(data) + 16 + 2; //wai
1847 if (size % 4) {
1848 modulo = 4 - (size % 4);
1849 size = size + modulo;
1850 }
1851 status = ft1000_read_dpram16(dev, 0x201, (u8 *)&portid, 1);
1852 portid &= 0xff;
1853 //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid 0x%x\n", portid);
1854
1855 if (size < MAX_CMD_SQSIZE) {
1856 switch (portid)
1857 {
1858 case DRIVERID:
1859 DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DRIVERID\n");
1860
1861 status = ft1000_proc_drvmsg (dev, size);
1862 if (status != STATUS_SUCCESS )
1863 return status;
1864 break;
1865 case DSPBCMSGID:
1866 // This is a dsp broadcast message
1867 // Check which application has registered for dsp broadcast messages
1868 //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DSPBCMSGID\n");
1869
1870 for (i=0; i<MAX_NUM_APP; i++) {
1871 if ( (info->app_info[i].DspBCMsgFlag) && (info->app_info[i].fileobject) &&
1872 (info->app_info[i].NumOfMsg < MAX_MSG_LIMIT) )
1873 {
1874 //DEBUG("Dsp broadcast message detected for app id %d\n", i);
1875 nxtph = FT1000_DPRAM_RX_BASE + 2;
1876 pdpram_blk = ft1000_get_buffer (&freercvpool);
1877 if (pdpram_blk != NULL) {
1878 if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1879 ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1880 // Put message into the appropriate application block
1881 info->app_info[i].nRxMsg++;
1882 spin_lock_irqsave(&free_buff_lock, flags);
1883 list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1884 info->app_info[i].NumOfMsg++;
1885 spin_unlock_irqrestore(&free_buff_lock, flags);
1886 wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1887 }
1888 else {
1889 info->app_info[i].nRxMsgMiss++;
1890 // Put memory back to free pool
1891 ft1000_free_buffer(pdpram_blk, &freercvpool);
1892 DEBUG("pdpram_blk::ft1000_get_buffer NULL\n");
1893 }
1894 }
1895 else {
1896 DEBUG("Out of memory in free receive command pool\n");
1897 info->app_info[i].nRxMsgMiss++;
1898 }//endof if (pdpram_blk != NULL)
1899 }//endof if
1900 //else
1901 // DEBUG("app_info mismatch\n");
1902 }// endof for
1903 break;
1904 default:
1905 pdpram_blk = ft1000_get_buffer (&freercvpool);
1906 //DEBUG("Memory allocated = 0x%8x\n", (u32)pdpram_blk);
1907 if (pdpram_blk != NULL) {
1908 if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1909 ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1910 // Search for correct application block
1911 for (i=0; i<MAX_NUM_APP; i++) {
1912 if (info->app_info[i].app_id == ppseudo_hdr->portdest) {
1913 break;
1914 }
1915 }
1916
1917 if (i == MAX_NUM_APP) {
1918 DEBUG("FT1000:ft1000_parse_dpram_msg: No application matching id = %d\n", ppseudo_hdr->portdest);
1919 // Put memory back to free pool
1920 ft1000_free_buffer(pdpram_blk, &freercvpool);
1921 }
1922 else {
1923 if (info->app_info[i].NumOfMsg > MAX_MSG_LIMIT) {
1924 // Put memory back to free pool
1925 ft1000_free_buffer(pdpram_blk, &freercvpool);
1926 }
1927 else {
1928 info->app_info[i].nRxMsg++;
1929 // Put message into the appropriate application block
1930 //pxu spin_lock_irqsave(&free_buff_lock, flags);
1931 list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1932 info->app_info[i].NumOfMsg++;
1933 //pxu spin_unlock_irqrestore(&free_buff_lock, flags);
1934 //pxu wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1935 }
1936 }
1937 }
1938 else {
1939 // Put memory back to free pool
1940 ft1000_free_buffer(pdpram_blk, &freercvpool);
1941 }
1942 }
1943 else {
1944 DEBUG("Out of memory in free receive command pool\n");
1945 }
1946 break;
1947 } //end of switch
1948 } //endof if (size < MAX_CMD_SQSIZE)
1949 else {
1950 DEBUG("FT1000:dpc:Invalid total length for SlowQ = %d\n", size);
1951 }
1952 status = ft1000_write_register (dev, FT1000_DB_DPRAM_RX, FT1000_REG_DOORBELL);
1953 }
1954 else if (tempword & FT1000_DSP_ASIC_RESET) {
1955 //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DSP_ASIC_RESET\n");
1956
1957 // Let's reset the ASIC from the Host side as well
1958 status = ft1000_write_register (dev, ASIC_RESET_BIT, FT1000_REG_RESET);
1959 status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1960 i = 0;
1961 while (tempword & ASIC_RESET_BIT) {
1962 status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1963 msleep(10);
1964 i++;
1965 if (i==100)
1966 break;
1967 }
1968 if (i==100) {
1969 DEBUG("Unable to reset ASIC\n");
1970 return STATUS_SUCCESS;
1971 }
1972 msleep(10);
1973 // Program WMARK register
1974 status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1975 // clear ASIC reset doorbell
1976 status = ft1000_write_register (dev, FT1000_DSP_ASIC_RESET, FT1000_REG_DOORBELL);
1977 msleep(10);
1978 }
1979 else if (tempword & FT1000_ASIC_RESET_REQ) {
1980 DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_ASIC_RESET_REQ\n");
1981
1982 // clear ASIC reset request from DSP
1983 status = ft1000_write_register (dev, FT1000_ASIC_RESET_REQ, FT1000_REG_DOORBELL);
1984 status = ft1000_write_register (dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
1985 // copy dsp session record from Adapter block
1986 status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPSess.Rec[0], 1024);
1987 // Program WMARK register
1988 status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1989 // ring doorbell to tell DSP that ASIC is out of reset
1990 status = ft1000_write_register (dev, FT1000_ASIC_RESET_DSP, FT1000_REG_DOORBELL);
1991 }
1992 else if (tempword & FT1000_DB_COND_RESET) {
1993 DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_COND_RESET\n");
1994 //By Jim
1995 // Reset ASIC and DSP
1996 //MAG
1997 if (info->fAppMsgPend == 0) {
1998 // Reset ASIC and DSP
1999
2000 status = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER0, (u8 *)&(info->DSP_TIME[0]), FT1000_MAG_DSP_TIMER0_INDX);
2001 status = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER1, (u8 *)&(info->DSP_TIME[1]), FT1000_MAG_DSP_TIMER1_INDX);
2002 status = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER2, (u8 *)&(info->DSP_TIME[2]), FT1000_MAG_DSP_TIMER2_INDX);
2003 status = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER3, (u8 *)&(info->DSP_TIME[3]), FT1000_MAG_DSP_TIMER3_INDX);
2004 info->CardReady = 0;
2005 info->DrvErrNum = DSP_CONDRESET_INFO;
2006 DEBUG("ft1000_hw:DSP conditional reset requested\n");
2007 info->ft1000_reset(dev->net);
2008 }
2009 else {
2010 info->fProvComplete = 0;
2011 info->fCondResetPend = 1;
2012 }
2013
2014 ft1000_write_register(dev, FT1000_DB_COND_RESET, FT1000_REG_DOORBELL);
2015 }
2016
2017 }//endof if ( !status )
2018
2019 //DEBUG("return from ft1000_poll.\n");
2020 return STATUS_SUCCESS;
2021
2022 }
2023
2024 /*end of Jim*/
This page took 0.073214 seconds and 4 git commands to generate.