staging:iio:accel:sca3000 move to info_mask_(shared_by_type/separate)
[deliverable/linux.git] / drivers / staging / iio / accel / sca3000_core.c
1 /*
2 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
9 *
10 * See industrialio/accels/sca3000.h for comments.
11 */
12
13 #include <linux/interrupt.h>
14 #include <linux/fs.h>
15 #include <linux/device.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/sysfs.h>
20 #include <linux/module.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/buffer.h>
25
26 #include "sca3000.h"
27
28 enum sca3000_variant {
29 d01,
30 e02,
31 e04,
32 e05,
33 };
34
35 /* Note where option modes are not defined, the chip simply does not
36 * support any.
37 * Other chips in the sca3000 series use i2c and are not included here.
38 *
39 * Some of these devices are only listed in the family data sheet and
40 * do not actually appear to be available.
41 */
42 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
43 [d01] = {
44 .scale = 7357,
45 .temp_output = true,
46 .measurement_mode_freq = 250,
47 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
48 .option_mode_1_freq = 250,
49 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
50 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
51 },
52 [e02] = {
53 .scale = 9810,
54 .measurement_mode_freq = 125,
55 .option_mode_1 = SCA3000_OP_MODE_NARROW,
56 .option_mode_1_freq = 63,
57 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
58 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
59 },
60 [e04] = {
61 .scale = 19620,
62 .measurement_mode_freq = 100,
63 .option_mode_1 = SCA3000_OP_MODE_NARROW,
64 .option_mode_1_freq = 50,
65 .option_mode_2 = SCA3000_OP_MODE_WIDE,
66 .option_mode_2_freq = 400,
67 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
68 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
69 },
70 [e05] = {
71 .scale = 61313,
72 .measurement_mode_freq = 200,
73 .option_mode_1 = SCA3000_OP_MODE_NARROW,
74 .option_mode_1_freq = 50,
75 .option_mode_2 = SCA3000_OP_MODE_WIDE,
76 .option_mode_2_freq = 400,
77 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
78 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
79 },
80 };
81
82 int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
83 {
84 st->tx[0] = SCA3000_WRITE_REG(address);
85 st->tx[1] = val;
86 return spi_write(st->us, st->tx, 2);
87 }
88
89 int sca3000_read_data_short(struct sca3000_state *st,
90 uint8_t reg_address_high,
91 int len)
92 {
93 struct spi_transfer xfer[2] = {
94 {
95 .len = 1,
96 .tx_buf = st->tx,
97 }, {
98 .len = len,
99 .rx_buf = st->rx,
100 }
101 };
102 st->tx[0] = SCA3000_READ_REG(reg_address_high);
103
104 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
105 }
106
107 /**
108 * sca3000_reg_lock_on() test if the ctrl register lock is on
109 *
110 * Lock must be held.
111 **/
112 static int sca3000_reg_lock_on(struct sca3000_state *st)
113 {
114 int ret;
115
116 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_STATUS, 1);
117 if (ret < 0)
118 return ret;
119
120 return !(st->rx[0] & SCA3000_LOCKED);
121 }
122
123 /**
124 * __sca3000_unlock_reg_lock() unlock the control registers
125 *
126 * Note the device does not appear to support doing this in a single transfer.
127 * This should only ever be used as part of ctrl reg read.
128 * Lock must be held before calling this
129 **/
130 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
131 {
132 struct spi_transfer xfer[3] = {
133 {
134 .len = 2,
135 .cs_change = 1,
136 .tx_buf = st->tx,
137 }, {
138 .len = 2,
139 .cs_change = 1,
140 .tx_buf = st->tx + 2,
141 }, {
142 .len = 2,
143 .tx_buf = st->tx + 4,
144 },
145 };
146 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
147 st->tx[1] = 0x00;
148 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
149 st->tx[3] = 0x50;
150 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
151 st->tx[5] = 0xA0;
152
153 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
154 }
155
156 /**
157 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
158 * @sel: selects which registers we wish to write to
159 * @val: the value to be written
160 *
161 * Certain control registers are protected against overwriting by the lock
162 * register and use a shared write address. This function allows writing of
163 * these registers.
164 * Lock must be held.
165 **/
166 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
167 uint8_t sel,
168 uint8_t val)
169 {
170
171 int ret;
172
173 ret = sca3000_reg_lock_on(st);
174 if (ret < 0)
175 goto error_ret;
176 if (ret) {
177 ret = __sca3000_unlock_reg_lock(st);
178 if (ret)
179 goto error_ret;
180 }
181
182 /* Set the control select register */
183 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, sel);
184 if (ret)
185 goto error_ret;
186
187 /* Write the actual value into the register */
188 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_DATA, val);
189
190 error_ret:
191 return ret;
192 }
193
194 /* Crucial that lock is called before calling this */
195 /**
196 * sca3000_read_ctrl_reg() read from lock protected control register.
197 *
198 * Lock must be held.
199 **/
200 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
201 u8 ctrl_reg)
202 {
203 int ret;
204
205 ret = sca3000_reg_lock_on(st);
206 if (ret < 0)
207 goto error_ret;
208 if (ret) {
209 ret = __sca3000_unlock_reg_lock(st);
210 if (ret)
211 goto error_ret;
212 }
213 /* Set the control select register */
214 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, ctrl_reg);
215 if (ret)
216 goto error_ret;
217 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_CTRL_DATA, 1);
218 if (ret)
219 goto error_ret;
220 else
221 return st->rx[0];
222 error_ret:
223 return ret;
224 }
225
226 #ifdef SCA3000_DEBUG
227 /**
228 * sca3000_check_status() check the status register
229 *
230 * Only used for debugging purposes
231 **/
232 static int sca3000_check_status(struct device *dev)
233 {
234 int ret;
235 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
236 struct sca3000_state *st = iio_priv(indio_dev);
237
238 mutex_lock(&st->lock);
239 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_STATUS, 1);
240 if (ret < 0)
241 goto error_ret;
242 if (st->rx[0] & SCA3000_EEPROM_CS_ERROR)
243 dev_err(dev, "eeprom error\n");
244 if (st->rx[0] & SCA3000_SPI_FRAME_ERROR)
245 dev_err(dev, "Previous SPI Frame was corrupt\n");
246
247 error_ret:
248 mutex_unlock(&st->lock);
249 return ret;
250 }
251 #endif /* SCA3000_DEBUG */
252
253
254 /**
255 * sca3000_show_reg() - sysfs interface to read the chip revision number
256 **/
257 static ssize_t sca3000_show_rev(struct device *dev,
258 struct device_attribute *attr,
259 char *buf)
260 {
261 int len = 0, ret;
262 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
263 struct sca3000_state *st = iio_priv(indio_dev);
264
265 mutex_lock(&st->lock);
266 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_REVID, 1);
267 if (ret < 0)
268 goto error_ret;
269 len += sprintf(buf + len,
270 "major=%d, minor=%d\n",
271 st->rx[0] & SCA3000_REVID_MAJOR_MASK,
272 st->rx[0] & SCA3000_REVID_MINOR_MASK);
273 error_ret:
274 mutex_unlock(&st->lock);
275
276 return ret ? ret : len;
277 }
278
279 /**
280 * sca3000_show_available_measurement_modes() display available modes
281 *
282 * This is all read from chip specific data in the driver. Not all
283 * of the sca3000 series support modes other than normal.
284 **/
285 static ssize_t
286 sca3000_show_available_measurement_modes(struct device *dev,
287 struct device_attribute *attr,
288 char *buf)
289 {
290 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
291 struct sca3000_state *st = iio_priv(indio_dev);
292 int len = 0;
293
294 len += sprintf(buf + len, "0 - normal mode");
295 switch (st->info->option_mode_1) {
296 case SCA3000_OP_MODE_NARROW:
297 len += sprintf(buf + len, ", 1 - narrow mode");
298 break;
299 case SCA3000_OP_MODE_BYPASS:
300 len += sprintf(buf + len, ", 1 - bypass mode");
301 break;
302 }
303 switch (st->info->option_mode_2) {
304 case SCA3000_OP_MODE_WIDE:
305 len += sprintf(buf + len, ", 2 - wide mode");
306 break;
307 }
308 /* always supported */
309 len += sprintf(buf + len, " 3 - motion detection\n");
310
311 return len;
312 }
313
314 /**
315 * sca3000_show_measurmenet_mode() sysfs read of current mode
316 **/
317 static ssize_t
318 sca3000_show_measurement_mode(struct device *dev,
319 struct device_attribute *attr,
320 char *buf)
321 {
322 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
323 struct sca3000_state *st = iio_priv(indio_dev);
324 int len = 0, ret;
325
326 mutex_lock(&st->lock);
327 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
328 if (ret)
329 goto error_ret;
330 /* mask bottom 2 bits - only ones that are relevant */
331 st->rx[0] &= 0x03;
332 switch (st->rx[0]) {
333 case SCA3000_MEAS_MODE_NORMAL:
334 len += sprintf(buf + len, "0 - normal mode\n");
335 break;
336 case SCA3000_MEAS_MODE_MOT_DET:
337 len += sprintf(buf + len, "3 - motion detection\n");
338 break;
339 case SCA3000_MEAS_MODE_OP_1:
340 switch (st->info->option_mode_1) {
341 case SCA3000_OP_MODE_NARROW:
342 len += sprintf(buf + len, "1 - narrow mode\n");
343 break;
344 case SCA3000_OP_MODE_BYPASS:
345 len += sprintf(buf + len, "1 - bypass mode\n");
346 break;
347 }
348 break;
349 case SCA3000_MEAS_MODE_OP_2:
350 switch (st->info->option_mode_2) {
351 case SCA3000_OP_MODE_WIDE:
352 len += sprintf(buf + len, "2 - wide mode\n");
353 break;
354 }
355 break;
356 }
357
358 error_ret:
359 mutex_unlock(&st->lock);
360
361 return ret ? ret : len;
362 }
363
364 /**
365 * sca3000_store_measurement_mode() set the current mode
366 **/
367 static ssize_t
368 sca3000_store_measurement_mode(struct device *dev,
369 struct device_attribute *attr,
370 const char *buf,
371 size_t len)
372 {
373 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
374 struct sca3000_state *st = iio_priv(indio_dev);
375 int ret;
376 u8 mask = 0x03;
377 u8 val;
378
379 mutex_lock(&st->lock);
380 ret = kstrtou8(buf, 10, &val);
381 if (ret)
382 goto error_ret;
383 if (val > 3) {
384 ret = -EINVAL;
385 goto error_ret;
386 }
387 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
388 if (ret)
389 goto error_ret;
390 st->rx[0] &= ~mask;
391 st->rx[0] |= (val & mask);
392 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE, st->rx[0]);
393 if (ret)
394 goto error_ret;
395 mutex_unlock(&st->lock);
396
397 return len;
398
399 error_ret:
400 mutex_unlock(&st->lock);
401
402 return ret;
403 }
404
405
406 /* Not even vaguely standard attributes so defined here rather than
407 * in the relevant IIO core headers
408 */
409 static IIO_DEVICE_ATTR(measurement_mode_available, S_IRUGO,
410 sca3000_show_available_measurement_modes,
411 NULL, 0);
412
413 static IIO_DEVICE_ATTR(measurement_mode, S_IRUGO | S_IWUSR,
414 sca3000_show_measurement_mode,
415 sca3000_store_measurement_mode,
416 0);
417
418 /* More standard attributes */
419
420 static IIO_DEVICE_ATTR(revision, S_IRUGO, sca3000_show_rev, NULL, 0);
421
422 #define SCA3000_EVENT_MASK \
423 (IIO_EV_BIT(IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING))
424
425 #define SCA3000_CHAN(index, mod) \
426 { \
427 .type = IIO_ACCEL, \
428 .modified = 1, \
429 .channel2 = mod, \
430 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
431 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),\
432 .address = index, \
433 .scan_index = index, \
434 .scan_type = { \
435 .sign = 's', \
436 .realbits = 11, \
437 .storagebits = 16, \
438 .shift = 5, \
439 }, \
440 .event_mask = SCA3000_EVENT_MASK, \
441 }
442
443 static const struct iio_chan_spec sca3000_channels[] = {
444 SCA3000_CHAN(0, IIO_MOD_X),
445 SCA3000_CHAN(1, IIO_MOD_Y),
446 SCA3000_CHAN(2, IIO_MOD_Z),
447 };
448
449 static u8 sca3000_addresses[3][3] = {
450 [0] = {SCA3000_REG_ADDR_X_MSB, SCA3000_REG_CTRL_SEL_MD_X_TH,
451 SCA3000_MD_CTRL_OR_X},
452 [1] = {SCA3000_REG_ADDR_Y_MSB, SCA3000_REG_CTRL_SEL_MD_Y_TH,
453 SCA3000_MD_CTRL_OR_Y},
454 [2] = {SCA3000_REG_ADDR_Z_MSB, SCA3000_REG_CTRL_SEL_MD_Z_TH,
455 SCA3000_MD_CTRL_OR_Z},
456 };
457
458 static int sca3000_read_raw(struct iio_dev *indio_dev,
459 struct iio_chan_spec const *chan,
460 int *val,
461 int *val2,
462 long mask)
463 {
464 struct sca3000_state *st = iio_priv(indio_dev);
465 int ret;
466 u8 address;
467
468 switch (mask) {
469 case IIO_CHAN_INFO_RAW:
470 mutex_lock(&st->lock);
471 if (st->mo_det_use_count) {
472 mutex_unlock(&st->lock);
473 return -EBUSY;
474 }
475 address = sca3000_addresses[chan->address][0];
476 ret = sca3000_read_data_short(st, address, 2);
477 if (ret < 0) {
478 mutex_unlock(&st->lock);
479 return ret;
480 }
481 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
482 *val = ((*val) << (sizeof(*val)*8 - 13)) >>
483 (sizeof(*val)*8 - 13);
484 mutex_unlock(&st->lock);
485 return IIO_VAL_INT;
486 case IIO_CHAN_INFO_SCALE:
487 *val = 0;
488 if (chan->type == IIO_ACCEL)
489 *val2 = st->info->scale;
490 else /* temperature */
491 *val2 = 555556;
492 return IIO_VAL_INT_PLUS_MICRO;
493 default:
494 return -EINVAL;
495 }
496 }
497
498 /**
499 * sca3000_read_av_freq() sysfs function to get available frequencies
500 *
501 * The later modes are only relevant to the ring buffer - and depend on current
502 * mode. Note that data sheet gives rather wide tolerances for these so integer
503 * division will give good enough answer and not all chips have them specified
504 * at all.
505 **/
506 static ssize_t sca3000_read_av_freq(struct device *dev,
507 struct device_attribute *attr,
508 char *buf)
509 {
510 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
511 struct sca3000_state *st = iio_priv(indio_dev);
512 int len = 0, ret, val;
513
514 mutex_lock(&st->lock);
515 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
516 val = st->rx[0];
517 mutex_unlock(&st->lock);
518 if (ret)
519 goto error_ret;
520
521 switch (val & 0x03) {
522 case SCA3000_MEAS_MODE_NORMAL:
523 len += sprintf(buf + len, "%d %d %d\n",
524 st->info->measurement_mode_freq,
525 st->info->measurement_mode_freq/2,
526 st->info->measurement_mode_freq/4);
527 break;
528 case SCA3000_MEAS_MODE_OP_1:
529 len += sprintf(buf + len, "%d %d %d\n",
530 st->info->option_mode_1_freq,
531 st->info->option_mode_1_freq/2,
532 st->info->option_mode_1_freq/4);
533 break;
534 case SCA3000_MEAS_MODE_OP_2:
535 len += sprintf(buf + len, "%d %d %d\n",
536 st->info->option_mode_2_freq,
537 st->info->option_mode_2_freq/2,
538 st->info->option_mode_2_freq/4);
539 break;
540 }
541 return len;
542 error_ret:
543 return ret;
544 }
545 /**
546 * __sca3000_get_base_frequency() obtain mode specific base frequency
547 *
548 * lock must be held
549 **/
550 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
551 const struct sca3000_chip_info *info,
552 int *base_freq)
553 {
554 int ret;
555
556 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
557 if (ret)
558 goto error_ret;
559 switch (0x03 & st->rx[0]) {
560 case SCA3000_MEAS_MODE_NORMAL:
561 *base_freq = info->measurement_mode_freq;
562 break;
563 case SCA3000_MEAS_MODE_OP_1:
564 *base_freq = info->option_mode_1_freq;
565 break;
566 case SCA3000_MEAS_MODE_OP_2:
567 *base_freq = info->option_mode_2_freq;
568 break;
569 }
570 error_ret:
571 return ret;
572 }
573
574 /**
575 * sca3000_read_frequency() sysfs interface to get the current frequency
576 **/
577 static ssize_t sca3000_read_frequency(struct device *dev,
578 struct device_attribute *attr,
579 char *buf)
580 {
581 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
582 struct sca3000_state *st = iio_priv(indio_dev);
583 int ret, len = 0, base_freq = 0, val;
584
585 mutex_lock(&st->lock);
586 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
587 if (ret)
588 goto error_ret_mut;
589 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
590 mutex_unlock(&st->lock);
591 if (ret)
592 goto error_ret;
593 val = ret;
594 if (base_freq > 0)
595 switch (val & 0x03) {
596 case 0x00:
597 case 0x03:
598 len = sprintf(buf, "%d\n", base_freq);
599 break;
600 case 0x01:
601 len = sprintf(buf, "%d\n", base_freq/2);
602 break;
603 case 0x02:
604 len = sprintf(buf, "%d\n", base_freq/4);
605 break;
606 }
607
608 return len;
609 error_ret_mut:
610 mutex_unlock(&st->lock);
611 error_ret:
612 return ret;
613 }
614
615 /**
616 * sca3000_set_frequency() sysfs interface to set the current frequency
617 **/
618 static ssize_t sca3000_set_frequency(struct device *dev,
619 struct device_attribute *attr,
620 const char *buf,
621 size_t len)
622 {
623 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
624 struct sca3000_state *st = iio_priv(indio_dev);
625 int ret, base_freq = 0;
626 int ctrlval;
627 long val;
628
629 ret = strict_strtol(buf, 10, &val);
630 if (ret)
631 return ret;
632
633 mutex_lock(&st->lock);
634 /* What mode are we in? */
635 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
636 if (ret)
637 goto error_free_lock;
638
639 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
640 if (ret < 0)
641 goto error_free_lock;
642 ctrlval = ret;
643 /* clear the bits */
644 ctrlval &= ~0x03;
645
646 if (val == base_freq/2) {
647 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_2;
648 } else if (val == base_freq/4) {
649 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_4;
650 } else if (val != base_freq) {
651 ret = -EINVAL;
652 goto error_free_lock;
653 }
654 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
655 ctrlval);
656 error_free_lock:
657 mutex_unlock(&st->lock);
658
659 return ret ? ret : len;
660 }
661
662 /* Should only really be registered if ring buffer support is compiled in.
663 * Does no harm however and doing it right would add a fair bit of complexity
664 */
665 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
666
667 static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
668 sca3000_read_frequency,
669 sca3000_set_frequency);
670
671
672 /**
673 * sca3000_read_temp() sysfs interface to get the temperature when available
674 *
675 * The alignment of data in here is downright odd. See data sheet.
676 * Converting this into a meaningful value is left to inline functions in
677 * userspace part of header.
678 **/
679 static ssize_t sca3000_read_temp(struct device *dev,
680 struct device_attribute *attr,
681 char *buf)
682 {
683 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
684 struct sca3000_state *st = iio_priv(indio_dev);
685 int ret;
686 int val;
687 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_TEMP_MSB, 2);
688 if (ret < 0)
689 goto error_ret;
690 val = ((st->rx[0] & 0x3F) << 3) | ((st->rx[1] & 0xE0) >> 5);
691
692 return sprintf(buf, "%d\n", val);
693
694 error_ret:
695 return ret;
696 }
697 static IIO_DEV_ATTR_TEMP_RAW(sca3000_read_temp);
698
699 static IIO_CONST_ATTR_TEMP_SCALE("0.555556");
700 static IIO_CONST_ATTR_TEMP_OFFSET("-214.6");
701
702 /**
703 * sca3000_read_thresh() - query of a threshold
704 **/
705 static int sca3000_read_thresh(struct iio_dev *indio_dev,
706 u64 e,
707 int *val)
708 {
709 int ret, i;
710 struct sca3000_state *st = iio_priv(indio_dev);
711 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
712 mutex_lock(&st->lock);
713 ret = sca3000_read_ctrl_reg(st, sca3000_addresses[num][1]);
714 mutex_unlock(&st->lock);
715 if (ret < 0)
716 return ret;
717 *val = 0;
718 if (num == 1)
719 for_each_set_bit(i, (unsigned long *)&ret,
720 ARRAY_SIZE(st->info->mot_det_mult_y))
721 *val += st->info->mot_det_mult_y[i];
722 else
723 for_each_set_bit(i, (unsigned long *)&ret,
724 ARRAY_SIZE(st->info->mot_det_mult_xz))
725 *val += st->info->mot_det_mult_xz[i];
726
727 return 0;
728 }
729
730 /**
731 * sca3000_write_thresh() control of threshold
732 **/
733 static int sca3000_write_thresh(struct iio_dev *indio_dev,
734 u64 e,
735 int val)
736 {
737 struct sca3000_state *st = iio_priv(indio_dev);
738 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
739 int ret;
740 int i;
741 u8 nonlinear = 0;
742
743 if (num == 1) {
744 i = ARRAY_SIZE(st->info->mot_det_mult_y);
745 while (i > 0)
746 if (val >= st->info->mot_det_mult_y[--i]) {
747 nonlinear |= (1 << i);
748 val -= st->info->mot_det_mult_y[i];
749 }
750 } else {
751 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
752 while (i > 0)
753 if (val >= st->info->mot_det_mult_xz[--i]) {
754 nonlinear |= (1 << i);
755 val -= st->info->mot_det_mult_xz[i];
756 }
757 }
758
759 mutex_lock(&st->lock);
760 ret = sca3000_write_ctrl_reg(st, sca3000_addresses[num][1], nonlinear);
761 mutex_unlock(&st->lock);
762
763 return ret;
764 }
765
766 static struct attribute *sca3000_attributes[] = {
767 &iio_dev_attr_revision.dev_attr.attr,
768 &iio_dev_attr_measurement_mode_available.dev_attr.attr,
769 &iio_dev_attr_measurement_mode.dev_attr.attr,
770 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
771 &iio_dev_attr_sampling_frequency.dev_attr.attr,
772 NULL,
773 };
774
775 static struct attribute *sca3000_attributes_with_temp[] = {
776 &iio_dev_attr_revision.dev_attr.attr,
777 &iio_dev_attr_measurement_mode_available.dev_attr.attr,
778 &iio_dev_attr_measurement_mode.dev_attr.attr,
779 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
780 &iio_dev_attr_sampling_frequency.dev_attr.attr,
781 /* Only present if temp sensor is */
782 &iio_dev_attr_in_temp_raw.dev_attr.attr,
783 &iio_const_attr_in_temp_offset.dev_attr.attr,
784 &iio_const_attr_in_temp_scale.dev_attr.attr,
785 NULL,
786 };
787
788 static const struct attribute_group sca3000_attribute_group = {
789 .attrs = sca3000_attributes,
790 };
791
792 static const struct attribute_group sca3000_attribute_group_with_temp = {
793 .attrs = sca3000_attributes_with_temp,
794 };
795
796 /* RING RELATED interrupt handler */
797 /* depending on event, push to the ring buffer event chrdev or the event one */
798
799 /**
800 * sca3000_event_handler() - handling ring and non ring events
801 *
802 * This function is complicated by the fact that the devices can signify ring
803 * and non ring events via the same interrupt line and they can only
804 * be distinguished via a read of the relevant status register.
805 **/
806 static irqreturn_t sca3000_event_handler(int irq, void *private)
807 {
808 struct iio_dev *indio_dev = private;
809 struct sca3000_state *st = iio_priv(indio_dev);
810 int ret, val;
811 s64 last_timestamp = iio_get_time_ns();
812
813 /* Could lead if badly timed to an extra read of status reg,
814 * but ensures no interrupt is missed.
815 */
816 mutex_lock(&st->lock);
817 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
818 val = st->rx[0];
819 mutex_unlock(&st->lock);
820 if (ret)
821 goto done;
822
823 sca3000_ring_int_process(val, indio_dev->buffer);
824
825 if (val & SCA3000_INT_STATUS_FREE_FALL)
826 iio_push_event(indio_dev,
827 IIO_MOD_EVENT_CODE(IIO_ACCEL,
828 0,
829 IIO_MOD_X_AND_Y_AND_Z,
830 IIO_EV_TYPE_MAG,
831 IIO_EV_DIR_FALLING),
832 last_timestamp);
833
834 if (val & SCA3000_INT_STATUS_Y_TRIGGER)
835 iio_push_event(indio_dev,
836 IIO_MOD_EVENT_CODE(IIO_ACCEL,
837 0,
838 IIO_MOD_Y,
839 IIO_EV_TYPE_MAG,
840 IIO_EV_DIR_RISING),
841 last_timestamp);
842
843 if (val & SCA3000_INT_STATUS_X_TRIGGER)
844 iio_push_event(indio_dev,
845 IIO_MOD_EVENT_CODE(IIO_ACCEL,
846 0,
847 IIO_MOD_X,
848 IIO_EV_TYPE_MAG,
849 IIO_EV_DIR_RISING),
850 last_timestamp);
851
852 if (val & SCA3000_INT_STATUS_Z_TRIGGER)
853 iio_push_event(indio_dev,
854 IIO_MOD_EVENT_CODE(IIO_ACCEL,
855 0,
856 IIO_MOD_Z,
857 IIO_EV_TYPE_MAG,
858 IIO_EV_DIR_RISING),
859 last_timestamp);
860
861 done:
862 return IRQ_HANDLED;
863 }
864
865 /**
866 * sca3000_read_event_config() what events are enabled
867 **/
868 static int sca3000_read_event_config(struct iio_dev *indio_dev,
869 u64 e)
870 {
871 struct sca3000_state *st = iio_priv(indio_dev);
872 int ret;
873 u8 protect_mask = 0x03;
874 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
875
876 /* read current value of mode register */
877 mutex_lock(&st->lock);
878 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
879 if (ret)
880 goto error_ret;
881
882 if ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET)
883 ret = 0;
884 else {
885 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
886 if (ret < 0)
887 goto error_ret;
888 /* only supporting logical or's for now */
889 ret = !!(ret & sca3000_addresses[num][2]);
890 }
891 error_ret:
892 mutex_unlock(&st->lock);
893
894 return ret;
895 }
896 /**
897 * sca3000_query_free_fall_mode() is free fall mode enabled
898 **/
899 static ssize_t sca3000_query_free_fall_mode(struct device *dev,
900 struct device_attribute *attr,
901 char *buf)
902 {
903 int ret, len;
904 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
905 struct sca3000_state *st = iio_priv(indio_dev);
906 int val;
907
908 mutex_lock(&st->lock);
909 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
910 val = st->rx[0];
911 mutex_unlock(&st->lock);
912 if (ret < 0)
913 return ret;
914 len = sprintf(buf, "%d\n",
915 !!(val & SCA3000_FREE_FALL_DETECT));
916 return len;
917 }
918
919 /**
920 * sca3000_set_free_fall_mode() simple on off control for free fall int
921 *
922 * In these chips the free fall detector should send an interrupt if
923 * the device falls more than 25cm. This has not been tested due
924 * to fragile wiring.
925 **/
926
927 static ssize_t sca3000_set_free_fall_mode(struct device *dev,
928 struct device_attribute *attr,
929 const char *buf,
930 size_t len)
931 {
932 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
933 struct sca3000_state *st = iio_priv(indio_dev);
934 long val;
935 int ret;
936 u8 protect_mask = SCA3000_FREE_FALL_DETECT;
937
938 mutex_lock(&st->lock);
939 ret = strict_strtol(buf, 10, &val);
940 if (ret)
941 goto error_ret;
942
943 /* read current value of mode register */
944 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
945 if (ret)
946 goto error_ret;
947
948 /*if off and should be on*/
949 if (val && !(st->rx[0] & protect_mask))
950 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
951 (st->rx[0] | SCA3000_FREE_FALL_DETECT));
952 /* if on and should be off */
953 else if (!val && (st->rx[0] & protect_mask))
954 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
955 (st->rx[0] & ~protect_mask));
956 error_ret:
957 mutex_unlock(&st->lock);
958
959 return ret ? ret : len;
960 }
961
962 /**
963 * sca3000_set_mo_det() simple on off control for motion detector
964 *
965 * This is a per axis control, but enabling any will result in the
966 * motion detector unit being enabled.
967 * N.B. enabling motion detector stops normal data acquisition.
968 * There is a complexity in knowing which mode to return to when
969 * this mode is disabled. Currently normal mode is assumed.
970 **/
971 static int sca3000_write_event_config(struct iio_dev *indio_dev,
972 u64 e,
973 int state)
974 {
975 struct sca3000_state *st = iio_priv(indio_dev);
976 int ret, ctrlval;
977 u8 protect_mask = 0x03;
978 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
979
980 mutex_lock(&st->lock);
981 /* First read the motion detector config to find out if
982 * this axis is on*/
983 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
984 if (ret < 0)
985 goto exit_point;
986 ctrlval = ret;
987 /* Off and should be on */
988 if (state && !(ctrlval & sca3000_addresses[num][2])) {
989 ret = sca3000_write_ctrl_reg(st,
990 SCA3000_REG_CTRL_SEL_MD_CTRL,
991 ctrlval |
992 sca3000_addresses[num][2]);
993 if (ret)
994 goto exit_point;
995 st->mo_det_use_count++;
996 } else if (!state && (ctrlval & sca3000_addresses[num][2])) {
997 ret = sca3000_write_ctrl_reg(st,
998 SCA3000_REG_CTRL_SEL_MD_CTRL,
999 ctrlval &
1000 ~(sca3000_addresses[num][2]));
1001 if (ret)
1002 goto exit_point;
1003 st->mo_det_use_count--;
1004 }
1005
1006 /* read current value of mode register */
1007 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
1008 if (ret)
1009 goto exit_point;
1010 /*if off and should be on*/
1011 if ((st->mo_det_use_count)
1012 && ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET))
1013 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1014 (st->rx[0] & ~protect_mask)
1015 | SCA3000_MEAS_MODE_MOT_DET);
1016 /* if on and should be off */
1017 else if (!(st->mo_det_use_count)
1018 && ((st->rx[0] & protect_mask) == SCA3000_MEAS_MODE_MOT_DET))
1019 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1020 (st->rx[0] & ~protect_mask));
1021 exit_point:
1022 mutex_unlock(&st->lock);
1023
1024 return ret;
1025 }
1026
1027 /* Free fall detector related event attribute */
1028 static IIO_DEVICE_ATTR_NAMED(accel_xayaz_mag_falling_en,
1029 in_accel_x&y&z_mag_falling_en,
1030 S_IRUGO | S_IWUSR,
1031 sca3000_query_free_fall_mode,
1032 sca3000_set_free_fall_mode,
1033 0);
1034
1035 static IIO_CONST_ATTR_NAMED(accel_xayaz_mag_falling_period,
1036 in_accel_x&y&z_mag_falling_period,
1037 "0.226");
1038
1039 static struct attribute *sca3000_event_attributes[] = {
1040 &iio_dev_attr_accel_xayaz_mag_falling_en.dev_attr.attr,
1041 &iio_const_attr_accel_xayaz_mag_falling_period.dev_attr.attr,
1042 NULL,
1043 };
1044
1045 static struct attribute_group sca3000_event_attribute_group = {
1046 .attrs = sca3000_event_attributes,
1047 .name = "events",
1048 };
1049
1050 /**
1051 * sca3000_clean_setup() get the device into a predictable state
1052 *
1053 * Devices use flash memory to store many of the register values
1054 * and hence can come up in somewhat unpredictable states.
1055 * Hence reset everything on driver load.
1056 **/
1057 static int sca3000_clean_setup(struct sca3000_state *st)
1058 {
1059 int ret;
1060
1061 mutex_lock(&st->lock);
1062 /* Ensure all interrupts have been acknowledged */
1063 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
1064 if (ret)
1065 goto error_ret;
1066
1067 /* Turn off all motion detection channels */
1068 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1069 if (ret < 0)
1070 goto error_ret;
1071 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1072 ret & SCA3000_MD_CTRL_PROT_MASK);
1073 if (ret)
1074 goto error_ret;
1075
1076 /* Disable ring buffer */
1077 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1078 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1079 (ret & SCA3000_OUT_CTRL_PROT_MASK)
1080 | SCA3000_OUT_CTRL_BUF_X_EN
1081 | SCA3000_OUT_CTRL_BUF_Y_EN
1082 | SCA3000_OUT_CTRL_BUF_Z_EN
1083 | SCA3000_OUT_CTRL_BUF_DIV_4);
1084 if (ret)
1085 goto error_ret;
1086 /* Enable interrupts, relevant to mode and set up as active low */
1087 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1088 if (ret)
1089 goto error_ret;
1090 ret = sca3000_write_reg(st,
1091 SCA3000_REG_ADDR_INT_MASK,
1092 (ret & SCA3000_INT_MASK_PROT_MASK)
1093 | SCA3000_INT_MASK_ACTIVE_LOW);
1094 if (ret)
1095 goto error_ret;
1096 /* Select normal measurement mode, free fall off, ring off */
1097 /* Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1098 * as that occurs in one of the example on the datasheet */
1099 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
1100 if (ret)
1101 goto error_ret;
1102 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1103 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1104 st->bpse = 11;
1105
1106 error_ret:
1107 mutex_unlock(&st->lock);
1108 return ret;
1109 }
1110
1111 static const struct iio_info sca3000_info = {
1112 .attrs = &sca3000_attribute_group,
1113 .read_raw = &sca3000_read_raw,
1114 .event_attrs = &sca3000_event_attribute_group,
1115 .read_event_value = &sca3000_read_thresh,
1116 .write_event_value = &sca3000_write_thresh,
1117 .read_event_config = &sca3000_read_event_config,
1118 .write_event_config = &sca3000_write_event_config,
1119 .driver_module = THIS_MODULE,
1120 };
1121
1122 static const struct iio_info sca3000_info_with_temp = {
1123 .attrs = &sca3000_attribute_group_with_temp,
1124 .read_raw = &sca3000_read_raw,
1125 .read_event_value = &sca3000_read_thresh,
1126 .write_event_value = &sca3000_write_thresh,
1127 .read_event_config = &sca3000_read_event_config,
1128 .write_event_config = &sca3000_write_event_config,
1129 .driver_module = THIS_MODULE,
1130 };
1131
1132 static int sca3000_probe(struct spi_device *spi)
1133 {
1134 int ret;
1135 struct sca3000_state *st;
1136 struct iio_dev *indio_dev;
1137
1138 indio_dev = iio_device_alloc(sizeof(*st));
1139 if (indio_dev == NULL) {
1140 ret = -ENOMEM;
1141 goto error_ret;
1142 }
1143
1144 st = iio_priv(indio_dev);
1145 spi_set_drvdata(spi, indio_dev);
1146 st->us = spi;
1147 mutex_init(&st->lock);
1148 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1149 ->driver_data];
1150
1151 indio_dev->dev.parent = &spi->dev;
1152 indio_dev->name = spi_get_device_id(spi)->name;
1153 if (st->info->temp_output)
1154 indio_dev->info = &sca3000_info_with_temp;
1155 else {
1156 indio_dev->info = &sca3000_info;
1157 indio_dev->channels = sca3000_channels;
1158 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1159 }
1160 indio_dev->modes = INDIO_DIRECT_MODE;
1161
1162 sca3000_configure_ring(indio_dev);
1163 ret = iio_device_register(indio_dev);
1164 if (ret < 0)
1165 goto error_free_dev;
1166
1167 ret = iio_buffer_register(indio_dev,
1168 sca3000_channels,
1169 ARRAY_SIZE(sca3000_channels));
1170 if (ret < 0)
1171 goto error_unregister_dev;
1172 if (indio_dev->buffer) {
1173 iio_scan_mask_set(indio_dev, indio_dev->buffer, 0);
1174 iio_scan_mask_set(indio_dev, indio_dev->buffer, 1);
1175 iio_scan_mask_set(indio_dev, indio_dev->buffer, 2);
1176 }
1177
1178 if (spi->irq) {
1179 ret = request_threaded_irq(spi->irq,
1180 NULL,
1181 &sca3000_event_handler,
1182 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1183 "sca3000",
1184 indio_dev);
1185 if (ret)
1186 goto error_unregister_ring;
1187 }
1188 sca3000_register_ring_funcs(indio_dev);
1189 ret = sca3000_clean_setup(st);
1190 if (ret)
1191 goto error_free_irq;
1192 return 0;
1193
1194 error_free_irq:
1195 if (spi->irq)
1196 free_irq(spi->irq, indio_dev);
1197 error_unregister_ring:
1198 iio_buffer_unregister(indio_dev);
1199 error_unregister_dev:
1200 iio_device_unregister(indio_dev);
1201 error_free_dev:
1202 iio_device_free(indio_dev);
1203
1204 error_ret:
1205 return ret;
1206 }
1207
1208 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1209 {
1210 int ret;
1211
1212 mutex_lock(&st->lock);
1213 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1214 if (ret)
1215 goto error_ret;
1216 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_INT_MASK,
1217 (st->rx[0] &
1218 ~(SCA3000_INT_MASK_RING_THREE_QUARTER |
1219 SCA3000_INT_MASK_RING_HALF |
1220 SCA3000_INT_MASK_ALL_INTS)));
1221 error_ret:
1222 mutex_unlock(&st->lock);
1223 return ret;
1224 }
1225
1226 static int sca3000_remove(struct spi_device *spi)
1227 {
1228 struct iio_dev *indio_dev = spi_get_drvdata(spi);
1229 struct sca3000_state *st = iio_priv(indio_dev);
1230
1231 /* Must ensure no interrupts can be generated after this!*/
1232 sca3000_stop_all_interrupts(st);
1233 if (spi->irq)
1234 free_irq(spi->irq, indio_dev);
1235 iio_device_unregister(indio_dev);
1236 iio_buffer_unregister(indio_dev);
1237 sca3000_unconfigure_ring(indio_dev);
1238 iio_device_free(indio_dev);
1239
1240 return 0;
1241 }
1242
1243 static const struct spi_device_id sca3000_id[] = {
1244 {"sca3000_d01", d01},
1245 {"sca3000_e02", e02},
1246 {"sca3000_e04", e04},
1247 {"sca3000_e05", e05},
1248 {}
1249 };
1250 MODULE_DEVICE_TABLE(spi, sca3000_id);
1251
1252 static struct spi_driver sca3000_driver = {
1253 .driver = {
1254 .name = "sca3000",
1255 .owner = THIS_MODULE,
1256 },
1257 .probe = sca3000_probe,
1258 .remove = sca3000_remove,
1259 .id_table = sca3000_id,
1260 };
1261 module_spi_driver(sca3000_driver);
1262
1263 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1264 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1265 MODULE_LICENSE("GPL v2");
This page took 0.084615 seconds and 5 git commands to generate.