staging: iio: push the main buffer chrdev down to the top level.
[deliverable/linux.git] / drivers / staging / iio / accel / sca3000_ring.c
1 /*
2 * sca3000_ring.c -- support VTI sca3000 series accelerometers via SPI
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
9 *
10 */
11
12 #include <linux/interrupt.h>
13 #include <linux/fs.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/spi/spi.h>
17 #include <linux/sysfs.h>
18 #include <linux/sched.h>
19 #include <linux/poll.h>
20
21 #include "../iio.h"
22 #include "../sysfs.h"
23 #include "../ring_generic.h"
24 #include "../ring_hw.h"
25 #include "sca3000.h"
26
27 /* RFC / future work
28 *
29 * The internal ring buffer doesn't actually change what it holds depending
30 * on which signals are enabled etc, merely whether you can read them.
31 * As such the scan mode selection is somewhat different than for a software
32 * ring buffer and changing it actually covers any data already in the buffer.
33 * Currently scan elements aren't configured so it doesn't matter.
34 */
35
36 static int sca3000_read_data(struct sca3000_state *st,
37 uint8_t reg_address_high,
38 u8 **rx_p,
39 int len)
40 {
41 int ret;
42 struct spi_message msg;
43 struct spi_transfer xfer[2] = {
44 {
45 .len = 1,
46 .tx_buf = st->tx,
47 }, {
48 .len = len,
49 }
50 };
51 *rx_p = kmalloc(len, GFP_KERNEL);
52 if (*rx_p == NULL) {
53 ret = -ENOMEM;
54 goto error_ret;
55 }
56 xfer[1].rx_buf = *rx_p;
57 st->tx[0] = SCA3000_READ_REG(reg_address_high);
58 spi_message_init(&msg);
59 spi_message_add_tail(&xfer[0], &msg);
60 spi_message_add_tail(&xfer[1], &msg);
61 ret = spi_sync(st->us, &msg);
62 if (ret) {
63 dev_err(get_device(&st->us->dev), "problem reading register");
64 goto error_free_rx;
65 }
66
67 return 0;
68 error_free_rx:
69 kfree(*rx_p);
70 error_ret:
71 return ret;
72 }
73
74 /**
75 * sca3000_read_first_n_hw_rb() - main ring access, pulls data from ring
76 * @r: the ring
77 * @count: number of samples to try and pull
78 * @data: output the actual samples pulled from the hw ring
79 *
80 * Currently does not provide timestamps. As the hardware doesn't add them they
81 * can only be inferred approximately from ring buffer events such as 50% full
82 * and knowledge of when buffer was last emptied. This is left to userspace.
83 **/
84 static int sca3000_read_first_n_hw_rb(struct iio_ring_buffer *r,
85 size_t count, char __user *buf)
86 {
87 struct iio_hw_ring_buffer *hw_ring = iio_to_hw_ring_buf(r);
88 struct iio_dev *indio_dev = hw_ring->private;
89 struct sca3000_state *st = iio_priv(indio_dev);
90 u8 *rx;
91 int ret, i, num_available, num_read = 0;
92 int bytes_per_sample = 1;
93
94 if (st->bpse == 11)
95 bytes_per_sample = 2;
96
97 mutex_lock(&st->lock);
98 if (count % bytes_per_sample) {
99 ret = -EINVAL;
100 goto error_ret;
101 }
102
103 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_BUF_COUNT, 1);
104 if (ret)
105 goto error_ret;
106 else
107 num_available = st->rx[0];
108 /*
109 * num_available is the total number of samples available
110 * i.e. number of time points * number of channels.
111 */
112 if (count > num_available * bytes_per_sample)
113 num_read = num_available*bytes_per_sample;
114 else
115 num_read = count;
116
117 ret = sca3000_read_data(st,
118 SCA3000_REG_ADDR_RING_OUT,
119 &rx, num_read);
120 if (ret)
121 goto error_ret;
122
123 for (i = 0; i < num_read; i++)
124 *(((u16 *)rx) + i) = be16_to_cpup((u16 *)rx + i);
125
126 if (copy_to_user(buf, rx, num_read))
127 ret = -EFAULT;
128 kfree(rx);
129 r->stufftoread = 0;
130 error_ret:
131 mutex_unlock(&st->lock);
132
133 return ret ? ret : num_read;
134 }
135
136 /* This is only valid with all 3 elements enabled */
137 static int sca3000_ring_get_length(struct iio_ring_buffer *r)
138 {
139 return 64;
140 }
141
142 /* only valid if resolution is kept at 11bits */
143 static int sca3000_ring_get_bytes_per_datum(struct iio_ring_buffer *r)
144 {
145 return 6;
146 }
147
148 static IIO_RING_ENABLE_ATTR;
149 static IIO_RING_BYTES_PER_DATUM_ATTR;
150 static IIO_RING_LENGTH_ATTR;
151
152 /**
153 * sca3000_query_ring_int() is the hardware ring status interrupt enabled
154 **/
155 static ssize_t sca3000_query_ring_int(struct device *dev,
156 struct device_attribute *attr,
157 char *buf)
158 {
159 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
160 int ret, val;
161 struct iio_ring_buffer *ring = dev_get_drvdata(dev);
162 struct iio_dev *indio_dev = ring->indio_dev;
163 struct sca3000_state *st = iio_priv(indio_dev);
164
165 mutex_lock(&st->lock);
166 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
167 val = st->rx[0];
168 mutex_unlock(&st->lock);
169 if (ret)
170 return ret;
171
172 return sprintf(buf, "%d\n", !!(val & this_attr->address));
173 }
174
175 /**
176 * sca3000_set_ring_int() set state of ring status interrupt
177 **/
178 static ssize_t sca3000_set_ring_int(struct device *dev,
179 struct device_attribute *attr,
180 const char *buf,
181 size_t len)
182 {
183 struct iio_ring_buffer *ring = dev_get_drvdata(dev);
184 struct iio_dev *indio_dev = ring->indio_dev;
185 struct sca3000_state *st = iio_priv(indio_dev);
186 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
187 long val;
188 int ret;
189
190 mutex_lock(&st->lock);
191 ret = strict_strtol(buf, 10, &val);
192 if (ret)
193 goto error_ret;
194 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
195 if (ret)
196 goto error_ret;
197 if (val)
198 ret = sca3000_write_reg(st,
199 SCA3000_REG_ADDR_INT_MASK,
200 st->rx[0] | this_attr->address);
201 else
202 ret = sca3000_write_reg(st,
203 SCA3000_REG_ADDR_INT_MASK,
204 st->rx[0] & ~this_attr->address);
205 error_ret:
206 mutex_unlock(&st->lock);
207
208 return ret ? ret : len;
209 }
210
211 static IIO_DEVICE_ATTR(50_percent, S_IRUGO | S_IWUSR,
212 sca3000_query_ring_int,
213 sca3000_set_ring_int,
214 SCA3000_INT_MASK_RING_HALF);
215
216 static IIO_DEVICE_ATTR(75_percent, S_IRUGO | S_IWUSR,
217 sca3000_query_ring_int,
218 sca3000_set_ring_int,
219 SCA3000_INT_MASK_RING_THREE_QUARTER);
220
221 static ssize_t sca3000_show_buffer_scale(struct device *dev,
222 struct device_attribute *attr,
223 char *buf)
224 {
225 struct iio_ring_buffer *ring = dev_get_drvdata(dev);
226 struct iio_dev *indio_dev = ring->indio_dev;
227 struct sca3000_state *st = iio_priv(indio_dev);
228
229 return sprintf(buf, "0.%06d\n", 4*st->info->scale);
230 }
231
232 static IIO_DEVICE_ATTR(accel_scale,
233 S_IRUGO,
234 sca3000_show_buffer_scale,
235 NULL,
236 0);
237
238 /*
239 * Ring buffer attributes
240 * This device is a bit unusual in that the sampling frequency and bpse
241 * only apply to the ring buffer. At all times full rate and accuracy
242 * is available via direct reading from registers.
243 */
244 static struct attribute *sca3000_ring_attributes[] = {
245 &dev_attr_length.attr,
246 &dev_attr_bytes_per_datum.attr,
247 &dev_attr_enable.attr,
248 &iio_dev_attr_50_percent.dev_attr.attr,
249 &iio_dev_attr_75_percent.dev_attr.attr,
250 &iio_dev_attr_accel_scale.dev_attr.attr,
251 NULL,
252 };
253
254 static struct attribute_group sca3000_ring_attr = {
255 .attrs = sca3000_ring_attributes,
256 .name = "buffer",
257 };
258
259 static struct iio_ring_buffer *sca3000_rb_allocate(struct iio_dev *indio_dev)
260 {
261 struct iio_ring_buffer *buf;
262 struct iio_hw_ring_buffer *ring;
263
264 ring = kzalloc(sizeof *ring, GFP_KERNEL);
265 if (!ring)
266 return NULL;
267
268 ring->private = indio_dev;
269 buf = &ring->buf;
270 buf->stufftoread = 0;
271 buf->attrs = &sca3000_ring_attr;
272 iio_ring_buffer_init(buf, indio_dev);
273
274 return buf;
275 }
276
277 static inline void sca3000_rb_free(struct iio_ring_buffer *r)
278 {
279 kfree(iio_to_hw_ring_buf(r));
280 }
281
282 static const struct iio_ring_access_funcs sca3000_ring_access_funcs = {
283 .read_first_n = &sca3000_read_first_n_hw_rb,
284 .get_length = &sca3000_ring_get_length,
285 .get_bytes_per_datum = &sca3000_ring_get_bytes_per_datum,
286 };
287
288 int sca3000_configure_ring(struct iio_dev *indio_dev)
289 {
290 indio_dev->ring = sca3000_rb_allocate(indio_dev);
291 if (indio_dev->ring == NULL)
292 return -ENOMEM;
293 indio_dev->modes |= INDIO_RING_HARDWARE_BUFFER;
294
295 indio_dev->ring->access = &sca3000_ring_access_funcs;
296
297 iio_scan_mask_set(indio_dev->ring, 0);
298 iio_scan_mask_set(indio_dev->ring, 1);
299 iio_scan_mask_set(indio_dev->ring, 2);
300
301 return 0;
302 }
303
304 void sca3000_unconfigure_ring(struct iio_dev *indio_dev)
305 {
306 sca3000_rb_free(indio_dev->ring);
307 }
308
309 static inline
310 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
311 {
312 struct sca3000_state *st = iio_priv(indio_dev);
313 int ret;
314
315 mutex_lock(&st->lock);
316 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
317 if (ret)
318 goto error_ret;
319 if (state) {
320 printk(KERN_INFO "supposedly enabling ring buffer\n");
321 ret = sca3000_write_reg(st,
322 SCA3000_REG_ADDR_MODE,
323 (st->rx[0] | SCA3000_RING_BUF_ENABLE));
324 } else
325 ret = sca3000_write_reg(st,
326 SCA3000_REG_ADDR_MODE,
327 (st->rx[0] & ~SCA3000_RING_BUF_ENABLE));
328 error_ret:
329 mutex_unlock(&st->lock);
330
331 return ret;
332 }
333 /**
334 * sca3000_hw_ring_preenable() hw ring buffer preenable function
335 *
336 * Very simple enable function as the chip will allows normal reads
337 * during ring buffer operation so as long as it is indeed running
338 * before we notify the core, the precise ordering does not matter.
339 **/
340 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
341 {
342 return __sca3000_hw_ring_state_set(indio_dev, 1);
343 }
344
345 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
346 {
347 return __sca3000_hw_ring_state_set(indio_dev, 0);
348 }
349
350 static const struct iio_ring_setup_ops sca3000_ring_setup_ops = {
351 .preenable = &sca3000_hw_ring_preenable,
352 .postdisable = &sca3000_hw_ring_postdisable,
353 };
354
355 void sca3000_register_ring_funcs(struct iio_dev *indio_dev)
356 {
357 indio_dev->ring->setup_ops = &sca3000_ring_setup_ops;
358 }
359
360 /**
361 * sca3000_ring_int_process() ring specific interrupt handling.
362 *
363 * This is only split from the main interrupt handler so as to
364 * reduce the amount of code if the ring buffer is not enabled.
365 **/
366 void sca3000_ring_int_process(u8 val, struct iio_ring_buffer *ring)
367 {
368 if (val & (SCA3000_INT_STATUS_THREE_QUARTERS |
369 SCA3000_INT_STATUS_HALF)) {
370 ring->stufftoread = true;
371 wake_up_interruptible(&ring->pollq);
372 }
373 }
This page took 0.070365 seconds and 5 git commands to generate.