staging: lustre: remove LPX64 define
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41 /** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91 #ifndef _LUSTRE_IDL_H_
92 #define _LUSTRE_IDL_H_
93
94 #include "../../../include/linux/libcfs/libcfs.h"
95
96 /* Defn's shared with user-space. */
97 #include "lustre_user.h"
98 #include "lustre_errno.h"
99
100 /*
101 * GENERAL STUFF
102 */
103 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
104 * FOO_REPLY_PORTAL is for incoming replies on the FOO
105 * FOO_BULK_PORTAL is for incoming bulk on the FOO
106 */
107
108 #define CONNMGR_REQUEST_PORTAL 1
109 #define CONNMGR_REPLY_PORTAL 2
110 //#define OSC_REQUEST_PORTAL 3
111 #define OSC_REPLY_PORTAL 4
112 //#define OSC_BULK_PORTAL 5
113 #define OST_IO_PORTAL 6
114 #define OST_CREATE_PORTAL 7
115 #define OST_BULK_PORTAL 8
116 //#define MDC_REQUEST_PORTAL 9
117 #define MDC_REPLY_PORTAL 10
118 //#define MDC_BULK_PORTAL 11
119 #define MDS_REQUEST_PORTAL 12
120 //#define MDS_REPLY_PORTAL 13
121 #define MDS_BULK_PORTAL 14
122 #define LDLM_CB_REQUEST_PORTAL 15
123 #define LDLM_CB_REPLY_PORTAL 16
124 #define LDLM_CANCEL_REQUEST_PORTAL 17
125 #define LDLM_CANCEL_REPLY_PORTAL 18
126 //#define PTLBD_REQUEST_PORTAL 19
127 //#define PTLBD_REPLY_PORTAL 20
128 //#define PTLBD_BULK_PORTAL 21
129 #define MDS_SETATTR_PORTAL 22
130 #define MDS_READPAGE_PORTAL 23
131 #define MDS_MDS_PORTAL 24
132
133 #define MGC_REPLY_PORTAL 25
134 #define MGS_REQUEST_PORTAL 26
135 #define MGS_REPLY_PORTAL 27
136 #define OST_REQUEST_PORTAL 28
137 #define FLD_REQUEST_PORTAL 29
138 #define SEQ_METADATA_PORTAL 30
139 #define SEQ_DATA_PORTAL 31
140 #define SEQ_CONTROLLER_PORTAL 32
141 #define MGS_BULK_PORTAL 33
142
143 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
144
145 /* packet types */
146 #define PTL_RPC_MSG_REQUEST 4711
147 #define PTL_RPC_MSG_ERR 4712
148 #define PTL_RPC_MSG_REPLY 4713
149
150 /* DON'T use swabbed values of MAGIC as magic! */
151 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
152 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
153
154 #define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
155 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
156
157 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
158
159 #define PTLRPC_MSG_VERSION 0x00000003
160 #define LUSTRE_VERSION_MASK 0xffff0000
161 #define LUSTRE_OBD_VERSION 0x00010000
162 #define LUSTRE_MDS_VERSION 0x00020000
163 #define LUSTRE_OST_VERSION 0x00030000
164 #define LUSTRE_DLM_VERSION 0x00040000
165 #define LUSTRE_LOG_VERSION 0x00050000
166 #define LUSTRE_MGS_VERSION 0x00060000
167
168 typedef __u32 mdsno_t;
169 typedef __u64 seqno_t;
170 typedef __u64 obd_id;
171 typedef __u64 obd_seq;
172 typedef __s64 obd_time;
173 typedef __u64 obd_size;
174 typedef __u64 obd_off;
175 typedef __u64 obd_blocks;
176 typedef __u64 obd_valid;
177 typedef __u32 obd_blksize;
178 typedef __u32 obd_mode;
179 typedef __u32 obd_uid;
180 typedef __u32 obd_gid;
181 typedef __u32 obd_flag;
182 typedef __u32 obd_count;
183
184 /**
185 * Describes a range of sequence, lsr_start is included but lsr_end is
186 * not in the range.
187 * Same structure is used in fld module where lsr_index field holds mdt id
188 * of the home mdt.
189 */
190 struct lu_seq_range {
191 __u64 lsr_start;
192 __u64 lsr_end;
193 __u32 lsr_index;
194 __u32 lsr_flags;
195 };
196
197 #define LU_SEQ_RANGE_MDT 0x0
198 #define LU_SEQ_RANGE_OST 0x1
199 #define LU_SEQ_RANGE_ANY 0x3
200
201 #define LU_SEQ_RANGE_MASK 0x3
202
203 static inline unsigned fld_range_type(const struct lu_seq_range *range)
204 {
205 return range->lsr_flags & LU_SEQ_RANGE_MASK;
206 }
207
208 static inline int fld_range_is_ost(const struct lu_seq_range *range)
209 {
210 return fld_range_type(range) == LU_SEQ_RANGE_OST;
211 }
212
213 static inline int fld_range_is_mdt(const struct lu_seq_range *range)
214 {
215 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
216 }
217
218 /**
219 * This all range is only being used when fld client sends fld query request,
220 * but it does not know whether the seq is MDT or OST, so it will send req
221 * with ALL type, which means either seq type gotten from lookup can be
222 * expected.
223 */
224 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
225 {
226 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
227 }
228
229 static inline void fld_range_set_type(struct lu_seq_range *range,
230 unsigned flags)
231 {
232 range->lsr_flags |= flags;
233 }
234
235 static inline void fld_range_set_mdt(struct lu_seq_range *range)
236 {
237 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
238 }
239
240 static inline void fld_range_set_ost(struct lu_seq_range *range)
241 {
242 fld_range_set_type(range, LU_SEQ_RANGE_OST);
243 }
244
245 static inline void fld_range_set_any(struct lu_seq_range *range)
246 {
247 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
248 }
249
250 /**
251 * returns width of given range \a r
252 */
253
254 static inline __u64 range_space(const struct lu_seq_range *range)
255 {
256 return range->lsr_end - range->lsr_start;
257 }
258
259 /**
260 * initialize range to zero
261 */
262
263 static inline void range_init(struct lu_seq_range *range)
264 {
265 memset(range, 0, sizeof(*range));
266 }
267
268 /**
269 * check if given seq id \a s is within given range \a r
270 */
271
272 static inline int range_within(const struct lu_seq_range *range,
273 __u64 s)
274 {
275 return s >= range->lsr_start && s < range->lsr_end;
276 }
277
278 static inline int range_is_sane(const struct lu_seq_range *range)
279 {
280 return (range->lsr_end >= range->lsr_start);
281 }
282
283 static inline int range_is_zero(const struct lu_seq_range *range)
284 {
285 return (range->lsr_start == 0 && range->lsr_end == 0);
286 }
287
288 static inline int range_is_exhausted(const struct lu_seq_range *range)
289
290 {
291 return range_space(range) == 0;
292 }
293
294 /* return 0 if two range have the same location */
295 static inline int range_compare_loc(const struct lu_seq_range *r1,
296 const struct lu_seq_range *r2)
297 {
298 return r1->lsr_index != r2->lsr_index ||
299 r1->lsr_flags != r2->lsr_flags;
300 }
301
302 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
303
304 #define PRANGE(range) \
305 (range)->lsr_start, \
306 (range)->lsr_end, \
307 (range)->lsr_index, \
308 fld_range_is_mdt(range) ? "mdt" : "ost"
309
310
311 /** \defgroup lu_fid lu_fid
312 * @{ */
313
314 /**
315 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
316 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
317 * xattr.
318 */
319 enum lma_compat {
320 LMAC_HSM = 0x00000001,
321 LMAC_SOM = 0x00000002,
322 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
323 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
324 * under /O/<seq>/d<x>. */
325 };
326
327 /**
328 * Masks for all features that should be supported by a Lustre version to
329 * access a specific file.
330 * This information is stored in lustre_mdt_attrs::lma_incompat.
331 */
332 enum lma_incompat {
333 LMAI_RELEASED = 0x00000001, /* file is released */
334 LMAI_AGENT = 0x00000002, /* agent inode */
335 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
336 is on the remote MDT */
337 };
338 #define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
339
340 extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
341 extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
342 const struct lu_fid *fid, __u32 incompat);
343 /**
344 * SOM on-disk attributes stored in a separate xattr.
345 */
346 struct som_attrs {
347 /** Bitfield for supported data in this structure. For future use. */
348 __u32 som_compat;
349
350 /** Incompat feature list. The supported feature mask is available in
351 * SOM_INCOMPAT_SUPP */
352 __u32 som_incompat;
353
354 /** IO Epoch SOM attributes belongs to */
355 __u64 som_ioepoch;
356 /** total file size in objects */
357 __u64 som_size;
358 /** total fs blocks in objects */
359 __u64 som_blocks;
360 /** mds mount id the size is valid for */
361 __u64 som_mountid;
362 };
363 extern void lustre_som_swab(struct som_attrs *attrs);
364
365 #define SOM_INCOMPAT_SUPP 0x0
366
367 /**
368 * HSM on-disk attributes stored in a separate xattr.
369 */
370 struct hsm_attrs {
371 /** Bitfield for supported data in this structure. For future use. */
372 __u32 hsm_compat;
373
374 /** HSM flags, see hsm_flags enum below */
375 __u32 hsm_flags;
376 /** backend archive id associated with the file */
377 __u64 hsm_arch_id;
378 /** version associated with the last archiving, if any */
379 __u64 hsm_arch_ver;
380 };
381 extern void lustre_hsm_swab(struct hsm_attrs *attrs);
382
383 /**
384 * fid constants
385 */
386 enum {
387 /** LASTID file has zero OID */
388 LUSTRE_FID_LASTID_OID = 0UL,
389 /** initial fid id value */
390 LUSTRE_FID_INIT_OID = 1UL
391 };
392
393 /** returns fid object sequence */
394 static inline __u64 fid_seq(const struct lu_fid *fid)
395 {
396 return fid->f_seq;
397 }
398
399 /** returns fid object id */
400 static inline __u32 fid_oid(const struct lu_fid *fid)
401 {
402 return fid->f_oid;
403 }
404
405 /** returns fid object version */
406 static inline __u32 fid_ver(const struct lu_fid *fid)
407 {
408 return fid->f_ver;
409 }
410
411 static inline void fid_zero(struct lu_fid *fid)
412 {
413 memset(fid, 0, sizeof(*fid));
414 }
415
416 static inline obd_id fid_ver_oid(const struct lu_fid *fid)
417 {
418 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
419 }
420
421 /**
422 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
423 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
424 * used for other purposes and not risk collisions with existing inodes.
425 *
426 * Different FID Format
427 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
428 */
429 enum fid_seq {
430 FID_SEQ_OST_MDT0 = 0,
431 FID_SEQ_LLOG = 1, /* unnamed llogs */
432 FID_SEQ_ECHO = 2,
433 FID_SEQ_OST_MDT1 = 3,
434 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
435 FID_SEQ_LLOG_NAME = 10, /* named llogs */
436 FID_SEQ_RSVD = 11,
437 FID_SEQ_IGIF = 12,
438 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
439 FID_SEQ_IDIF = 0x100000000ULL,
440 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
441 /* Normal FID sequence starts from this value, i.e. 1<<33 */
442 FID_SEQ_START = 0x200000000ULL,
443 /* sequence for local pre-defined FIDs listed in local_oid */
444 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
445 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
446 /* sequence is used for local named objects FIDs generated
447 * by local_object_storage library */
448 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
449 /* Because current FLD will only cache the fid sequence, instead
450 * of oid on the client side, if the FID needs to be exposed to
451 * clients sides, it needs to make sure all of fids under one
452 * sequence will be located in one MDT. */
453 FID_SEQ_SPECIAL = 0x200000004ULL,
454 FID_SEQ_QUOTA = 0x200000005ULL,
455 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
456 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
457 FID_SEQ_NORMAL = 0x200000400ULL,
458 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
459 };
460
461 #define OBIF_OID_MAX_BITS 32
462 #define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
463 #define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
464 #define IDIF_OID_MAX_BITS 48
465 #define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
466 #define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
467
468 /** OID for FID_SEQ_SPECIAL */
469 enum special_oid {
470 /* Big Filesystem Lock to serialize rename operations */
471 FID_OID_SPECIAL_BFL = 1UL,
472 };
473
474 /** OID for FID_SEQ_DOT_LUSTRE */
475 enum dot_lustre_oid {
476 FID_OID_DOT_LUSTRE = 1UL,
477 FID_OID_DOT_LUSTRE_OBF = 2UL,
478 };
479
480 static inline int fid_seq_is_mdt0(obd_seq seq)
481 {
482 return (seq == FID_SEQ_OST_MDT0);
483 }
484
485 static inline int fid_seq_is_mdt(const __u64 seq)
486 {
487 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
488 };
489
490 static inline int fid_seq_is_echo(obd_seq seq)
491 {
492 return (seq == FID_SEQ_ECHO);
493 }
494
495 static inline int fid_is_echo(const struct lu_fid *fid)
496 {
497 return fid_seq_is_echo(fid_seq(fid));
498 }
499
500 static inline int fid_seq_is_llog(obd_seq seq)
501 {
502 return (seq == FID_SEQ_LLOG);
503 }
504
505 static inline int fid_is_llog(const struct lu_fid *fid)
506 {
507 /* file with OID == 0 is not llog but contains last oid */
508 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
509 }
510
511 static inline int fid_seq_is_rsvd(const __u64 seq)
512 {
513 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
514 };
515
516 static inline int fid_seq_is_special(const __u64 seq)
517 {
518 return seq == FID_SEQ_SPECIAL;
519 };
520
521 static inline int fid_seq_is_local_file(const __u64 seq)
522 {
523 return seq == FID_SEQ_LOCAL_FILE ||
524 seq == FID_SEQ_LOCAL_NAME;
525 };
526
527 static inline int fid_seq_is_root(const __u64 seq)
528 {
529 return seq == FID_SEQ_ROOT;
530 }
531
532 static inline int fid_seq_is_dot(const __u64 seq)
533 {
534 return seq == FID_SEQ_DOT_LUSTRE;
535 }
536
537 static inline int fid_seq_is_default(const __u64 seq)
538 {
539 return seq == FID_SEQ_LOV_DEFAULT;
540 }
541
542 static inline int fid_is_mdt0(const struct lu_fid *fid)
543 {
544 return fid_seq_is_mdt0(fid_seq(fid));
545 }
546
547 static inline void lu_root_fid(struct lu_fid *fid)
548 {
549 fid->f_seq = FID_SEQ_ROOT;
550 fid->f_oid = 1;
551 fid->f_ver = 0;
552 }
553
554 /**
555 * Check if a fid is igif or not.
556 * \param fid the fid to be tested.
557 * \return true if the fid is a igif; otherwise false.
558 */
559 static inline int fid_seq_is_igif(const __u64 seq)
560 {
561 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
562 }
563
564 static inline int fid_is_igif(const struct lu_fid *fid)
565 {
566 return fid_seq_is_igif(fid_seq(fid));
567 }
568
569 /**
570 * Check if a fid is idif or not.
571 * \param fid the fid to be tested.
572 * \return true if the fid is a idif; otherwise false.
573 */
574 static inline int fid_seq_is_idif(const __u64 seq)
575 {
576 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
577 }
578
579 static inline int fid_is_idif(const struct lu_fid *fid)
580 {
581 return fid_seq_is_idif(fid_seq(fid));
582 }
583
584 static inline int fid_is_local_file(const struct lu_fid *fid)
585 {
586 return fid_seq_is_local_file(fid_seq(fid));
587 }
588
589 static inline int fid_seq_is_norm(const __u64 seq)
590 {
591 return (seq >= FID_SEQ_NORMAL);
592 }
593
594 static inline int fid_is_norm(const struct lu_fid *fid)
595 {
596 return fid_seq_is_norm(fid_seq(fid));
597 }
598
599 /* convert an OST objid into an IDIF FID SEQ number */
600 static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
601 {
602 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
603 }
604
605 /* convert a packed IDIF FID into an OST objid */
606 static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
607 {
608 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
609 }
610
611 /* extract ost index from IDIF FID */
612 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
613 {
614 return (fid_seq(fid) >> 16) & 0xffff;
615 }
616
617 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
618 static inline obd_seq ostid_seq(const struct ost_id *ostid)
619 {
620 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
621 return FID_SEQ_OST_MDT0;
622
623 if (fid_seq_is_default(ostid->oi.oi_seq))
624 return FID_SEQ_LOV_DEFAULT;
625
626 if (fid_is_idif(&ostid->oi_fid))
627 return FID_SEQ_OST_MDT0;
628
629 return fid_seq(&ostid->oi_fid);
630 }
631
632 /* extract OST objid from a wire ost_id (id/seq) pair */
633 static inline obd_id ostid_id(const struct ost_id *ostid)
634 {
635 if (fid_seq_is_mdt0(ostid_seq(ostid)))
636 return ostid->oi.oi_id & IDIF_OID_MASK;
637
638 if (fid_is_idif(&ostid->oi_fid))
639 return fid_idif_id(fid_seq(&ostid->oi_fid),
640 fid_oid(&ostid->oi_fid), 0);
641
642 return fid_oid(&ostid->oi_fid);
643 }
644
645 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
646 {
647 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
648 oi->oi.oi_seq = seq;
649 } else {
650 oi->oi_fid.f_seq = seq;
651 /* Note: if f_oid + f_ver is zero, we need init it
652 * to be 1, otherwise, ostid_seq will treat this
653 * as old ostid (oi_seq == 0) */
654 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
655 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
656 }
657 }
658
659 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
660 {
661 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
662 }
663
664 static inline void ostid_set_seq_echo(struct ost_id *oi)
665 {
666 ostid_set_seq(oi, FID_SEQ_ECHO);
667 }
668
669 static inline void ostid_set_seq_llog(struct ost_id *oi)
670 {
671 ostid_set_seq(oi, FID_SEQ_LLOG);
672 }
673
674 /**
675 * Note: we need check oi_seq to decide where to set oi_id,
676 * so oi_seq should always be set ahead of oi_id.
677 */
678 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
679 {
680 if (fid_seq_is_mdt0(ostid_seq(oi))) {
681 if (oid >= IDIF_MAX_OID) {
682 CERROR("Bad %llu to set "DOSTID"\n",
683 oid, POSTID(oi));
684 return;
685 }
686 oi->oi.oi_id = oid;
687 } else {
688 if (oid > OBIF_MAX_OID) {
689 CERROR("Bad %llu to set "DOSTID"\n",
690 oid, POSTID(oi));
691 return;
692 }
693 oi->oi_fid.f_oid = oid;
694 }
695 }
696
697 static inline void ostid_inc_id(struct ost_id *oi)
698 {
699 if (fid_seq_is_mdt0(ostid_seq(oi))) {
700 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
701 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
702 return;
703 }
704 oi->oi.oi_id++;
705 } else {
706 oi->oi_fid.f_oid++;
707 }
708 }
709
710 static inline void ostid_dec_id(struct ost_id *oi)
711 {
712 if (fid_seq_is_mdt0(ostid_seq(oi)))
713 oi->oi.oi_id--;
714 else
715 oi->oi_fid.f_oid--;
716 }
717
718 /**
719 * Unpack an OST object id/seq (group) into a FID. This is needed for
720 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
721 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
722 * be passed through unchanged. Only legacy OST objects in "group 0"
723 * will be mapped into the IDIF namespace so that they can fit into the
724 * struct lu_fid fields without loss. For reference see:
725 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
726 */
727 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
728 __u32 ost_idx)
729 {
730 if (ost_idx > 0xffff) {
731 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
732 ost_idx);
733 return -EBADF;
734 }
735
736 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
737 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
738 * that we map into the IDIF namespace. It allows up to 2^48
739 * objects per OST, as this is the object namespace that has
740 * been in production for years. This can handle create rates
741 * of 1M objects/s/OST for 9 years, or combinations thereof. */
742 if (ostid_id(ostid) >= IDIF_MAX_OID) {
743 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
744 POSTID(ostid), ost_idx);
745 return -EBADF;
746 }
747 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
748 /* truncate to 32 bits by assignment */
749 fid->f_oid = ostid_id(ostid);
750 /* in theory, not currently used */
751 fid->f_ver = ostid_id(ostid) >> 48;
752 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
753 /* This is either an IDIF object, which identifies objects across
754 * all OSTs, or a regular FID. The IDIF namespace maps legacy
755 * OST objects into the FID namespace. In both cases, we just
756 * pass the FID through, no conversion needed. */
757 if (ostid->oi_fid.f_ver != 0) {
758 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
759 POSTID(ostid), ost_idx);
760 return -EBADF;
761 }
762 *fid = ostid->oi_fid;
763 }
764
765 return 0;
766 }
767
768 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
769 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
770 {
771 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
772 CERROR("bad IGIF, "DFID"\n", PFID(fid));
773 return -EBADF;
774 }
775
776 if (fid_is_idif(fid)) {
777 ostid_set_seq_mdt0(ostid);
778 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
779 fid_ver(fid)));
780 } else {
781 ostid->oi_fid = *fid;
782 }
783
784 return 0;
785 }
786
787 /* Check whether the fid is for LAST_ID */
788 static inline int fid_is_last_id(const struct lu_fid *fid)
789 {
790 return (fid_oid(fid) == 0);
791 }
792
793 /**
794 * Get inode number from a igif.
795 * \param fid a igif to get inode number from.
796 * \return inode number for the igif.
797 */
798 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
799 {
800 return fid_seq(fid);
801 }
802
803 extern void lustre_swab_ost_id(struct ost_id *oid);
804
805 /**
806 * Get inode generation from a igif.
807 * \param fid a igif to get inode generation from.
808 * \return inode generation for the igif.
809 */
810 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
811 {
812 return fid_oid(fid);
813 }
814
815 /**
816 * Build igif from the inode number/generation.
817 */
818 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
819 {
820 fid->f_seq = ino;
821 fid->f_oid = gen;
822 fid->f_ver = 0;
823 }
824
825 /*
826 * Fids are transmitted across network (in the sender byte-ordering),
827 * and stored on disk in big-endian order.
828 */
829 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
830 {
831 dst->f_seq = cpu_to_le64(fid_seq(src));
832 dst->f_oid = cpu_to_le32(fid_oid(src));
833 dst->f_ver = cpu_to_le32(fid_ver(src));
834 }
835
836 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
837 {
838 dst->f_seq = le64_to_cpu(fid_seq(src));
839 dst->f_oid = le32_to_cpu(fid_oid(src));
840 dst->f_ver = le32_to_cpu(fid_ver(src));
841 }
842
843 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
844 {
845 dst->f_seq = cpu_to_be64(fid_seq(src));
846 dst->f_oid = cpu_to_be32(fid_oid(src));
847 dst->f_ver = cpu_to_be32(fid_ver(src));
848 }
849
850 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
851 {
852 dst->f_seq = be64_to_cpu(fid_seq(src));
853 dst->f_oid = be32_to_cpu(fid_oid(src));
854 dst->f_ver = be32_to_cpu(fid_ver(src));
855 }
856
857 static inline int fid_is_sane(const struct lu_fid *fid)
858 {
859 return fid != NULL &&
860 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
861 fid_is_igif(fid) || fid_is_idif(fid) ||
862 fid_seq_is_rsvd(fid_seq(fid)));
863 }
864
865 static inline int fid_is_zero(const struct lu_fid *fid)
866 {
867 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
868 }
869
870 extern void lustre_swab_lu_fid(struct lu_fid *fid);
871 extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
872
873 static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
874 {
875 return memcmp(f0, f1, sizeof(*f0)) == 0;
876 }
877
878 #define __diff_normalize(val0, val1) \
879 ({ \
880 typeof(val0) __val0 = (val0); \
881 typeof(val1) __val1 = (val1); \
882 \
883 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
884 })
885
886 static inline int lu_fid_cmp(const struct lu_fid *f0,
887 const struct lu_fid *f1)
888 {
889 return
890 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
891 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
892 __diff_normalize(fid_ver(f0), fid_ver(f1));
893 }
894
895 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
896 struct ost_id *dst_oi)
897 {
898 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
899 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
900 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
901 } else {
902 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
903 }
904 }
905
906 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
907 struct ost_id *dst_oi)
908 {
909 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
910 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
911 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
912 } else {
913 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
914 }
915 }
916
917 /** @} lu_fid */
918
919 /** \defgroup lu_dir lu_dir
920 * @{ */
921
922 /**
923 * Enumeration of possible directory entry attributes.
924 *
925 * Attributes follow directory entry header in the order they appear in this
926 * enumeration.
927 */
928 enum lu_dirent_attrs {
929 LUDA_FID = 0x0001,
930 LUDA_TYPE = 0x0002,
931 LUDA_64BITHASH = 0x0004,
932
933 /* The following attrs are used for MDT internal only,
934 * not visible to client */
935
936 /* Verify the dirent consistency */
937 LUDA_VERIFY = 0x8000,
938 /* Only check but not repair the dirent inconsistency */
939 LUDA_VERIFY_DRYRUN = 0x4000,
940 /* The dirent has been repaired, or to be repaired (dryrun). */
941 LUDA_REPAIR = 0x2000,
942 /* The system is upgraded, has beed or to be repaired (dryrun). */
943 LUDA_UPGRADE = 0x1000,
944 /* Ignore this record, go to next directly. */
945 LUDA_IGNORE = 0x0800,
946 };
947
948 #define LU_DIRENT_ATTRS_MASK 0xf800
949
950 /**
951 * Layout of readdir pages, as transmitted on wire.
952 */
953 struct lu_dirent {
954 /** valid if LUDA_FID is set. */
955 struct lu_fid lde_fid;
956 /** a unique entry identifier: a hash or an offset. */
957 __u64 lde_hash;
958 /** total record length, including all attributes. */
959 __u16 lde_reclen;
960 /** name length */
961 __u16 lde_namelen;
962 /** optional variable size attributes following this entry.
963 * taken from enum lu_dirent_attrs.
964 */
965 __u32 lde_attrs;
966 /** name is followed by the attributes indicated in ->ldp_attrs, in
967 * their natural order. After the last attribute, padding bytes are
968 * added to make ->lde_reclen a multiple of 8.
969 */
970 char lde_name[0];
971 };
972
973 /*
974 * Definitions of optional directory entry attributes formats.
975 *
976 * Individual attributes do not have their length encoded in a generic way. It
977 * is assumed that consumer of an attribute knows its format. This means that
978 * it is impossible to skip over an unknown attribute, except by skipping over all
979 * remaining attributes (by using ->lde_reclen), which is not too
980 * constraining, because new server versions will append new attributes at
981 * the end of an entry.
982 */
983
984 /**
985 * Fid directory attribute: a fid of an object referenced by the entry. This
986 * will be almost always requested by the client and supplied by the server.
987 *
988 * Aligned to 8 bytes.
989 */
990 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
991
992 /**
993 * File type.
994 *
995 * Aligned to 2 bytes.
996 */
997 struct luda_type {
998 __u16 lt_type;
999 };
1000
1001 #ifndef IFSHIFT
1002 #define IFSHIFT 12
1003 #endif
1004
1005 #ifndef IFTODT
1006 #define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
1007 #endif
1008 #ifndef DTTOIF
1009 #define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
1010 #endif
1011
1012
1013 struct lu_dirpage {
1014 __u64 ldp_hash_start;
1015 __u64 ldp_hash_end;
1016 __u32 ldp_flags;
1017 __u32 ldp_pad0;
1018 struct lu_dirent ldp_entries[0];
1019 };
1020
1021 enum lu_dirpage_flags {
1022 /**
1023 * dirpage contains no entry.
1024 */
1025 LDF_EMPTY = 1 << 0,
1026 /**
1027 * last entry's lde_hash equals ldp_hash_end.
1028 */
1029 LDF_COLLIDE = 1 << 1
1030 };
1031
1032 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1033 {
1034 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1035 return NULL;
1036 else
1037 return dp->ldp_entries;
1038 }
1039
1040 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1041 {
1042 struct lu_dirent *next;
1043
1044 if (le16_to_cpu(ent->lde_reclen) != 0)
1045 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1046 else
1047 next = NULL;
1048
1049 return next;
1050 }
1051
1052 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1053 {
1054 int size;
1055
1056 if (attr & LUDA_TYPE) {
1057 const unsigned align = sizeof(struct luda_type) - 1;
1058 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1059 size += sizeof(struct luda_type);
1060 } else
1061 size = sizeof(struct lu_dirent) + namelen;
1062
1063 return (size + 7) & ~7;
1064 }
1065
1066 static inline int lu_dirent_size(struct lu_dirent *ent)
1067 {
1068 if (le16_to_cpu(ent->lde_reclen) == 0) {
1069 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1070 le32_to_cpu(ent->lde_attrs));
1071 }
1072 return le16_to_cpu(ent->lde_reclen);
1073 }
1074
1075 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1076
1077 /**
1078 * MDS_READPAGE page size
1079 *
1080 * This is the directory page size packed in MDS_READPAGE RPC.
1081 * It's different than PAGE_CACHE_SIZE because the client needs to
1082 * access the struct lu_dirpage header packed at the beginning of
1083 * the "page" and without this there isn't any way to know find the
1084 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1085 */
1086 #define LU_PAGE_SHIFT 12
1087 #define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1088 #define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1089
1090 #define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1091
1092 /** @} lu_dir */
1093
1094 struct lustre_handle {
1095 __u64 cookie;
1096 };
1097 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1098
1099 static inline int lustre_handle_is_used(struct lustre_handle *lh)
1100 {
1101 return lh->cookie != 0ull;
1102 }
1103
1104 static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1105 const struct lustre_handle *lh2)
1106 {
1107 return lh1->cookie == lh2->cookie;
1108 }
1109
1110 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1111 struct lustre_handle *src)
1112 {
1113 tgt->cookie = src->cookie;
1114 }
1115
1116 /* flags for lm_flags */
1117 #define MSGHDR_AT_SUPPORT 0x1
1118 #define MSGHDR_CKSUM_INCOMPAT18 0x2
1119
1120 #define lustre_msg lustre_msg_v2
1121 /* we depend on this structure to be 8-byte aligned */
1122 /* this type is only endian-adjusted in lustre_unpack_msg() */
1123 struct lustre_msg_v2 {
1124 __u32 lm_bufcount;
1125 __u32 lm_secflvr;
1126 __u32 lm_magic;
1127 __u32 lm_repsize;
1128 __u32 lm_cksum;
1129 __u32 lm_flags;
1130 __u32 lm_padding_2;
1131 __u32 lm_padding_3;
1132 __u32 lm_buflens[0];
1133 };
1134
1135 /* without gss, ptlrpc_body is put at the first buffer. */
1136 #define PTLRPC_NUM_VERSIONS 4
1137 #define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1138 struct ptlrpc_body_v3 {
1139 struct lustre_handle pb_handle;
1140 __u32 pb_type;
1141 __u32 pb_version;
1142 __u32 pb_opc;
1143 __u32 pb_status;
1144 __u64 pb_last_xid;
1145 __u64 pb_last_seen;
1146 __u64 pb_last_committed;
1147 __u64 pb_transno;
1148 __u32 pb_flags;
1149 __u32 pb_op_flags;
1150 __u32 pb_conn_cnt;
1151 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1152 __u32 pb_service_time; /* for rep, actual service time */
1153 __u32 pb_limit;
1154 __u64 pb_slv;
1155 /* VBR: pre-versions */
1156 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1157 /* padding for future needs */
1158 __u64 pb_padding[4];
1159 char pb_jobid[JOBSTATS_JOBID_SIZE];
1160 };
1161 #define ptlrpc_body ptlrpc_body_v3
1162
1163 struct ptlrpc_body_v2 {
1164 struct lustre_handle pb_handle;
1165 __u32 pb_type;
1166 __u32 pb_version;
1167 __u32 pb_opc;
1168 __u32 pb_status;
1169 __u64 pb_last_xid;
1170 __u64 pb_last_seen;
1171 __u64 pb_last_committed;
1172 __u64 pb_transno;
1173 __u32 pb_flags;
1174 __u32 pb_op_flags;
1175 __u32 pb_conn_cnt;
1176 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1177 __u32 pb_service_time; /* for rep, actual service time, also used for
1178 net_latency of req */
1179 __u32 pb_limit;
1180 __u64 pb_slv;
1181 /* VBR: pre-versions */
1182 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1183 /* padding for future needs */
1184 __u64 pb_padding[4];
1185 };
1186
1187 extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1188
1189 /* message body offset for lustre_msg_v2 */
1190 /* ptlrpc body offset in all request/reply messages */
1191 #define MSG_PTLRPC_BODY_OFF 0
1192
1193 /* normal request/reply message record offset */
1194 #define REQ_REC_OFF 1
1195 #define REPLY_REC_OFF 1
1196
1197 /* ldlm request message body offset */
1198 #define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1199 #define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1200
1201 /* ldlm intent lock message body offset */
1202 #define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1203 #define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1204
1205 /* ldlm reply message body offset */
1206 #define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1207 #define DLM_REPLY_REC_OFF 2 /* reply record offset */
1208
1209 /** only use in req->rq_{req,rep}_swab_mask */
1210 #define MSG_PTLRPC_HEADER_OFF 31
1211
1212 /* Flags that are operation-specific go in the top 16 bits. */
1213 #define MSG_OP_FLAG_MASK 0xffff0000
1214 #define MSG_OP_FLAG_SHIFT 16
1215
1216 /* Flags that apply to all requests are in the bottom 16 bits */
1217 #define MSG_GEN_FLAG_MASK 0x0000ffff
1218 #define MSG_LAST_REPLAY 0x0001
1219 #define MSG_RESENT 0x0002
1220 #define MSG_REPLAY 0x0004
1221 /* #define MSG_AT_SUPPORT 0x0008
1222 * This was used in early prototypes of adaptive timeouts, and while there
1223 * shouldn't be any users of that code there also isn't a need for using this
1224 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1225 #define MSG_DELAY_REPLAY 0x0010
1226 #define MSG_VERSION_REPLAY 0x0020
1227 #define MSG_REQ_REPLAY_DONE 0x0040
1228 #define MSG_LOCK_REPLAY_DONE 0x0080
1229
1230 /*
1231 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1232 */
1233
1234 #define MSG_CONNECT_RECOVERING 0x00000001
1235 #define MSG_CONNECT_RECONNECT 0x00000002
1236 #define MSG_CONNECT_REPLAYABLE 0x00000004
1237 //#define MSG_CONNECT_PEER 0x8
1238 #define MSG_CONNECT_LIBCLIENT 0x00000010
1239 #define MSG_CONNECT_INITIAL 0x00000020
1240 #define MSG_CONNECT_ASYNC 0x00000040
1241 #define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1242 #define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1243
1244 /* Connect flags */
1245 #define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1246 #define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1247 #define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1248 #define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1249 #define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1250 #define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1251 #define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1252 #define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1253 #define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1254 #define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1255 #define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1256 #define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1257 #define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1258 #define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1259 *We do not support JOIN FILE
1260 *anymore, reserve this flags
1261 *just for preventing such bit
1262 *to be reused.*/
1263 #define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1264 #define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1265 #define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1266 #define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1267 #define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1268 #define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1269 #define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1270 #define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1271 #define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1272 #define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1273 #define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1274 #define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1275 #define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1276 #define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1277 #define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1278 #define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1279 #define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1280 #define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1281 #define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1282 #define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1283 #define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1284 #define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1285 #define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1286 #define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1287 #define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1288 * directory hash */
1289 #define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1290 #define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1291 #define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1292 #define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1293 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1294 * RPC error properly */
1295 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1296 * finer space reservation */
1297 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1298 * policy and 2.x server */
1299 #define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1300 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1301 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1302 #define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1303 #define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1304 #define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
1305 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1306
1307 /* XXX README XXX:
1308 * Please DO NOT add flag values here before first ensuring that this same
1309 * flag value is not in use on some other branch. Please clear any such
1310 * changes with senior engineers before starting to use a new flag. Then,
1311 * submit a small patch against EVERY branch that ONLY adds the new flag,
1312 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1313 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1314 * can be approved and landed easily to reserve the flag for future use. */
1315
1316 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1317 * connection. It is a temporary bug fix for Imperative Recovery interop
1318 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1319 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1320 #define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1321
1322 #define OCD_HAS_FLAG(ocd, flg) \
1323 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1324
1325
1326 #define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1327
1328 #define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1329 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1330 OBD_CONNECT_IBITS | \
1331 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1332 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1333 OBD_CONNECT_RMT_CLIENT | \
1334 OBD_CONNECT_RMT_CLIENT_FORCE | \
1335 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1336 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1337 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1338 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1339 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1340 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1341 OBD_CONNECT_EINPROGRESS | \
1342 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1343 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1344 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1345 OBD_CONNECT_FLOCK_DEAD | \
1346 OBD_CONNECT_DISP_STRIPE)
1347
1348 #define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1349 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1350 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1351 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1352 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1353 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1354 OBD_CONNECT_RMT_CLIENT | \
1355 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1356 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1357 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1358 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1359 OBD_CONNECT_MAX_EASIZE | \
1360 OBD_CONNECT_EINPROGRESS | \
1361 OBD_CONNECT_JOBSTATS | \
1362 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1363 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1364 OBD_CONNECT_PINGLESS)
1365 #define ECHO_CONNECT_SUPPORTED (0)
1366 #define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1367 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1368 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1369
1370 /* Features required for this version of the client to work with server */
1371 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1372 OBD_CONNECT_FULL20)
1373
1374 #define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1375 ((patch)<<8) + (fix))
1376 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1377 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1378 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1379 #define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1380
1381 /* This structure is used for both request and reply.
1382 *
1383 * If we eventually have separate connect data for different types, which we
1384 * almost certainly will, then perhaps we stick a union in here. */
1385 struct obd_connect_data_v1 {
1386 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1387 __u32 ocd_version; /* lustre release version number */
1388 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1389 __u32 ocd_index; /* LOV index to connect to */
1390 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1391 __u64 ocd_ibits_known; /* inode bits this client understands */
1392 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1393 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1394 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1395 __u32 ocd_unused; /* also fix lustre_swab_connect */
1396 __u64 ocd_transno; /* first transno from client to be replayed */
1397 __u32 ocd_group; /* MDS group on OST */
1398 __u32 ocd_cksum_types; /* supported checksum algorithms */
1399 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1400 __u32 ocd_instance; /* also fix lustre_swab_connect */
1401 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1402 };
1403
1404 struct obd_connect_data {
1405 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1406 __u32 ocd_version; /* lustre release version number */
1407 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1408 __u32 ocd_index; /* LOV index to connect to */
1409 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1410 __u64 ocd_ibits_known; /* inode bits this client understands */
1411 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1412 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1413 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1414 __u32 ocd_unused; /* also fix lustre_swab_connect */
1415 __u64 ocd_transno; /* first transno from client to be replayed */
1416 __u32 ocd_group; /* MDS group on OST */
1417 __u32 ocd_cksum_types; /* supported checksum algorithms */
1418 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1419 __u32 ocd_instance; /* instance # of this target */
1420 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1421 /* Fields after ocd_maxbytes are only accessible by the receiver
1422 * if the corresponding flag in ocd_connect_flags is set. Accessing
1423 * any field after ocd_maxbytes on the receiver without a valid flag
1424 * may result in out-of-bound memory access and kernel oops. */
1425 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1426 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1427 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1428 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1429 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1430 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1431 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1432 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1433 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1434 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1435 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1436 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1437 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1438 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1439 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1440 };
1441 /* XXX README XXX:
1442 * Please DO NOT use any fields here before first ensuring that this same
1443 * field is not in use on some other branch. Please clear any such changes
1444 * with senior engineers before starting to use a new field. Then, submit
1445 * a small patch against EVERY branch that ONLY adds the new field along with
1446 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1447 * reserve the flag for future use. */
1448
1449
1450 extern void lustre_swab_connect(struct obd_connect_data *ocd);
1451
1452 /*
1453 * Supported checksum algorithms. Up to 32 checksum types are supported.
1454 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1455 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1456 * algorithm and also the OBD_FL_CKSUM* flags.
1457 */
1458 typedef enum {
1459 OBD_CKSUM_CRC32 = 0x00000001,
1460 OBD_CKSUM_ADLER = 0x00000002,
1461 OBD_CKSUM_CRC32C= 0x00000004,
1462 } cksum_type_t;
1463
1464 /*
1465 * OST requests: OBDO & OBD request records
1466 */
1467
1468 /* opcodes */
1469 typedef enum {
1470 OST_REPLY = 0, /* reply ? */
1471 OST_GETATTR = 1,
1472 OST_SETATTR = 2,
1473 OST_READ = 3,
1474 OST_WRITE = 4,
1475 OST_CREATE = 5,
1476 OST_DESTROY = 6,
1477 OST_GET_INFO = 7,
1478 OST_CONNECT = 8,
1479 OST_DISCONNECT = 9,
1480 OST_PUNCH = 10,
1481 OST_OPEN = 11,
1482 OST_CLOSE = 12,
1483 OST_STATFS = 13,
1484 OST_SYNC = 16,
1485 OST_SET_INFO = 17,
1486 OST_QUOTACHECK = 18,
1487 OST_QUOTACTL = 19,
1488 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1489 OST_LAST_OPC
1490 } ost_cmd_t;
1491 #define OST_FIRST_OPC OST_REPLY
1492
1493 enum obdo_flags {
1494 OBD_FL_INLINEDATA = 0x00000001,
1495 OBD_FL_OBDMDEXISTS = 0x00000002,
1496 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1497 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1498 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1499 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1500 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1501 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1502 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1503 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1504 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1505 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1506 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1507 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1508 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1509 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1510 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1511 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1512 * XXX: obsoleted - reserved for old
1513 * clients prior than 2.2 */
1514 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1515 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1516
1517 /* Note that while these checksum values are currently separate bits,
1518 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1519 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1520 OBD_FL_CKSUM_CRC32C,
1521
1522 /* mask for local-only flag, which won't be sent over network */
1523 OBD_FL_LOCAL_MASK = 0xF0000000,
1524 };
1525
1526 #define LOV_MAGIC_V1 0x0BD10BD0
1527 #define LOV_MAGIC LOV_MAGIC_V1
1528 #define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1529 #define LOV_MAGIC_V3 0x0BD30BD0
1530
1531 /*
1532 * magic for fully defined striping
1533 * the idea is that we should have different magics for striping "hints"
1534 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1535 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1536 * we can't just change it w/o long way preparation, but we still need a
1537 * mechanism to allow LOD to differentiate hint versus ready striping.
1538 * so, at the moment we do a trick: MDT knows what to expect from request
1539 * depending on the case (replay uses ready striping, non-replay req uses
1540 * hints), so MDT replaces magic with appropriate one and now LOD can
1541 * easily understand what's inside -bzzz
1542 */
1543 #define LOV_MAGIC_V1_DEF 0x0CD10BD0
1544 #define LOV_MAGIC_V3_DEF 0x0CD30BD0
1545
1546 #define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1547 #define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1548 #define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1549 #define LOV_PATTERN_CMOBD 0x200
1550
1551 #define LOV_PATTERN_F_MASK 0xffff0000
1552 #define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1553
1554 #define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1555 #define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
1556
1557 #define lov_ost_data lov_ost_data_v1
1558 struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1559 struct ost_id l_ost_oi; /* OST object ID */
1560 __u32 l_ost_gen; /* generation of this l_ost_idx */
1561 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1562 };
1563
1564 #define lov_mds_md lov_mds_md_v1
1565 struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1566 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1567 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1568 struct ost_id lmm_oi; /* LOV object ID */
1569 __u32 lmm_stripe_size; /* size of stripe in bytes */
1570 /* lmm_stripe_count used to be __u32 */
1571 __u16 lmm_stripe_count; /* num stripes in use for this object */
1572 __u16 lmm_layout_gen; /* layout generation number */
1573 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1574 };
1575
1576 /**
1577 * Sigh, because pre-2.4 uses
1578 * struct lov_mds_md_v1 {
1579 * ........
1580 * __u64 lmm_object_id;
1581 * __u64 lmm_object_seq;
1582 * ......
1583 * }
1584 * to identify the LOV(MDT) object, and lmm_object_seq will
1585 * be normal_fid, which make it hard to combine these conversion
1586 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1587 *
1588 * We can tell the lmm_oi by this way,
1589 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1590 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1591 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1592 * lmm_oi.f_ver = 0
1593 *
1594 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1595 * except for printing some information, and the user can always
1596 * get the real FID from LMA, besides this multiple case check might
1597 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1598 */
1599
1600 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1601 struct ost_id *oi)
1602 {
1603 oi->oi.oi_id = fid_oid(fid);
1604 oi->oi.oi_seq = fid_seq(fid);
1605 }
1606
1607 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1608 {
1609 oi->oi.oi_seq = seq;
1610 }
1611
1612 static inline __u64 lmm_oi_id(struct ost_id *oi)
1613 {
1614 return oi->oi.oi_id;
1615 }
1616
1617 static inline __u64 lmm_oi_seq(struct ost_id *oi)
1618 {
1619 return oi->oi.oi_seq;
1620 }
1621
1622 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1623 struct ost_id *src_oi)
1624 {
1625 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1626 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1627 }
1628
1629 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1630 struct ost_id *src_oi)
1631 {
1632 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1633 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1634 }
1635
1636 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1637
1638 #define MAX_MD_SIZE \
1639 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1640 #define MIN_MD_SIZE \
1641 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1642
1643 #define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1644 #define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1645 #define XATTR_USER_PREFIX "user."
1646 #define XATTR_TRUSTED_PREFIX "trusted."
1647 #define XATTR_SECURITY_PREFIX "security."
1648 #define XATTR_LUSTRE_PREFIX "lustre."
1649
1650 #define XATTR_NAME_LOV "trusted.lov"
1651 #define XATTR_NAME_LMA "trusted.lma"
1652 #define XATTR_NAME_LMV "trusted.lmv"
1653 #define XATTR_NAME_LINK "trusted.link"
1654 #define XATTR_NAME_FID "trusted.fid"
1655 #define XATTR_NAME_VERSION "trusted.version"
1656 #define XATTR_NAME_SOM "trusted.som"
1657 #define XATTR_NAME_HSM "trusted.hsm"
1658 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1659
1660 struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1661 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1662 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1663 struct ost_id lmm_oi; /* LOV object ID */
1664 __u32 lmm_stripe_size; /* size of stripe in bytes */
1665 /* lmm_stripe_count used to be __u32 */
1666 __u16 lmm_stripe_count; /* num stripes in use for this object */
1667 __u16 lmm_layout_gen; /* layout generation number */
1668 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1669 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1670 };
1671
1672 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1673 {
1674 if (lmm_magic == LOV_MAGIC_V3)
1675 return sizeof(struct lov_mds_md_v3) +
1676 stripes * sizeof(struct lov_ost_data_v1);
1677 else
1678 return sizeof(struct lov_mds_md_v1) +
1679 stripes * sizeof(struct lov_ost_data_v1);
1680 }
1681
1682 static inline __u32
1683 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1684 {
1685 switch (lmm_magic) {
1686 case LOV_MAGIC_V1: {
1687 struct lov_mds_md_v1 lmm;
1688
1689 if (buf_size < sizeof(lmm))
1690 return 0;
1691
1692 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1693 }
1694 case LOV_MAGIC_V3: {
1695 struct lov_mds_md_v3 lmm;
1696
1697 if (buf_size < sizeof(lmm))
1698 return 0;
1699
1700 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1701 }
1702 default:
1703 return 0;
1704 }
1705 }
1706
1707 #define OBD_MD_FLID (0x00000001ULL) /* object ID */
1708 #define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1709 #define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1710 #define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1711 #define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1712 #define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1713 #define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1714 #define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1715 #define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1716 #define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1717 #define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1718 #define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1719 #define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1720 #define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1721 /*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1722 #define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1723 #define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1724 #define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1725 #define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1726 #define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1727 #define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1728 /*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1729 #define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1730 #define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1731 #define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1732 #define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1733 /* ->mds if epoch opens or closes */
1734 #define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1735 #define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1736 #define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1737 #define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1738 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1739
1740 #define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1741 #define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1742 #define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
1743 #define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
1744
1745 #define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1746 #define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1747 #define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1748 #define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1749 #define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1750 #define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1751 #define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1752 #define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1753 #define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1754 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1755 * under lock; for xattr
1756 * requests means the
1757 * client holds the lock */
1758 #define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1759
1760 #define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1761 #define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1762 #define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1763 #define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1764
1765 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1766 #define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
1767
1768 #define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1769 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1770 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1771 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1772 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1773
1774 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1775
1776 /* don't forget obdo_fid which is way down at the bottom so it can
1777 * come after the definition of llog_cookie */
1778
1779 enum hss_valid {
1780 HSS_SETMASK = 0x01,
1781 HSS_CLEARMASK = 0x02,
1782 HSS_ARCHIVE_ID = 0x04,
1783 };
1784
1785 struct hsm_state_set {
1786 __u32 hss_valid;
1787 __u32 hss_archive_id;
1788 __u64 hss_setmask;
1789 __u64 hss_clearmask;
1790 };
1791
1792 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1793 extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1794
1795 extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1796
1797 /* ost_body.data values for OST_BRW */
1798
1799 #define OBD_BRW_READ 0x01
1800 #define OBD_BRW_WRITE 0x02
1801 #define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1802 #define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1803 * transfer and is not accounted in
1804 * the grant. */
1805 #define OBD_BRW_CHECK 0x10
1806 #define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1807 #define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1808 #define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1809 #define OBD_BRW_NOQUOTA 0x100
1810 #define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1811 #define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1812 #define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1813 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1814 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1815
1816 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1817
1818 #define OST_MIN_PRECREATE 32
1819 #define OST_MAX_PRECREATE 20000
1820
1821 struct obd_ioobj {
1822 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1823 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1824 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1825 * high 16 bits in 2.4 and later */
1826 __u32 ioo_bufcnt; /* number of niobufs for this object */
1827 };
1828
1829 #define IOOBJ_MAX_BRW_BITS 16
1830 #define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1831 #define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1832 #define ioobj_max_brw_set(ioo, num) \
1833 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1834
1835 extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1836
1837 /* multiple of 8 bytes => can array */
1838 struct niobuf_remote {
1839 __u64 offset;
1840 __u32 len;
1841 __u32 flags;
1842 };
1843
1844 extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1845
1846 /* lock value block communicated between the filter and llite */
1847
1848 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1849 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1850 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1851 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1852 #define OST_LVB_IS_ERR(blocks) \
1853 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1854 #define OST_LVB_SET_ERR(blocks, rc) \
1855 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1856 #define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1857
1858 struct ost_lvb_v1 {
1859 __u64 lvb_size;
1860 obd_time lvb_mtime;
1861 obd_time lvb_atime;
1862 obd_time lvb_ctime;
1863 __u64 lvb_blocks;
1864 };
1865
1866 extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1867
1868 struct ost_lvb {
1869 __u64 lvb_size;
1870 obd_time lvb_mtime;
1871 obd_time lvb_atime;
1872 obd_time lvb_ctime;
1873 __u64 lvb_blocks;
1874 __u32 lvb_mtime_ns;
1875 __u32 lvb_atime_ns;
1876 __u32 lvb_ctime_ns;
1877 __u32 lvb_padding;
1878 };
1879
1880 extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1881
1882 /*
1883 * lquota data structures
1884 */
1885
1886 #ifndef QUOTABLOCK_BITS
1887 #define QUOTABLOCK_BITS 10
1888 #endif
1889
1890 #ifndef QUOTABLOCK_SIZE
1891 #define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1892 #endif
1893
1894 #ifndef toqb
1895 #define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1896 #endif
1897
1898 /* The lquota_id structure is an union of all the possible identifier types that
1899 * can be used with quota, this includes:
1900 * - 64-bit user ID
1901 * - 64-bit group ID
1902 * - a FID which can be used for per-directory quota in the future */
1903 union lquota_id {
1904 struct lu_fid qid_fid; /* FID for per-directory quota */
1905 __u64 qid_uid; /* user identifier */
1906 __u64 qid_gid; /* group identifier */
1907 };
1908
1909 /* quotactl management */
1910 struct obd_quotactl {
1911 __u32 qc_cmd;
1912 __u32 qc_type; /* see Q_* flag below */
1913 __u32 qc_id;
1914 __u32 qc_stat;
1915 struct obd_dqinfo qc_dqinfo;
1916 struct obd_dqblk qc_dqblk;
1917 };
1918
1919 extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1920
1921 #define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1922 #define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1923 #define Q_GETOINFO 0x800102 /* get obd quota info */
1924 #define Q_GETOQUOTA 0x800103 /* get obd quotas */
1925 #define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1926
1927 #define Q_COPY(out, in, member) (out)->member = (in)->member
1928
1929 #define QCTL_COPY(out, in) \
1930 do { \
1931 Q_COPY(out, in, qc_cmd); \
1932 Q_COPY(out, in, qc_type); \
1933 Q_COPY(out, in, qc_id); \
1934 Q_COPY(out, in, qc_stat); \
1935 Q_COPY(out, in, qc_dqinfo); \
1936 Q_COPY(out, in, qc_dqblk); \
1937 } while (0)
1938
1939 /* Body of quota request used for quota acquire/release RPCs between quota
1940 * master (aka QMT) and slaves (ak QSD). */
1941 struct quota_body {
1942 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1943 * and type (data or metadata) as well as
1944 * the quota type (user or group). */
1945 union lquota_id qb_id; /* uid or gid or directory FID */
1946 __u32 qb_flags; /* see below */
1947 __u32 qb_padding;
1948 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1949 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1950 __u64 qb_slv_ver; /* slave index file version */
1951 struct lustre_handle qb_lockh; /* per-ID lock handle */
1952 struct lustre_handle qb_glb_lockh; /* global lock handle */
1953 __u64 qb_padding1[4];
1954 };
1955
1956 /* When the quota_body is used in the reply of quota global intent
1957 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1958 #define qb_slv_fid qb_fid
1959 /* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1960 * quota reply */
1961 #define qb_qunit qb_usage
1962
1963 #define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1964 #define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1965 #define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1966 #define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1967
1968 extern void lustre_swab_quota_body(struct quota_body *b);
1969
1970 /* Quota types currently supported */
1971 enum {
1972 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1973 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1974 LQUOTA_TYPE_MAX
1975 };
1976
1977 /* There are 2 different resource types on which a quota limit can be enforced:
1978 * - inodes on the MDTs
1979 * - blocks on the OSTs */
1980 enum {
1981 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1982 LQUOTA_RES_DT = 0x02,
1983 LQUOTA_LAST_RES,
1984 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1985 };
1986 #define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1987
1988 /*
1989 * Space accounting support
1990 * Format of an accounting record, providing disk usage information for a given
1991 * user or group
1992 */
1993 struct lquota_acct_rec { /* 16 bytes */
1994 __u64 bspace; /* current space in use */
1995 __u64 ispace; /* current # inodes in use */
1996 };
1997
1998 /*
1999 * Global quota index support
2000 * Format of a global record, providing global quota settings for a given quota
2001 * identifier
2002 */
2003 struct lquota_glb_rec { /* 32 bytes */
2004 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
2005 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
2006 __u64 qbr_time; /* grace time, in seconds */
2007 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
2008 * kbytes */
2009 };
2010
2011 /*
2012 * Slave index support
2013 * Format of a slave record, recording how much space is granted to a given
2014 * slave
2015 */
2016 struct lquota_slv_rec { /* 8 bytes */
2017 __u64 qsr_granted; /* space granted to the slave for the key=ID,
2018 * in #inodes or kbytes */
2019 };
2020
2021 /* Data structures associated with the quota locks */
2022
2023 /* Glimpse descriptor used for the index & per-ID quota locks */
2024 struct ldlm_gl_lquota_desc {
2025 union lquota_id gl_id; /* quota ID subject to the glimpse */
2026 __u64 gl_flags; /* see LQUOTA_FL* below */
2027 __u64 gl_ver; /* new index version */
2028 __u64 gl_hardlimit; /* new hardlimit or qunit value */
2029 __u64 gl_softlimit; /* new softlimit */
2030 __u64 gl_time;
2031 __u64 gl_pad2;
2032 };
2033 #define gl_qunit gl_hardlimit /* current qunit value used when
2034 * glimpsing per-ID quota locks */
2035
2036 /* quota glimpse flags */
2037 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2038
2039 /* LVB used with quota (global and per-ID) locks */
2040 struct lquota_lvb {
2041 __u64 lvb_flags; /* see LQUOTA_FL* above */
2042 __u64 lvb_id_may_rel; /* space that might be released later */
2043 __u64 lvb_id_rel; /* space released by the slave for this ID */
2044 __u64 lvb_id_qunit; /* current qunit value */
2045 __u64 lvb_pad1;
2046 };
2047
2048 extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2049
2050 /* LVB used with global quota lock */
2051 #define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2052
2053 /* op codes */
2054 typedef enum {
2055 QUOTA_DQACQ = 601,
2056 QUOTA_DQREL = 602,
2057 QUOTA_LAST_OPC
2058 } quota_cmd_t;
2059 #define QUOTA_FIRST_OPC QUOTA_DQACQ
2060
2061 /*
2062 * MDS REQ RECORDS
2063 */
2064
2065 /* opcodes */
2066 typedef enum {
2067 MDS_GETATTR = 33,
2068 MDS_GETATTR_NAME = 34,
2069 MDS_CLOSE = 35,
2070 MDS_REINT = 36,
2071 MDS_READPAGE = 37,
2072 MDS_CONNECT = 38,
2073 MDS_DISCONNECT = 39,
2074 MDS_GETSTATUS = 40,
2075 MDS_STATFS = 41,
2076 MDS_PIN = 42,
2077 MDS_UNPIN = 43,
2078 MDS_SYNC = 44,
2079 MDS_DONE_WRITING = 45,
2080 MDS_SET_INFO = 46,
2081 MDS_QUOTACHECK = 47,
2082 MDS_QUOTACTL = 48,
2083 MDS_GETXATTR = 49,
2084 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2085 MDS_WRITEPAGE = 51,
2086 MDS_IS_SUBDIR = 52,
2087 MDS_GET_INFO = 53,
2088 MDS_HSM_STATE_GET = 54,
2089 MDS_HSM_STATE_SET = 55,
2090 MDS_HSM_ACTION = 56,
2091 MDS_HSM_PROGRESS = 57,
2092 MDS_HSM_REQUEST = 58,
2093 MDS_HSM_CT_REGISTER = 59,
2094 MDS_HSM_CT_UNREGISTER = 60,
2095 MDS_SWAP_LAYOUTS = 61,
2096 MDS_LAST_OPC
2097 } mds_cmd_t;
2098
2099 #define MDS_FIRST_OPC MDS_GETATTR
2100
2101
2102 /* opcodes for object update */
2103 typedef enum {
2104 UPDATE_OBJ = 1000,
2105 UPDATE_LAST_OPC
2106 } update_cmd_t;
2107
2108 #define UPDATE_FIRST_OPC UPDATE_OBJ
2109
2110 /*
2111 * Do not exceed 63
2112 */
2113
2114 typedef enum {
2115 REINT_SETATTR = 1,
2116 REINT_CREATE = 2,
2117 REINT_LINK = 3,
2118 REINT_UNLINK = 4,
2119 REINT_RENAME = 5,
2120 REINT_OPEN = 6,
2121 REINT_SETXATTR = 7,
2122 REINT_RMENTRY = 8,
2123 // REINT_WRITE = 9,
2124 REINT_MAX
2125 } mds_reint_t, mdt_reint_t;
2126
2127 extern void lustre_swab_generic_32s (__u32 *val);
2128
2129 /* the disposition of the intent outlines what was executed */
2130 #define DISP_IT_EXECD 0x00000001
2131 #define DISP_LOOKUP_EXECD 0x00000002
2132 #define DISP_LOOKUP_NEG 0x00000004
2133 #define DISP_LOOKUP_POS 0x00000008
2134 #define DISP_OPEN_CREATE 0x00000010
2135 #define DISP_OPEN_OPEN 0x00000020
2136 #define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
2137 #define DISP_ENQ_OPEN_REF 0x00800000
2138 #define DISP_ENQ_CREATE_REF 0x01000000
2139 #define DISP_OPEN_LOCK 0x02000000
2140 #define DISP_OPEN_LEASE 0x04000000
2141 #define DISP_OPEN_STRIPE 0x08000000
2142
2143 /* INODE LOCK PARTS */
2144 #define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2145 * was used to protect permission (mode,
2146 * owner, group etc) before 2.4. */
2147 #define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2148 #define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2149 #define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2150
2151 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2152 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2153 * Because for remote directories(in DNE), these locks will be granted by
2154 * different MDTs(different ldlm namespace).
2155 *
2156 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2157 * For Remote directory, the master MDT, where the remote directory is, will
2158 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2159 * will grant LOOKUP_LOCK. */
2160 #define MDS_INODELOCK_PERM 0x000010
2161 #define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
2162
2163 #define MDS_INODELOCK_MAXSHIFT 5
2164 /* This FULL lock is useful to take on unlink sort of operations */
2165 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2166
2167 extern void lustre_swab_ll_fid (struct ll_fid *fid);
2168
2169 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2170 * but was moved into name[1] along with the OID to avoid consuming the
2171 * name[2,3] fields that need to be used for the quota id (also a FID). */
2172 enum {
2173 LUSTRE_RES_ID_SEQ_OFF = 0,
2174 LUSTRE_RES_ID_VER_OID_OFF = 1,
2175 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2176 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2177 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2178 LUSTRE_RES_ID_HSH_OFF = 3
2179 };
2180
2181 #define MDS_STATUS_CONN 1
2182 #define MDS_STATUS_LOV 2
2183
2184 /* mdt_thread_info.mti_flags. */
2185 enum md_op_flags {
2186 /* The flag indicates Size-on-MDS attributes are changed. */
2187 MF_SOM_CHANGE = (1 << 0),
2188 /* Flags indicates an epoch opens or closes. */
2189 MF_EPOCH_OPEN = (1 << 1),
2190 MF_EPOCH_CLOSE = (1 << 2),
2191 MF_MDC_CANCEL_FID1 = (1 << 3),
2192 MF_MDC_CANCEL_FID2 = (1 << 4),
2193 MF_MDC_CANCEL_FID3 = (1 << 5),
2194 MF_MDC_CANCEL_FID4 = (1 << 6),
2195 /* There is a pending attribute update. */
2196 MF_SOM_AU = (1 << 7),
2197 /* Cancel OST locks while getattr OST attributes. */
2198 MF_GETATTR_LOCK = (1 << 8),
2199 MF_GET_MDT_IDX = (1 << 9),
2200 };
2201
2202 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2203
2204 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2205
2206 /* these should be identical to their EXT4_*_FL counterparts, they are
2207 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2208 #define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2209 #define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2210 #define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2211 #define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2212 #define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2213
2214 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2215 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2216 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2217 * the S_* flags are kernel-internal values that change between kernel
2218 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2219 * See b=16526 for a full history. */
2220 static inline int ll_ext_to_inode_flags(int flags)
2221 {
2222 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2223 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2224 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2225 #if defined(S_DIRSYNC)
2226 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2227 #endif
2228 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2229 }
2230
2231 static inline int ll_inode_to_ext_flags(int iflags)
2232 {
2233 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2234 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2235 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2236 #if defined(S_DIRSYNC)
2237 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2238 #endif
2239 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2240 }
2241
2242 /* 64 possible states */
2243 enum md_transient_state {
2244 MS_RESTORE = (1 << 0), /* restore is running */
2245 };
2246
2247 struct mdt_body {
2248 struct lu_fid fid1;
2249 struct lu_fid fid2;
2250 struct lustre_handle handle;
2251 __u64 valid;
2252 __u64 size; /* Offset, in the case of MDS_READPAGE */
2253 obd_time mtime;
2254 obd_time atime;
2255 obd_time ctime;
2256 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2257 __u64 ioepoch;
2258 __u64 t_state; /* transient file state defined in
2259 * enum md_transient_state
2260 * was "ino" until 2.4.0 */
2261 __u32 fsuid;
2262 __u32 fsgid;
2263 __u32 capability;
2264 __u32 mode;
2265 __u32 uid;
2266 __u32 gid;
2267 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2268 __u32 rdev;
2269 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2270 __u32 unused2; /* was "generation" until 2.4.0 */
2271 __u32 suppgid;
2272 __u32 eadatasize;
2273 __u32 aclsize;
2274 __u32 max_mdsize;
2275 __u32 max_cookiesize;
2276 __u32 uid_h; /* high 32-bits of uid, for FUID */
2277 __u32 gid_h; /* high 32-bits of gid, for FUID */
2278 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2279 __u64 padding_6;
2280 __u64 padding_7;
2281 __u64 padding_8;
2282 __u64 padding_9;
2283 __u64 padding_10;
2284 }; /* 216 */
2285
2286 extern void lustre_swab_mdt_body (struct mdt_body *b);
2287
2288 struct mdt_ioepoch {
2289 struct lustre_handle handle;
2290 __u64 ioepoch;
2291 __u32 flags;
2292 __u32 padding;
2293 };
2294
2295 extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2296
2297 /* permissions for md_perm.mp_perm */
2298 enum {
2299 CFS_SETUID_PERM = 0x01,
2300 CFS_SETGID_PERM = 0x02,
2301 CFS_SETGRP_PERM = 0x04,
2302 CFS_RMTACL_PERM = 0x08,
2303 CFS_RMTOWN_PERM = 0x10
2304 };
2305
2306 /* inode access permission for remote user, the inode info are omitted,
2307 * for client knows them. */
2308 struct mdt_remote_perm {
2309 __u32 rp_uid;
2310 __u32 rp_gid;
2311 __u32 rp_fsuid;
2312 __u32 rp_fsuid_h;
2313 __u32 rp_fsgid;
2314 __u32 rp_fsgid_h;
2315 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2316 __u32 rp_padding;
2317 };
2318
2319 extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2320
2321 struct mdt_rec_setattr {
2322 __u32 sa_opcode;
2323 __u32 sa_cap;
2324 __u32 sa_fsuid;
2325 __u32 sa_fsuid_h;
2326 __u32 sa_fsgid;
2327 __u32 sa_fsgid_h;
2328 __u32 sa_suppgid;
2329 __u32 sa_suppgid_h;
2330 __u32 sa_padding_1;
2331 __u32 sa_padding_1_h;
2332 struct lu_fid sa_fid;
2333 __u64 sa_valid;
2334 __u32 sa_uid;
2335 __u32 sa_gid;
2336 __u64 sa_size;
2337 __u64 sa_blocks;
2338 obd_time sa_mtime;
2339 obd_time sa_atime;
2340 obd_time sa_ctime;
2341 __u32 sa_attr_flags;
2342 __u32 sa_mode;
2343 __u32 sa_bias; /* some operation flags */
2344 __u32 sa_padding_3;
2345 __u32 sa_padding_4;
2346 __u32 sa_padding_5;
2347 };
2348
2349 extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2350
2351 /*
2352 * Attribute flags used in mdt_rec_setattr::sa_valid.
2353 * The kernel's #defines for ATTR_* should not be used over the network
2354 * since the client and MDS may run different kernels (see bug 13828)
2355 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2356 */
2357 #define MDS_ATTR_MODE 0x1ULL /* = 1 */
2358 #define MDS_ATTR_UID 0x2ULL /* = 2 */
2359 #define MDS_ATTR_GID 0x4ULL /* = 4 */
2360 #define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2361 #define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2362 #define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2363 #define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2364 #define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2365 #define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2366 #define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2367 #define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2368 #define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2369 #define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2370 #define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2371 #define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2372 #define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2373
2374 #ifndef FMODE_READ
2375 #define FMODE_READ 00000001
2376 #define FMODE_WRITE 00000002
2377 #endif
2378
2379 #define MDS_FMODE_CLOSED 00000000
2380 #define MDS_FMODE_EXEC 00000004
2381 /* IO Epoch is opened on a closed file. */
2382 #define MDS_FMODE_EPOCH 01000000
2383 /* IO Epoch is opened on a file truncate. */
2384 #define MDS_FMODE_TRUNC 02000000
2385 /* Size-on-MDS Attribute Update is pending. */
2386 #define MDS_FMODE_SOM 04000000
2387
2388 #define MDS_OPEN_CREATED 00000010
2389 #define MDS_OPEN_CROSS 00000020
2390
2391 #define MDS_OPEN_CREAT 00000100
2392 #define MDS_OPEN_EXCL 00000200
2393 #define MDS_OPEN_TRUNC 00001000
2394 #define MDS_OPEN_APPEND 00002000
2395 #define MDS_OPEN_SYNC 00010000
2396 #define MDS_OPEN_DIRECTORY 00200000
2397
2398 #define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2399 #define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2400 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2401 #define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2402 * We do not support JOIN FILE
2403 * anymore, reserve this flags
2404 * just for preventing such bit
2405 * to be reused. */
2406
2407 #define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2408 #define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2409 #define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2410 #define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2411 #define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2412 * hsm restore) */
2413 #define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2414 unlinked */
2415 #define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2416 * delegation, succeed if it's not
2417 * being opened with conflict mode.
2418 */
2419 #define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
2420
2421 /* permission for create non-directory file */
2422 #define MAY_CREATE (1 << 7)
2423 /* permission for create directory file */
2424 #define MAY_LINK (1 << 8)
2425 /* permission for delete from the directory */
2426 #define MAY_UNLINK (1 << 9)
2427 /* source's permission for rename */
2428 #define MAY_RENAME_SRC (1 << 10)
2429 /* target's permission for rename */
2430 #define MAY_RENAME_TAR (1 << 11)
2431 /* part (parent's) VTX permission check */
2432 #define MAY_VTX_PART (1 << 12)
2433 /* full VTX permission check */
2434 #define MAY_VTX_FULL (1 << 13)
2435 /* lfs rgetfacl permission check */
2436 #define MAY_RGETFACL (1 << 14)
2437
2438 enum mds_op_bias {
2439 MDS_CHECK_SPLIT = 1 << 0,
2440 MDS_CROSS_REF = 1 << 1,
2441 MDS_VTX_BYPASS = 1 << 2,
2442 MDS_PERM_BYPASS = 1 << 3,
2443 MDS_SOM = 1 << 4,
2444 MDS_QUOTA_IGNORE = 1 << 5,
2445 MDS_CLOSE_CLEANUP = 1 << 6,
2446 MDS_KEEP_ORPHAN = 1 << 7,
2447 MDS_RECOV_OPEN = 1 << 8,
2448 MDS_DATA_MODIFIED = 1 << 9,
2449 MDS_CREATE_VOLATILE = 1 << 10,
2450 MDS_OWNEROVERRIDE = 1 << 11,
2451 MDS_HSM_RELEASE = 1 << 12,
2452 };
2453
2454 /* instance of mdt_reint_rec */
2455 struct mdt_rec_create {
2456 __u32 cr_opcode;
2457 __u32 cr_cap;
2458 __u32 cr_fsuid;
2459 __u32 cr_fsuid_h;
2460 __u32 cr_fsgid;
2461 __u32 cr_fsgid_h;
2462 __u32 cr_suppgid1;
2463 __u32 cr_suppgid1_h;
2464 __u32 cr_suppgid2;
2465 __u32 cr_suppgid2_h;
2466 struct lu_fid cr_fid1;
2467 struct lu_fid cr_fid2;
2468 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2469 obd_time cr_time;
2470 __u64 cr_rdev;
2471 __u64 cr_ioepoch;
2472 __u64 cr_padding_1; /* rr_blocks */
2473 __u32 cr_mode;
2474 __u32 cr_bias;
2475 /* use of helpers set/get_mrc_cr_flags() is needed to access
2476 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2477 * extend cr_flags size without breaking 1.8 compat */
2478 __u32 cr_flags_l; /* for use with open, low 32 bits */
2479 __u32 cr_flags_h; /* for use with open, high 32 bits */
2480 __u32 cr_umask; /* umask for create */
2481 __u32 cr_padding_4; /* rr_padding_4 */
2482 };
2483
2484 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2485 {
2486 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2487 mrc->cr_flags_h = (__u32)(flags >> 32);
2488 }
2489
2490 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2491 {
2492 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2493 }
2494
2495 /* instance of mdt_reint_rec */
2496 struct mdt_rec_link {
2497 __u32 lk_opcode;
2498 __u32 lk_cap;
2499 __u32 lk_fsuid;
2500 __u32 lk_fsuid_h;
2501 __u32 lk_fsgid;
2502 __u32 lk_fsgid_h;
2503 __u32 lk_suppgid1;
2504 __u32 lk_suppgid1_h;
2505 __u32 lk_suppgid2;
2506 __u32 lk_suppgid2_h;
2507 struct lu_fid lk_fid1;
2508 struct lu_fid lk_fid2;
2509 obd_time lk_time;
2510 __u64 lk_padding_1; /* rr_atime */
2511 __u64 lk_padding_2; /* rr_ctime */
2512 __u64 lk_padding_3; /* rr_size */
2513 __u64 lk_padding_4; /* rr_blocks */
2514 __u32 lk_bias;
2515 __u32 lk_padding_5; /* rr_mode */
2516 __u32 lk_padding_6; /* rr_flags */
2517 __u32 lk_padding_7; /* rr_padding_2 */
2518 __u32 lk_padding_8; /* rr_padding_3 */
2519 __u32 lk_padding_9; /* rr_padding_4 */
2520 };
2521
2522 /* instance of mdt_reint_rec */
2523 struct mdt_rec_unlink {
2524 __u32 ul_opcode;
2525 __u32 ul_cap;
2526 __u32 ul_fsuid;
2527 __u32 ul_fsuid_h;
2528 __u32 ul_fsgid;
2529 __u32 ul_fsgid_h;
2530 __u32 ul_suppgid1;
2531 __u32 ul_suppgid1_h;
2532 __u32 ul_suppgid2;
2533 __u32 ul_suppgid2_h;
2534 struct lu_fid ul_fid1;
2535 struct lu_fid ul_fid2;
2536 obd_time ul_time;
2537 __u64 ul_padding_2; /* rr_atime */
2538 __u64 ul_padding_3; /* rr_ctime */
2539 __u64 ul_padding_4; /* rr_size */
2540 __u64 ul_padding_5; /* rr_blocks */
2541 __u32 ul_bias;
2542 __u32 ul_mode;
2543 __u32 ul_padding_6; /* rr_flags */
2544 __u32 ul_padding_7; /* rr_padding_2 */
2545 __u32 ul_padding_8; /* rr_padding_3 */
2546 __u32 ul_padding_9; /* rr_padding_4 */
2547 };
2548
2549 /* instance of mdt_reint_rec */
2550 struct mdt_rec_rename {
2551 __u32 rn_opcode;
2552 __u32 rn_cap;
2553 __u32 rn_fsuid;
2554 __u32 rn_fsuid_h;
2555 __u32 rn_fsgid;
2556 __u32 rn_fsgid_h;
2557 __u32 rn_suppgid1;
2558 __u32 rn_suppgid1_h;
2559 __u32 rn_suppgid2;
2560 __u32 rn_suppgid2_h;
2561 struct lu_fid rn_fid1;
2562 struct lu_fid rn_fid2;
2563 obd_time rn_time;
2564 __u64 rn_padding_1; /* rr_atime */
2565 __u64 rn_padding_2; /* rr_ctime */
2566 __u64 rn_padding_3; /* rr_size */
2567 __u64 rn_padding_4; /* rr_blocks */
2568 __u32 rn_bias; /* some operation flags */
2569 __u32 rn_mode; /* cross-ref rename has mode */
2570 __u32 rn_padding_5; /* rr_flags */
2571 __u32 rn_padding_6; /* rr_padding_2 */
2572 __u32 rn_padding_7; /* rr_padding_3 */
2573 __u32 rn_padding_8; /* rr_padding_4 */
2574 };
2575
2576 /* instance of mdt_reint_rec */
2577 struct mdt_rec_setxattr {
2578 __u32 sx_opcode;
2579 __u32 sx_cap;
2580 __u32 sx_fsuid;
2581 __u32 sx_fsuid_h;
2582 __u32 sx_fsgid;
2583 __u32 sx_fsgid_h;
2584 __u32 sx_suppgid1;
2585 __u32 sx_suppgid1_h;
2586 __u32 sx_suppgid2;
2587 __u32 sx_suppgid2_h;
2588 struct lu_fid sx_fid;
2589 __u64 sx_padding_1; /* These three are rr_fid2 */
2590 __u32 sx_padding_2;
2591 __u32 sx_padding_3;
2592 __u64 sx_valid;
2593 obd_time sx_time;
2594 __u64 sx_padding_5; /* rr_ctime */
2595 __u64 sx_padding_6; /* rr_size */
2596 __u64 sx_padding_7; /* rr_blocks */
2597 __u32 sx_size;
2598 __u32 sx_flags;
2599 __u32 sx_padding_8; /* rr_flags */
2600 __u32 sx_padding_9; /* rr_padding_2 */
2601 __u32 sx_padding_10; /* rr_padding_3 */
2602 __u32 sx_padding_11; /* rr_padding_4 */
2603 };
2604
2605 /*
2606 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2607 * Do NOT change the size of various members, otherwise the value
2608 * will be broken in lustre_swab_mdt_rec_reint().
2609 *
2610 * If you add new members in other mdt_reint_xxx structures and need to use the
2611 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2612 */
2613 struct mdt_rec_reint {
2614 __u32 rr_opcode;
2615 __u32 rr_cap;
2616 __u32 rr_fsuid;
2617 __u32 rr_fsuid_h;
2618 __u32 rr_fsgid;
2619 __u32 rr_fsgid_h;
2620 __u32 rr_suppgid1;
2621 __u32 rr_suppgid1_h;
2622 __u32 rr_suppgid2;
2623 __u32 rr_suppgid2_h;
2624 struct lu_fid rr_fid1;
2625 struct lu_fid rr_fid2;
2626 obd_time rr_mtime;
2627 obd_time rr_atime;
2628 obd_time rr_ctime;
2629 __u64 rr_size;
2630 __u64 rr_blocks;
2631 __u32 rr_bias;
2632 __u32 rr_mode;
2633 __u32 rr_flags;
2634 __u32 rr_flags_h;
2635 __u32 rr_umask;
2636 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2637 };
2638
2639 extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2640
2641 struct lmv_desc {
2642 __u32 ld_tgt_count; /* how many MDS's */
2643 __u32 ld_active_tgt_count; /* how many active */
2644 __u32 ld_default_stripe_count; /* how many objects are used */
2645 __u32 ld_pattern; /* default MEA_MAGIC_* */
2646 __u64 ld_default_hash_size;
2647 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2648 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2649 __u32 ld_qos_maxage; /* in second */
2650 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2651 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2652 struct obd_uuid ld_uuid;
2653 };
2654
2655 extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2656
2657 /* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2658 struct lmv_stripe_md {
2659 __u32 mea_magic;
2660 __u32 mea_count;
2661 __u32 mea_master;
2662 __u32 mea_padding;
2663 char mea_pool_name[LOV_MAXPOOLNAME];
2664 struct lu_fid mea_ids[0];
2665 };
2666
2667 extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2668
2669 /* lmv structures */
2670 #define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2671 #define MEA_MAGIC_ALL_CHARS 0xb222a11c
2672 #define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2673
2674 #define MAX_HASH_SIZE_32 0x7fffffffUL
2675 #define MAX_HASH_SIZE 0x7fffffffffffffffULL
2676 #define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2677
2678 enum fld_rpc_opc {
2679 FLD_QUERY = 900,
2680 FLD_LAST_OPC,
2681 FLD_FIRST_OPC = FLD_QUERY
2682 };
2683
2684 enum seq_rpc_opc {
2685 SEQ_QUERY = 700,
2686 SEQ_LAST_OPC,
2687 SEQ_FIRST_OPC = SEQ_QUERY
2688 };
2689
2690 enum seq_op {
2691 SEQ_ALLOC_SUPER = 0,
2692 SEQ_ALLOC_META = 1
2693 };
2694
2695 /*
2696 * LOV data structures
2697 */
2698
2699 #define LOV_MAX_UUID_BUFFER_SIZE 8192
2700 /* The size of the buffer the lov/mdc reserves for the
2701 * array of UUIDs returned by the MDS. With the current
2702 * protocol, this will limit the max number of OSTs per LOV */
2703
2704 #define LOV_DESC_MAGIC 0xB0CCDE5C
2705 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2706 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2707
2708 /* LOV settings descriptor (should only contain static info) */
2709 struct lov_desc {
2710 __u32 ld_tgt_count; /* how many OBD's */
2711 __u32 ld_active_tgt_count; /* how many active */
2712 __u32 ld_default_stripe_count; /* how many objects are used */
2713 __u32 ld_pattern; /* default PATTERN_RAID0 */
2714 __u64 ld_default_stripe_size; /* in bytes */
2715 __u64 ld_default_stripe_offset; /* in bytes */
2716 __u32 ld_padding_0; /* unused */
2717 __u32 ld_qos_maxage; /* in second */
2718 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2719 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2720 struct obd_uuid ld_uuid;
2721 };
2722
2723 #define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2724
2725 extern void lustre_swab_lov_desc (struct lov_desc *ld);
2726
2727 /*
2728 * LDLM requests:
2729 */
2730 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2731 typedef enum {
2732 LDLM_ENQUEUE = 101,
2733 LDLM_CONVERT = 102,
2734 LDLM_CANCEL = 103,
2735 LDLM_BL_CALLBACK = 104,
2736 LDLM_CP_CALLBACK = 105,
2737 LDLM_GL_CALLBACK = 106,
2738 LDLM_SET_INFO = 107,
2739 LDLM_LAST_OPC
2740 } ldlm_cmd_t;
2741 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2742
2743 #define RES_NAME_SIZE 4
2744 struct ldlm_res_id {
2745 __u64 name[RES_NAME_SIZE];
2746 };
2747
2748 #define DLDLMRES "[%#llx:%#llx:%#llx].%llx"
2749 #define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2750 (res)->lr_name.name[2], (res)->lr_name.name[3]
2751
2752 extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2753
2754 static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2755 const struct ldlm_res_id *res1)
2756 {
2757 return !memcmp(res0, res1, sizeof(*res0));
2758 }
2759
2760 /* lock types */
2761 typedef enum {
2762 LCK_MINMODE = 0,
2763 LCK_EX = 1,
2764 LCK_PW = 2,
2765 LCK_PR = 4,
2766 LCK_CW = 8,
2767 LCK_CR = 16,
2768 LCK_NL = 32,
2769 LCK_GROUP = 64,
2770 LCK_COS = 128,
2771 LCK_MAXMODE
2772 } ldlm_mode_t;
2773
2774 #define LCK_MODE_NUM 8
2775
2776 typedef enum {
2777 LDLM_PLAIN = 10,
2778 LDLM_EXTENT = 11,
2779 LDLM_FLOCK = 12,
2780 LDLM_IBITS = 13,
2781 LDLM_MAX_TYPE
2782 } ldlm_type_t;
2783
2784 #define LDLM_MIN_TYPE LDLM_PLAIN
2785
2786 struct ldlm_extent {
2787 __u64 start;
2788 __u64 end;
2789 __u64 gid;
2790 };
2791
2792 static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2793 struct ldlm_extent *ex2)
2794 {
2795 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2796 }
2797
2798 /* check if @ex1 contains @ex2 */
2799 static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2800 struct ldlm_extent *ex2)
2801 {
2802 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2803 }
2804
2805 struct ldlm_inodebits {
2806 __u64 bits;
2807 };
2808
2809 struct ldlm_flock_wire {
2810 __u64 lfw_start;
2811 __u64 lfw_end;
2812 __u64 lfw_owner;
2813 __u32 lfw_padding;
2814 __u32 lfw_pid;
2815 };
2816
2817 /* it's important that the fields of the ldlm_extent structure match
2818 * the first fields of the ldlm_flock structure because there is only
2819 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2820 * this ever changes we will need to swab the union differently based
2821 * on the resource type. */
2822
2823 typedef union {
2824 struct ldlm_extent l_extent;
2825 struct ldlm_flock_wire l_flock;
2826 struct ldlm_inodebits l_inodebits;
2827 } ldlm_wire_policy_data_t;
2828
2829 extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2830
2831 union ldlm_gl_desc {
2832 struct ldlm_gl_lquota_desc lquota_desc;
2833 };
2834
2835 extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2836
2837 struct ldlm_intent {
2838 __u64 opc;
2839 };
2840
2841 extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2842
2843 struct ldlm_resource_desc {
2844 ldlm_type_t lr_type;
2845 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2846 struct ldlm_res_id lr_name;
2847 };
2848
2849 extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2850
2851 struct ldlm_lock_desc {
2852 struct ldlm_resource_desc l_resource;
2853 ldlm_mode_t l_req_mode;
2854 ldlm_mode_t l_granted_mode;
2855 ldlm_wire_policy_data_t l_policy_data;
2856 };
2857
2858 extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2859
2860 #define LDLM_LOCKREQ_HANDLES 2
2861 #define LDLM_ENQUEUE_CANCEL_OFF 1
2862
2863 struct ldlm_request {
2864 __u32 lock_flags;
2865 __u32 lock_count;
2866 struct ldlm_lock_desc lock_desc;
2867 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2868 };
2869
2870 extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2871
2872 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2873 * Otherwise, 2 are available. */
2874 #define ldlm_request_bufsize(count,type) \
2875 ({ \
2876 int _avail = LDLM_LOCKREQ_HANDLES; \
2877 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2878 sizeof(struct ldlm_request) + \
2879 (count > _avail ? count - _avail : 0) * \
2880 sizeof(struct lustre_handle); \
2881 })
2882
2883 struct ldlm_reply {
2884 __u32 lock_flags;
2885 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2886 struct ldlm_lock_desc lock_desc;
2887 struct lustre_handle lock_handle;
2888 __u64 lock_policy_res1;
2889 __u64 lock_policy_res2;
2890 };
2891
2892 extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2893
2894 #define ldlm_flags_to_wire(flags) ((__u32)(flags))
2895 #define ldlm_flags_from_wire(flags) ((__u64)(flags))
2896
2897 /*
2898 * Opcodes for mountconf (mgs and mgc)
2899 */
2900 typedef enum {
2901 MGS_CONNECT = 250,
2902 MGS_DISCONNECT,
2903 MGS_EXCEPTION, /* node died, etc. */
2904 MGS_TARGET_REG, /* whenever target starts up */
2905 MGS_TARGET_DEL,
2906 MGS_SET_INFO,
2907 MGS_CONFIG_READ,
2908 MGS_LAST_OPC
2909 } mgs_cmd_t;
2910 #define MGS_FIRST_OPC MGS_CONNECT
2911
2912 #define MGS_PARAM_MAXLEN 1024
2913 #define KEY_SET_INFO "set_info"
2914
2915 struct mgs_send_param {
2916 char mgs_param[MGS_PARAM_MAXLEN];
2917 };
2918
2919 /* We pass this info to the MGS so it can write config logs */
2920 #define MTI_NAME_MAXLEN 64
2921 #define MTI_PARAM_MAXLEN 4096
2922 #define MTI_NIDS_MAX 32
2923 struct mgs_target_info {
2924 __u32 mti_lustre_ver;
2925 __u32 mti_stripe_index;
2926 __u32 mti_config_ver;
2927 __u32 mti_flags;
2928 __u32 mti_nid_count;
2929 __u32 mti_instance; /* Running instance of target */
2930 char mti_fsname[MTI_NAME_MAXLEN];
2931 char mti_svname[MTI_NAME_MAXLEN];
2932 char mti_uuid[sizeof(struct obd_uuid)];
2933 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2934 char mti_params[MTI_PARAM_MAXLEN];
2935 };
2936 extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2937
2938 struct mgs_nidtbl_entry {
2939 __u64 mne_version; /* table version of this entry */
2940 __u32 mne_instance; /* target instance # */
2941 __u32 mne_index; /* target index */
2942 __u32 mne_length; /* length of this entry - by bytes */
2943 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2944 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2945 __u8 mne_nid_size; /* size of each NID, by bytes */
2946 __u8 mne_nid_count; /* # of NIDs in buffer */
2947 union {
2948 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2949 } u;
2950 };
2951 extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2952
2953 struct mgs_config_body {
2954 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2955 __u64 mcb_offset; /* next index of config log to request */
2956 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2957 __u8 mcb_reserved;
2958 __u8 mcb_bits; /* bits unit size of config log */
2959 __u32 mcb_units; /* # of units for bulk transfer */
2960 };
2961 extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2962
2963 struct mgs_config_res {
2964 __u64 mcr_offset; /* index of last config log */
2965 __u64 mcr_size; /* size of the log */
2966 };
2967 extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2968
2969 /* Config marker flags (in config log) */
2970 #define CM_START 0x01
2971 #define CM_END 0x02
2972 #define CM_SKIP 0x04
2973 #define CM_UPGRADE146 0x08
2974 #define CM_EXCLUDE 0x10
2975 #define CM_START_SKIP (CM_START | CM_SKIP)
2976
2977 struct cfg_marker {
2978 __u32 cm_step; /* aka config version */
2979 __u32 cm_flags;
2980 __u32 cm_vers; /* lustre release version number */
2981 __u32 cm_padding; /* 64 bit align */
2982 obd_time cm_createtime; /*when this record was first created */
2983 obd_time cm_canceltime; /*when this record is no longer valid*/
2984 char cm_tgtname[MTI_NAME_MAXLEN];
2985 char cm_comment[MTI_NAME_MAXLEN];
2986 };
2987
2988 extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2989 int swab, int size);
2990
2991 /*
2992 * Opcodes for multiple servers.
2993 */
2994
2995 typedef enum {
2996 OBD_PING = 400,
2997 OBD_LOG_CANCEL,
2998 OBD_QC_CALLBACK,
2999 OBD_IDX_READ,
3000 OBD_LAST_OPC
3001 } obd_cmd_t;
3002 #define OBD_FIRST_OPC OBD_PING
3003
3004 /* catalog of log objects */
3005
3006 /** Identifier for a single log object */
3007 struct llog_logid {
3008 struct ost_id lgl_oi;
3009 __u32 lgl_ogen;
3010 } __attribute__((packed));
3011
3012 /** Records written to the CATALOGS list */
3013 #define CATLIST "CATALOGS"
3014 struct llog_catid {
3015 struct llog_logid lci_logid;
3016 __u32 lci_padding1;
3017 __u32 lci_padding2;
3018 __u32 lci_padding3;
3019 } __attribute__((packed));
3020
3021 /* Log data record types - there is no specific reason that these need to
3022 * be related to the RPC opcodes, but no reason not to (may be handy later?)
3023 */
3024 #define LLOG_OP_MAGIC 0x10600000
3025 #define LLOG_OP_MASK 0xfff00000
3026
3027 typedef enum {
3028 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
3029 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
3030 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
3031 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
3032 REINT_UNLINK, /* obsolete after 2.5.0 */
3033 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3034 REINT_UNLINK,
3035 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
3036 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3037 REINT_SETATTR,
3038 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3039 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3040 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3041 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3042 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3043 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
3044 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
3045 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3046 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3047 } llog_op_type;
3048
3049 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3050 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3051
3052 /** Log record header - stored in little endian order.
3053 * Each record must start with this struct, end with a llog_rec_tail,
3054 * and be a multiple of 256 bits in size.
3055 */
3056 struct llog_rec_hdr {
3057 __u32 lrh_len;
3058 __u32 lrh_index;
3059 __u32 lrh_type;
3060 __u32 lrh_id;
3061 };
3062
3063 struct llog_rec_tail {
3064 __u32 lrt_len;
3065 __u32 lrt_index;
3066 };
3067
3068 /* Where data follow just after header */
3069 #define REC_DATA(ptr) \
3070 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3071
3072 #define REC_DATA_LEN(rec) \
3073 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3074 sizeof(struct llog_rec_tail))
3075
3076 struct llog_logid_rec {
3077 struct llog_rec_hdr lid_hdr;
3078 struct llog_logid lid_id;
3079 __u32 lid_padding1;
3080 __u64 lid_padding2;
3081 __u64 lid_padding3;
3082 struct llog_rec_tail lid_tail;
3083 } __attribute__((packed));
3084
3085 struct llog_unlink_rec {
3086 struct llog_rec_hdr lur_hdr;
3087 obd_id lur_oid;
3088 obd_count lur_oseq;
3089 obd_count lur_count;
3090 struct llog_rec_tail lur_tail;
3091 } __attribute__((packed));
3092
3093 struct llog_unlink64_rec {
3094 struct llog_rec_hdr lur_hdr;
3095 struct lu_fid lur_fid;
3096 obd_count lur_count; /* to destroy the lost precreated */
3097 __u32 lur_padding1;
3098 __u64 lur_padding2;
3099 __u64 lur_padding3;
3100 struct llog_rec_tail lur_tail;
3101 } __attribute__((packed));
3102
3103 struct llog_setattr64_rec {
3104 struct llog_rec_hdr lsr_hdr;
3105 struct ost_id lsr_oi;
3106 __u32 lsr_uid;
3107 __u32 lsr_uid_h;
3108 __u32 lsr_gid;
3109 __u32 lsr_gid_h;
3110 __u64 lsr_padding;
3111 struct llog_rec_tail lsr_tail;
3112 } __attribute__((packed));
3113
3114 struct llog_size_change_rec {
3115 struct llog_rec_hdr lsc_hdr;
3116 struct ll_fid lsc_fid;
3117 __u32 lsc_ioepoch;
3118 __u32 lsc_padding1;
3119 __u64 lsc_padding2;
3120 __u64 lsc_padding3;
3121 struct llog_rec_tail lsc_tail;
3122 } __attribute__((packed));
3123
3124 #define CHANGELOG_MAGIC 0xca103000
3125
3126 /** \a changelog_rec_type's that can't be masked */
3127 #define CHANGELOG_MINMASK (1 << CL_MARK)
3128 /** bits covering all \a changelog_rec_type's */
3129 #define CHANGELOG_ALLMASK 0XFFFFFFFF
3130 /** default \a changelog_rec_type mask */
3131 #define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3132
3133 /* changelog llog name, needed by client replicators */
3134 #define CHANGELOG_CATALOG "changelog_catalog"
3135
3136 struct changelog_setinfo {
3137 __u64 cs_recno;
3138 __u32 cs_id;
3139 } __attribute__((packed));
3140
3141 /** changelog record */
3142 struct llog_changelog_rec {
3143 struct llog_rec_hdr cr_hdr;
3144 struct changelog_rec cr;
3145 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3146 } __attribute__((packed));
3147
3148 struct llog_changelog_ext_rec {
3149 struct llog_rec_hdr cr_hdr;
3150 struct changelog_ext_rec cr;
3151 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3152 } __attribute__((packed));
3153
3154 #define CHANGELOG_USER_PREFIX "cl"
3155
3156 struct llog_changelog_user_rec {
3157 struct llog_rec_hdr cur_hdr;
3158 __u32 cur_id;
3159 __u32 cur_padding;
3160 __u64 cur_endrec;
3161 struct llog_rec_tail cur_tail;
3162 } __attribute__((packed));
3163
3164 enum agent_req_status {
3165 ARS_WAITING,
3166 ARS_STARTED,
3167 ARS_FAILED,
3168 ARS_CANCELED,
3169 ARS_SUCCEED,
3170 };
3171
3172 static inline char *agent_req_status2name(enum agent_req_status ars)
3173 {
3174 switch (ars) {
3175 case ARS_WAITING:
3176 return "WAITING";
3177 case ARS_STARTED:
3178 return "STARTED";
3179 case ARS_FAILED:
3180 return "FAILED";
3181 case ARS_CANCELED:
3182 return "CANCELED";
3183 case ARS_SUCCEED:
3184 return "SUCCEED";
3185 default:
3186 return "UNKNOWN";
3187 }
3188 }
3189
3190 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3191 {
3192 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3193 (ars == ARS_CANCELED));
3194 }
3195
3196 struct llog_agent_req_rec {
3197 struct llog_rec_hdr arr_hdr; /**< record header */
3198 __u32 arr_status; /**< status of the request */
3199 /* must match enum
3200 * agent_req_status */
3201 __u32 arr_archive_id; /**< backend archive number */
3202 __u64 arr_flags; /**< req flags */
3203 __u64 arr_compound_id; /**< compound cookie */
3204 __u64 arr_req_create; /**< req. creation time */
3205 __u64 arr_req_change; /**< req. status change time */
3206 struct hsm_action_item arr_hai; /**< req. to the agent */
3207 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3208 } __attribute__((packed));
3209
3210 /* Old llog gen for compatibility */
3211 struct llog_gen {
3212 __u64 mnt_cnt;
3213 __u64 conn_cnt;
3214 } __attribute__((packed));
3215
3216 struct llog_gen_rec {
3217 struct llog_rec_hdr lgr_hdr;
3218 struct llog_gen lgr_gen;
3219 __u64 padding1;
3220 __u64 padding2;
3221 __u64 padding3;
3222 struct llog_rec_tail lgr_tail;
3223 };
3224
3225 /* On-disk header structure of each log object, stored in little endian order */
3226 #define LLOG_CHUNK_SIZE 8192
3227 #define LLOG_HEADER_SIZE (96)
3228 #define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3229
3230 #define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3231
3232 /* flags for the logs */
3233 enum llog_flag {
3234 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3235 LLOG_F_IS_CAT = 0x2,
3236 LLOG_F_IS_PLAIN = 0x4,
3237 };
3238
3239 struct llog_log_hdr {
3240 struct llog_rec_hdr llh_hdr;
3241 obd_time llh_timestamp;
3242 __u32 llh_count;
3243 __u32 llh_bitmap_offset;
3244 __u32 llh_size;
3245 __u32 llh_flags;
3246 __u32 llh_cat_idx;
3247 /* for a catalog the first plain slot is next to it */
3248 struct obd_uuid llh_tgtuuid;
3249 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3250 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3251 struct llog_rec_tail llh_tail;
3252 } __attribute__((packed));
3253
3254 #define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3255 llh->llh_bitmap_offset - \
3256 sizeof(llh->llh_tail)) * 8)
3257
3258 /** log cookies are used to reference a specific log file and a record therein */
3259 struct llog_cookie {
3260 struct llog_logid lgc_lgl;
3261 __u32 lgc_subsys;
3262 __u32 lgc_index;
3263 __u32 lgc_padding;
3264 } __attribute__((packed));
3265
3266 /** llog protocol */
3267 enum llogd_rpc_ops {
3268 LLOG_ORIGIN_HANDLE_CREATE = 501,
3269 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3270 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3271 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3272 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3273 LLOG_ORIGIN_CONNECT = 506,
3274 LLOG_CATINFO = 507, /* deprecated */
3275 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3276 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3277 LLOG_LAST_OPC,
3278 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3279 };
3280
3281 struct llogd_body {
3282 struct llog_logid lgd_logid;
3283 __u32 lgd_ctxt_idx;
3284 __u32 lgd_llh_flags;
3285 __u32 lgd_index;
3286 __u32 lgd_saved_index;
3287 __u32 lgd_len;
3288 __u64 lgd_cur_offset;
3289 } __attribute__((packed));
3290
3291 struct llogd_conn_body {
3292 struct llog_gen lgdc_gen;
3293 struct llog_logid lgdc_logid;
3294 __u32 lgdc_ctxt_idx;
3295 } __attribute__((packed));
3296
3297 /* Note: 64-bit types are 64-bit aligned in structure */
3298 struct obdo {
3299 obd_valid o_valid; /* hot fields in this obdo */
3300 struct ost_id o_oi;
3301 obd_id o_parent_seq;
3302 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3303 obd_time o_mtime;
3304 obd_time o_atime;
3305 obd_time o_ctime;
3306 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3307 obd_size o_grant;
3308
3309 /* 32-bit fields start here: keep an even number of them via padding */
3310 obd_blksize o_blksize; /* optimal IO blocksize */
3311 obd_mode o_mode; /* brw: cli sent cache remain */
3312 obd_uid o_uid;
3313 obd_gid o_gid;
3314 obd_flag o_flags;
3315 obd_count o_nlink; /* brw: checksum */
3316 obd_count o_parent_oid;
3317 obd_count o_misc; /* brw: o_dropped */
3318
3319 __u64 o_ioepoch; /* epoch in ost writes */
3320 __u32 o_stripe_idx; /* holds stripe idx */
3321 __u32 o_parent_ver;
3322 struct lustre_handle o_handle; /* brw: lock handle to prolong
3323 * locks */
3324 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3325 * MDS */
3326 __u32 o_uid_h;
3327 __u32 o_gid_h;
3328
3329 __u64 o_data_version; /* getattr: sum of iversion for
3330 * each stripe.
3331 * brw: grant space consumed on
3332 * the client for the write */
3333 __u64 o_padding_4;
3334 __u64 o_padding_5;
3335 __u64 o_padding_6;
3336 };
3337
3338 #define o_dirty o_blocks
3339 #define o_undirty o_mode
3340 #define o_dropped o_misc
3341 #define o_cksum o_nlink
3342 #define o_grant_used o_data_version
3343
3344 static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3345 struct obdo *wobdo,
3346 const struct obdo *lobdo)
3347 {
3348 *wobdo = *lobdo;
3349 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3350 if (ocd == NULL)
3351 return;
3352
3353 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3354 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3355 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3356 * client communicate with pre-2.4 server */
3357 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3358 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3359 }
3360 }
3361
3362 static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3363 struct obdo *lobdo,
3364 const struct obdo *wobdo)
3365 {
3366 obd_flag local_flags = 0;
3367
3368 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3369 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3370
3371 *lobdo = *wobdo;
3372 if (local_flags != 0) {
3373 lobdo->o_valid |= OBD_MD_FLFLAGS;
3374 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3375 lobdo->o_flags |= local_flags;
3376 }
3377 if (ocd == NULL)
3378 return;
3379
3380 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3381 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3382 /* see above */
3383 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3384 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3385 lobdo->o_oi.oi_fid.f_ver = 0;
3386 }
3387 }
3388
3389 extern void lustre_swab_obdo (struct obdo *o);
3390
3391 /* request structure for OST's */
3392 struct ost_body {
3393 struct obdo oa;
3394 };
3395
3396 /* Key for FIEMAP to be used in get_info calls */
3397 struct ll_fiemap_info_key {
3398 char name[8];
3399 struct obdo oa;
3400 struct ll_user_fiemap fiemap;
3401 };
3402
3403 extern void lustre_swab_ost_body (struct ost_body *b);
3404 extern void lustre_swab_ost_last_id(obd_id *id);
3405 extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3406
3407 extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3408 extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3409 extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3410 int stripe_count);
3411 extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3412
3413 /* llog_swab.c */
3414 extern void lustre_swab_llogd_body (struct llogd_body *d);
3415 extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3416 extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3417 extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3418 extern void lustre_swab_llog_id(struct llog_logid *lid);
3419
3420 struct lustre_cfg;
3421 extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3422
3423 /* Functions for dumping PTLRPC fields */
3424 void dump_rniobuf(struct niobuf_remote *rnb);
3425 void dump_ioo(struct obd_ioobj *nb);
3426 void dump_obdo(struct obdo *oa);
3427 void dump_ost_body(struct ost_body *ob);
3428 void dump_rcs(__u32 *rc);
3429
3430 #define IDX_INFO_MAGIC 0x3D37CC37
3431
3432 /* Index file transfer through the network. The server serializes the index into
3433 * a byte stream which is sent to the client via a bulk transfer */
3434 struct idx_info {
3435 __u32 ii_magic;
3436
3437 /* reply: see idx_info_flags below */
3438 __u32 ii_flags;
3439
3440 /* request & reply: number of lu_idxpage (to be) transferred */
3441 __u16 ii_count;
3442 __u16 ii_pad0;
3443
3444 /* request: requested attributes passed down to the iterator API */
3445 __u32 ii_attrs;
3446
3447 /* request & reply: index file identifier (FID) */
3448 struct lu_fid ii_fid;
3449
3450 /* reply: version of the index file before starting to walk the index.
3451 * Please note that the version can be modified at any time during the
3452 * transfer */
3453 __u64 ii_version;
3454
3455 /* request: hash to start with:
3456 * reply: hash of the first entry of the first lu_idxpage and hash
3457 * of the entry to read next if any */
3458 __u64 ii_hash_start;
3459 __u64 ii_hash_end;
3460
3461 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3462 * set */
3463 __u16 ii_keysize;
3464
3465 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3466 * is set */
3467 __u16 ii_recsize;
3468
3469 __u32 ii_pad1;
3470 __u64 ii_pad2;
3471 __u64 ii_pad3;
3472 };
3473 extern void lustre_swab_idx_info(struct idx_info *ii);
3474
3475 #define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3476
3477 /* List of flags used in idx_info::ii_flags */
3478 enum idx_info_flags {
3479 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3480 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3481 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3482 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3483 };
3484
3485 #define LIP_MAGIC 0x8A6D6B6C
3486
3487 /* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3488 struct lu_idxpage {
3489 /* 16-byte header */
3490 __u32 lip_magic;
3491 __u16 lip_flags;
3492 __u16 lip_nr; /* number of entries in the container */
3493 __u64 lip_pad0; /* additional padding for future use */
3494
3495 /* key/record pairs are stored in the remaining 4080 bytes.
3496 * depending upon the flags in idx_info::ii_flags, each key/record
3497 * pair might be preceded by:
3498 * - a hash value
3499 * - the key size (II_FL_VARKEY is set)
3500 * - the record size (II_FL_VARREC is set)
3501 *
3502 * For the time being, we only support fixed-size key & record. */
3503 char lip_entries[0];
3504 };
3505 extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3506
3507 #define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3508
3509 /* Gather all possible type associated with a 4KB container */
3510 union lu_page {
3511 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3512 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3513 char lp_array[LU_PAGE_SIZE];
3514 };
3515
3516 /* security opcodes */
3517 typedef enum {
3518 SEC_CTX_INIT = 801,
3519 SEC_CTX_INIT_CONT = 802,
3520 SEC_CTX_FINI = 803,
3521 SEC_LAST_OPC,
3522 SEC_FIRST_OPC = SEC_CTX_INIT
3523 } sec_cmd_t;
3524
3525 /*
3526 * capa related definitions
3527 */
3528 #define CAPA_HMAC_MAX_LEN 64
3529 #define CAPA_HMAC_KEY_MAX_LEN 56
3530
3531 /* NB take care when changing the sequence of elements this struct,
3532 * because the offset info is used in find_capa() */
3533 struct lustre_capa {
3534 struct lu_fid lc_fid; /** fid */
3535 __u64 lc_opc; /** operations allowed */
3536 __u64 lc_uid; /** file owner */
3537 __u64 lc_gid; /** file group */
3538 __u32 lc_flags; /** HMAC algorithm & flags */
3539 __u32 lc_keyid; /** key# used for the capability */
3540 __u32 lc_timeout; /** capa timeout value (sec) */
3541 __u32 lc_expiry; /** expiry time (sec) */
3542 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3543 } __attribute__((packed));
3544
3545 extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3546
3547 /** lustre_capa::lc_opc */
3548 enum {
3549 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3550 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3551 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3552 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3553 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3554 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3555 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3556 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3557 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3558 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3559 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3560 };
3561
3562 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3563 #define CAPA_OPC_MDS_ONLY \
3564 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3565 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3566 #define CAPA_OPC_OSS_ONLY \
3567 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3568 CAPA_OPC_OSS_DESTROY)
3569 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3570 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3571
3572 /* MDS capability covers object capability for operations of body r/w
3573 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3574 * while OSS capability only covers object capability for operations of
3575 * oss data(file content) r/w/truncate.
3576 */
3577 static inline int capa_for_mds(struct lustre_capa *c)
3578 {
3579 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3580 }
3581
3582 static inline int capa_for_oss(struct lustre_capa *c)
3583 {
3584 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3585 }
3586
3587 /* lustre_capa::lc_hmac_alg */
3588 enum {
3589 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3590 CAPA_HMAC_ALG_MAX,
3591 };
3592
3593 #define CAPA_FL_MASK 0x00ffffff
3594 #define CAPA_HMAC_ALG_MASK 0xff000000
3595
3596 struct lustre_capa_key {
3597 __u64 lk_seq; /**< mds# */
3598 __u32 lk_keyid; /**< key# */
3599 __u32 lk_padding;
3600 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3601 } __attribute__((packed));
3602
3603 extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3604
3605 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3606 #define LINK_EA_MAGIC 0x11EAF1DFUL
3607 struct link_ea_header {
3608 __u32 leh_magic;
3609 __u32 leh_reccount;
3610 __u64 leh_len; /* total size */
3611 /* future use */
3612 __u32 padding1;
3613 __u32 padding2;
3614 };
3615
3616 /** Hardlink data is name and parent fid.
3617 * Stored in this crazy struct for maximum packing and endian-neutrality
3618 */
3619 struct link_ea_entry {
3620 /** __u16 stored big-endian, unaligned */
3621 unsigned char lee_reclen[2];
3622 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3623 char lee_name[0];
3624 }__attribute__((packed));
3625
3626 /** fid2path request/reply structure */
3627 struct getinfo_fid2path {
3628 struct lu_fid gf_fid;
3629 __u64 gf_recno;
3630 __u32 gf_linkno;
3631 __u32 gf_pathlen;
3632 char gf_path[0];
3633 } __attribute__((packed));
3634
3635 void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3636
3637 enum {
3638 LAYOUT_INTENT_ACCESS = 0,
3639 LAYOUT_INTENT_READ = 1,
3640 LAYOUT_INTENT_WRITE = 2,
3641 LAYOUT_INTENT_GLIMPSE = 3,
3642 LAYOUT_INTENT_TRUNC = 4,
3643 LAYOUT_INTENT_RELEASE = 5,
3644 LAYOUT_INTENT_RESTORE = 6
3645 };
3646
3647 /* enqueue layout lock with intent */
3648 struct layout_intent {
3649 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3650 __u32 li_flags;
3651 __u64 li_start;
3652 __u64 li_end;
3653 };
3654
3655 void lustre_swab_layout_intent(struct layout_intent *li);
3656
3657 /**
3658 * On the wire version of hsm_progress structure.
3659 *
3660 * Contains the userspace hsm_progress and some internal fields.
3661 */
3662 struct hsm_progress_kernel {
3663 /* Field taken from struct hsm_progress */
3664 lustre_fid hpk_fid;
3665 __u64 hpk_cookie;
3666 struct hsm_extent hpk_extent;
3667 __u16 hpk_flags;
3668 __u16 hpk_errval; /* positive val */
3669 __u32 hpk_padding1;
3670 /* Additional fields */
3671 __u64 hpk_data_version;
3672 __u64 hpk_padding2;
3673 } __attribute__((packed));
3674
3675 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3676 extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3677 extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3678 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3679 extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3680 extern void lustre_swab_hsm_request(struct hsm_request *hr);
3681
3682 /**
3683 * These are object update opcode under UPDATE_OBJ, which is currently
3684 * being used by cross-ref operations between MDT.
3685 *
3686 * During the cross-ref operation, the Master MDT, which the client send the
3687 * request to, will disassembly the operation into object updates, then OSP
3688 * will send these updates to the remote MDT to be executed.
3689 *
3690 * Update request format
3691 * magic: UPDATE_BUFFER_MAGIC_V1
3692 * Count: How many updates in the req.
3693 * bufs[0] : following are packets of object.
3694 * update[0]:
3695 * type: object_update_op, the op code of update
3696 * fid: The object fid of the update.
3697 * lens/bufs: other parameters of the update.
3698 * update[1]:
3699 * type: object_update_op, the op code of update
3700 * fid: The object fid of the update.
3701 * lens/bufs: other parameters of the update.
3702 * ..........
3703 * update[7]: type: object_update_op, the op code of update
3704 * fid: The object fid of the update.
3705 * lens/bufs: other parameters of the update.
3706 * Current 8 maxim updates per object update request.
3707 *
3708 *******************************************************************
3709 * update reply format:
3710 *
3711 * ur_version: UPDATE_REPLY_V1
3712 * ur_count: The count of the reply, which is usually equal
3713 * to the number of updates in the request.
3714 * ur_lens: The reply lengths of each object update.
3715 *
3716 * replies: 1st update reply [4bytes_ret: other body]
3717 * 2nd update reply [4bytes_ret: other body]
3718 * .....
3719 * nth update reply [4bytes_ret: other body]
3720 *
3721 * For each reply of the update, the format would be
3722 * result(4 bytes):Other stuff
3723 */
3724
3725 #define UPDATE_MAX_OPS 10
3726 #define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3727 #define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3728 #define UPDATE_BUF_COUNT 8
3729 enum object_update_op {
3730 OBJ_CREATE = 1,
3731 OBJ_DESTROY = 2,
3732 OBJ_REF_ADD = 3,
3733 OBJ_REF_DEL = 4,
3734 OBJ_ATTR_SET = 5,
3735 OBJ_ATTR_GET = 6,
3736 OBJ_XATTR_SET = 7,
3737 OBJ_XATTR_GET = 8,
3738 OBJ_INDEX_LOOKUP = 9,
3739 OBJ_INDEX_INSERT = 10,
3740 OBJ_INDEX_DELETE = 11,
3741 OBJ_LAST
3742 };
3743
3744 struct update {
3745 __u32 u_type;
3746 __u32 u_batchid;
3747 struct lu_fid u_fid;
3748 __u32 u_lens[UPDATE_BUF_COUNT];
3749 __u32 u_bufs[0];
3750 };
3751
3752 struct update_buf {
3753 __u32 ub_magic;
3754 __u32 ub_count;
3755 __u32 ub_bufs[0];
3756 };
3757
3758 #define UPDATE_REPLY_V1 0x00BD0001
3759 struct update_reply {
3760 __u32 ur_version;
3761 __u32 ur_count;
3762 __u32 ur_lens[0];
3763 };
3764
3765 void lustre_swab_update_buf(struct update_buf *ub);
3766 void lustre_swab_update_reply_buf(struct update_reply *ur);
3767
3768 /** layout swap request structure
3769 * fid1 and fid2 are in mdt_body
3770 */
3771 struct mdc_swap_layouts {
3772 __u64 msl_flags;
3773 } __packed;
3774
3775 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3776
3777 struct close_data {
3778 struct lustre_handle cd_handle;
3779 struct lu_fid cd_fid;
3780 __u64 cd_data_version;
3781 __u64 cd_reserved[8];
3782 };
3783
3784 void lustre_swab_close_data(struct close_data *data);
3785
3786 #endif
3787 /** @} lustreidl */
This page took 0.14824 seconds and 5 git commands to generate.