cbdd91af16be76988c2b99f0a262f5ca89439ec2
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre_fid.h
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2011, 2015, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 *
32 * lustre/include/lustre_fid.h
33 *
34 * Author: Yury Umanets <umka@clusterfs.com>
35 */
36
37 #ifndef __LUSTRE_FID_H
38 #define __LUSTRE_FID_H
39
40 /** \defgroup fid fid
41 *
42 * @{
43 *
44 * http://wiki.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
45 * describes the FID namespace and interoperability requirements for FIDs.
46 * The important parts of that document are included here for reference.
47 *
48 * FID
49 * File IDentifier generated by client from range allocated by the SEQuence
50 * service and stored in struct lu_fid. The FID is composed of three parts:
51 * SEQuence, ObjectID, and VERsion. The SEQ component is a filesystem
52 * unique 64-bit integer, and only one client is ever assigned any SEQ value.
53 * The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved
54 * for system use. The OID component is a 32-bit value generated by the
55 * client on a per-SEQ basis to allow creating many unique FIDs without
56 * communication with the server. The VER component is a 32-bit value that
57 * distinguishes between different FID instantiations, such as snapshots or
58 * separate subtrees within the filesystem. FIDs with the same VER field
59 * are considered part of the same namespace.
60 *
61 * OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and
62 * MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while
63 * OSTs use 64-bit Lustre object IDs and generation numbers.
64 *
65 * NEW filesystems are those formatted since the introduction of FIDs.
66 *
67 * IGIF
68 * Inode and Generation In FID, a surrogate FID used to globally identify
69 * an existing object on OLD formatted MDT file system. This would only be
70 * used on MDT0 in a DNE filesystem, because there cannot be more than one
71 * MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1]
72 * range, where inode number is stored in SEQ, and inode generation is in OID.
73 * NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem,
74 * which is the maximum possible for an ldiskfs backend. It also assumes
75 * that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible
76 * to clients, which has always been true.
77 *
78 * IDIF
79 * object ID In FID, a surrogate FID used to globally identify an existing
80 * OST object on OLD formatted OST file system. Belongs to a sequence in
81 * [2^32, 2^33 - 1]. Sequence number is calculated as:
82 *
83 * 1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff)
84 *
85 * that is, SEQ consists of 16-bit OST index, and higher 16 bits of object
86 * ID. The generation of unique SEQ values per OST allows the IDIF FIDs to
87 * be identified in the FLD correctly. The OID field is calculated as:
88 *
89 * objid & 0xffffffff
90 *
91 * that is, it consists of lower 32 bits of object ID. For objects within
92 * the IDIF range, object ID extraction will be:
93 *
94 * o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid;
95 * o_seq = 0; // formerly group number
96 *
97 * NOTE: This assumes that no more than 2^48-1 objects have ever been created
98 * on any OST, and that no more than 65535 OSTs are in use. Both are very
99 * reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming
100 * a maximum creation rate of 1M objects per second for a maximum of 9 years,
101 * or combinations thereof.
102 *
103 * OST_MDT0
104 * Surrogate FID used to identify an existing object on OLD formatted OST
105 * filesystem. Belongs to the reserved SEQuence 0, and is used prior to
106 * the introduction of FID-on-OST, at which point IDIF will be used to
107 * identify objects as residing on a specific OST.
108 *
109 * LLOG
110 * For Lustre Log objects the object sequence 1 is used. This is compatible
111 * with both OLD and NEW namespaces, as this SEQ number is in the
112 * ext3/ldiskfs reserved inode range and does not conflict with IGIF
113 * sequence numbers.
114 *
115 * ECHO
116 * For testing OST IO performance the object sequence 2 is used. This is
117 * compatible with both OLD and NEW namespaces, as this SEQ number is in
118 * the ext3/ldiskfs reserved inode range and does not conflict with IGIF
119 * sequence numbers.
120 *
121 * OST_MDT1 .. OST_MAX
122 * For testing with multiple MDTs the object sequence 3 through 9 is used,
123 * allowing direct mapping of MDTs 1 through 7 respectively, for a total
124 * of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group"
125 * mappings. However, this SEQ range is only for testing prior to any
126 * production DNE release, as the objects in this range conflict across all
127 * OSTs, as the OST index is not part of the FID. For production DNE usage,
128 * OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs.
129 *
130 * DLM OST objid to IDIF mapping
131 * For compatibility with existing OLD OST network protocol structures, the
132 * FID must map onto the o_id and o_seq in a manner that ensures existing
133 * objects are identified consistently for IO, as well as onto the LDLM
134 * namespace to ensure IDIFs there is only a single resource name for any
135 * object in the DLM. The OLD OST object DLM resource mapping is:
136 *
137 * resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases
138 *
139 * The NEW OST object DLM resource mapping is the same for both MDT and OST:
140 *
141 * resource[] = {SEQ, OID, VER, HASH};
142 *
143 * NOTE: for mapping IDIF values to DLM resource names the o_id may be
144 * larger than the 2^33 reserved sequence numbers for IDIF, so it is possible
145 * for the o_id numbers to overlap FID SEQ numbers in the resource. However,
146 * in all production releases the OLD o_seq field is always zero, and all
147 * valid FID OID values are non-zero, so the lock resources will not collide.
148 * Even so, the MDT and OST resources are also in different LDLM namespaces.
149 */
150
151 #include "../../include/linux/libcfs/libcfs.h"
152 #include "lustre/lustre_idl.h"
153
154 struct lu_env;
155 struct lu_site;
156 struct lu_context;
157 struct obd_device;
158 struct obd_export;
159
160 /* Whole sequences space range and zero range definitions */
161 extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
162 extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
163 extern const struct lu_fid LUSTRE_BFL_FID;
164 extern const struct lu_fid LU_OBF_FID;
165 extern const struct lu_fid LU_DOT_LUSTRE_FID;
166
167 enum {
168 /*
169 * This is how may metadata FIDs may be allocated in one sequence(128k)
170 */
171 LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
172
173 /*
174 * This is how many data FIDs could be allocated in one sequence(4B - 1)
175 */
176 LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL,
177
178 /*
179 * How many sequences to allocate to a client at once.
180 */
181 LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
182
183 /*
184 * seq allocation pool size.
185 */
186 LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
187
188 /*
189 * This is how many sequences may be in one super-sequence allocated to
190 * MDTs.
191 */
192 LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
193 };
194
195 enum {
196 /** 2^6 FIDs for OI containers */
197 OSD_OI_FID_OID_BITS = 6,
198 /** reserve enough FIDs in case we want more in the future */
199 OSD_OI_FID_OID_BITS_MAX = 10,
200 };
201
202 /** special OID for local objects */
203 enum local_oid {
204 /** \see fld_mod_init */
205 FLD_INDEX_OID = 3UL,
206 /** \see fid_mod_init */
207 FID_SEQ_CTL_OID = 4UL,
208 FID_SEQ_SRV_OID = 5UL,
209 /** \see mdd_mod_init */
210 MDD_ROOT_INDEX_OID = 6UL, /* deprecated in 2.4 */
211 MDD_ORPHAN_OID = 7UL, /* deprecated in 2.4 */
212 MDD_LOV_OBJ_OID = 8UL,
213 MDD_CAPA_KEYS_OID = 9UL,
214 /** \see mdt_mod_init */
215 LAST_RECV_OID = 11UL,
216 OSD_FS_ROOT_OID = 13UL,
217 ACCT_USER_OID = 15UL,
218 ACCT_GROUP_OID = 16UL,
219 LFSCK_BOOKMARK_OID = 17UL,
220 OTABLE_IT_OID = 18UL,
221 /* These two definitions are obsolete
222 * OFD_GROUP0_LAST_OID = 20UL,
223 * OFD_GROUP4K_LAST_OID = 20UL+4096,
224 */
225 OFD_LAST_GROUP_OID = 4117UL,
226 LLOG_CATALOGS_OID = 4118UL,
227 MGS_CONFIGS_OID = 4119UL,
228 OFD_HEALTH_CHECK_OID = 4120UL,
229 MDD_LOV_OBJ_OSEQ = 4121UL,
230 LFSCK_NAMESPACE_OID = 4122UL,
231 REMOTE_PARENT_DIR_OID = 4123UL,
232 };
233
234 static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
235 {
236 fid->f_seq = FID_SEQ_LOCAL_FILE;
237 fid->f_oid = oid;
238 fid->f_ver = 0;
239 }
240
241 static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid)
242 {
243 fid->f_seq = FID_SEQ_LOCAL_NAME;
244 fid->f_oid = oid;
245 fid->f_ver = 0;
246 }
247
248 /* For new FS (>= 2.4), the root FID will be changed to
249 * [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4),
250 * the root FID will still be IGIF
251 */
252 static inline int fid_is_root(const struct lu_fid *fid)
253 {
254 return unlikely((fid_seq(fid) == FID_SEQ_ROOT &&
255 fid_oid(fid) == 1));
256 }
257
258 static inline int fid_is_dot_lustre(const struct lu_fid *fid)
259 {
260 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
261 fid_oid(fid) == FID_OID_DOT_LUSTRE);
262 }
263
264 static inline int fid_is_obf(const struct lu_fid *fid)
265 {
266 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
267 fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF);
268 }
269
270 static inline int fid_is_otable_it(const struct lu_fid *fid)
271 {
272 return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
273 fid_oid(fid) == OTABLE_IT_OID);
274 }
275
276 static inline int fid_is_acct(const struct lu_fid *fid)
277 {
278 return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
279 (fid_oid(fid) == ACCT_USER_OID ||
280 fid_oid(fid) == ACCT_GROUP_OID);
281 }
282
283 static inline int fid_is_quota(const struct lu_fid *fid)
284 {
285 return fid_seq(fid) == FID_SEQ_QUOTA ||
286 fid_seq(fid) == FID_SEQ_QUOTA_GLB;
287 }
288
289 static inline int fid_is_namespace_visible(const struct lu_fid *fid)
290 {
291 const __u64 seq = fid_seq(fid);
292
293 /* Here, we cannot distinguish whether the normal FID is for OST
294 * object or not. It is caller's duty to check more if needed.
295 */
296 return (!fid_is_last_id(fid) &&
297 (fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) ||
298 fid_is_root(fid) || fid_is_dot_lustre(fid);
299 }
300
301 static inline int fid_seq_in_fldb(__u64 seq)
302 {
303 return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) ||
304 fid_seq_is_root(seq) || fid_seq_is_dot(seq);
305 }
306
307 static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq, __u32 ost_idx)
308 {
309 if (fid_seq_is_mdt0(seq)) {
310 fid->f_seq = fid_idif_seq(0, ost_idx);
311 } else {
312 LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) ||
313 fid_seq_is_idif(seq), "%#llx\n", seq);
314 fid->f_seq = seq;
315 }
316 fid->f_oid = 0;
317 fid->f_ver = 0;
318 }
319
320 /* seq client type */
321 enum lu_cli_type {
322 LUSTRE_SEQ_METADATA = 1,
323 LUSTRE_SEQ_DATA
324 };
325
326 enum lu_mgr_type {
327 LUSTRE_SEQ_SERVER,
328 LUSTRE_SEQ_CONTROLLER
329 };
330
331 /* Client sequence manager interface. */
332 struct lu_client_seq {
333 /* Sequence-controller export. */
334 struct obd_export *lcs_exp;
335 struct mutex lcs_mutex;
336
337 /*
338 * Range of allowed for allocation sequences. When using lu_client_seq on
339 * clients, this contains meta-sequence range. And for servers this
340 * contains super-sequence range.
341 */
342 struct lu_seq_range lcs_space;
343
344 /* Seq related proc */
345 struct dentry *lcs_debugfs_entry;
346
347 /* This holds last allocated fid in last obtained seq */
348 struct lu_fid lcs_fid;
349
350 /* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
351 enum lu_cli_type lcs_type;
352
353 /*
354 * Service uuid, passed from MDT + seq name to form unique seq name to
355 * use it with procfs.
356 */
357 char lcs_name[LUSTRE_MDT_MAXNAMELEN];
358
359 /*
360 * Sequence width, that is how many objects may be allocated in one
361 * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
362 */
363 __u64 lcs_width;
364
365 /* wait queue for fid allocation and update indicator */
366 wait_queue_head_t lcs_waitq;
367 int lcs_update;
368 };
369
370 /* Client methods */
371 void seq_client_flush(struct lu_client_seq *seq);
372
373 int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
374 struct lu_fid *fid);
375 /* Fids common stuff */
376 int fid_is_local(const struct lu_env *env,
377 struct lu_site *site, const struct lu_fid *fid);
378
379 enum lu_cli_type;
380 int client_fid_init(struct obd_device *obd, struct obd_export *exp,
381 enum lu_cli_type type);
382 int client_fid_fini(struct obd_device *obd);
383
384 /* fid locking */
385
386 struct ldlm_namespace;
387
388 /*
389 * Build (DLM) resource name from FID.
390 *
391 * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
392 * but was moved into name[1] along with the OID to avoid consuming the
393 * renaming name[2,3] fields that need to be used for the quota identifier.
394 */
395 static inline struct ldlm_res_id *
396 fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res)
397 {
398 memset(res, 0, sizeof(*res));
399 res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid);
400 res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid);
401
402 return res;
403 }
404
405 /*
406 * Return true if resource is for object identified by FID.
407 */
408 static inline int fid_res_name_eq(const struct lu_fid *fid,
409 const struct ldlm_res_id *res)
410 {
411 return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) &&
412 res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid);
413 }
414
415 /*
416 * Extract FID from LDLM resource. Reverse of fid_build_reg_res_name().
417 */
418 static inline struct lu_fid *
419 fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res)
420 {
421 fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF];
422 fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]);
423 fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32);
424 LASSERT(fid_res_name_eq(fid, res));
425
426 return fid;
427 }
428
429 /*
430 * Build (DLM) resource identifier from global quota FID and quota ID.
431 */
432 static inline struct ldlm_res_id *
433 fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid,
434 struct ldlm_res_id *res)
435 {
436 fid_build_reg_res_name(glb_fid, res);
437 res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid);
438 res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid);
439
440 return res;
441 }
442
443 /*
444 * Extract global FID and quota ID from resource name
445 */
446 static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid,
447 union lquota_id *qid,
448 const struct ldlm_res_id *res)
449 {
450 fid_extract_from_res_name(glb_fid, res);
451 qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF];
452 qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF];
453 qid->qid_fid.f_ver =
454 (__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32);
455 }
456
457 static inline struct ldlm_res_id *
458 fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash,
459 struct ldlm_res_id *res)
460 {
461 fid_build_reg_res_name(fid, res);
462 res->name[LUSTRE_RES_ID_HSH_OFF] = hash;
463
464 return res;
465 }
466
467 /**
468 * Build DLM resource name from object id & seq, which will be removed
469 * finally, when we replace ost_id with FID in data stack.
470 *
471 * Currently, resid from the old client, whose res[0] = object_id,
472 * res[1] = object_seq, is just opposite with Metatdata
473 * resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid.
474 * To unify the resid identification, we will reverse the data
475 * resid to keep it same with Metadata resid, i.e.
476 *
477 * For resid from the old client,
478 * res[0] = objid, res[1] = 0, still keep the original order,
479 * for compatibility.
480 *
481 * For new resid
482 * res will be built from normal FID directly, i.e. res[0] = f_seq,
483 * res[1] = f_oid + f_ver.
484 */
485 static inline void ostid_build_res_name(struct ost_id *oi,
486 struct ldlm_res_id *name)
487 {
488 memset(name, 0, sizeof(*name));
489 if (fid_seq_is_mdt0(ostid_seq(oi))) {
490 name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi);
491 name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi);
492 } else {
493 fid_build_reg_res_name(&oi->oi_fid, name);
494 }
495 }
496
497 /**
498 * Return true if the resource is for the object identified by this id & group.
499 */
500 static inline int ostid_res_name_eq(struct ost_id *oi,
501 struct ldlm_res_id *name)
502 {
503 /* Note: it is just a trick here to save some effort, probably the
504 * correct way would be turn them into the FID and compare
505 */
506 if (fid_seq_is_mdt0(ostid_seq(oi))) {
507 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) &&
508 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi);
509 } else {
510 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) &&
511 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi);
512 }
513 }
514
515 /* The same as osc_build_res_name() */
516 static inline void ost_fid_build_resid(const struct lu_fid *fid,
517 struct ldlm_res_id *resname)
518 {
519 if (fid_is_mdt0(fid) || fid_is_idif(fid)) {
520 struct ost_id oi;
521
522 oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */
523 if (fid_to_ostid(fid, &oi) != 0)
524 return;
525 ostid_build_res_name(&oi, resname);
526 } else {
527 fid_build_reg_res_name(fid, resname);
528 }
529 }
530
531 static inline void ost_fid_from_resid(struct lu_fid *fid,
532 const struct ldlm_res_id *name,
533 int ost_idx)
534 {
535 if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) {
536 /* old resid */
537 struct ost_id oi;
538
539 ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
540 ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
541 ostid_to_fid(fid, &oi, ost_idx);
542 } else {
543 /* new resid */
544 fid_extract_from_res_name(fid, name);
545 }
546 }
547
548 /**
549 * Flatten 128-bit FID values into a 64-bit value for use as an inode number.
550 * For non-IGIF FIDs this starts just over 2^32, and continues without
551 * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
552 * into the range where there may not be many OID values in use, to minimize
553 * the risk of conflict.
554 *
555 * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
556 * the time between re-used inode numbers is very long - 2^40 SEQ numbers,
557 * or about 2^40 client mounts, if clients create less than 2^24 files/mount.
558 */
559 static inline __u64 fid_flatten(const struct lu_fid *fid)
560 {
561 __u64 ino;
562 __u64 seq;
563
564 if (fid_is_igif(fid)) {
565 ino = lu_igif_ino(fid);
566 return ino;
567 }
568
569 seq = fid_seq(fid);
570
571 ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
572
573 return ino ? ino : fid_oid(fid);
574 }
575
576 static inline __u32 fid_hash(const struct lu_fid *f, int bits)
577 {
578 /* all objects with same id and different versions will belong to same
579 * collisions list.
580 */
581 return hash_long(fid_flatten(f), bits);
582 }
583
584 /**
585 * map fid to 32 bit value for ino on 32bit systems.
586 */
587 static inline __u32 fid_flatten32(const struct lu_fid *fid)
588 {
589 __u32 ino;
590 __u64 seq;
591
592 if (fid_is_igif(fid)) {
593 ino = lu_igif_ino(fid);
594 return ino;
595 }
596
597 seq = fid_seq(fid) - FID_SEQ_START;
598
599 /* Map the high bits of the OID into higher bits of the inode number so
600 * that inodes generated at about the same time have a reduced chance
601 * of collisions. This will give a period of 2^12 = 1024 unique clients
602 * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
603 * (from OID), or up to 128M inodes without collisions for new files.
604 */
605 ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
606 (seq >> (64 - (40-8)) & 0xffffff00) +
607 (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
608
609 return ino ? ino : fid_oid(fid);
610 }
611
612 static inline int lu_fid_diff(struct lu_fid *fid1, struct lu_fid *fid2)
613 {
614 LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:"DFID", fid2:"DFID"\n",
615 PFID(fid1), PFID(fid2));
616
617 if (fid_is_idif(fid1) && fid_is_idif(fid2))
618 return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) -
619 fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver);
620
621 return fid_oid(fid1) - fid_oid(fid2);
622 }
623
624 #define LUSTRE_SEQ_SRV_NAME "seq_srv"
625 #define LUSTRE_SEQ_CTL_NAME "seq_ctl"
626
627 /* Range common stuff */
628 static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
629 {
630 dst->lsr_start = cpu_to_le64(src->lsr_start);
631 dst->lsr_end = cpu_to_le64(src->lsr_end);
632 dst->lsr_index = cpu_to_le32(src->lsr_index);
633 dst->lsr_flags = cpu_to_le32(src->lsr_flags);
634 }
635
636 static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
637 {
638 dst->lsr_start = le64_to_cpu(src->lsr_start);
639 dst->lsr_end = le64_to_cpu(src->lsr_end);
640 dst->lsr_index = le32_to_cpu(src->lsr_index);
641 dst->lsr_flags = le32_to_cpu(src->lsr_flags);
642 }
643
644 static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
645 {
646 dst->lsr_start = cpu_to_be64(src->lsr_start);
647 dst->lsr_end = cpu_to_be64(src->lsr_end);
648 dst->lsr_index = cpu_to_be32(src->lsr_index);
649 dst->lsr_flags = cpu_to_be32(src->lsr_flags);
650 }
651
652 static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
653 {
654 dst->lsr_start = be64_to_cpu(src->lsr_start);
655 dst->lsr_end = be64_to_cpu(src->lsr_end);
656 dst->lsr_index = be32_to_cpu(src->lsr_index);
657 dst->lsr_flags = be32_to_cpu(src->lsr_flags);
658 }
659
660 /** @} fid */
661
662 #endif /* __LUSTRE_FID_H */
This page took 0.083242 seconds and 4 git commands to generate.