staging: lustre: remove RETURN macro
[deliverable/linux.git] / drivers / staging / lustre / lustre / ldlm / ldlm_pool.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ldlm/ldlm_pool.c
37 *
38 * Author: Yury Umanets <umka@clusterfs.com>
39 */
40
41 /*
42 * Idea of this code is rather simple. Each second, for each server namespace
43 * we have SLV - server lock volume which is calculated on current number of
44 * granted locks, grant speed for past period, etc - that is, locking load.
45 * This SLV number may be thought as a flow definition for simplicity. It is
46 * sent to clients with each occasion to let them know what is current load
47 * situation on the server. By default, at the beginning, SLV on server is
48 * set max value which is calculated as the following: allow to one client
49 * have all locks of limit ->pl_limit for 10h.
50 *
51 * Next, on clients, number of cached locks is not limited artificially in any
52 * way as it was before. Instead, client calculates CLV, that is, client lock
53 * volume for each lock and compares it with last SLV from the server. CLV is
54 * calculated as the number of locks in LRU * lock live time in seconds. If
55 * CLV > SLV - lock is canceled.
56 *
57 * Client has LVF, that is, lock volume factor which regulates how much sensitive
58 * client should be about last SLV from server. The higher LVF is the more locks
59 * will be canceled on client. Default value for it is 1. Setting LVF to 2 means
60 * that client will cancel locks 2 times faster.
61 *
62 * Locks on a client will be canceled more intensively in these cases:
63 * (1) if SLV is smaller, that is, load is higher on the server;
64 * (2) client has a lot of locks (the more locks are held by client, the bigger
65 * chances that some of them should be canceled);
66 * (3) client has old locks (taken some time ago);
67 *
68 * Thus, according to flow paradigm that we use for better understanding SLV,
69 * CLV is the volume of particle in flow described by SLV. According to this,
70 * if flow is getting thinner, more and more particles become outside of it and
71 * as particles are locks, they should be canceled.
72 *
73 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com). Andreas
74 * Dilger (adilger@clusterfs.com) proposed few nice ideas like using LVF and many
75 * cleanups. Flow definition to allow more easy understanding of the logic belongs
76 * to Nikita Danilov (nikita@clusterfs.com) as well as many cleanups and fixes.
77 * And design and implementation are done by Yury Umanets (umka@clusterfs.com).
78 *
79 * Glossary for terms used:
80 *
81 * pl_limit - Number of allowed locks in pool. Applies to server and client
82 * side (tunable);
83 *
84 * pl_granted - Number of granted locks (calculated);
85 * pl_grant_rate - Number of granted locks for last T (calculated);
86 * pl_cancel_rate - Number of canceled locks for last T (calculated);
87 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
88 * pl_grant_plan - Planned number of granted locks for next T (calculated);
89 * pl_server_lock_volume - Current server lock volume (calculated);
90 *
91 * As it may be seen from list above, we have few possible tunables which may
92 * affect behavior much. They all may be modified via proc. However, they also
93 * give a possibility for constructing few pre-defined behavior policies. If
94 * none of predefines is suitable for a working pattern being used, new one may
95 * be "constructed" via proc tunables.
96 */
97
98 #define DEBUG_SUBSYSTEM S_LDLM
99
100 # include <lustre_dlm.h>
101
102 #include <cl_object.h>
103
104 #include <obd_class.h>
105 #include <obd_support.h>
106 #include "ldlm_internal.h"
107
108
109 /*
110 * 50 ldlm locks for 1MB of RAM.
111 */
112 #define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_CACHE_SHIFT)) * 50)
113
114 /*
115 * Maximal possible grant step plan in %.
116 */
117 #define LDLM_POOL_MAX_GSP (30)
118
119 /*
120 * Minimal possible grant step plan in %.
121 */
122 #define LDLM_POOL_MIN_GSP (1)
123
124 /*
125 * This controls the speed of reaching LDLM_POOL_MAX_GSP
126 * with increasing thread period.
127 */
128 #define LDLM_POOL_GSP_STEP_SHIFT (2)
129
130 /*
131 * LDLM_POOL_GSP% of all locks is default GP.
132 */
133 #define LDLM_POOL_GP(L) (((L) * LDLM_POOL_MAX_GSP) / 100)
134
135 /*
136 * Max age for locks on clients.
137 */
138 #define LDLM_POOL_MAX_AGE (36000)
139
140 /*
141 * The granularity of SLV calculation.
142 */
143 #define LDLM_POOL_SLV_SHIFT (10)
144
145 extern proc_dir_entry_t *ldlm_ns_proc_dir;
146
147 static inline __u64 dru(__u64 val, __u32 shift, int round_up)
148 {
149 return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
150 }
151
152 static inline __u64 ldlm_pool_slv_max(__u32 L)
153 {
154 /*
155 * Allow to have all locks for 1 client for 10 hrs.
156 * Formula is the following: limit * 10h / 1 client.
157 */
158 __u64 lim = (__u64)L * LDLM_POOL_MAX_AGE / 1;
159 return lim;
160 }
161
162 static inline __u64 ldlm_pool_slv_min(__u32 L)
163 {
164 return 1;
165 }
166
167 enum {
168 LDLM_POOL_FIRST_STAT = 0,
169 LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
170 LDLM_POOL_GRANT_STAT,
171 LDLM_POOL_CANCEL_STAT,
172 LDLM_POOL_GRANT_RATE_STAT,
173 LDLM_POOL_CANCEL_RATE_STAT,
174 LDLM_POOL_GRANT_PLAN_STAT,
175 LDLM_POOL_SLV_STAT,
176 LDLM_POOL_SHRINK_REQTD_STAT,
177 LDLM_POOL_SHRINK_FREED_STAT,
178 LDLM_POOL_RECALC_STAT,
179 LDLM_POOL_TIMING_STAT,
180 LDLM_POOL_LAST_STAT
181 };
182
183 static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
184 {
185 return container_of(pl, struct ldlm_namespace, ns_pool);
186 }
187
188 /**
189 * Calculates suggested grant_step in % of available locks for passed
190 * \a period. This is later used in grant_plan calculations.
191 */
192 static inline int ldlm_pool_t2gsp(unsigned int t)
193 {
194 /*
195 * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
196 * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
197 *
198 * How this will affect execution is the following:
199 *
200 * - for thread period 1s we will have grant_step 1% which good from
201 * pov of taking some load off from server and push it out to clients.
202 * This is like that because 1% for grant_step means that server will
203 * not allow clients to get lots of locks in short period of time and
204 * keep all old locks in their caches. Clients will always have to
205 * get some locks back if they want to take some new;
206 *
207 * - for thread period 10s (which is default) we will have 23% which
208 * means that clients will have enough of room to take some new locks
209 * without getting some back. All locks from this 23% which were not
210 * taken by clients in current period will contribute in SLV growing.
211 * SLV growing means more locks cached on clients until limit or grant
212 * plan is reached.
213 */
214 return LDLM_POOL_MAX_GSP -
215 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
216 (t >> LDLM_POOL_GSP_STEP_SHIFT));
217 }
218
219 /**
220 * Recalculates next grant limit on passed \a pl.
221 *
222 * \pre ->pl_lock is locked.
223 */
224 static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
225 {
226 int granted, grant_step, limit;
227
228 limit = ldlm_pool_get_limit(pl);
229 granted = atomic_read(&pl->pl_granted);
230
231 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
232 grant_step = ((limit - granted) * grant_step) / 100;
233 pl->pl_grant_plan = granted + grant_step;
234 limit = (limit * 5) >> 2;
235 if (pl->pl_grant_plan > limit)
236 pl->pl_grant_plan = limit;
237 }
238
239 /**
240 * Recalculates next SLV on passed \a pl.
241 *
242 * \pre ->pl_lock is locked.
243 */
244 static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
245 {
246 int granted;
247 int grant_plan;
248 int round_up;
249 __u64 slv;
250 __u64 slv_factor;
251 __u64 grant_usage;
252 __u32 limit;
253
254 slv = pl->pl_server_lock_volume;
255 grant_plan = pl->pl_grant_plan;
256 limit = ldlm_pool_get_limit(pl);
257 granted = atomic_read(&pl->pl_granted);
258 round_up = granted < limit;
259
260 grant_usage = max_t(int, limit - (granted - grant_plan), 1);
261
262 /*
263 * Find out SLV change factor which is the ratio of grant usage
264 * from limit. SLV changes as fast as the ratio of grant plan
265 * consumption. The more locks from grant plan are not consumed
266 * by clients in last interval (idle time), the faster grows
267 * SLV. And the opposite, the more grant plan is over-consumed
268 * (load time) the faster drops SLV.
269 */
270 slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
271 do_div(slv_factor, limit);
272 slv = slv * slv_factor;
273 slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
274
275 if (slv > ldlm_pool_slv_max(limit)) {
276 slv = ldlm_pool_slv_max(limit);
277 } else if (slv < ldlm_pool_slv_min(limit)) {
278 slv = ldlm_pool_slv_min(limit);
279 }
280
281 pl->pl_server_lock_volume = slv;
282 }
283
284 /**
285 * Recalculates next stats on passed \a pl.
286 *
287 * \pre ->pl_lock is locked.
288 */
289 static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
290 {
291 int grant_plan = pl->pl_grant_plan;
292 __u64 slv = pl->pl_server_lock_volume;
293 int granted = atomic_read(&pl->pl_granted);
294 int grant_rate = atomic_read(&pl->pl_grant_rate);
295 int cancel_rate = atomic_read(&pl->pl_cancel_rate);
296
297 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
298 slv);
299 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
300 granted);
301 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
302 grant_rate);
303 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
304 grant_plan);
305 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
306 cancel_rate);
307 }
308
309 /**
310 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
311 */
312 static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
313 {
314 struct obd_device *obd;
315
316 /*
317 * Set new SLV in obd field for using it later without accessing the
318 * pool. This is required to avoid race between sending reply to client
319 * with new SLV and cleanup server stack in which we can't guarantee
320 * that namespace is still alive. We know only that obd is alive as
321 * long as valid export is alive.
322 */
323 obd = ldlm_pl2ns(pl)->ns_obd;
324 LASSERT(obd != NULL);
325 write_lock(&obd->obd_pool_lock);
326 obd->obd_pool_slv = pl->pl_server_lock_volume;
327 write_unlock(&obd->obd_pool_lock);
328 }
329
330 /**
331 * Recalculates all pool fields on passed \a pl.
332 *
333 * \pre ->pl_lock is not locked.
334 */
335 static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
336 {
337 time_t recalc_interval_sec;
338
339 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
340 if (recalc_interval_sec < pl->pl_recalc_period)
341 return 0;
342
343 spin_lock(&pl->pl_lock);
344 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
345 if (recalc_interval_sec < pl->pl_recalc_period) {
346 spin_unlock(&pl->pl_lock);
347 return 0;
348 }
349 /*
350 * Recalc SLV after last period. This should be done
351 * _before_ recalculating new grant plan.
352 */
353 ldlm_pool_recalc_slv(pl);
354
355 /*
356 * Make sure that pool informed obd of last SLV changes.
357 */
358 ldlm_srv_pool_push_slv(pl);
359
360 /*
361 * Update grant_plan for new period.
362 */
363 ldlm_pool_recalc_grant_plan(pl);
364
365 pl->pl_recalc_time = cfs_time_current_sec();
366 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
367 recalc_interval_sec);
368 spin_unlock(&pl->pl_lock);
369 return 0;
370 }
371
372 /**
373 * This function is used on server side as main entry point for memory
374 * pressure handling. It decreases SLV on \a pl according to passed
375 * \a nr and \a gfp_mask.
376 *
377 * Our goal here is to decrease SLV such a way that clients hold \a nr
378 * locks smaller in next 10h.
379 */
380 static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
381 int nr, unsigned int gfp_mask)
382 {
383 __u32 limit;
384
385 /*
386 * VM is asking how many entries may be potentially freed.
387 */
388 if (nr == 0)
389 return atomic_read(&pl->pl_granted);
390
391 /*
392 * Client already canceled locks but server is already in shrinker
393 * and can't cancel anything. Let's catch this race.
394 */
395 if (atomic_read(&pl->pl_granted) == 0)
396 return 0;
397
398 spin_lock(&pl->pl_lock);
399
400 /*
401 * We want shrinker to possibly cause cancellation of @nr locks from
402 * clients or grant approximately @nr locks smaller next intervals.
403 *
404 * This is why we decreased SLV by @nr. This effect will only be as
405 * long as one re-calc interval (1s these days) and this should be
406 * enough to pass this decreased SLV to all clients. On next recalc
407 * interval pool will either increase SLV if locks load is not high
408 * or will keep on same level or even decrease again, thus, shrinker
409 * decreased SLV will affect next recalc intervals and this way will
410 * make locking load lower.
411 */
412 if (nr < pl->pl_server_lock_volume) {
413 pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
414 } else {
415 limit = ldlm_pool_get_limit(pl);
416 pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
417 }
418
419 /*
420 * Make sure that pool informed obd of last SLV changes.
421 */
422 ldlm_srv_pool_push_slv(pl);
423 spin_unlock(&pl->pl_lock);
424
425 /*
426 * We did not really free any memory here so far, it only will be
427 * freed later may be, so that we return 0 to not confuse VM.
428 */
429 return 0;
430 }
431
432 /**
433 * Setup server side pool \a pl with passed \a limit.
434 */
435 static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
436 {
437 struct obd_device *obd;
438
439 obd = ldlm_pl2ns(pl)->ns_obd;
440 LASSERT(obd != NULL && obd != LP_POISON);
441 LASSERT(obd->obd_type != LP_POISON);
442 write_lock(&obd->obd_pool_lock);
443 obd->obd_pool_limit = limit;
444 write_unlock(&obd->obd_pool_lock);
445
446 ldlm_pool_set_limit(pl, limit);
447 return 0;
448 }
449
450 /**
451 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
452 */
453 static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
454 {
455 struct obd_device *obd;
456
457 /*
458 * Get new SLV and Limit from obd which is updated with coming
459 * RPCs.
460 */
461 obd = ldlm_pl2ns(pl)->ns_obd;
462 LASSERT(obd != NULL);
463 read_lock(&obd->obd_pool_lock);
464 pl->pl_server_lock_volume = obd->obd_pool_slv;
465 ldlm_pool_set_limit(pl, obd->obd_pool_limit);
466 read_unlock(&obd->obd_pool_lock);
467 }
468
469 /**
470 * Recalculates client size pool \a pl according to current SLV and Limit.
471 */
472 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
473 {
474 time_t recalc_interval_sec;
475
476 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
477 if (recalc_interval_sec < pl->pl_recalc_period)
478 return 0;
479
480 spin_lock(&pl->pl_lock);
481 /*
482 * Check if we need to recalc lists now.
483 */
484 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
485 if (recalc_interval_sec < pl->pl_recalc_period) {
486 spin_unlock(&pl->pl_lock);
487 return 0;
488 }
489
490 /*
491 * Make sure that pool knows last SLV and Limit from obd.
492 */
493 ldlm_cli_pool_pop_slv(pl);
494
495 pl->pl_recalc_time = cfs_time_current_sec();
496 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
497 recalc_interval_sec);
498 spin_unlock(&pl->pl_lock);
499
500 /*
501 * Do not cancel locks in case lru resize is disabled for this ns.
502 */
503 if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
504 return 0;
505
506 /*
507 * In the time of canceling locks on client we do not need to maintain
508 * sharp timing, we only want to cancel locks asap according to new SLV.
509 * It may be called when SLV has changed much, this is why we do not
510 * take into account pl->pl_recalc_time here.
511 */
512 return ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC, LDLM_CANCEL_LRUR);
513 }
514
515 /**
516 * This function is main entry point for memory pressure handling on client
517 * side. Main goal of this function is to cancel some number of locks on
518 * passed \a pl according to \a nr and \a gfp_mask.
519 */
520 static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
521 int nr, unsigned int gfp_mask)
522 {
523 struct ldlm_namespace *ns;
524 int canceled = 0, unused;
525
526 ns = ldlm_pl2ns(pl);
527
528 /*
529 * Do not cancel locks in case lru resize is disabled for this ns.
530 */
531 if (!ns_connect_lru_resize(ns))
532 return 0;
533
534 /*
535 * Make sure that pool knows last SLV and Limit from obd.
536 */
537 ldlm_cli_pool_pop_slv(pl);
538
539 spin_lock(&ns->ns_lock);
540 unused = ns->ns_nr_unused;
541 spin_unlock(&ns->ns_lock);
542
543 if (nr) {
544 canceled = ldlm_cancel_lru(ns, nr, LCF_ASYNC,
545 LDLM_CANCEL_SHRINK);
546 }
547 /*
548 * Return the number of potentially reclaimable locks.
549 */
550 return ((unused - canceled) / 100) * sysctl_vfs_cache_pressure;
551 }
552
553 struct ldlm_pool_ops ldlm_srv_pool_ops = {
554 .po_recalc = ldlm_srv_pool_recalc,
555 .po_shrink = ldlm_srv_pool_shrink,
556 .po_setup = ldlm_srv_pool_setup
557 };
558
559 struct ldlm_pool_ops ldlm_cli_pool_ops = {
560 .po_recalc = ldlm_cli_pool_recalc,
561 .po_shrink = ldlm_cli_pool_shrink
562 };
563
564 /**
565 * Pool recalc wrapper. Will call either client or server pool recalc callback
566 * depending what pool \a pl is used.
567 */
568 int ldlm_pool_recalc(struct ldlm_pool *pl)
569 {
570 time_t recalc_interval_sec;
571 int count;
572
573 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
574 if (recalc_interval_sec <= 0)
575 goto recalc;
576
577 spin_lock(&pl->pl_lock);
578 if (recalc_interval_sec > 0) {
579 /*
580 * Update pool statistics every 1s.
581 */
582 ldlm_pool_recalc_stats(pl);
583
584 /*
585 * Zero out all rates and speed for the last period.
586 */
587 atomic_set(&pl->pl_grant_rate, 0);
588 atomic_set(&pl->pl_cancel_rate, 0);
589 }
590 spin_unlock(&pl->pl_lock);
591
592 recalc:
593 if (pl->pl_ops->po_recalc != NULL) {
594 count = pl->pl_ops->po_recalc(pl);
595 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
596 count);
597 }
598 recalc_interval_sec = pl->pl_recalc_time - cfs_time_current_sec() +
599 pl->pl_recalc_period;
600
601 return recalc_interval_sec;
602 }
603
604 /**
605 * Pool shrink wrapper. Will call either client or server pool recalc callback
606 * depending what pool \a pl is used.
607 */
608 int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
609 unsigned int gfp_mask)
610 {
611 int cancel = 0;
612
613 if (pl->pl_ops->po_shrink != NULL) {
614 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
615 if (nr > 0) {
616 lprocfs_counter_add(pl->pl_stats,
617 LDLM_POOL_SHRINK_REQTD_STAT,
618 nr);
619 lprocfs_counter_add(pl->pl_stats,
620 LDLM_POOL_SHRINK_FREED_STAT,
621 cancel);
622 CDEBUG(D_DLMTRACE, "%s: request to shrink %d locks, "
623 "shrunk %d\n", pl->pl_name, nr, cancel);
624 }
625 }
626 return cancel;
627 }
628 EXPORT_SYMBOL(ldlm_pool_shrink);
629
630 /**
631 * Pool setup wrapper. Will call either client or server pool recalc callback
632 * depending what pool \a pl is used.
633 *
634 * Sets passed \a limit into pool \a pl.
635 */
636 int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
637 {
638 if (pl->pl_ops->po_setup != NULL)
639 return(pl->pl_ops->po_setup(pl, limit));
640 return 0;
641 }
642 EXPORT_SYMBOL(ldlm_pool_setup);
643
644 static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
645 {
646 int granted, grant_rate, cancel_rate, grant_step;
647 int grant_speed, grant_plan, lvf;
648 struct ldlm_pool *pl = m->private;
649 __u64 slv, clv;
650 __u32 limit;
651
652 spin_lock(&pl->pl_lock);
653 slv = pl->pl_server_lock_volume;
654 clv = pl->pl_client_lock_volume;
655 limit = ldlm_pool_get_limit(pl);
656 grant_plan = pl->pl_grant_plan;
657 granted = atomic_read(&pl->pl_granted);
658 grant_rate = atomic_read(&pl->pl_grant_rate);
659 cancel_rate = atomic_read(&pl->pl_cancel_rate);
660 grant_speed = grant_rate - cancel_rate;
661 lvf = atomic_read(&pl->pl_lock_volume_factor);
662 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
663 spin_unlock(&pl->pl_lock);
664
665 seq_printf(m, "LDLM pool state (%s):\n"
666 " SLV: "LPU64"\n"
667 " CLV: "LPU64"\n"
668 " LVF: %d\n",
669 pl->pl_name, slv, clv, lvf);
670
671 if (ns_is_server(ldlm_pl2ns(pl))) {
672 seq_printf(m, " GSP: %d%%\n"
673 " GP: %d\n",
674 grant_step, grant_plan);
675 }
676 seq_printf(m, " GR: %d\n" " CR: %d\n" " GS: %d\n"
677 " G: %d\n" " L: %d\n",
678 grant_rate, cancel_rate, grant_speed,
679 granted, limit);
680
681 return 0;
682 }
683 LPROC_SEQ_FOPS_RO(lprocfs_pool_state);
684
685 static int lprocfs_grant_speed_seq_show(struct seq_file *m, void *unused)
686 {
687 struct ldlm_pool *pl = m->private;
688 int grant_speed;
689
690 spin_lock(&pl->pl_lock);
691 /* serialize with ldlm_pool_recalc */
692 grant_speed = atomic_read(&pl->pl_grant_rate) -
693 atomic_read(&pl->pl_cancel_rate);
694 spin_unlock(&pl->pl_lock);
695 return lprocfs_rd_uint(m, &grant_speed);
696 }
697
698 LDLM_POOL_PROC_READER_SEQ_SHOW(grant_plan, int);
699 LPROC_SEQ_FOPS_RO(lprocfs_grant_plan);
700
701 LDLM_POOL_PROC_READER_SEQ_SHOW(recalc_period, int);
702 LDLM_POOL_PROC_WRITER(recalc_period, int);
703 static ssize_t lprocfs_recalc_period_seq_write(struct file *file, const char *buf,
704 size_t len, loff_t *off)
705 {
706 struct seq_file *seq = file->private_data;
707
708 return lprocfs_wr_recalc_period(file, buf, len, seq->private);
709 }
710 LPROC_SEQ_FOPS(lprocfs_recalc_period);
711
712 LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, u64);
713 LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, atomic);
714 LPROC_SEQ_FOPS_RW_TYPE(ldlm_pool_rw, atomic);
715
716 LPROC_SEQ_FOPS_RO(lprocfs_grant_speed);
717
718 #define LDLM_POOL_ADD_VAR(name, var, ops) \
719 do { \
720 snprintf(var_name, MAX_STRING_SIZE, #name); \
721 pool_vars[0].data = var; \
722 pool_vars[0].fops = ops; \
723 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);\
724 } while (0)
725
726 static int ldlm_pool_proc_init(struct ldlm_pool *pl)
727 {
728 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
729 struct proc_dir_entry *parent_ns_proc;
730 struct lprocfs_vars pool_vars[2];
731 char *var_name = NULL;
732 int rc = 0;
733
734 OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
735 if (!var_name)
736 return -ENOMEM;
737
738 parent_ns_proc = ns->ns_proc_dir_entry;
739 if (parent_ns_proc == NULL) {
740 CERROR("%s: proc entry is not initialized\n",
741 ldlm_ns_name(ns));
742 GOTO(out_free_name, rc = -EINVAL);
743 }
744 pl->pl_proc_dir = lprocfs_register("pool", parent_ns_proc,
745 NULL, NULL);
746 if (IS_ERR(pl->pl_proc_dir)) {
747 CERROR("LProcFS failed in ldlm-pool-init\n");
748 rc = PTR_ERR(pl->pl_proc_dir);
749 pl->pl_proc_dir = NULL;
750 GOTO(out_free_name, rc);
751 }
752
753 var_name[MAX_STRING_SIZE] = '\0';
754 memset(pool_vars, 0, sizeof(pool_vars));
755 pool_vars[0].name = var_name;
756
757 LDLM_POOL_ADD_VAR("server_lock_volume", &pl->pl_server_lock_volume,
758 &ldlm_pool_u64_fops);
759 LDLM_POOL_ADD_VAR("limit", &pl->pl_limit, &ldlm_pool_rw_atomic_fops);
760 LDLM_POOL_ADD_VAR("granted", &pl->pl_granted, &ldlm_pool_atomic_fops);
761 LDLM_POOL_ADD_VAR("grant_speed", pl, &lprocfs_grant_speed_fops);
762 LDLM_POOL_ADD_VAR("cancel_rate", &pl->pl_cancel_rate,
763 &ldlm_pool_atomic_fops);
764 LDLM_POOL_ADD_VAR("grant_rate", &pl->pl_grant_rate,
765 &ldlm_pool_atomic_fops);
766 LDLM_POOL_ADD_VAR("grant_plan", pl, &lprocfs_grant_plan_fops);
767 LDLM_POOL_ADD_VAR("recalc_period", pl, &lprocfs_recalc_period_fops);
768 LDLM_POOL_ADD_VAR("lock_volume_factor", &pl->pl_lock_volume_factor,
769 &ldlm_pool_rw_atomic_fops);
770 LDLM_POOL_ADD_VAR("state", pl, &lprocfs_pool_state_fops);
771
772 pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
773 LDLM_POOL_FIRST_STAT, 0);
774 if (!pl->pl_stats)
775 GOTO(out_free_name, rc = -ENOMEM);
776
777 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
778 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
779 "granted", "locks");
780 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
781 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
782 "grant", "locks");
783 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
784 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
785 "cancel", "locks");
786 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
787 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
788 "grant_rate", "locks/s");
789 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
790 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
791 "cancel_rate", "locks/s");
792 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
793 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
794 "grant_plan", "locks/s");
795 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
796 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
797 "slv", "slv");
798 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
799 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
800 "shrink_request", "locks");
801 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
802 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
803 "shrink_freed", "locks");
804 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
805 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
806 "recalc_freed", "locks");
807 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
808 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
809 "recalc_timing", "sec");
810 rc = lprocfs_register_stats(pl->pl_proc_dir, "stats", pl->pl_stats);
811
812 out_free_name:
813 OBD_FREE(var_name, MAX_STRING_SIZE + 1);
814 return rc;
815 }
816
817 static void ldlm_pool_proc_fini(struct ldlm_pool *pl)
818 {
819 if (pl->pl_stats != NULL) {
820 lprocfs_free_stats(&pl->pl_stats);
821 pl->pl_stats = NULL;
822 }
823 if (pl->pl_proc_dir != NULL) {
824 lprocfs_remove(&pl->pl_proc_dir);
825 pl->pl_proc_dir = NULL;
826 }
827 }
828
829 int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
830 int idx, ldlm_side_t client)
831 {
832 int rc;
833
834 spin_lock_init(&pl->pl_lock);
835 atomic_set(&pl->pl_granted, 0);
836 pl->pl_recalc_time = cfs_time_current_sec();
837 atomic_set(&pl->pl_lock_volume_factor, 1);
838
839 atomic_set(&pl->pl_grant_rate, 0);
840 atomic_set(&pl->pl_cancel_rate, 0);
841 pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
842
843 snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
844 ldlm_ns_name(ns), idx);
845
846 if (client == LDLM_NAMESPACE_SERVER) {
847 pl->pl_ops = &ldlm_srv_pool_ops;
848 ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
849 pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
850 pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
851 } else {
852 ldlm_pool_set_limit(pl, 1);
853 pl->pl_server_lock_volume = 0;
854 pl->pl_ops = &ldlm_cli_pool_ops;
855 pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
856 }
857 pl->pl_client_lock_volume = 0;
858 rc = ldlm_pool_proc_init(pl);
859 if (rc)
860 return rc;
861
862 CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
863
864 return rc;
865 }
866 EXPORT_SYMBOL(ldlm_pool_init);
867
868 void ldlm_pool_fini(struct ldlm_pool *pl)
869 {
870 ldlm_pool_proc_fini(pl);
871
872 /*
873 * Pool should not be used after this point. We can't free it here as
874 * it lives in struct ldlm_namespace, but still interested in catching
875 * any abnormal using cases.
876 */
877 POISON(pl, 0x5a, sizeof(*pl));
878 }
879 EXPORT_SYMBOL(ldlm_pool_fini);
880
881 /**
882 * Add new taken ldlm lock \a lock into pool \a pl accounting.
883 */
884 void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
885 {
886 /*
887 * FLOCK locks are special in a sense that they are almost never
888 * cancelled, instead special kind of lock is used to drop them.
889 * also there is no LRU for flock locks, so no point in tracking
890 * them anyway.
891 */
892 if (lock->l_resource->lr_type == LDLM_FLOCK)
893 return;
894
895 atomic_inc(&pl->pl_granted);
896 atomic_inc(&pl->pl_grant_rate);
897 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
898 /*
899 * Do not do pool recalc for client side as all locks which
900 * potentially may be canceled has already been packed into
901 * enqueue/cancel rpc. Also we do not want to run out of stack
902 * with too long call paths.
903 */
904 if (ns_is_server(ldlm_pl2ns(pl)))
905 ldlm_pool_recalc(pl);
906 }
907 EXPORT_SYMBOL(ldlm_pool_add);
908
909 /**
910 * Remove ldlm lock \a lock from pool \a pl accounting.
911 */
912 void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
913 {
914 /*
915 * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
916 */
917 if (lock->l_resource->lr_type == LDLM_FLOCK)
918 return;
919
920 LASSERT(atomic_read(&pl->pl_granted) > 0);
921 atomic_dec(&pl->pl_granted);
922 atomic_inc(&pl->pl_cancel_rate);
923
924 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
925
926 if (ns_is_server(ldlm_pl2ns(pl)))
927 ldlm_pool_recalc(pl);
928 }
929 EXPORT_SYMBOL(ldlm_pool_del);
930
931 /**
932 * Returns current \a pl SLV.
933 *
934 * \pre ->pl_lock is not locked.
935 */
936 __u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
937 {
938 __u64 slv;
939 spin_lock(&pl->pl_lock);
940 slv = pl->pl_server_lock_volume;
941 spin_unlock(&pl->pl_lock);
942 return slv;
943 }
944 EXPORT_SYMBOL(ldlm_pool_get_slv);
945
946 /**
947 * Sets passed \a slv to \a pl.
948 *
949 * \pre ->pl_lock is not locked.
950 */
951 void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
952 {
953 spin_lock(&pl->pl_lock);
954 pl->pl_server_lock_volume = slv;
955 spin_unlock(&pl->pl_lock);
956 }
957 EXPORT_SYMBOL(ldlm_pool_set_slv);
958
959 /**
960 * Returns current \a pl CLV.
961 *
962 * \pre ->pl_lock is not locked.
963 */
964 __u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
965 {
966 __u64 slv;
967 spin_lock(&pl->pl_lock);
968 slv = pl->pl_client_lock_volume;
969 spin_unlock(&pl->pl_lock);
970 return slv;
971 }
972 EXPORT_SYMBOL(ldlm_pool_get_clv);
973
974 /**
975 * Sets passed \a clv to \a pl.
976 *
977 * \pre ->pl_lock is not locked.
978 */
979 void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
980 {
981 spin_lock(&pl->pl_lock);
982 pl->pl_client_lock_volume = clv;
983 spin_unlock(&pl->pl_lock);
984 }
985 EXPORT_SYMBOL(ldlm_pool_set_clv);
986
987 /**
988 * Returns current \a pl limit.
989 */
990 __u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
991 {
992 return atomic_read(&pl->pl_limit);
993 }
994 EXPORT_SYMBOL(ldlm_pool_get_limit);
995
996 /**
997 * Sets passed \a limit to \a pl.
998 */
999 void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1000 {
1001 atomic_set(&pl->pl_limit, limit);
1002 }
1003 EXPORT_SYMBOL(ldlm_pool_set_limit);
1004
1005 /**
1006 * Returns current LVF from \a pl.
1007 */
1008 __u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1009 {
1010 return atomic_read(&pl->pl_lock_volume_factor);
1011 }
1012 EXPORT_SYMBOL(ldlm_pool_get_lvf);
1013
1014 static int ldlm_pool_granted(struct ldlm_pool *pl)
1015 {
1016 return atomic_read(&pl->pl_granted);
1017 }
1018
1019 static struct ptlrpc_thread *ldlm_pools_thread;
1020 static struct shrinker *ldlm_pools_srv_shrinker;
1021 static struct shrinker *ldlm_pools_cli_shrinker;
1022 static struct completion ldlm_pools_comp;
1023
1024 /*
1025 * Cancel \a nr locks from all namespaces (if possible). Returns number of
1026 * cached locks after shrink is finished. All namespaces are asked to
1027 * cancel approximately equal amount of locks to keep balancing.
1028 */
1029 static int ldlm_pools_shrink(ldlm_side_t client, int nr,
1030 unsigned int gfp_mask)
1031 {
1032 int total = 0, cached = 0, nr_ns;
1033 struct ldlm_namespace *ns;
1034 struct ldlm_namespace *ns_old = NULL; /* loop detection */
1035 void *cookie;
1036
1037 if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
1038 !(gfp_mask & __GFP_FS))
1039 return -1;
1040
1041 CDEBUG(D_DLMTRACE, "Request to shrink %d %s locks from all pools\n",
1042 nr, client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
1043
1044 cookie = cl_env_reenter();
1045
1046 /*
1047 * Find out how many resources we may release.
1048 */
1049 for (nr_ns = ldlm_namespace_nr_read(client);
1050 nr_ns > 0; nr_ns--)
1051 {
1052 mutex_lock(ldlm_namespace_lock(client));
1053 if (list_empty(ldlm_namespace_list(client))) {
1054 mutex_unlock(ldlm_namespace_lock(client));
1055 cl_env_reexit(cookie);
1056 return 0;
1057 }
1058 ns = ldlm_namespace_first_locked(client);
1059
1060 if (ns == ns_old) {
1061 mutex_unlock(ldlm_namespace_lock(client));
1062 break;
1063 }
1064
1065 if (ldlm_ns_empty(ns)) {
1066 ldlm_namespace_move_to_inactive_locked(ns, client);
1067 mutex_unlock(ldlm_namespace_lock(client));
1068 continue;
1069 }
1070
1071 if (ns_old == NULL)
1072 ns_old = ns;
1073
1074 ldlm_namespace_get(ns);
1075 ldlm_namespace_move_to_active_locked(ns, client);
1076 mutex_unlock(ldlm_namespace_lock(client));
1077 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1078 ldlm_namespace_put(ns);
1079 }
1080
1081 if (nr == 0 || total == 0) {
1082 cl_env_reexit(cookie);
1083 return total;
1084 }
1085
1086 /*
1087 * Shrink at least ldlm_namespace_nr(client) namespaces.
1088 */
1089 for (nr_ns = ldlm_namespace_nr_read(client) - nr_ns;
1090 nr_ns > 0; nr_ns--)
1091 {
1092 int cancel, nr_locks;
1093
1094 /*
1095 * Do not call shrink under ldlm_namespace_lock(client)
1096 */
1097 mutex_lock(ldlm_namespace_lock(client));
1098 if (list_empty(ldlm_namespace_list(client))) {
1099 mutex_unlock(ldlm_namespace_lock(client));
1100 /*
1101 * If list is empty, we can't return any @cached > 0,
1102 * that probably would cause needless shrinker
1103 * call.
1104 */
1105 cached = 0;
1106 break;
1107 }
1108 ns = ldlm_namespace_first_locked(client);
1109 ldlm_namespace_get(ns);
1110 ldlm_namespace_move_to_active_locked(ns, client);
1111 mutex_unlock(ldlm_namespace_lock(client));
1112
1113 nr_locks = ldlm_pool_granted(&ns->ns_pool);
1114 cancel = 1 + nr_locks * nr / total;
1115 ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
1116 cached += ldlm_pool_granted(&ns->ns_pool);
1117 ldlm_namespace_put(ns);
1118 }
1119 cl_env_reexit(cookie);
1120 /* we only decrease the SLV in server pools shrinker, return -1 to
1121 * kernel to avoid needless loop. LU-1128 */
1122 return (client == LDLM_NAMESPACE_SERVER) ? -1 : cached;
1123 }
1124
1125 static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1126 {
1127 return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
1128 shrink_param(sc, nr_to_scan),
1129 shrink_param(sc, gfp_mask));
1130 }
1131
1132 static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1133 {
1134 return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
1135 shrink_param(sc, nr_to_scan),
1136 shrink_param(sc, gfp_mask));
1137 }
1138
1139 int ldlm_pools_recalc(ldlm_side_t client)
1140 {
1141 __u32 nr_l = 0, nr_p = 0, l;
1142 struct ldlm_namespace *ns;
1143 struct ldlm_namespace *ns_old = NULL;
1144 int nr, equal = 0;
1145 int time = 50; /* seconds of sleep if no active namespaces */
1146
1147 /*
1148 * No need to setup pool limit for client pools.
1149 */
1150 if (client == LDLM_NAMESPACE_SERVER) {
1151 /*
1152 * Check all modest namespaces first.
1153 */
1154 mutex_lock(ldlm_namespace_lock(client));
1155 list_for_each_entry(ns, ldlm_namespace_list(client),
1156 ns_list_chain)
1157 {
1158 if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1159 continue;
1160
1161 l = ldlm_pool_granted(&ns->ns_pool);
1162 if (l == 0)
1163 l = 1;
1164
1165 /*
1166 * Set the modest pools limit equal to their avg granted
1167 * locks + ~6%.
1168 */
1169 l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1170 ldlm_pool_setup(&ns->ns_pool, l);
1171 nr_l += l;
1172 nr_p++;
1173 }
1174
1175 /*
1176 * Make sure that modest namespaces did not eat more that 2/3
1177 * of limit.
1178 */
1179 if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1180 CWARN("\"Modest\" pools eat out 2/3 of server locks "
1181 "limit (%d of %lu). This means that you have too "
1182 "many clients for this amount of server RAM. "
1183 "Upgrade server!\n", nr_l, LDLM_POOL_HOST_L);
1184 equal = 1;
1185 }
1186
1187 /*
1188 * The rest is given to greedy namespaces.
1189 */
1190 list_for_each_entry(ns, ldlm_namespace_list(client),
1191 ns_list_chain)
1192 {
1193 if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1194 continue;
1195
1196 if (equal) {
1197 /*
1198 * In the case 2/3 locks are eaten out by
1199 * modest pools, we re-setup equal limit
1200 * for _all_ pools.
1201 */
1202 l = LDLM_POOL_HOST_L /
1203 ldlm_namespace_nr_read(client);
1204 } else {
1205 /*
1206 * All the rest of greedy pools will have
1207 * all locks in equal parts.
1208 */
1209 l = (LDLM_POOL_HOST_L - nr_l) /
1210 (ldlm_namespace_nr_read(client) -
1211 nr_p);
1212 }
1213 ldlm_pool_setup(&ns->ns_pool, l);
1214 }
1215 mutex_unlock(ldlm_namespace_lock(client));
1216 }
1217
1218 /*
1219 * Recalc at least ldlm_namespace_nr(client) namespaces.
1220 */
1221 for (nr = ldlm_namespace_nr_read(client); nr > 0; nr--) {
1222 int skip;
1223 /*
1224 * Lock the list, get first @ns in the list, getref, move it
1225 * to the tail, unlock and call pool recalc. This way we avoid
1226 * calling recalc under @ns lock what is really good as we get
1227 * rid of potential deadlock on client nodes when canceling
1228 * locks synchronously.
1229 */
1230 mutex_lock(ldlm_namespace_lock(client));
1231 if (list_empty(ldlm_namespace_list(client))) {
1232 mutex_unlock(ldlm_namespace_lock(client));
1233 break;
1234 }
1235 ns = ldlm_namespace_first_locked(client);
1236
1237 if (ns_old == ns) { /* Full pass complete */
1238 mutex_unlock(ldlm_namespace_lock(client));
1239 break;
1240 }
1241
1242 /* We got an empty namespace, need to move it back to inactive
1243 * list.
1244 * The race with parallel resource creation is fine:
1245 * - If they do namespace_get before our check, we fail the
1246 * check and they move this item to the end of the list anyway
1247 * - If we do the check and then they do namespace_get, then
1248 * we move the namespace to inactive and they will move
1249 * it back to active (synchronised by the lock, so no clash
1250 * there).
1251 */
1252 if (ldlm_ns_empty(ns)) {
1253 ldlm_namespace_move_to_inactive_locked(ns, client);
1254 mutex_unlock(ldlm_namespace_lock(client));
1255 continue;
1256 }
1257
1258 if (ns_old == NULL)
1259 ns_old = ns;
1260
1261 spin_lock(&ns->ns_lock);
1262 /*
1263 * skip ns which is being freed, and we don't want to increase
1264 * its refcount again, not even temporarily. bz21519 & LU-499.
1265 */
1266 if (ns->ns_stopping) {
1267 skip = 1;
1268 } else {
1269 skip = 0;
1270 ldlm_namespace_get(ns);
1271 }
1272 spin_unlock(&ns->ns_lock);
1273
1274 ldlm_namespace_move_to_active_locked(ns, client);
1275 mutex_unlock(ldlm_namespace_lock(client));
1276
1277 /*
1278 * After setup is done - recalc the pool.
1279 */
1280 if (!skip) {
1281 int ttime = ldlm_pool_recalc(&ns->ns_pool);
1282
1283 if (ttime < time)
1284 time = ttime;
1285
1286 ldlm_namespace_put(ns);
1287 }
1288 }
1289 return time;
1290 }
1291 EXPORT_SYMBOL(ldlm_pools_recalc);
1292
1293 static int ldlm_pools_thread_main(void *arg)
1294 {
1295 struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
1296 int s_time, c_time;
1297
1298 thread_set_flags(thread, SVC_RUNNING);
1299 wake_up(&thread->t_ctl_waitq);
1300
1301 CDEBUG(D_DLMTRACE, "%s: pool thread starting, process %d\n",
1302 "ldlm_poold", current_pid());
1303
1304 while (1) {
1305 struct l_wait_info lwi;
1306
1307 /*
1308 * Recal all pools on this tick.
1309 */
1310 s_time = ldlm_pools_recalc(LDLM_NAMESPACE_SERVER);
1311 c_time = ldlm_pools_recalc(LDLM_NAMESPACE_CLIENT);
1312
1313 /*
1314 * Wait until the next check time, or until we're
1315 * stopped.
1316 */
1317 lwi = LWI_TIMEOUT(cfs_time_seconds(min(s_time, c_time)),
1318 NULL, NULL);
1319 l_wait_event(thread->t_ctl_waitq,
1320 thread_is_stopping(thread) ||
1321 thread_is_event(thread),
1322 &lwi);
1323
1324 if (thread_test_and_clear_flags(thread, SVC_STOPPING))
1325 break;
1326 else
1327 thread_test_and_clear_flags(thread, SVC_EVENT);
1328 }
1329
1330 thread_set_flags(thread, SVC_STOPPED);
1331 wake_up(&thread->t_ctl_waitq);
1332
1333 CDEBUG(D_DLMTRACE, "%s: pool thread exiting, process %d\n",
1334 "ldlm_poold", current_pid());
1335
1336 complete_and_exit(&ldlm_pools_comp, 0);
1337 }
1338
1339 static int ldlm_pools_thread_start(void)
1340 {
1341 struct l_wait_info lwi = { 0 };
1342 task_t *task;
1343
1344 if (ldlm_pools_thread != NULL)
1345 return -EALREADY;
1346
1347 OBD_ALLOC_PTR(ldlm_pools_thread);
1348 if (ldlm_pools_thread == NULL)
1349 return -ENOMEM;
1350
1351 init_completion(&ldlm_pools_comp);
1352 init_waitqueue_head(&ldlm_pools_thread->t_ctl_waitq);
1353
1354 task = kthread_run(ldlm_pools_thread_main, ldlm_pools_thread,
1355 "ldlm_poold");
1356 if (IS_ERR(task)) {
1357 CERROR("Can't start pool thread, error %ld\n", PTR_ERR(task));
1358 OBD_FREE(ldlm_pools_thread, sizeof(*ldlm_pools_thread));
1359 ldlm_pools_thread = NULL;
1360 return PTR_ERR(task);
1361 }
1362 l_wait_event(ldlm_pools_thread->t_ctl_waitq,
1363 thread_is_running(ldlm_pools_thread), &lwi);
1364 return 0;
1365 }
1366
1367 static void ldlm_pools_thread_stop(void)
1368 {
1369 if (ldlm_pools_thread == NULL) {
1370 return;
1371 }
1372
1373 thread_set_flags(ldlm_pools_thread, SVC_STOPPING);
1374 wake_up(&ldlm_pools_thread->t_ctl_waitq);
1375
1376 /*
1377 * Make sure that pools thread is finished before freeing @thread.
1378 * This fixes possible race and oops due to accessing freed memory
1379 * in pools thread.
1380 */
1381 wait_for_completion(&ldlm_pools_comp);
1382 OBD_FREE_PTR(ldlm_pools_thread);
1383 ldlm_pools_thread = NULL;
1384 }
1385
1386 int ldlm_pools_init(void)
1387 {
1388 int rc;
1389
1390 rc = ldlm_pools_thread_start();
1391 if (rc == 0) {
1392 ldlm_pools_srv_shrinker =
1393 set_shrinker(DEFAULT_SEEKS,
1394 ldlm_pools_srv_shrink);
1395 ldlm_pools_cli_shrinker =
1396 set_shrinker(DEFAULT_SEEKS,
1397 ldlm_pools_cli_shrink);
1398 }
1399 return rc;
1400 }
1401 EXPORT_SYMBOL(ldlm_pools_init);
1402
1403 void ldlm_pools_fini(void)
1404 {
1405 if (ldlm_pools_srv_shrinker != NULL) {
1406 remove_shrinker(ldlm_pools_srv_shrinker);
1407 ldlm_pools_srv_shrinker = NULL;
1408 }
1409 if (ldlm_pools_cli_shrinker != NULL) {
1410 remove_shrinker(ldlm_pools_cli_shrinker);
1411 ldlm_pools_cli_shrinker = NULL;
1412 }
1413 ldlm_pools_thread_stop();
1414 }
1415 EXPORT_SYMBOL(ldlm_pools_fini);
This page took 0.064037 seconds and 5 git commands to generate.