staging: lustre: remove ENTRY macro
[deliverable/linux.git] / drivers / staging / lustre / lustre / ldlm / ldlm_pool.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ldlm/ldlm_pool.c
37 *
38 * Author: Yury Umanets <umka@clusterfs.com>
39 */
40
41 /*
42 * Idea of this code is rather simple. Each second, for each server namespace
43 * we have SLV - server lock volume which is calculated on current number of
44 * granted locks, grant speed for past period, etc - that is, locking load.
45 * This SLV number may be thought as a flow definition for simplicity. It is
46 * sent to clients with each occasion to let them know what is current load
47 * situation on the server. By default, at the beginning, SLV on server is
48 * set max value which is calculated as the following: allow to one client
49 * have all locks of limit ->pl_limit for 10h.
50 *
51 * Next, on clients, number of cached locks is not limited artificially in any
52 * way as it was before. Instead, client calculates CLV, that is, client lock
53 * volume for each lock and compares it with last SLV from the server. CLV is
54 * calculated as the number of locks in LRU * lock live time in seconds. If
55 * CLV > SLV - lock is canceled.
56 *
57 * Client has LVF, that is, lock volume factor which regulates how much sensitive
58 * client should be about last SLV from server. The higher LVF is the more locks
59 * will be canceled on client. Default value for it is 1. Setting LVF to 2 means
60 * that client will cancel locks 2 times faster.
61 *
62 * Locks on a client will be canceled more intensively in these cases:
63 * (1) if SLV is smaller, that is, load is higher on the server;
64 * (2) client has a lot of locks (the more locks are held by client, the bigger
65 * chances that some of them should be canceled);
66 * (3) client has old locks (taken some time ago);
67 *
68 * Thus, according to flow paradigm that we use for better understanding SLV,
69 * CLV is the volume of particle in flow described by SLV. According to this,
70 * if flow is getting thinner, more and more particles become outside of it and
71 * as particles are locks, they should be canceled.
72 *
73 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com). Andreas
74 * Dilger (adilger@clusterfs.com) proposed few nice ideas like using LVF and many
75 * cleanups. Flow definition to allow more easy understanding of the logic belongs
76 * to Nikita Danilov (nikita@clusterfs.com) as well as many cleanups and fixes.
77 * And design and implementation are done by Yury Umanets (umka@clusterfs.com).
78 *
79 * Glossary for terms used:
80 *
81 * pl_limit - Number of allowed locks in pool. Applies to server and client
82 * side (tunable);
83 *
84 * pl_granted - Number of granted locks (calculated);
85 * pl_grant_rate - Number of granted locks for last T (calculated);
86 * pl_cancel_rate - Number of canceled locks for last T (calculated);
87 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
88 * pl_grant_plan - Planned number of granted locks for next T (calculated);
89 * pl_server_lock_volume - Current server lock volume (calculated);
90 *
91 * As it may be seen from list above, we have few possible tunables which may
92 * affect behavior much. They all may be modified via proc. However, they also
93 * give a possibility for constructing few pre-defined behavior policies. If
94 * none of predefines is suitable for a working pattern being used, new one may
95 * be "constructed" via proc tunables.
96 */
97
98 #define DEBUG_SUBSYSTEM S_LDLM
99
100 # include <lustre_dlm.h>
101
102 #include <cl_object.h>
103
104 #include <obd_class.h>
105 #include <obd_support.h>
106 #include "ldlm_internal.h"
107
108
109 /*
110 * 50 ldlm locks for 1MB of RAM.
111 */
112 #define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_CACHE_SHIFT)) * 50)
113
114 /*
115 * Maximal possible grant step plan in %.
116 */
117 #define LDLM_POOL_MAX_GSP (30)
118
119 /*
120 * Minimal possible grant step plan in %.
121 */
122 #define LDLM_POOL_MIN_GSP (1)
123
124 /*
125 * This controls the speed of reaching LDLM_POOL_MAX_GSP
126 * with increasing thread period.
127 */
128 #define LDLM_POOL_GSP_STEP_SHIFT (2)
129
130 /*
131 * LDLM_POOL_GSP% of all locks is default GP.
132 */
133 #define LDLM_POOL_GP(L) (((L) * LDLM_POOL_MAX_GSP) / 100)
134
135 /*
136 * Max age for locks on clients.
137 */
138 #define LDLM_POOL_MAX_AGE (36000)
139
140 /*
141 * The granularity of SLV calculation.
142 */
143 #define LDLM_POOL_SLV_SHIFT (10)
144
145 extern proc_dir_entry_t *ldlm_ns_proc_dir;
146
147 static inline __u64 dru(__u64 val, __u32 shift, int round_up)
148 {
149 return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
150 }
151
152 static inline __u64 ldlm_pool_slv_max(__u32 L)
153 {
154 /*
155 * Allow to have all locks for 1 client for 10 hrs.
156 * Formula is the following: limit * 10h / 1 client.
157 */
158 __u64 lim = (__u64)L * LDLM_POOL_MAX_AGE / 1;
159 return lim;
160 }
161
162 static inline __u64 ldlm_pool_slv_min(__u32 L)
163 {
164 return 1;
165 }
166
167 enum {
168 LDLM_POOL_FIRST_STAT = 0,
169 LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
170 LDLM_POOL_GRANT_STAT,
171 LDLM_POOL_CANCEL_STAT,
172 LDLM_POOL_GRANT_RATE_STAT,
173 LDLM_POOL_CANCEL_RATE_STAT,
174 LDLM_POOL_GRANT_PLAN_STAT,
175 LDLM_POOL_SLV_STAT,
176 LDLM_POOL_SHRINK_REQTD_STAT,
177 LDLM_POOL_SHRINK_FREED_STAT,
178 LDLM_POOL_RECALC_STAT,
179 LDLM_POOL_TIMING_STAT,
180 LDLM_POOL_LAST_STAT
181 };
182
183 static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
184 {
185 return container_of(pl, struct ldlm_namespace, ns_pool);
186 }
187
188 /**
189 * Calculates suggested grant_step in % of available locks for passed
190 * \a period. This is later used in grant_plan calculations.
191 */
192 static inline int ldlm_pool_t2gsp(unsigned int t)
193 {
194 /*
195 * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
196 * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
197 *
198 * How this will affect execution is the following:
199 *
200 * - for thread period 1s we will have grant_step 1% which good from
201 * pov of taking some load off from server and push it out to clients.
202 * This is like that because 1% for grant_step means that server will
203 * not allow clients to get lots of locks in short period of time and
204 * keep all old locks in their caches. Clients will always have to
205 * get some locks back if they want to take some new;
206 *
207 * - for thread period 10s (which is default) we will have 23% which
208 * means that clients will have enough of room to take some new locks
209 * without getting some back. All locks from this 23% which were not
210 * taken by clients in current period will contribute in SLV growing.
211 * SLV growing means more locks cached on clients until limit or grant
212 * plan is reached.
213 */
214 return LDLM_POOL_MAX_GSP -
215 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
216 (t >> LDLM_POOL_GSP_STEP_SHIFT));
217 }
218
219 /**
220 * Recalculates next grant limit on passed \a pl.
221 *
222 * \pre ->pl_lock is locked.
223 */
224 static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
225 {
226 int granted, grant_step, limit;
227
228 limit = ldlm_pool_get_limit(pl);
229 granted = atomic_read(&pl->pl_granted);
230
231 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
232 grant_step = ((limit - granted) * grant_step) / 100;
233 pl->pl_grant_plan = granted + grant_step;
234 limit = (limit * 5) >> 2;
235 if (pl->pl_grant_plan > limit)
236 pl->pl_grant_plan = limit;
237 }
238
239 /**
240 * Recalculates next SLV on passed \a pl.
241 *
242 * \pre ->pl_lock is locked.
243 */
244 static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
245 {
246 int granted;
247 int grant_plan;
248 int round_up;
249 __u64 slv;
250 __u64 slv_factor;
251 __u64 grant_usage;
252 __u32 limit;
253
254 slv = pl->pl_server_lock_volume;
255 grant_plan = pl->pl_grant_plan;
256 limit = ldlm_pool_get_limit(pl);
257 granted = atomic_read(&pl->pl_granted);
258 round_up = granted < limit;
259
260 grant_usage = max_t(int, limit - (granted - grant_plan), 1);
261
262 /*
263 * Find out SLV change factor which is the ratio of grant usage
264 * from limit. SLV changes as fast as the ratio of grant plan
265 * consumption. The more locks from grant plan are not consumed
266 * by clients in last interval (idle time), the faster grows
267 * SLV. And the opposite, the more grant plan is over-consumed
268 * (load time) the faster drops SLV.
269 */
270 slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
271 do_div(slv_factor, limit);
272 slv = slv * slv_factor;
273 slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
274
275 if (slv > ldlm_pool_slv_max(limit)) {
276 slv = ldlm_pool_slv_max(limit);
277 } else if (slv < ldlm_pool_slv_min(limit)) {
278 slv = ldlm_pool_slv_min(limit);
279 }
280
281 pl->pl_server_lock_volume = slv;
282 }
283
284 /**
285 * Recalculates next stats on passed \a pl.
286 *
287 * \pre ->pl_lock is locked.
288 */
289 static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
290 {
291 int grant_plan = pl->pl_grant_plan;
292 __u64 slv = pl->pl_server_lock_volume;
293 int granted = atomic_read(&pl->pl_granted);
294 int grant_rate = atomic_read(&pl->pl_grant_rate);
295 int cancel_rate = atomic_read(&pl->pl_cancel_rate);
296
297 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
298 slv);
299 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
300 granted);
301 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
302 grant_rate);
303 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
304 grant_plan);
305 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
306 cancel_rate);
307 }
308
309 /**
310 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
311 */
312 static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
313 {
314 struct obd_device *obd;
315
316 /*
317 * Set new SLV in obd field for using it later without accessing the
318 * pool. This is required to avoid race between sending reply to client
319 * with new SLV and cleanup server stack in which we can't guarantee
320 * that namespace is still alive. We know only that obd is alive as
321 * long as valid export is alive.
322 */
323 obd = ldlm_pl2ns(pl)->ns_obd;
324 LASSERT(obd != NULL);
325 write_lock(&obd->obd_pool_lock);
326 obd->obd_pool_slv = pl->pl_server_lock_volume;
327 write_unlock(&obd->obd_pool_lock);
328 }
329
330 /**
331 * Recalculates all pool fields on passed \a pl.
332 *
333 * \pre ->pl_lock is not locked.
334 */
335 static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
336 {
337 time_t recalc_interval_sec;
338
339 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
340 if (recalc_interval_sec < pl->pl_recalc_period)
341 RETURN(0);
342
343 spin_lock(&pl->pl_lock);
344 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
345 if (recalc_interval_sec < pl->pl_recalc_period) {
346 spin_unlock(&pl->pl_lock);
347 RETURN(0);
348 }
349 /*
350 * Recalc SLV after last period. This should be done
351 * _before_ recalculating new grant plan.
352 */
353 ldlm_pool_recalc_slv(pl);
354
355 /*
356 * Make sure that pool informed obd of last SLV changes.
357 */
358 ldlm_srv_pool_push_slv(pl);
359
360 /*
361 * Update grant_plan for new period.
362 */
363 ldlm_pool_recalc_grant_plan(pl);
364
365 pl->pl_recalc_time = cfs_time_current_sec();
366 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
367 recalc_interval_sec);
368 spin_unlock(&pl->pl_lock);
369 RETURN(0);
370 }
371
372 /**
373 * This function is used on server side as main entry point for memory
374 * pressure handling. It decreases SLV on \a pl according to passed
375 * \a nr and \a gfp_mask.
376 *
377 * Our goal here is to decrease SLV such a way that clients hold \a nr
378 * locks smaller in next 10h.
379 */
380 static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
381 int nr, unsigned int gfp_mask)
382 {
383 __u32 limit;
384
385 /*
386 * VM is asking how many entries may be potentially freed.
387 */
388 if (nr == 0)
389 return atomic_read(&pl->pl_granted);
390
391 /*
392 * Client already canceled locks but server is already in shrinker
393 * and can't cancel anything. Let's catch this race.
394 */
395 if (atomic_read(&pl->pl_granted) == 0)
396 RETURN(0);
397
398 spin_lock(&pl->pl_lock);
399
400 /*
401 * We want shrinker to possibly cause cancellation of @nr locks from
402 * clients or grant approximately @nr locks smaller next intervals.
403 *
404 * This is why we decreased SLV by @nr. This effect will only be as
405 * long as one re-calc interval (1s these days) and this should be
406 * enough to pass this decreased SLV to all clients. On next recalc
407 * interval pool will either increase SLV if locks load is not high
408 * or will keep on same level or even decrease again, thus, shrinker
409 * decreased SLV will affect next recalc intervals and this way will
410 * make locking load lower.
411 */
412 if (nr < pl->pl_server_lock_volume) {
413 pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
414 } else {
415 limit = ldlm_pool_get_limit(pl);
416 pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
417 }
418
419 /*
420 * Make sure that pool informed obd of last SLV changes.
421 */
422 ldlm_srv_pool_push_slv(pl);
423 spin_unlock(&pl->pl_lock);
424
425 /*
426 * We did not really free any memory here so far, it only will be
427 * freed later may be, so that we return 0 to not confuse VM.
428 */
429 return 0;
430 }
431
432 /**
433 * Setup server side pool \a pl with passed \a limit.
434 */
435 static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
436 {
437 struct obd_device *obd;
438
439 obd = ldlm_pl2ns(pl)->ns_obd;
440 LASSERT(obd != NULL && obd != LP_POISON);
441 LASSERT(obd->obd_type != LP_POISON);
442 write_lock(&obd->obd_pool_lock);
443 obd->obd_pool_limit = limit;
444 write_unlock(&obd->obd_pool_lock);
445
446 ldlm_pool_set_limit(pl, limit);
447 return 0;
448 }
449
450 /**
451 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
452 */
453 static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
454 {
455 struct obd_device *obd;
456
457 /*
458 * Get new SLV and Limit from obd which is updated with coming
459 * RPCs.
460 */
461 obd = ldlm_pl2ns(pl)->ns_obd;
462 LASSERT(obd != NULL);
463 read_lock(&obd->obd_pool_lock);
464 pl->pl_server_lock_volume = obd->obd_pool_slv;
465 ldlm_pool_set_limit(pl, obd->obd_pool_limit);
466 read_unlock(&obd->obd_pool_lock);
467 }
468
469 /**
470 * Recalculates client size pool \a pl according to current SLV and Limit.
471 */
472 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
473 {
474 time_t recalc_interval_sec;
475
476 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
477 if (recalc_interval_sec < pl->pl_recalc_period)
478 RETURN(0);
479
480 spin_lock(&pl->pl_lock);
481 /*
482 * Check if we need to recalc lists now.
483 */
484 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
485 if (recalc_interval_sec < pl->pl_recalc_period) {
486 spin_unlock(&pl->pl_lock);
487 RETURN(0);
488 }
489
490 /*
491 * Make sure that pool knows last SLV and Limit from obd.
492 */
493 ldlm_cli_pool_pop_slv(pl);
494
495 pl->pl_recalc_time = cfs_time_current_sec();
496 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
497 recalc_interval_sec);
498 spin_unlock(&pl->pl_lock);
499
500 /*
501 * Do not cancel locks in case lru resize is disabled for this ns.
502 */
503 if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
504 RETURN(0);
505
506 /*
507 * In the time of canceling locks on client we do not need to maintain
508 * sharp timing, we only want to cancel locks asap according to new SLV.
509 * It may be called when SLV has changed much, this is why we do not
510 * take into account pl->pl_recalc_time here.
511 */
512 RETURN(ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC,
513 LDLM_CANCEL_LRUR));
514 }
515
516 /**
517 * This function is main entry point for memory pressure handling on client
518 * side. Main goal of this function is to cancel some number of locks on
519 * passed \a pl according to \a nr and \a gfp_mask.
520 */
521 static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
522 int nr, unsigned int gfp_mask)
523 {
524 struct ldlm_namespace *ns;
525 int canceled = 0, unused;
526
527 ns = ldlm_pl2ns(pl);
528
529 /*
530 * Do not cancel locks in case lru resize is disabled for this ns.
531 */
532 if (!ns_connect_lru_resize(ns))
533 RETURN(0);
534
535 /*
536 * Make sure that pool knows last SLV and Limit from obd.
537 */
538 ldlm_cli_pool_pop_slv(pl);
539
540 spin_lock(&ns->ns_lock);
541 unused = ns->ns_nr_unused;
542 spin_unlock(&ns->ns_lock);
543
544 if (nr) {
545 canceled = ldlm_cancel_lru(ns, nr, LCF_ASYNC,
546 LDLM_CANCEL_SHRINK);
547 }
548 /*
549 * Return the number of potentially reclaimable locks.
550 */
551 return ((unused - canceled) / 100) * sysctl_vfs_cache_pressure;
552 }
553
554 struct ldlm_pool_ops ldlm_srv_pool_ops = {
555 .po_recalc = ldlm_srv_pool_recalc,
556 .po_shrink = ldlm_srv_pool_shrink,
557 .po_setup = ldlm_srv_pool_setup
558 };
559
560 struct ldlm_pool_ops ldlm_cli_pool_ops = {
561 .po_recalc = ldlm_cli_pool_recalc,
562 .po_shrink = ldlm_cli_pool_shrink
563 };
564
565 /**
566 * Pool recalc wrapper. Will call either client or server pool recalc callback
567 * depending what pool \a pl is used.
568 */
569 int ldlm_pool_recalc(struct ldlm_pool *pl)
570 {
571 time_t recalc_interval_sec;
572 int count;
573
574 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
575 if (recalc_interval_sec <= 0)
576 goto recalc;
577
578 spin_lock(&pl->pl_lock);
579 if (recalc_interval_sec > 0) {
580 /*
581 * Update pool statistics every 1s.
582 */
583 ldlm_pool_recalc_stats(pl);
584
585 /*
586 * Zero out all rates and speed for the last period.
587 */
588 atomic_set(&pl->pl_grant_rate, 0);
589 atomic_set(&pl->pl_cancel_rate, 0);
590 }
591 spin_unlock(&pl->pl_lock);
592
593 recalc:
594 if (pl->pl_ops->po_recalc != NULL) {
595 count = pl->pl_ops->po_recalc(pl);
596 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
597 count);
598 }
599 recalc_interval_sec = pl->pl_recalc_time - cfs_time_current_sec() +
600 pl->pl_recalc_period;
601
602 return recalc_interval_sec;
603 }
604
605 /**
606 * Pool shrink wrapper. Will call either client or server pool recalc callback
607 * depending what pool \a pl is used.
608 */
609 int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
610 unsigned int gfp_mask)
611 {
612 int cancel = 0;
613
614 if (pl->pl_ops->po_shrink != NULL) {
615 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
616 if (nr > 0) {
617 lprocfs_counter_add(pl->pl_stats,
618 LDLM_POOL_SHRINK_REQTD_STAT,
619 nr);
620 lprocfs_counter_add(pl->pl_stats,
621 LDLM_POOL_SHRINK_FREED_STAT,
622 cancel);
623 CDEBUG(D_DLMTRACE, "%s: request to shrink %d locks, "
624 "shrunk %d\n", pl->pl_name, nr, cancel);
625 }
626 }
627 return cancel;
628 }
629 EXPORT_SYMBOL(ldlm_pool_shrink);
630
631 /**
632 * Pool setup wrapper. Will call either client or server pool recalc callback
633 * depending what pool \a pl is used.
634 *
635 * Sets passed \a limit into pool \a pl.
636 */
637 int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
638 {
639 if (pl->pl_ops->po_setup != NULL)
640 return(pl->pl_ops->po_setup(pl, limit));
641 return 0;
642 }
643 EXPORT_SYMBOL(ldlm_pool_setup);
644
645 static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
646 {
647 int granted, grant_rate, cancel_rate, grant_step;
648 int grant_speed, grant_plan, lvf;
649 struct ldlm_pool *pl = m->private;
650 __u64 slv, clv;
651 __u32 limit;
652
653 spin_lock(&pl->pl_lock);
654 slv = pl->pl_server_lock_volume;
655 clv = pl->pl_client_lock_volume;
656 limit = ldlm_pool_get_limit(pl);
657 grant_plan = pl->pl_grant_plan;
658 granted = atomic_read(&pl->pl_granted);
659 grant_rate = atomic_read(&pl->pl_grant_rate);
660 cancel_rate = atomic_read(&pl->pl_cancel_rate);
661 grant_speed = grant_rate - cancel_rate;
662 lvf = atomic_read(&pl->pl_lock_volume_factor);
663 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
664 spin_unlock(&pl->pl_lock);
665
666 seq_printf(m, "LDLM pool state (%s):\n"
667 " SLV: "LPU64"\n"
668 " CLV: "LPU64"\n"
669 " LVF: %d\n",
670 pl->pl_name, slv, clv, lvf);
671
672 if (ns_is_server(ldlm_pl2ns(pl))) {
673 seq_printf(m, " GSP: %d%%\n"
674 " GP: %d\n",
675 grant_step, grant_plan);
676 }
677 seq_printf(m, " GR: %d\n" " CR: %d\n" " GS: %d\n"
678 " G: %d\n" " L: %d\n",
679 grant_rate, cancel_rate, grant_speed,
680 granted, limit);
681
682 return 0;
683 }
684 LPROC_SEQ_FOPS_RO(lprocfs_pool_state);
685
686 static int lprocfs_grant_speed_seq_show(struct seq_file *m, void *unused)
687 {
688 struct ldlm_pool *pl = m->private;
689 int grant_speed;
690
691 spin_lock(&pl->pl_lock);
692 /* serialize with ldlm_pool_recalc */
693 grant_speed = atomic_read(&pl->pl_grant_rate) -
694 atomic_read(&pl->pl_cancel_rate);
695 spin_unlock(&pl->pl_lock);
696 return lprocfs_rd_uint(m, &grant_speed);
697 }
698
699 LDLM_POOL_PROC_READER_SEQ_SHOW(grant_plan, int);
700 LPROC_SEQ_FOPS_RO(lprocfs_grant_plan);
701
702 LDLM_POOL_PROC_READER_SEQ_SHOW(recalc_period, int);
703 LDLM_POOL_PROC_WRITER(recalc_period, int);
704 static ssize_t lprocfs_recalc_period_seq_write(struct file *file, const char *buf,
705 size_t len, loff_t *off)
706 {
707 struct seq_file *seq = file->private_data;
708
709 return lprocfs_wr_recalc_period(file, buf, len, seq->private);
710 }
711 LPROC_SEQ_FOPS(lprocfs_recalc_period);
712
713 LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, u64);
714 LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, atomic);
715 LPROC_SEQ_FOPS_RW_TYPE(ldlm_pool_rw, atomic);
716
717 LPROC_SEQ_FOPS_RO(lprocfs_grant_speed);
718
719 #define LDLM_POOL_ADD_VAR(name, var, ops) \
720 do { \
721 snprintf(var_name, MAX_STRING_SIZE, #name); \
722 pool_vars[0].data = var; \
723 pool_vars[0].fops = ops; \
724 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);\
725 } while (0)
726
727 static int ldlm_pool_proc_init(struct ldlm_pool *pl)
728 {
729 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
730 struct proc_dir_entry *parent_ns_proc;
731 struct lprocfs_vars pool_vars[2];
732 char *var_name = NULL;
733 int rc = 0;
734
735 OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
736 if (!var_name)
737 RETURN(-ENOMEM);
738
739 parent_ns_proc = ns->ns_proc_dir_entry;
740 if (parent_ns_proc == NULL) {
741 CERROR("%s: proc entry is not initialized\n",
742 ldlm_ns_name(ns));
743 GOTO(out_free_name, rc = -EINVAL);
744 }
745 pl->pl_proc_dir = lprocfs_register("pool", parent_ns_proc,
746 NULL, NULL);
747 if (IS_ERR(pl->pl_proc_dir)) {
748 CERROR("LProcFS failed in ldlm-pool-init\n");
749 rc = PTR_ERR(pl->pl_proc_dir);
750 pl->pl_proc_dir = NULL;
751 GOTO(out_free_name, rc);
752 }
753
754 var_name[MAX_STRING_SIZE] = '\0';
755 memset(pool_vars, 0, sizeof(pool_vars));
756 pool_vars[0].name = var_name;
757
758 LDLM_POOL_ADD_VAR("server_lock_volume", &pl->pl_server_lock_volume,
759 &ldlm_pool_u64_fops);
760 LDLM_POOL_ADD_VAR("limit", &pl->pl_limit, &ldlm_pool_rw_atomic_fops);
761 LDLM_POOL_ADD_VAR("granted", &pl->pl_granted, &ldlm_pool_atomic_fops);
762 LDLM_POOL_ADD_VAR("grant_speed", pl, &lprocfs_grant_speed_fops);
763 LDLM_POOL_ADD_VAR("cancel_rate", &pl->pl_cancel_rate,
764 &ldlm_pool_atomic_fops);
765 LDLM_POOL_ADD_VAR("grant_rate", &pl->pl_grant_rate,
766 &ldlm_pool_atomic_fops);
767 LDLM_POOL_ADD_VAR("grant_plan", pl, &lprocfs_grant_plan_fops);
768 LDLM_POOL_ADD_VAR("recalc_period", pl, &lprocfs_recalc_period_fops);
769 LDLM_POOL_ADD_VAR("lock_volume_factor", &pl->pl_lock_volume_factor,
770 &ldlm_pool_rw_atomic_fops);
771 LDLM_POOL_ADD_VAR("state", pl, &lprocfs_pool_state_fops);
772
773 pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
774 LDLM_POOL_FIRST_STAT, 0);
775 if (!pl->pl_stats)
776 GOTO(out_free_name, rc = -ENOMEM);
777
778 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
779 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
780 "granted", "locks");
781 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
782 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
783 "grant", "locks");
784 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
785 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
786 "cancel", "locks");
787 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
788 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
789 "grant_rate", "locks/s");
790 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
791 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
792 "cancel_rate", "locks/s");
793 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
794 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
795 "grant_plan", "locks/s");
796 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
797 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
798 "slv", "slv");
799 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
800 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
801 "shrink_request", "locks");
802 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
803 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
804 "shrink_freed", "locks");
805 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
806 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
807 "recalc_freed", "locks");
808 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
809 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
810 "recalc_timing", "sec");
811 rc = lprocfs_register_stats(pl->pl_proc_dir, "stats", pl->pl_stats);
812
813 EXIT;
814 out_free_name:
815 OBD_FREE(var_name, MAX_STRING_SIZE + 1);
816 return rc;
817 }
818
819 static void ldlm_pool_proc_fini(struct ldlm_pool *pl)
820 {
821 if (pl->pl_stats != NULL) {
822 lprocfs_free_stats(&pl->pl_stats);
823 pl->pl_stats = NULL;
824 }
825 if (pl->pl_proc_dir != NULL) {
826 lprocfs_remove(&pl->pl_proc_dir);
827 pl->pl_proc_dir = NULL;
828 }
829 }
830
831 int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
832 int idx, ldlm_side_t client)
833 {
834 int rc;
835
836 spin_lock_init(&pl->pl_lock);
837 atomic_set(&pl->pl_granted, 0);
838 pl->pl_recalc_time = cfs_time_current_sec();
839 atomic_set(&pl->pl_lock_volume_factor, 1);
840
841 atomic_set(&pl->pl_grant_rate, 0);
842 atomic_set(&pl->pl_cancel_rate, 0);
843 pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
844
845 snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
846 ldlm_ns_name(ns), idx);
847
848 if (client == LDLM_NAMESPACE_SERVER) {
849 pl->pl_ops = &ldlm_srv_pool_ops;
850 ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
851 pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
852 pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
853 } else {
854 ldlm_pool_set_limit(pl, 1);
855 pl->pl_server_lock_volume = 0;
856 pl->pl_ops = &ldlm_cli_pool_ops;
857 pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
858 }
859 pl->pl_client_lock_volume = 0;
860 rc = ldlm_pool_proc_init(pl);
861 if (rc)
862 RETURN(rc);
863
864 CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
865
866 RETURN(rc);
867 }
868 EXPORT_SYMBOL(ldlm_pool_init);
869
870 void ldlm_pool_fini(struct ldlm_pool *pl)
871 {
872 ldlm_pool_proc_fini(pl);
873
874 /*
875 * Pool should not be used after this point. We can't free it here as
876 * it lives in struct ldlm_namespace, but still interested in catching
877 * any abnormal using cases.
878 */
879 POISON(pl, 0x5a, sizeof(*pl));
880 EXIT;
881 }
882 EXPORT_SYMBOL(ldlm_pool_fini);
883
884 /**
885 * Add new taken ldlm lock \a lock into pool \a pl accounting.
886 */
887 void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
888 {
889 /*
890 * FLOCK locks are special in a sense that they are almost never
891 * cancelled, instead special kind of lock is used to drop them.
892 * also there is no LRU for flock locks, so no point in tracking
893 * them anyway.
894 */
895 if (lock->l_resource->lr_type == LDLM_FLOCK)
896 return;
897
898 atomic_inc(&pl->pl_granted);
899 atomic_inc(&pl->pl_grant_rate);
900 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
901 /*
902 * Do not do pool recalc for client side as all locks which
903 * potentially may be canceled has already been packed into
904 * enqueue/cancel rpc. Also we do not want to run out of stack
905 * with too long call paths.
906 */
907 if (ns_is_server(ldlm_pl2ns(pl)))
908 ldlm_pool_recalc(pl);
909 }
910 EXPORT_SYMBOL(ldlm_pool_add);
911
912 /**
913 * Remove ldlm lock \a lock from pool \a pl accounting.
914 */
915 void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
916 {
917 /*
918 * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
919 */
920 if (lock->l_resource->lr_type == LDLM_FLOCK)
921 return;
922
923 LASSERT(atomic_read(&pl->pl_granted) > 0);
924 atomic_dec(&pl->pl_granted);
925 atomic_inc(&pl->pl_cancel_rate);
926
927 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
928
929 if (ns_is_server(ldlm_pl2ns(pl)))
930 ldlm_pool_recalc(pl);
931 }
932 EXPORT_SYMBOL(ldlm_pool_del);
933
934 /**
935 * Returns current \a pl SLV.
936 *
937 * \pre ->pl_lock is not locked.
938 */
939 __u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
940 {
941 __u64 slv;
942 spin_lock(&pl->pl_lock);
943 slv = pl->pl_server_lock_volume;
944 spin_unlock(&pl->pl_lock);
945 return slv;
946 }
947 EXPORT_SYMBOL(ldlm_pool_get_slv);
948
949 /**
950 * Sets passed \a slv to \a pl.
951 *
952 * \pre ->pl_lock is not locked.
953 */
954 void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
955 {
956 spin_lock(&pl->pl_lock);
957 pl->pl_server_lock_volume = slv;
958 spin_unlock(&pl->pl_lock);
959 }
960 EXPORT_SYMBOL(ldlm_pool_set_slv);
961
962 /**
963 * Returns current \a pl CLV.
964 *
965 * \pre ->pl_lock is not locked.
966 */
967 __u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
968 {
969 __u64 slv;
970 spin_lock(&pl->pl_lock);
971 slv = pl->pl_client_lock_volume;
972 spin_unlock(&pl->pl_lock);
973 return slv;
974 }
975 EXPORT_SYMBOL(ldlm_pool_get_clv);
976
977 /**
978 * Sets passed \a clv to \a pl.
979 *
980 * \pre ->pl_lock is not locked.
981 */
982 void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
983 {
984 spin_lock(&pl->pl_lock);
985 pl->pl_client_lock_volume = clv;
986 spin_unlock(&pl->pl_lock);
987 }
988 EXPORT_SYMBOL(ldlm_pool_set_clv);
989
990 /**
991 * Returns current \a pl limit.
992 */
993 __u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
994 {
995 return atomic_read(&pl->pl_limit);
996 }
997 EXPORT_SYMBOL(ldlm_pool_get_limit);
998
999 /**
1000 * Sets passed \a limit to \a pl.
1001 */
1002 void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1003 {
1004 atomic_set(&pl->pl_limit, limit);
1005 }
1006 EXPORT_SYMBOL(ldlm_pool_set_limit);
1007
1008 /**
1009 * Returns current LVF from \a pl.
1010 */
1011 __u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1012 {
1013 return atomic_read(&pl->pl_lock_volume_factor);
1014 }
1015 EXPORT_SYMBOL(ldlm_pool_get_lvf);
1016
1017 static int ldlm_pool_granted(struct ldlm_pool *pl)
1018 {
1019 return atomic_read(&pl->pl_granted);
1020 }
1021
1022 static struct ptlrpc_thread *ldlm_pools_thread;
1023 static struct shrinker *ldlm_pools_srv_shrinker;
1024 static struct shrinker *ldlm_pools_cli_shrinker;
1025 static struct completion ldlm_pools_comp;
1026
1027 /*
1028 * Cancel \a nr locks from all namespaces (if possible). Returns number of
1029 * cached locks after shrink is finished. All namespaces are asked to
1030 * cancel approximately equal amount of locks to keep balancing.
1031 */
1032 static int ldlm_pools_shrink(ldlm_side_t client, int nr,
1033 unsigned int gfp_mask)
1034 {
1035 int total = 0, cached = 0, nr_ns;
1036 struct ldlm_namespace *ns;
1037 struct ldlm_namespace *ns_old = NULL; /* loop detection */
1038 void *cookie;
1039
1040 if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
1041 !(gfp_mask & __GFP_FS))
1042 return -1;
1043
1044 CDEBUG(D_DLMTRACE, "Request to shrink %d %s locks from all pools\n",
1045 nr, client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
1046
1047 cookie = cl_env_reenter();
1048
1049 /*
1050 * Find out how many resources we may release.
1051 */
1052 for (nr_ns = ldlm_namespace_nr_read(client);
1053 nr_ns > 0; nr_ns--)
1054 {
1055 mutex_lock(ldlm_namespace_lock(client));
1056 if (list_empty(ldlm_namespace_list(client))) {
1057 mutex_unlock(ldlm_namespace_lock(client));
1058 cl_env_reexit(cookie);
1059 return 0;
1060 }
1061 ns = ldlm_namespace_first_locked(client);
1062
1063 if (ns == ns_old) {
1064 mutex_unlock(ldlm_namespace_lock(client));
1065 break;
1066 }
1067
1068 if (ldlm_ns_empty(ns)) {
1069 ldlm_namespace_move_to_inactive_locked(ns, client);
1070 mutex_unlock(ldlm_namespace_lock(client));
1071 continue;
1072 }
1073
1074 if (ns_old == NULL)
1075 ns_old = ns;
1076
1077 ldlm_namespace_get(ns);
1078 ldlm_namespace_move_to_active_locked(ns, client);
1079 mutex_unlock(ldlm_namespace_lock(client));
1080 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1081 ldlm_namespace_put(ns);
1082 }
1083
1084 if (nr == 0 || total == 0) {
1085 cl_env_reexit(cookie);
1086 return total;
1087 }
1088
1089 /*
1090 * Shrink at least ldlm_namespace_nr(client) namespaces.
1091 */
1092 for (nr_ns = ldlm_namespace_nr_read(client) - nr_ns;
1093 nr_ns > 0; nr_ns--)
1094 {
1095 int cancel, nr_locks;
1096
1097 /*
1098 * Do not call shrink under ldlm_namespace_lock(client)
1099 */
1100 mutex_lock(ldlm_namespace_lock(client));
1101 if (list_empty(ldlm_namespace_list(client))) {
1102 mutex_unlock(ldlm_namespace_lock(client));
1103 /*
1104 * If list is empty, we can't return any @cached > 0,
1105 * that probably would cause needless shrinker
1106 * call.
1107 */
1108 cached = 0;
1109 break;
1110 }
1111 ns = ldlm_namespace_first_locked(client);
1112 ldlm_namespace_get(ns);
1113 ldlm_namespace_move_to_active_locked(ns, client);
1114 mutex_unlock(ldlm_namespace_lock(client));
1115
1116 nr_locks = ldlm_pool_granted(&ns->ns_pool);
1117 cancel = 1 + nr_locks * nr / total;
1118 ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
1119 cached += ldlm_pool_granted(&ns->ns_pool);
1120 ldlm_namespace_put(ns);
1121 }
1122 cl_env_reexit(cookie);
1123 /* we only decrease the SLV in server pools shrinker, return -1 to
1124 * kernel to avoid needless loop. LU-1128 */
1125 return (client == LDLM_NAMESPACE_SERVER) ? -1 : cached;
1126 }
1127
1128 static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1129 {
1130 return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
1131 shrink_param(sc, nr_to_scan),
1132 shrink_param(sc, gfp_mask));
1133 }
1134
1135 static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1136 {
1137 return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
1138 shrink_param(sc, nr_to_scan),
1139 shrink_param(sc, gfp_mask));
1140 }
1141
1142 int ldlm_pools_recalc(ldlm_side_t client)
1143 {
1144 __u32 nr_l = 0, nr_p = 0, l;
1145 struct ldlm_namespace *ns;
1146 struct ldlm_namespace *ns_old = NULL;
1147 int nr, equal = 0;
1148 int time = 50; /* seconds of sleep if no active namespaces */
1149
1150 /*
1151 * No need to setup pool limit for client pools.
1152 */
1153 if (client == LDLM_NAMESPACE_SERVER) {
1154 /*
1155 * Check all modest namespaces first.
1156 */
1157 mutex_lock(ldlm_namespace_lock(client));
1158 list_for_each_entry(ns, ldlm_namespace_list(client),
1159 ns_list_chain)
1160 {
1161 if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1162 continue;
1163
1164 l = ldlm_pool_granted(&ns->ns_pool);
1165 if (l == 0)
1166 l = 1;
1167
1168 /*
1169 * Set the modest pools limit equal to their avg granted
1170 * locks + ~6%.
1171 */
1172 l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1173 ldlm_pool_setup(&ns->ns_pool, l);
1174 nr_l += l;
1175 nr_p++;
1176 }
1177
1178 /*
1179 * Make sure that modest namespaces did not eat more that 2/3
1180 * of limit.
1181 */
1182 if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1183 CWARN("\"Modest\" pools eat out 2/3 of server locks "
1184 "limit (%d of %lu). This means that you have too "
1185 "many clients for this amount of server RAM. "
1186 "Upgrade server!\n", nr_l, LDLM_POOL_HOST_L);
1187 equal = 1;
1188 }
1189
1190 /*
1191 * The rest is given to greedy namespaces.
1192 */
1193 list_for_each_entry(ns, ldlm_namespace_list(client),
1194 ns_list_chain)
1195 {
1196 if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1197 continue;
1198
1199 if (equal) {
1200 /*
1201 * In the case 2/3 locks are eaten out by
1202 * modest pools, we re-setup equal limit
1203 * for _all_ pools.
1204 */
1205 l = LDLM_POOL_HOST_L /
1206 ldlm_namespace_nr_read(client);
1207 } else {
1208 /*
1209 * All the rest of greedy pools will have
1210 * all locks in equal parts.
1211 */
1212 l = (LDLM_POOL_HOST_L - nr_l) /
1213 (ldlm_namespace_nr_read(client) -
1214 nr_p);
1215 }
1216 ldlm_pool_setup(&ns->ns_pool, l);
1217 }
1218 mutex_unlock(ldlm_namespace_lock(client));
1219 }
1220
1221 /*
1222 * Recalc at least ldlm_namespace_nr(client) namespaces.
1223 */
1224 for (nr = ldlm_namespace_nr_read(client); nr > 0; nr--) {
1225 int skip;
1226 /*
1227 * Lock the list, get first @ns in the list, getref, move it
1228 * to the tail, unlock and call pool recalc. This way we avoid
1229 * calling recalc under @ns lock what is really good as we get
1230 * rid of potential deadlock on client nodes when canceling
1231 * locks synchronously.
1232 */
1233 mutex_lock(ldlm_namespace_lock(client));
1234 if (list_empty(ldlm_namespace_list(client))) {
1235 mutex_unlock(ldlm_namespace_lock(client));
1236 break;
1237 }
1238 ns = ldlm_namespace_first_locked(client);
1239
1240 if (ns_old == ns) { /* Full pass complete */
1241 mutex_unlock(ldlm_namespace_lock(client));
1242 break;
1243 }
1244
1245 /* We got an empty namespace, need to move it back to inactive
1246 * list.
1247 * The race with parallel resource creation is fine:
1248 * - If they do namespace_get before our check, we fail the
1249 * check and they move this item to the end of the list anyway
1250 * - If we do the check and then they do namespace_get, then
1251 * we move the namespace to inactive and they will move
1252 * it back to active (synchronised by the lock, so no clash
1253 * there).
1254 */
1255 if (ldlm_ns_empty(ns)) {
1256 ldlm_namespace_move_to_inactive_locked(ns, client);
1257 mutex_unlock(ldlm_namespace_lock(client));
1258 continue;
1259 }
1260
1261 if (ns_old == NULL)
1262 ns_old = ns;
1263
1264 spin_lock(&ns->ns_lock);
1265 /*
1266 * skip ns which is being freed, and we don't want to increase
1267 * its refcount again, not even temporarily. bz21519 & LU-499.
1268 */
1269 if (ns->ns_stopping) {
1270 skip = 1;
1271 } else {
1272 skip = 0;
1273 ldlm_namespace_get(ns);
1274 }
1275 spin_unlock(&ns->ns_lock);
1276
1277 ldlm_namespace_move_to_active_locked(ns, client);
1278 mutex_unlock(ldlm_namespace_lock(client));
1279
1280 /*
1281 * After setup is done - recalc the pool.
1282 */
1283 if (!skip) {
1284 int ttime = ldlm_pool_recalc(&ns->ns_pool);
1285
1286 if (ttime < time)
1287 time = ttime;
1288
1289 ldlm_namespace_put(ns);
1290 }
1291 }
1292 return time;
1293 }
1294 EXPORT_SYMBOL(ldlm_pools_recalc);
1295
1296 static int ldlm_pools_thread_main(void *arg)
1297 {
1298 struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
1299 int s_time, c_time;
1300
1301 thread_set_flags(thread, SVC_RUNNING);
1302 wake_up(&thread->t_ctl_waitq);
1303
1304 CDEBUG(D_DLMTRACE, "%s: pool thread starting, process %d\n",
1305 "ldlm_poold", current_pid());
1306
1307 while (1) {
1308 struct l_wait_info lwi;
1309
1310 /*
1311 * Recal all pools on this tick.
1312 */
1313 s_time = ldlm_pools_recalc(LDLM_NAMESPACE_SERVER);
1314 c_time = ldlm_pools_recalc(LDLM_NAMESPACE_CLIENT);
1315
1316 /*
1317 * Wait until the next check time, or until we're
1318 * stopped.
1319 */
1320 lwi = LWI_TIMEOUT(cfs_time_seconds(min(s_time, c_time)),
1321 NULL, NULL);
1322 l_wait_event(thread->t_ctl_waitq,
1323 thread_is_stopping(thread) ||
1324 thread_is_event(thread),
1325 &lwi);
1326
1327 if (thread_test_and_clear_flags(thread, SVC_STOPPING))
1328 break;
1329 else
1330 thread_test_and_clear_flags(thread, SVC_EVENT);
1331 }
1332
1333 thread_set_flags(thread, SVC_STOPPED);
1334 wake_up(&thread->t_ctl_waitq);
1335
1336 CDEBUG(D_DLMTRACE, "%s: pool thread exiting, process %d\n",
1337 "ldlm_poold", current_pid());
1338
1339 complete_and_exit(&ldlm_pools_comp, 0);
1340 }
1341
1342 static int ldlm_pools_thread_start(void)
1343 {
1344 struct l_wait_info lwi = { 0 };
1345 task_t *task;
1346
1347 if (ldlm_pools_thread != NULL)
1348 RETURN(-EALREADY);
1349
1350 OBD_ALLOC_PTR(ldlm_pools_thread);
1351 if (ldlm_pools_thread == NULL)
1352 RETURN(-ENOMEM);
1353
1354 init_completion(&ldlm_pools_comp);
1355 init_waitqueue_head(&ldlm_pools_thread->t_ctl_waitq);
1356
1357 task = kthread_run(ldlm_pools_thread_main, ldlm_pools_thread,
1358 "ldlm_poold");
1359 if (IS_ERR(task)) {
1360 CERROR("Can't start pool thread, error %ld\n", PTR_ERR(task));
1361 OBD_FREE(ldlm_pools_thread, sizeof(*ldlm_pools_thread));
1362 ldlm_pools_thread = NULL;
1363 RETURN(PTR_ERR(task));
1364 }
1365 l_wait_event(ldlm_pools_thread->t_ctl_waitq,
1366 thread_is_running(ldlm_pools_thread), &lwi);
1367 RETURN(0);
1368 }
1369
1370 static void ldlm_pools_thread_stop(void)
1371 {
1372 if (ldlm_pools_thread == NULL) {
1373 EXIT;
1374 return;
1375 }
1376
1377 thread_set_flags(ldlm_pools_thread, SVC_STOPPING);
1378 wake_up(&ldlm_pools_thread->t_ctl_waitq);
1379
1380 /*
1381 * Make sure that pools thread is finished before freeing @thread.
1382 * This fixes possible race and oops due to accessing freed memory
1383 * in pools thread.
1384 */
1385 wait_for_completion(&ldlm_pools_comp);
1386 OBD_FREE_PTR(ldlm_pools_thread);
1387 ldlm_pools_thread = NULL;
1388 EXIT;
1389 }
1390
1391 int ldlm_pools_init(void)
1392 {
1393 int rc;
1394
1395 rc = ldlm_pools_thread_start();
1396 if (rc == 0) {
1397 ldlm_pools_srv_shrinker =
1398 set_shrinker(DEFAULT_SEEKS,
1399 ldlm_pools_srv_shrink);
1400 ldlm_pools_cli_shrinker =
1401 set_shrinker(DEFAULT_SEEKS,
1402 ldlm_pools_cli_shrink);
1403 }
1404 RETURN(rc);
1405 }
1406 EXPORT_SYMBOL(ldlm_pools_init);
1407
1408 void ldlm_pools_fini(void)
1409 {
1410 if (ldlm_pools_srv_shrinker != NULL) {
1411 remove_shrinker(ldlm_pools_srv_shrinker);
1412 ldlm_pools_srv_shrinker = NULL;
1413 }
1414 if (ldlm_pools_cli_shrinker != NULL) {
1415 remove_shrinker(ldlm_pools_cli_shrinker);
1416 ldlm_pools_cli_shrinker = NULL;
1417 }
1418 ldlm_pools_thread_stop();
1419 }
1420 EXPORT_SYMBOL(ldlm_pools_fini);
This page took 0.076349 seconds and 6 git commands to generate.