Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / staging / lustre / lustre / ptlrpc / client.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37 /** Implementation of client-side PortalRPC interfaces */
38
39 #define DEBUG_SUBSYSTEM S_RPC
40
41 #include <obd_support.h>
42 #include <obd_class.h>
43 #include <lustre_lib.h>
44 #include <lustre_ha.h>
45 #include <lustre_import.h>
46 #include <lustre_req_layout.h>
47
48 #include "ptlrpc_internal.h"
49
50 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
51 static int ptlrpcd_check_work(struct ptlrpc_request *req);
52
53 /**
54 * Initialize passed in client structure \a cl.
55 */
56 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
57 struct ptlrpc_client *cl)
58 {
59 cl->cli_request_portal = req_portal;
60 cl->cli_reply_portal = rep_portal;
61 cl->cli_name = name;
62 }
63 EXPORT_SYMBOL(ptlrpc_init_client);
64
65 /**
66 * Return PortalRPC connection for remote uud \a uuid
67 */
68 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
69 {
70 struct ptlrpc_connection *c;
71 lnet_nid_t self;
72 lnet_process_id_t peer;
73 int err;
74
75 /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
76 * before accessing its values. */
77 /* coverity[uninit_use_in_call] */
78 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
79 if (err != 0) {
80 CNETERR("cannot find peer %s!\n", uuid->uuid);
81 return NULL;
82 }
83
84 c = ptlrpc_connection_get(peer, self, uuid);
85 if (c) {
86 memcpy(c->c_remote_uuid.uuid,
87 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
88 }
89
90 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
91
92 return c;
93 }
94 EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
95
96 /**
97 * Allocate and initialize new bulk descriptor on the sender.
98 * Returns pointer to the descriptor or NULL on error.
99 */
100 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
101 unsigned type, unsigned portal)
102 {
103 struct ptlrpc_bulk_desc *desc;
104 int i;
105
106 OBD_ALLOC(desc, offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]));
107 if (!desc)
108 return NULL;
109
110 spin_lock_init(&desc->bd_lock);
111 init_waitqueue_head(&desc->bd_waitq);
112 desc->bd_max_iov = npages;
113 desc->bd_iov_count = 0;
114 desc->bd_portal = portal;
115 desc->bd_type = type;
116 desc->bd_md_count = 0;
117 LASSERT(max_brw > 0);
118 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
119 /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
120 * node. Negotiated ocd_brw_size will always be <= this number. */
121 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
122 LNetInvalidateHandle(&desc->bd_mds[i]);
123
124 return desc;
125 }
126
127 /**
128 * Prepare bulk descriptor for specified outgoing request \a req that
129 * can fit \a npages * pages. \a type is bulk type. \a portal is where
130 * the bulk to be sent. Used on client-side.
131 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
132 * error.
133 */
134 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
135 unsigned npages, unsigned max_brw,
136 unsigned type, unsigned portal)
137 {
138 struct obd_import *imp = req->rq_import;
139 struct ptlrpc_bulk_desc *desc;
140
141 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
142 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
143 if (desc == NULL)
144 return NULL;
145
146 desc->bd_import_generation = req->rq_import_generation;
147 desc->bd_import = class_import_get(imp);
148 desc->bd_req = req;
149
150 desc->bd_cbid.cbid_fn = client_bulk_callback;
151 desc->bd_cbid.cbid_arg = desc;
152
153 /* This makes req own desc, and free it when she frees herself */
154 req->rq_bulk = desc;
155
156 return desc;
157 }
158 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
159
160 /**
161 * Add a page \a page to the bulk descriptor \a desc.
162 * Data to transfer in the page starts at offset \a pageoffset and
163 * amount of data to transfer from the page is \a len
164 */
165 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
166 struct page *page, int pageoffset, int len, int pin)
167 {
168 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
169 LASSERT(page != NULL);
170 LASSERT(pageoffset >= 0);
171 LASSERT(len > 0);
172 LASSERT(pageoffset + len <= PAGE_CACHE_SIZE);
173
174 desc->bd_nob += len;
175
176 if (pin)
177 page_cache_get(page);
178
179 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
180 }
181 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
182
183 /**
184 * Uninitialize and free bulk descriptor \a desc.
185 * Works on bulk descriptors both from server and client side.
186 */
187 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
188 {
189 int i;
190
191 LASSERT(desc != NULL);
192 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
193 LASSERT(desc->bd_md_count == 0); /* network hands off */
194 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
195
196 sptlrpc_enc_pool_put_pages(desc);
197
198 if (desc->bd_export)
199 class_export_put(desc->bd_export);
200 else
201 class_import_put(desc->bd_import);
202
203 if (unpin) {
204 for (i = 0; i < desc->bd_iov_count; i++)
205 page_cache_release(desc->bd_iov[i].kiov_page);
206 }
207
208 OBD_FREE(desc, offsetof(struct ptlrpc_bulk_desc,
209 bd_iov[desc->bd_max_iov]));
210 }
211 EXPORT_SYMBOL(__ptlrpc_free_bulk);
212
213 /**
214 * Set server timelimit for this req, i.e. how long are we willing to wait
215 * for reply before timing out this request.
216 */
217 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
218 {
219 __u32 serv_est;
220 int idx;
221 struct imp_at *at;
222
223 LASSERT(req->rq_import);
224
225 if (AT_OFF) {
226 /* non-AT settings */
227 /**
228 * \a imp_server_timeout means this is reverse import and
229 * we send (currently only) ASTs to the client and cannot afford
230 * to wait too long for the reply, otherwise the other client
231 * (because of which we are sending this request) would
232 * timeout waiting for us
233 */
234 req->rq_timeout = req->rq_import->imp_server_timeout ?
235 obd_timeout / 2 : obd_timeout;
236 } else {
237 at = &req->rq_import->imp_at;
238 idx = import_at_get_index(req->rq_import,
239 req->rq_request_portal);
240 serv_est = at_get(&at->iat_service_estimate[idx]);
241 req->rq_timeout = at_est2timeout(serv_est);
242 }
243 /* We could get even fancier here, using history to predict increased
244 loading... */
245
246 /* Let the server know what this RPC timeout is by putting it in the
247 reqmsg*/
248 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
249 }
250 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
251
252 /* Adjust max service estimate based on server value */
253 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
254 unsigned int serv_est)
255 {
256 int idx;
257 unsigned int oldse;
258 struct imp_at *at;
259
260 LASSERT(req->rq_import);
261 at = &req->rq_import->imp_at;
262
263 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
264 /* max service estimates are tracked on the server side,
265 so just keep minimal history here */
266 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
267 if (oldse != 0)
268 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d "
269 "has changed from %d to %d\n",
270 req->rq_import->imp_obd->obd_name,req->rq_request_portal,
271 oldse, at_get(&at->iat_service_estimate[idx]));
272 }
273
274 /* Expected network latency per remote node (secs) */
275 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
276 {
277 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
278 }
279
280 /* Adjust expected network latency */
281 static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
282 unsigned int service_time)
283 {
284 unsigned int nl, oldnl;
285 struct imp_at *at;
286 time_t now = cfs_time_current_sec();
287
288 LASSERT(req->rq_import);
289 at = &req->rq_import->imp_at;
290
291 /* Network latency is total time less server processing time */
292 nl = max_t(int, now - req->rq_sent - service_time, 0) +1/*st rounding*/;
293 if (service_time > now - req->rq_sent + 3 /* bz16408 */)
294 CWARN("Reported service time %u > total measured time "
295 CFS_DURATION_T"\n", service_time,
296 cfs_time_sub(now, req->rq_sent));
297
298 oldnl = at_measured(&at->iat_net_latency, nl);
299 if (oldnl != 0)
300 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) "
301 "has changed from %d to %d\n",
302 req->rq_import->imp_obd->obd_name,
303 obd_uuid2str(
304 &req->rq_import->imp_connection->c_remote_uuid),
305 oldnl, at_get(&at->iat_net_latency));
306 }
307
308 static int unpack_reply(struct ptlrpc_request *req)
309 {
310 int rc;
311
312 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
313 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
314 if (rc) {
315 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
316 return(-EPROTO);
317 }
318 }
319
320 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
321 if (rc) {
322 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
323 return(-EPROTO);
324 }
325 return 0;
326 }
327
328 /**
329 * Handle an early reply message, called with the rq_lock held.
330 * If anything goes wrong just ignore it - same as if it never happened
331 */
332 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
333 {
334 struct ptlrpc_request *early_req;
335 time_t olddl;
336 int rc;
337
338 req->rq_early = 0;
339 spin_unlock(&req->rq_lock);
340
341 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
342 if (rc) {
343 spin_lock(&req->rq_lock);
344 return rc;
345 }
346
347 rc = unpack_reply(early_req);
348 if (rc == 0) {
349 /* Expecting to increase the service time estimate here */
350 ptlrpc_at_adj_service(req,
351 lustre_msg_get_timeout(early_req->rq_repmsg));
352 ptlrpc_at_adj_net_latency(req,
353 lustre_msg_get_service_time(early_req->rq_repmsg));
354 }
355
356 sptlrpc_cli_finish_early_reply(early_req);
357
358 if (rc != 0) {
359 spin_lock(&req->rq_lock);
360 return rc;
361 }
362
363 /* Adjust the local timeout for this req */
364 ptlrpc_at_set_req_timeout(req);
365
366 spin_lock(&req->rq_lock);
367 olddl = req->rq_deadline;
368 /* server assumes it now has rq_timeout from when it sent the
369 * early reply, so client should give it at least that long. */
370 req->rq_deadline = cfs_time_current_sec() + req->rq_timeout +
371 ptlrpc_at_get_net_latency(req);
372
373 DEBUG_REQ(D_ADAPTTO, req,
374 "Early reply #%d, new deadline in "CFS_DURATION_T"s "
375 "("CFS_DURATION_T"s)", req->rq_early_count,
376 cfs_time_sub(req->rq_deadline, cfs_time_current_sec()),
377 cfs_time_sub(req->rq_deadline, olddl));
378
379 return rc;
380 }
381
382 struct kmem_cache *request_cache;
383
384 int ptlrpc_request_cache_init(void)
385 {
386 request_cache = kmem_cache_create("ptlrpc_cache",
387 sizeof(struct ptlrpc_request),
388 0, SLAB_HWCACHE_ALIGN, NULL);
389 return request_cache == NULL ? -ENOMEM : 0;
390 }
391
392 void ptlrpc_request_cache_fini(void)
393 {
394 kmem_cache_destroy(request_cache);
395 }
396
397 struct ptlrpc_request *ptlrpc_request_cache_alloc(int flags)
398 {
399 struct ptlrpc_request *req;
400
401 OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
402 return req;
403 }
404
405 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
406 {
407 OBD_SLAB_FREE_PTR(req, request_cache);
408 }
409
410 /**
411 * Wind down request pool \a pool.
412 * Frees all requests from the pool too
413 */
414 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
415 {
416 struct list_head *l, *tmp;
417 struct ptlrpc_request *req;
418
419 LASSERT(pool != NULL);
420
421 spin_lock(&pool->prp_lock);
422 list_for_each_safe(l, tmp, &pool->prp_req_list) {
423 req = list_entry(l, struct ptlrpc_request, rq_list);
424 list_del(&req->rq_list);
425 LASSERT(req->rq_reqbuf);
426 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
427 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
428 ptlrpc_request_cache_free(req);
429 }
430 spin_unlock(&pool->prp_lock);
431 OBD_FREE(pool, sizeof(*pool));
432 }
433 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
434
435 /**
436 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
437 */
438 void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
439 {
440 int i;
441 int size = 1;
442
443 while (size < pool->prp_rq_size)
444 size <<= 1;
445
446 LASSERTF(list_empty(&pool->prp_req_list) ||
447 size == pool->prp_rq_size,
448 "Trying to change pool size with nonempty pool "
449 "from %d to %d bytes\n", pool->prp_rq_size, size);
450
451 spin_lock(&pool->prp_lock);
452 pool->prp_rq_size = size;
453 for (i = 0; i < num_rq; i++) {
454 struct ptlrpc_request *req;
455 struct lustre_msg *msg;
456
457 spin_unlock(&pool->prp_lock);
458 req = ptlrpc_request_cache_alloc(GFP_NOFS);
459 if (!req)
460 return;
461 OBD_ALLOC_LARGE(msg, size);
462 if (!msg) {
463 ptlrpc_request_cache_free(req);
464 return;
465 }
466 req->rq_reqbuf = msg;
467 req->rq_reqbuf_len = size;
468 req->rq_pool = pool;
469 spin_lock(&pool->prp_lock);
470 list_add_tail(&req->rq_list, &pool->prp_req_list);
471 }
472 spin_unlock(&pool->prp_lock);
473 return;
474 }
475 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
476
477 /**
478 * Create and initialize new request pool with given attributes:
479 * \a num_rq - initial number of requests to create for the pool
480 * \a msgsize - maximum message size possible for requests in thid pool
481 * \a populate_pool - function to be called when more requests need to be added
482 * to the pool
483 * Returns pointer to newly created pool or NULL on error.
484 */
485 struct ptlrpc_request_pool *
486 ptlrpc_init_rq_pool(int num_rq, int msgsize,
487 void (*populate_pool)(struct ptlrpc_request_pool *, int))
488 {
489 struct ptlrpc_request_pool *pool;
490
491 OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
492 if (!pool)
493 return NULL;
494
495 /* Request next power of two for the allocation, because internally
496 kernel would do exactly this */
497
498 spin_lock_init(&pool->prp_lock);
499 INIT_LIST_HEAD(&pool->prp_req_list);
500 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
501 pool->prp_populate = populate_pool;
502
503 populate_pool(pool, num_rq);
504
505 if (list_empty(&pool->prp_req_list)) {
506 /* have not allocated a single request for the pool */
507 OBD_FREE(pool, sizeof(struct ptlrpc_request_pool));
508 pool = NULL;
509 }
510 return pool;
511 }
512 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
513
514 /**
515 * Fetches one request from pool \a pool
516 */
517 static struct ptlrpc_request *
518 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
519 {
520 struct ptlrpc_request *request;
521 struct lustre_msg *reqbuf;
522
523 if (!pool)
524 return NULL;
525
526 spin_lock(&pool->prp_lock);
527
528 /* See if we have anything in a pool, and bail out if nothing,
529 * in writeout path, where this matters, this is safe to do, because
530 * nothing is lost in this case, and when some in-flight requests
531 * complete, this code will be called again. */
532 if (unlikely(list_empty(&pool->prp_req_list))) {
533 spin_unlock(&pool->prp_lock);
534 return NULL;
535 }
536
537 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
538 rq_list);
539 list_del_init(&request->rq_list);
540 spin_unlock(&pool->prp_lock);
541
542 LASSERT(request->rq_reqbuf);
543 LASSERT(request->rq_pool);
544
545 reqbuf = request->rq_reqbuf;
546 memset(request, 0, sizeof(*request));
547 request->rq_reqbuf = reqbuf;
548 request->rq_reqbuf_len = pool->prp_rq_size;
549 request->rq_pool = pool;
550
551 return request;
552 }
553
554 /**
555 * Returns freed \a request to pool.
556 */
557 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
558 {
559 struct ptlrpc_request_pool *pool = request->rq_pool;
560
561 spin_lock(&pool->prp_lock);
562 LASSERT(list_empty(&request->rq_list));
563 LASSERT(!request->rq_receiving_reply);
564 list_add_tail(&request->rq_list, &pool->prp_req_list);
565 spin_unlock(&pool->prp_lock);
566 }
567
568 static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
569 __u32 version, int opcode,
570 int count, __u32 *lengths, char **bufs,
571 struct ptlrpc_cli_ctx *ctx)
572 {
573 struct obd_import *imp = request->rq_import;
574 int rc;
575
576 if (unlikely(ctx))
577 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
578 else {
579 rc = sptlrpc_req_get_ctx(request);
580 if (rc)
581 GOTO(out_free, rc);
582 }
583
584 sptlrpc_req_set_flavor(request, opcode);
585
586 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
587 lengths, bufs);
588 if (rc) {
589 LASSERT(!request->rq_pool);
590 GOTO(out_ctx, rc);
591 }
592
593 lustre_msg_add_version(request->rq_reqmsg, version);
594 request->rq_send_state = LUSTRE_IMP_FULL;
595 request->rq_type = PTL_RPC_MSG_REQUEST;
596 request->rq_export = NULL;
597
598 request->rq_req_cbid.cbid_fn = request_out_callback;
599 request->rq_req_cbid.cbid_arg = request;
600
601 request->rq_reply_cbid.cbid_fn = reply_in_callback;
602 request->rq_reply_cbid.cbid_arg = request;
603
604 request->rq_reply_deadline = 0;
605 request->rq_phase = RQ_PHASE_NEW;
606 request->rq_next_phase = RQ_PHASE_UNDEFINED;
607
608 request->rq_request_portal = imp->imp_client->cli_request_portal;
609 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
610
611 ptlrpc_at_set_req_timeout(request);
612
613 spin_lock_init(&request->rq_lock);
614 INIT_LIST_HEAD(&request->rq_list);
615 INIT_LIST_HEAD(&request->rq_timed_list);
616 INIT_LIST_HEAD(&request->rq_replay_list);
617 INIT_LIST_HEAD(&request->rq_ctx_chain);
618 INIT_LIST_HEAD(&request->rq_set_chain);
619 INIT_LIST_HEAD(&request->rq_history_list);
620 INIT_LIST_HEAD(&request->rq_exp_list);
621 init_waitqueue_head(&request->rq_reply_waitq);
622 init_waitqueue_head(&request->rq_set_waitq);
623 request->rq_xid = ptlrpc_next_xid();
624 atomic_set(&request->rq_refcount, 1);
625
626 lustre_msg_set_opc(request->rq_reqmsg, opcode);
627
628 return 0;
629 out_ctx:
630 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
631 out_free:
632 class_import_put(imp);
633 return rc;
634 }
635
636 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
637 __u32 version, int opcode, char **bufs,
638 struct ptlrpc_cli_ctx *ctx)
639 {
640 int count;
641
642 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
643 return __ptlrpc_request_bufs_pack(request, version, opcode, count,
644 request->rq_pill.rc_area[RCL_CLIENT],
645 bufs, ctx);
646 }
647 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
648
649 /**
650 * Pack request buffers for network transfer, performing necessary encryption
651 * steps if necessary.
652 */
653 int ptlrpc_request_pack(struct ptlrpc_request *request,
654 __u32 version, int opcode)
655 {
656 int rc;
657 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
658 if (rc)
659 return rc;
660
661 /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
662 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
663 * have to send old ptlrpc_body to keep interoperability with these
664 * clients.
665 *
666 * Only three kinds of server->client RPCs so far:
667 * - LDLM_BL_CALLBACK
668 * - LDLM_CP_CALLBACK
669 * - LDLM_GL_CALLBACK
670 *
671 * XXX This should be removed whenever we drop the interoperability with
672 * the these old clients.
673 */
674 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
675 opcode == LDLM_GL_CALLBACK)
676 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
677 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
678
679 return rc;
680 }
681 EXPORT_SYMBOL(ptlrpc_request_pack);
682
683 /**
684 * Helper function to allocate new request on import \a imp
685 * and possibly using existing request from pool \a pool if provided.
686 * Returns allocated request structure with import field filled or
687 * NULL on error.
688 */
689 static inline
690 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
691 struct ptlrpc_request_pool *pool)
692 {
693 struct ptlrpc_request *request = NULL;
694
695 if (pool)
696 request = ptlrpc_prep_req_from_pool(pool);
697
698 if (!request)
699 request = ptlrpc_request_cache_alloc(GFP_NOFS);
700
701 if (request) {
702 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
703 LASSERT(imp != LP_POISON);
704 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p",
705 imp->imp_client);
706 LASSERT(imp->imp_client != LP_POISON);
707
708 request->rq_import = class_import_get(imp);
709 } else {
710 CERROR("request allocation out of memory\n");
711 }
712
713 return request;
714 }
715
716 /**
717 * Helper function for creating a request.
718 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
719 * buffer structures according to capsule template \a format.
720 * Returns allocated request structure pointer or NULL on error.
721 */
722 static struct ptlrpc_request *
723 ptlrpc_request_alloc_internal(struct obd_import *imp,
724 struct ptlrpc_request_pool * pool,
725 const struct req_format *format)
726 {
727 struct ptlrpc_request *request;
728
729 request = __ptlrpc_request_alloc(imp, pool);
730 if (request == NULL)
731 return NULL;
732
733 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
734 req_capsule_set(&request->rq_pill, format);
735 return request;
736 }
737
738 /**
739 * Allocate new request structure for import \a imp and initialize its
740 * buffer structure according to capsule template \a format.
741 */
742 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
743 const struct req_format *format)
744 {
745 return ptlrpc_request_alloc_internal(imp, NULL, format);
746 }
747 EXPORT_SYMBOL(ptlrpc_request_alloc);
748
749 /**
750 * Allocate new request structure for import \a imp from pool \a pool and
751 * initialize its buffer structure according to capsule template \a format.
752 */
753 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
754 struct ptlrpc_request_pool * pool,
755 const struct req_format *format)
756 {
757 return ptlrpc_request_alloc_internal(imp, pool, format);
758 }
759 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
760
761 /**
762 * For requests not from pool, free memory of the request structure.
763 * For requests obtained from a pool earlier, return request back to pool.
764 */
765 void ptlrpc_request_free(struct ptlrpc_request *request)
766 {
767 if (request->rq_pool)
768 __ptlrpc_free_req_to_pool(request);
769 else
770 ptlrpc_request_cache_free(request);
771 }
772 EXPORT_SYMBOL(ptlrpc_request_free);
773
774 /**
775 * Allocate new request for operation \a opcode and immediately pack it for
776 * network transfer.
777 * Only used for simple requests like OBD_PING where the only important
778 * part of the request is operation itself.
779 * Returns allocated request or NULL on error.
780 */
781 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
782 const struct req_format *format,
783 __u32 version, int opcode)
784 {
785 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
786 int rc;
787
788 if (req) {
789 rc = ptlrpc_request_pack(req, version, opcode);
790 if (rc) {
791 ptlrpc_request_free(req);
792 req = NULL;
793 }
794 }
795 return req;
796 }
797 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
798
799 /**
800 * Prepare request (fetched from pool \a pool if not NULL) on import \a imp
801 * for operation \a opcode. Request would contain \a count buffers.
802 * Sizes of buffers are described in array \a lengths and buffers themselves
803 * are provided by a pointer \a bufs.
804 * Returns prepared request structure pointer or NULL on error.
805 */
806 struct ptlrpc_request *
807 ptlrpc_prep_req_pool(struct obd_import *imp,
808 __u32 version, int opcode,
809 int count, __u32 *lengths, char **bufs,
810 struct ptlrpc_request_pool *pool)
811 {
812 struct ptlrpc_request *request;
813 int rc;
814
815 request = __ptlrpc_request_alloc(imp, pool);
816 if (!request)
817 return NULL;
818
819 rc = __ptlrpc_request_bufs_pack(request, version, opcode, count,
820 lengths, bufs, NULL);
821 if (rc) {
822 ptlrpc_request_free(request);
823 request = NULL;
824 }
825 return request;
826 }
827 EXPORT_SYMBOL(ptlrpc_prep_req_pool);
828
829 /**
830 * Same as ptlrpc_prep_req_pool, but without pool
831 */
832 struct ptlrpc_request *
833 ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count,
834 __u32 *lengths, char **bufs)
835 {
836 return ptlrpc_prep_req_pool(imp, version, opcode, count, lengths, bufs,
837 NULL);
838 }
839 EXPORT_SYMBOL(ptlrpc_prep_req);
840
841 /**
842 * Allocate and initialize new request set structure.
843 * Returns a pointer to the newly allocated set structure or NULL on error.
844 */
845 struct ptlrpc_request_set *ptlrpc_prep_set(void)
846 {
847 struct ptlrpc_request_set *set;
848
849 OBD_ALLOC(set, sizeof(*set));
850 if (!set)
851 return NULL;
852 atomic_set(&set->set_refcount, 1);
853 INIT_LIST_HEAD(&set->set_requests);
854 init_waitqueue_head(&set->set_waitq);
855 atomic_set(&set->set_new_count, 0);
856 atomic_set(&set->set_remaining, 0);
857 spin_lock_init(&set->set_new_req_lock);
858 INIT_LIST_HEAD(&set->set_new_requests);
859 INIT_LIST_HEAD(&set->set_cblist);
860 set->set_max_inflight = UINT_MAX;
861 set->set_producer = NULL;
862 set->set_producer_arg = NULL;
863 set->set_rc = 0;
864
865 return set;
866 }
867 EXPORT_SYMBOL(ptlrpc_prep_set);
868
869 /**
870 * Allocate and initialize new request set structure with flow control
871 * extension. This extension allows to control the number of requests in-flight
872 * for the whole set. A callback function to generate requests must be provided
873 * and the request set will keep the number of requests sent over the wire to
874 * @max_inflight.
875 * Returns a pointer to the newly allocated set structure or NULL on error.
876 */
877 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
878 void *arg)
879
880 {
881 struct ptlrpc_request_set *set;
882
883 set = ptlrpc_prep_set();
884 if (!set)
885 return NULL;
886
887 set->set_max_inflight = max;
888 set->set_producer = func;
889 set->set_producer_arg = arg;
890
891 return set;
892 }
893 EXPORT_SYMBOL(ptlrpc_prep_fcset);
894
895 /**
896 * Wind down and free request set structure previously allocated with
897 * ptlrpc_prep_set.
898 * Ensures that all requests on the set have completed and removes
899 * all requests from the request list in a set.
900 * If any unsent request happen to be on the list, pretends that they got
901 * an error in flight and calls their completion handler.
902 */
903 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
904 {
905 struct list_head *tmp;
906 struct list_head *next;
907 int expected_phase;
908 int n = 0;
909
910 /* Requests on the set should either all be completed, or all be new */
911 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
912 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
913 list_for_each(tmp, &set->set_requests) {
914 struct ptlrpc_request *req =
915 list_entry(tmp, struct ptlrpc_request,
916 rq_set_chain);
917
918 LASSERT(req->rq_phase == expected_phase);
919 n++;
920 }
921
922 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
923 atomic_read(&set->set_remaining) == n, "%d / %d\n",
924 atomic_read(&set->set_remaining), n);
925
926 list_for_each_safe(tmp, next, &set->set_requests) {
927 struct ptlrpc_request *req =
928 list_entry(tmp, struct ptlrpc_request,
929 rq_set_chain);
930 list_del_init(&req->rq_set_chain);
931
932 LASSERT(req->rq_phase == expected_phase);
933
934 if (req->rq_phase == RQ_PHASE_NEW) {
935 ptlrpc_req_interpret(NULL, req, -EBADR);
936 atomic_dec(&set->set_remaining);
937 }
938
939 spin_lock(&req->rq_lock);
940 req->rq_set = NULL;
941 req->rq_invalid_rqset = 0;
942 spin_unlock(&req->rq_lock);
943
944 ptlrpc_req_finished(req);
945 }
946
947 LASSERT(atomic_read(&set->set_remaining) == 0);
948
949 ptlrpc_reqset_put(set);
950 }
951 EXPORT_SYMBOL(ptlrpc_set_destroy);
952
953 /**
954 * Add a callback function \a fn to the set.
955 * This function would be called when all requests on this set are completed.
956 * The function will be passed \a data argument.
957 */
958 int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
959 set_interpreter_func fn, void *data)
960 {
961 struct ptlrpc_set_cbdata *cbdata;
962
963 OBD_ALLOC_PTR(cbdata);
964 if (cbdata == NULL)
965 return -ENOMEM;
966
967 cbdata->psc_interpret = fn;
968 cbdata->psc_data = data;
969 list_add_tail(&cbdata->psc_item, &set->set_cblist);
970
971 return 0;
972 }
973 EXPORT_SYMBOL(ptlrpc_set_add_cb);
974
975 /**
976 * Add a new request to the general purpose request set.
977 * Assumes request reference from the caller.
978 */
979 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
980 struct ptlrpc_request *req)
981 {
982 LASSERT(list_empty(&req->rq_set_chain));
983
984 /* The set takes over the caller's request reference */
985 list_add_tail(&req->rq_set_chain, &set->set_requests);
986 req->rq_set = set;
987 atomic_inc(&set->set_remaining);
988 req->rq_queued_time = cfs_time_current();
989
990 if (req->rq_reqmsg != NULL)
991 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
992
993 if (set->set_producer != NULL)
994 /* If the request set has a producer callback, the RPC must be
995 * sent straight away */
996 ptlrpc_send_new_req(req);
997 }
998 EXPORT_SYMBOL(ptlrpc_set_add_req);
999
1000 /**
1001 * Add a request to a request with dedicated server thread
1002 * and wake the thread to make any necessary processing.
1003 * Currently only used for ptlrpcd.
1004 */
1005 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1006 struct ptlrpc_request *req)
1007 {
1008 struct ptlrpc_request_set *set = pc->pc_set;
1009 int count, i;
1010
1011 LASSERT(req->rq_set == NULL);
1012 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1013
1014 spin_lock(&set->set_new_req_lock);
1015 /*
1016 * The set takes over the caller's request reference.
1017 */
1018 req->rq_set = set;
1019 req->rq_queued_time = cfs_time_current();
1020 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1021 count = atomic_inc_return(&set->set_new_count);
1022 spin_unlock(&set->set_new_req_lock);
1023
1024 /* Only need to call wakeup once for the first entry. */
1025 if (count == 1) {
1026 wake_up(&set->set_waitq);
1027
1028 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1029 * guarantee the async RPC can be processed ASAP, we have
1030 * no other better choice. It maybe fixed in future. */
1031 for (i = 0; i < pc->pc_npartners; i++)
1032 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1033 }
1034 }
1035 EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1036
1037 /**
1038 * Based on the current state of the import, determine if the request
1039 * can be sent, is an error, or should be delayed.
1040 *
1041 * Returns true if this request should be delayed. If false, and
1042 * *status is set, then the request can not be sent and *status is the
1043 * error code. If false and status is 0, then request can be sent.
1044 *
1045 * The imp->imp_lock must be held.
1046 */
1047 static int ptlrpc_import_delay_req(struct obd_import *imp,
1048 struct ptlrpc_request *req, int *status)
1049 {
1050 int delay = 0;
1051
1052 LASSERT(status != NULL);
1053 *status = 0;
1054
1055 if (req->rq_ctx_init || req->rq_ctx_fini) {
1056 /* always allow ctx init/fini rpc go through */
1057 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1058 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1059 *status = -EIO;
1060 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1061 /* pings may safely race with umount */
1062 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1063 D_HA : D_ERROR, req, "IMP_CLOSED ");
1064 *status = -EIO;
1065 } else if (ptlrpc_send_limit_expired(req)) {
1066 /* probably doesn't need to be a D_ERROR after initial testing */
1067 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1068 *status = -EIO;
1069 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1070 imp->imp_state == LUSTRE_IMP_CONNECTING) {
1071 /* allow CONNECT even if import is invalid */
1072 if (atomic_read(&imp->imp_inval_count) != 0) {
1073 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1074 *status = -EIO;
1075 }
1076 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1077 if (!imp->imp_deactive)
1078 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1079 *status = -ESHUTDOWN; /* bz 12940 */
1080 } else if (req->rq_import_generation != imp->imp_generation) {
1081 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1082 *status = -EIO;
1083 } else if (req->rq_send_state != imp->imp_state) {
1084 /* invalidate in progress - any requests should be drop */
1085 if (atomic_read(&imp->imp_inval_count) != 0) {
1086 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1087 *status = -EIO;
1088 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1089 *status = -EWOULDBLOCK;
1090 } else if (req->rq_allow_replay &&
1091 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1092 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1093 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1094 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1095 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1096 } else {
1097 delay = 1;
1098 }
1099 }
1100
1101 return delay;
1102 }
1103
1104 /**
1105 * Decide if the error message regarding provided request \a req
1106 * should be printed to the console or not.
1107 * Makes it's decision on request status and other properties.
1108 * Returns 1 to print error on the system console or 0 if not.
1109 */
1110 static int ptlrpc_console_allow(struct ptlrpc_request *req)
1111 {
1112 __u32 opc;
1113 int err;
1114
1115 LASSERT(req->rq_reqmsg != NULL);
1116 opc = lustre_msg_get_opc(req->rq_reqmsg);
1117
1118 /* Suppress particular reconnect errors which are to be expected. No
1119 * errors are suppressed for the initial connection on an import */
1120 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1121 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1122
1123 /* Suppress timed out reconnect requests */
1124 if (req->rq_timedout)
1125 return 0;
1126
1127 /* Suppress unavailable/again reconnect requests */
1128 err = lustre_msg_get_status(req->rq_repmsg);
1129 if (err == -ENODEV || err == -EAGAIN)
1130 return 0;
1131 }
1132
1133 return 1;
1134 }
1135
1136 /**
1137 * Check request processing status.
1138 * Returns the status.
1139 */
1140 static int ptlrpc_check_status(struct ptlrpc_request *req)
1141 {
1142 int err;
1143
1144 err = lustre_msg_get_status(req->rq_repmsg);
1145 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1146 struct obd_import *imp = req->rq_import;
1147 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1148 if (ptlrpc_console_allow(req))
1149 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s,"
1150 " operation %s failed with %d.\n",
1151 imp->imp_obd->obd_name,
1152 libcfs_nid2str(
1153 imp->imp_connection->c_peer.nid),
1154 ll_opcode2str(opc), err);
1155 return err < 0 ? err : -EINVAL;
1156 }
1157
1158 if (err < 0) {
1159 DEBUG_REQ(D_INFO, req, "status is %d", err);
1160 } else if (err > 0) {
1161 /* XXX: translate this error from net to host */
1162 DEBUG_REQ(D_INFO, req, "status is %d", err);
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * save pre-versions of objects into request for replay.
1170 * Versions are obtained from server reply.
1171 * used for VBR.
1172 */
1173 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1174 {
1175 struct lustre_msg *repmsg = req->rq_repmsg;
1176 struct lustre_msg *reqmsg = req->rq_reqmsg;
1177 __u64 *versions = lustre_msg_get_versions(repmsg);
1178
1179 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1180 return;
1181
1182 LASSERT(versions);
1183 lustre_msg_set_versions(reqmsg, versions);
1184 CDEBUG(D_INFO, "Client save versions ["LPX64"/"LPX64"]\n",
1185 versions[0], versions[1]);
1186 }
1187
1188 /**
1189 * Callback function called when client receives RPC reply for \a req.
1190 * Returns 0 on success or error code.
1191 * The return value would be assigned to req->rq_status by the caller
1192 * as request processing status.
1193 * This function also decides if the request needs to be saved for later replay.
1194 */
1195 static int after_reply(struct ptlrpc_request *req)
1196 {
1197 struct obd_import *imp = req->rq_import;
1198 struct obd_device *obd = req->rq_import->imp_obd;
1199 int rc;
1200 struct timeval work_start;
1201 long timediff;
1202
1203 LASSERT(obd != NULL);
1204 /* repbuf must be unlinked */
1205 LASSERT(!req->rq_receiving_reply && !req->rq_must_unlink);
1206
1207 if (req->rq_reply_truncate) {
1208 if (ptlrpc_no_resend(req)) {
1209 DEBUG_REQ(D_ERROR, req, "reply buffer overflow,"
1210 " expected: %d, actual size: %d",
1211 req->rq_nob_received, req->rq_repbuf_len);
1212 return -EOVERFLOW;
1213 }
1214
1215 sptlrpc_cli_free_repbuf(req);
1216 /* Pass the required reply buffer size (include
1217 * space for early reply).
1218 * NB: no need to roundup because alloc_repbuf
1219 * will roundup it */
1220 req->rq_replen = req->rq_nob_received;
1221 req->rq_nob_received = 0;
1222 spin_lock(&req->rq_lock);
1223 req->rq_resend = 1;
1224 spin_unlock(&req->rq_lock);
1225 return 0;
1226 }
1227
1228 /*
1229 * NB Until this point, the whole of the incoming message,
1230 * including buflens, status etc is in the sender's byte order.
1231 */
1232 rc = sptlrpc_cli_unwrap_reply(req);
1233 if (rc) {
1234 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1235 return rc;
1236 }
1237
1238 /*
1239 * Security layer unwrap might ask resend this request.
1240 */
1241 if (req->rq_resend)
1242 return 0;
1243
1244 rc = unpack_reply(req);
1245 if (rc)
1246 return rc;
1247
1248 /* retry indefinitely on EINPROGRESS */
1249 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1250 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1251 time_t now = cfs_time_current_sec();
1252
1253 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1254 req->rq_resend = 1;
1255 req->rq_nr_resend++;
1256
1257 /* allocate new xid to avoid reply reconstruction */
1258 if (!req->rq_bulk) {
1259 /* new xid is already allocated for bulk in
1260 * ptlrpc_check_set() */
1261 req->rq_xid = ptlrpc_next_xid();
1262 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for "
1263 "resend on EINPROGRESS");
1264 }
1265
1266 /* Readjust the timeout for current conditions */
1267 ptlrpc_at_set_req_timeout(req);
1268 /* delay resend to give a chance to the server to get ready.
1269 * The delay is increased by 1s on every resend and is capped to
1270 * the current request timeout (i.e. obd_timeout if AT is off,
1271 * or AT service time x 125% + 5s, see at_est2timeout) */
1272 if (req->rq_nr_resend > req->rq_timeout)
1273 req->rq_sent = now + req->rq_timeout;
1274 else
1275 req->rq_sent = now + req->rq_nr_resend;
1276
1277 return 0;
1278 }
1279
1280 do_gettimeofday(&work_start);
1281 timediff = cfs_timeval_sub(&work_start, &req->rq_arrival_time, NULL);
1282 if (obd->obd_svc_stats != NULL) {
1283 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1284 timediff);
1285 ptlrpc_lprocfs_rpc_sent(req, timediff);
1286 }
1287
1288 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1289 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1290 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1291 lustre_msg_get_type(req->rq_repmsg));
1292 return -EPROTO;
1293 }
1294
1295 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1296 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1297 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1298 ptlrpc_at_adj_net_latency(req,
1299 lustre_msg_get_service_time(req->rq_repmsg));
1300
1301 rc = ptlrpc_check_status(req);
1302 imp->imp_connect_error = rc;
1303
1304 if (rc) {
1305 /*
1306 * Either we've been evicted, or the server has failed for
1307 * some reason. Try to reconnect, and if that fails, punt to
1308 * the upcall.
1309 */
1310 if (ll_rpc_recoverable_error(rc)) {
1311 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1312 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1313 return rc;
1314 }
1315 ptlrpc_request_handle_notconn(req);
1316 return rc;
1317 }
1318 } else {
1319 /*
1320 * Let's look if server sent slv. Do it only for RPC with
1321 * rc == 0.
1322 */
1323 ldlm_cli_update_pool(req);
1324 }
1325
1326 /*
1327 * Store transno in reqmsg for replay.
1328 */
1329 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1330 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1331 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1332 }
1333
1334 if (imp->imp_replayable) {
1335 spin_lock(&imp->imp_lock);
1336 /*
1337 * No point in adding already-committed requests to the replay
1338 * list, we will just remove them immediately. b=9829
1339 */
1340 if (req->rq_transno != 0 &&
1341 (req->rq_transno >
1342 lustre_msg_get_last_committed(req->rq_repmsg) ||
1343 req->rq_replay)) {
1344 /** version recovery */
1345 ptlrpc_save_versions(req);
1346 ptlrpc_retain_replayable_request(req, imp);
1347 } else if (req->rq_commit_cb != NULL &&
1348 list_empty(&req->rq_replay_list)) {
1349 /* NB: don't call rq_commit_cb if it's already on
1350 * rq_replay_list, ptlrpc_free_committed() will call
1351 * it later, see LU-3618 for details */
1352 spin_unlock(&imp->imp_lock);
1353 req->rq_commit_cb(req);
1354 spin_lock(&imp->imp_lock);
1355 }
1356
1357 /*
1358 * Replay-enabled imports return commit-status information.
1359 */
1360 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1361 imp->imp_peer_committed_transno =
1362 lustre_msg_get_last_committed(req->rq_repmsg);
1363 }
1364
1365 ptlrpc_free_committed(imp);
1366
1367 if (!list_empty(&imp->imp_replay_list)) {
1368 struct ptlrpc_request *last;
1369
1370 last = list_entry(imp->imp_replay_list.prev,
1371 struct ptlrpc_request,
1372 rq_replay_list);
1373 /*
1374 * Requests with rq_replay stay on the list even if no
1375 * commit is expected.
1376 */
1377 if (last->rq_transno > imp->imp_peer_committed_transno)
1378 ptlrpc_pinger_commit_expected(imp);
1379 }
1380
1381 spin_unlock(&imp->imp_lock);
1382 }
1383
1384 return rc;
1385 }
1386
1387 /**
1388 * Helper function to send request \a req over the network for the first time
1389 * Also adjusts request phase.
1390 * Returns 0 on success or error code.
1391 */
1392 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1393 {
1394 struct obd_import *imp = req->rq_import;
1395 int rc;
1396
1397 LASSERT(req->rq_phase == RQ_PHASE_NEW);
1398 if (req->rq_sent && (req->rq_sent > cfs_time_current_sec()) &&
1399 (!req->rq_generation_set ||
1400 req->rq_import_generation == imp->imp_generation))
1401 return 0;
1402
1403 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1404
1405 spin_lock(&imp->imp_lock);
1406
1407 if (!req->rq_generation_set)
1408 req->rq_import_generation = imp->imp_generation;
1409
1410 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1411 spin_lock(&req->rq_lock);
1412 req->rq_waiting = 1;
1413 spin_unlock(&req->rq_lock);
1414
1415 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: "
1416 "(%s != %s)", lustre_msg_get_status(req->rq_reqmsg),
1417 ptlrpc_import_state_name(req->rq_send_state),
1418 ptlrpc_import_state_name(imp->imp_state));
1419 LASSERT(list_empty(&req->rq_list));
1420 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1421 atomic_inc(&req->rq_import->imp_inflight);
1422 spin_unlock(&imp->imp_lock);
1423 return 0;
1424 }
1425
1426 if (rc != 0) {
1427 spin_unlock(&imp->imp_lock);
1428 req->rq_status = rc;
1429 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1430 return rc;
1431 }
1432
1433 LASSERT(list_empty(&req->rq_list));
1434 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1435 atomic_inc(&req->rq_import->imp_inflight);
1436 spin_unlock(&imp->imp_lock);
1437
1438 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1439
1440 rc = sptlrpc_req_refresh_ctx(req, -1);
1441 if (rc) {
1442 if (req->rq_err) {
1443 req->rq_status = rc;
1444 return 1;
1445 } else {
1446 spin_lock(&req->rq_lock);
1447 req->rq_wait_ctx = 1;
1448 spin_unlock(&req->rq_lock);
1449 return 0;
1450 }
1451 }
1452
1453 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc"
1454 " %s:%s:%d:"LPU64":%s:%d\n", current_comm(),
1455 imp->imp_obd->obd_uuid.uuid,
1456 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1457 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1458 lustre_msg_get_opc(req->rq_reqmsg));
1459
1460 rc = ptl_send_rpc(req, 0);
1461 if (rc) {
1462 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1463 spin_lock(&req->rq_lock);
1464 req->rq_net_err = 1;
1465 spin_unlock(&req->rq_lock);
1466 return rc;
1467 }
1468 return 0;
1469 }
1470
1471 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1472 {
1473 int remaining, rc;
1474
1475 LASSERT(set->set_producer != NULL);
1476
1477 remaining = atomic_read(&set->set_remaining);
1478
1479 /* populate the ->set_requests list with requests until we
1480 * reach the maximum number of RPCs in flight for this set */
1481 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1482 rc = set->set_producer(set, set->set_producer_arg);
1483 if (rc == -ENOENT) {
1484 /* no more RPC to produce */
1485 set->set_producer = NULL;
1486 set->set_producer_arg = NULL;
1487 return 0;
1488 }
1489 }
1490
1491 return (atomic_read(&set->set_remaining) - remaining);
1492 }
1493
1494 /**
1495 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1496 * and no more replies are expected.
1497 * (it is possible to get less replies than requests sent e.g. due to timed out
1498 * requests or requests that we had trouble to send out)
1499 */
1500 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1501 {
1502 struct list_head *tmp, *next;
1503 int force_timer_recalc = 0;
1504
1505 if (atomic_read(&set->set_remaining) == 0)
1506 return 1;
1507
1508 list_for_each_safe(tmp, next, &set->set_requests) {
1509 struct ptlrpc_request *req =
1510 list_entry(tmp, struct ptlrpc_request,
1511 rq_set_chain);
1512 struct obd_import *imp = req->rq_import;
1513 int unregistered = 0;
1514 int rc = 0;
1515
1516 if (req->rq_phase == RQ_PHASE_NEW &&
1517 ptlrpc_send_new_req(req)) {
1518 force_timer_recalc = 1;
1519 }
1520
1521 /* delayed send - skip */
1522 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1523 continue;
1524
1525 /* delayed resend - skip */
1526 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1527 req->rq_sent > cfs_time_current_sec())
1528 continue;
1529
1530 if (!(req->rq_phase == RQ_PHASE_RPC ||
1531 req->rq_phase == RQ_PHASE_BULK ||
1532 req->rq_phase == RQ_PHASE_INTERPRET ||
1533 req->rq_phase == RQ_PHASE_UNREGISTERING ||
1534 req->rq_phase == RQ_PHASE_COMPLETE)) {
1535 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1536 LBUG();
1537 }
1538
1539 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
1540 LASSERT(req->rq_next_phase != req->rq_phase);
1541 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1542
1543 /*
1544 * Skip processing until reply is unlinked. We
1545 * can't return to pool before that and we can't
1546 * call interpret before that. We need to make
1547 * sure that all rdma transfers finished and will
1548 * not corrupt any data.
1549 */
1550 if (ptlrpc_client_recv_or_unlink(req) ||
1551 ptlrpc_client_bulk_active(req))
1552 continue;
1553
1554 /*
1555 * Turn fail_loc off to prevent it from looping
1556 * forever.
1557 */
1558 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1559 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1560 OBD_FAIL_ONCE);
1561 }
1562 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1563 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1564 OBD_FAIL_ONCE);
1565 }
1566
1567 /*
1568 * Move to next phase if reply was successfully
1569 * unlinked.
1570 */
1571 ptlrpc_rqphase_move(req, req->rq_next_phase);
1572 }
1573
1574 if (req->rq_phase == RQ_PHASE_COMPLETE)
1575 continue;
1576
1577 if (req->rq_phase == RQ_PHASE_INTERPRET)
1578 GOTO(interpret, req->rq_status);
1579
1580 /*
1581 * Note that this also will start async reply unlink.
1582 */
1583 if (req->rq_net_err && !req->rq_timedout) {
1584 ptlrpc_expire_one_request(req, 1);
1585
1586 /*
1587 * Check if we still need to wait for unlink.
1588 */
1589 if (ptlrpc_client_recv_or_unlink(req) ||
1590 ptlrpc_client_bulk_active(req))
1591 continue;
1592 /* If there is no need to resend, fail it now. */
1593 if (req->rq_no_resend) {
1594 if (req->rq_status == 0)
1595 req->rq_status = -EIO;
1596 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1597 GOTO(interpret, req->rq_status);
1598 } else {
1599 continue;
1600 }
1601 }
1602
1603 if (req->rq_err) {
1604 spin_lock(&req->rq_lock);
1605 req->rq_replied = 0;
1606 spin_unlock(&req->rq_lock);
1607 if (req->rq_status == 0)
1608 req->rq_status = -EIO;
1609 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1610 GOTO(interpret, req->rq_status);
1611 }
1612
1613 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1614 * so it sets rq_intr regardless of individual rpc
1615 * timeouts. The synchronous IO waiting path sets
1616 * rq_intr irrespective of whether ptlrpcd
1617 * has seen a timeout. Our policy is to only interpret
1618 * interrupted rpcs after they have timed out, so we
1619 * need to enforce that here.
1620 */
1621
1622 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1623 req->rq_wait_ctx)) {
1624 req->rq_status = -EINTR;
1625 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1626 GOTO(interpret, req->rq_status);
1627 }
1628
1629 if (req->rq_phase == RQ_PHASE_RPC) {
1630 if (req->rq_timedout || req->rq_resend ||
1631 req->rq_waiting || req->rq_wait_ctx) {
1632 int status;
1633
1634 if (!ptlrpc_unregister_reply(req, 1))
1635 continue;
1636
1637 spin_lock(&imp->imp_lock);
1638 if (ptlrpc_import_delay_req(imp, req,
1639 &status)) {
1640 /* put on delay list - only if we wait
1641 * recovery finished - before send */
1642 list_del_init(&req->rq_list);
1643 list_add_tail(&req->rq_list,
1644 &imp->
1645 imp_delayed_list);
1646 spin_unlock(&imp->imp_lock);
1647 continue;
1648 }
1649
1650 if (status != 0) {
1651 req->rq_status = status;
1652 ptlrpc_rqphase_move(req,
1653 RQ_PHASE_INTERPRET);
1654 spin_unlock(&imp->imp_lock);
1655 GOTO(interpret, req->rq_status);
1656 }
1657 if (ptlrpc_no_resend(req) &&
1658 !req->rq_wait_ctx) {
1659 req->rq_status = -ENOTCONN;
1660 ptlrpc_rqphase_move(req,
1661 RQ_PHASE_INTERPRET);
1662 spin_unlock(&imp->imp_lock);
1663 GOTO(interpret, req->rq_status);
1664 }
1665
1666 list_del_init(&req->rq_list);
1667 list_add_tail(&req->rq_list,
1668 &imp->imp_sending_list);
1669
1670 spin_unlock(&imp->imp_lock);
1671
1672 spin_lock(&req->rq_lock);
1673 req->rq_waiting = 0;
1674 spin_unlock(&req->rq_lock);
1675
1676 if (req->rq_timedout || req->rq_resend) {
1677 /* This is re-sending anyways,
1678 * let's mark req as resend. */
1679 spin_lock(&req->rq_lock);
1680 req->rq_resend = 1;
1681 spin_unlock(&req->rq_lock);
1682 if (req->rq_bulk) {
1683 __u64 old_xid;
1684
1685 if (!ptlrpc_unregister_bulk(req, 1))
1686 continue;
1687
1688 /* ensure previous bulk fails */
1689 old_xid = req->rq_xid;
1690 req->rq_xid = ptlrpc_next_xid();
1691 CDEBUG(D_HA, "resend bulk "
1692 "old x"LPU64
1693 " new x"LPU64"\n",
1694 old_xid, req->rq_xid);
1695 }
1696 }
1697 /*
1698 * rq_wait_ctx is only touched by ptlrpcd,
1699 * so no lock is needed here.
1700 */
1701 status = sptlrpc_req_refresh_ctx(req, -1);
1702 if (status) {
1703 if (req->rq_err) {
1704 req->rq_status = status;
1705 spin_lock(&req->rq_lock);
1706 req->rq_wait_ctx = 0;
1707 spin_unlock(&req->rq_lock);
1708 force_timer_recalc = 1;
1709 } else {
1710 spin_lock(&req->rq_lock);
1711 req->rq_wait_ctx = 1;
1712 spin_unlock(&req->rq_lock);
1713 }
1714
1715 continue;
1716 } else {
1717 spin_lock(&req->rq_lock);
1718 req->rq_wait_ctx = 0;
1719 spin_unlock(&req->rq_lock);
1720 }
1721
1722 rc = ptl_send_rpc(req, 0);
1723 if (rc) {
1724 DEBUG_REQ(D_HA, req,
1725 "send failed: rc = %d", rc);
1726 force_timer_recalc = 1;
1727 spin_lock(&req->rq_lock);
1728 req->rq_net_err = 1;
1729 spin_unlock(&req->rq_lock);
1730 continue;
1731 }
1732 /* need to reset the timeout */
1733 force_timer_recalc = 1;
1734 }
1735
1736 spin_lock(&req->rq_lock);
1737
1738 if (ptlrpc_client_early(req)) {
1739 ptlrpc_at_recv_early_reply(req);
1740 spin_unlock(&req->rq_lock);
1741 continue;
1742 }
1743
1744 /* Still waiting for a reply? */
1745 if (ptlrpc_client_recv(req)) {
1746 spin_unlock(&req->rq_lock);
1747 continue;
1748 }
1749
1750 /* Did we actually receive a reply? */
1751 if (!ptlrpc_client_replied(req)) {
1752 spin_unlock(&req->rq_lock);
1753 continue;
1754 }
1755
1756 spin_unlock(&req->rq_lock);
1757
1758 /* unlink from net because we are going to
1759 * swab in-place of reply buffer */
1760 unregistered = ptlrpc_unregister_reply(req, 1);
1761 if (!unregistered)
1762 continue;
1763
1764 req->rq_status = after_reply(req);
1765 if (req->rq_resend)
1766 continue;
1767
1768 /* If there is no bulk associated with this request,
1769 * then we're done and should let the interpreter
1770 * process the reply. Similarly if the RPC returned
1771 * an error, and therefore the bulk will never arrive.
1772 */
1773 if (req->rq_bulk == NULL || req->rq_status < 0) {
1774 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1775 GOTO(interpret, req->rq_status);
1776 }
1777
1778 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1779 }
1780
1781 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1782 if (ptlrpc_client_bulk_active(req))
1783 continue;
1784
1785 if (req->rq_bulk->bd_failure) {
1786 /* The RPC reply arrived OK, but the bulk screwed
1787 * up! Dead weird since the server told us the RPC
1788 * was good after getting the REPLY for her GET or
1789 * the ACK for her PUT. */
1790 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1791 req->rq_status = -EIO;
1792 }
1793
1794 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1795
1796 interpret:
1797 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1798
1799 /* This moves to "unregistering" phase we need to wait for
1800 * reply unlink. */
1801 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1802 /* start async bulk unlink too */
1803 ptlrpc_unregister_bulk(req, 1);
1804 continue;
1805 }
1806
1807 if (!ptlrpc_unregister_bulk(req, 1))
1808 continue;
1809
1810 /* When calling interpret receiving already should be
1811 * finished. */
1812 LASSERT(!req->rq_receiving_reply);
1813
1814 ptlrpc_req_interpret(env, req, req->rq_status);
1815
1816 if (ptlrpcd_check_work(req)) {
1817 atomic_dec(&set->set_remaining);
1818 continue;
1819 }
1820 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1821
1822 CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0,
1823 "Completed RPC pname:cluuid:pid:xid:nid:"
1824 "opc %s:%s:%d:"LPU64":%s:%d\n",
1825 current_comm(), imp->imp_obd->obd_uuid.uuid,
1826 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1827 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1828 lustre_msg_get_opc(req->rq_reqmsg));
1829
1830 spin_lock(&imp->imp_lock);
1831 /* Request already may be not on sending or delaying list. This
1832 * may happen in the case of marking it erroneous for the case
1833 * ptlrpc_import_delay_req(req, status) find it impossible to
1834 * allow sending this rpc and returns *status != 0. */
1835 if (!list_empty(&req->rq_list)) {
1836 list_del_init(&req->rq_list);
1837 atomic_dec(&imp->imp_inflight);
1838 }
1839 spin_unlock(&imp->imp_lock);
1840
1841 atomic_dec(&set->set_remaining);
1842 wake_up_all(&imp->imp_recovery_waitq);
1843
1844 if (set->set_producer) {
1845 /* produce a new request if possible */
1846 if (ptlrpc_set_producer(set) > 0)
1847 force_timer_recalc = 1;
1848
1849 /* free the request that has just been completed
1850 * in order not to pollute set->set_requests */
1851 list_del_init(&req->rq_set_chain);
1852 spin_lock(&req->rq_lock);
1853 req->rq_set = NULL;
1854 req->rq_invalid_rqset = 0;
1855 spin_unlock(&req->rq_lock);
1856
1857 /* record rq_status to compute the final status later */
1858 if (req->rq_status != 0)
1859 set->set_rc = req->rq_status;
1860 ptlrpc_req_finished(req);
1861 }
1862 }
1863
1864 /* If we hit an error, we want to recover promptly. */
1865 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
1866 }
1867 EXPORT_SYMBOL(ptlrpc_check_set);
1868
1869 /**
1870 * Time out request \a req. is \a async_unlink is set, that means do not wait
1871 * until LNet actually confirms network buffer unlinking.
1872 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1873 */
1874 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1875 {
1876 struct obd_import *imp = req->rq_import;
1877 int rc = 0;
1878
1879 spin_lock(&req->rq_lock);
1880 req->rq_timedout = 1;
1881 spin_unlock(&req->rq_lock);
1882
1883 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent "CFS_DURATION_T
1884 "/real "CFS_DURATION_T"]",
1885 req->rq_net_err ? "failed due to network error" :
1886 ((req->rq_real_sent == 0 ||
1887 cfs_time_before(req->rq_real_sent, req->rq_sent) ||
1888 cfs_time_aftereq(req->rq_real_sent, req->rq_deadline)) ?
1889 "timed out for sent delay" : "timed out for slow reply"),
1890 req->rq_sent, req->rq_real_sent);
1891
1892 if (imp != NULL && obd_debug_peer_on_timeout)
1893 LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer);
1894
1895 ptlrpc_unregister_reply(req, async_unlink);
1896 ptlrpc_unregister_bulk(req, async_unlink);
1897
1898 if (obd_dump_on_timeout)
1899 libcfs_debug_dumplog();
1900
1901 if (imp == NULL) {
1902 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
1903 return 1;
1904 }
1905
1906 atomic_inc(&imp->imp_timeouts);
1907
1908 /* The DLM server doesn't want recovery run on its imports. */
1909 if (imp->imp_dlm_fake)
1910 return 1;
1911
1912 /* If this request is for recovery or other primordial tasks,
1913 * then error it out here. */
1914 if (req->rq_ctx_init || req->rq_ctx_fini ||
1915 req->rq_send_state != LUSTRE_IMP_FULL ||
1916 imp->imp_obd->obd_no_recov) {
1917 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1918 ptlrpc_import_state_name(req->rq_send_state),
1919 ptlrpc_import_state_name(imp->imp_state));
1920 spin_lock(&req->rq_lock);
1921 req->rq_status = -ETIMEDOUT;
1922 req->rq_err = 1;
1923 spin_unlock(&req->rq_lock);
1924 return 1;
1925 }
1926
1927 /* if a request can't be resent we can't wait for an answer after
1928 the timeout */
1929 if (ptlrpc_no_resend(req)) {
1930 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1931 rc = 1;
1932 }
1933
1934 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1935
1936 return rc;
1937 }
1938
1939 /**
1940 * Time out all uncompleted requests in request set pointed by \a data
1941 * Callback used when waiting on sets with l_wait_event.
1942 * Always returns 1.
1943 */
1944 int ptlrpc_expired_set(void *data)
1945 {
1946 struct ptlrpc_request_set *set = data;
1947 struct list_head *tmp;
1948 time_t now = cfs_time_current_sec();
1949
1950 LASSERT(set != NULL);
1951
1952 /*
1953 * A timeout expired. See which reqs it applies to...
1954 */
1955 list_for_each(tmp, &set->set_requests) {
1956 struct ptlrpc_request *req =
1957 list_entry(tmp, struct ptlrpc_request,
1958 rq_set_chain);
1959
1960 /* don't expire request waiting for context */
1961 if (req->rq_wait_ctx)
1962 continue;
1963
1964 /* Request in-flight? */
1965 if (!((req->rq_phase == RQ_PHASE_RPC &&
1966 !req->rq_waiting && !req->rq_resend) ||
1967 (req->rq_phase == RQ_PHASE_BULK)))
1968 continue;
1969
1970 if (req->rq_timedout || /* already dealt with */
1971 req->rq_deadline > now) /* not expired */
1972 continue;
1973
1974 /* Deal with this guy. Do it asynchronously to not block
1975 * ptlrpcd thread. */
1976 ptlrpc_expire_one_request(req, 1);
1977 }
1978
1979 /*
1980 * When waiting for a whole set, we always break out of the
1981 * sleep so we can recalculate the timeout, or enable interrupts
1982 * if everyone's timed out.
1983 */
1984 return 1;
1985 }
1986 EXPORT_SYMBOL(ptlrpc_expired_set);
1987
1988 /**
1989 * Sets rq_intr flag in \a req under spinlock.
1990 */
1991 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
1992 {
1993 spin_lock(&req->rq_lock);
1994 req->rq_intr = 1;
1995 spin_unlock(&req->rq_lock);
1996 }
1997 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
1998
1999 /**
2000 * Interrupts (sets interrupted flag) all uncompleted requests in
2001 * a set \a data. Callback for l_wait_event for interruptible waits.
2002 */
2003 void ptlrpc_interrupted_set(void *data)
2004 {
2005 struct ptlrpc_request_set *set = data;
2006 struct list_head *tmp;
2007
2008 LASSERT(set != NULL);
2009 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2010
2011 list_for_each(tmp, &set->set_requests) {
2012 struct ptlrpc_request *req =
2013 list_entry(tmp, struct ptlrpc_request,
2014 rq_set_chain);
2015
2016 if (req->rq_phase != RQ_PHASE_RPC &&
2017 req->rq_phase != RQ_PHASE_UNREGISTERING)
2018 continue;
2019
2020 ptlrpc_mark_interrupted(req);
2021 }
2022 }
2023 EXPORT_SYMBOL(ptlrpc_interrupted_set);
2024
2025 /**
2026 * Get the smallest timeout in the set; this does NOT set a timeout.
2027 */
2028 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2029 {
2030 struct list_head *tmp;
2031 time_t now = cfs_time_current_sec();
2032 int timeout = 0;
2033 struct ptlrpc_request *req;
2034 int deadline;
2035
2036 SIGNAL_MASK_ASSERT(); /* XXX BUG 1511 */
2037
2038 list_for_each(tmp, &set->set_requests) {
2039 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2040
2041 /*
2042 * Request in-flight?
2043 */
2044 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2045 (req->rq_phase == RQ_PHASE_BULK) ||
2046 (req->rq_phase == RQ_PHASE_NEW)))
2047 continue;
2048
2049 /*
2050 * Already timed out.
2051 */
2052 if (req->rq_timedout)
2053 continue;
2054
2055 /*
2056 * Waiting for ctx.
2057 */
2058 if (req->rq_wait_ctx)
2059 continue;
2060
2061 if (req->rq_phase == RQ_PHASE_NEW)
2062 deadline = req->rq_sent;
2063 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2064 deadline = req->rq_sent;
2065 else
2066 deadline = req->rq_sent + req->rq_timeout;
2067
2068 if (deadline <= now) /* actually expired already */
2069 timeout = 1; /* ASAP */
2070 else if (timeout == 0 || timeout > deadline - now)
2071 timeout = deadline - now;
2072 }
2073 return timeout;
2074 }
2075 EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2076
2077 /**
2078 * Send all unset request from the set and then wait until all
2079 * requests in the set complete (either get a reply, timeout, get an
2080 * error or otherwise be interrupted).
2081 * Returns 0 on success or error code otherwise.
2082 */
2083 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2084 {
2085 struct list_head *tmp;
2086 struct ptlrpc_request *req;
2087 struct l_wait_info lwi;
2088 int rc, timeout;
2089
2090 if (set->set_producer)
2091 (void)ptlrpc_set_producer(set);
2092 else
2093 list_for_each(tmp, &set->set_requests) {
2094 req = list_entry(tmp, struct ptlrpc_request,
2095 rq_set_chain);
2096 if (req->rq_phase == RQ_PHASE_NEW)
2097 (void)ptlrpc_send_new_req(req);
2098 }
2099
2100 if (list_empty(&set->set_requests))
2101 return 0;
2102
2103 do {
2104 timeout = ptlrpc_set_next_timeout(set);
2105
2106 /* wait until all complete, interrupted, or an in-flight
2107 * req times out */
2108 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2109 set, timeout);
2110
2111 if (timeout == 0 && !cfs_signal_pending())
2112 /*
2113 * No requests are in-flight (ether timed out
2114 * or delayed), so we can allow interrupts.
2115 * We still want to block for a limited time,
2116 * so we allow interrupts during the timeout.
2117 */
2118 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2119 ptlrpc_expired_set,
2120 ptlrpc_interrupted_set, set);
2121 else
2122 /*
2123 * At least one request is in flight, so no
2124 * interrupts are allowed. Wait until all
2125 * complete, or an in-flight req times out.
2126 */
2127 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout? timeout : 1),
2128 ptlrpc_expired_set, set);
2129
2130 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2131
2132 /* LU-769 - if we ignored the signal because it was already
2133 * pending when we started, we need to handle it now or we risk
2134 * it being ignored forever */
2135 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2136 cfs_signal_pending()) {
2137 sigset_t blocked_sigs =
2138 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2139
2140 /* In fact we only interrupt for the "fatal" signals
2141 * like SIGINT or SIGKILL. We still ignore less
2142 * important signals since ptlrpc set is not easily
2143 * reentrant from userspace again */
2144 if (cfs_signal_pending())
2145 ptlrpc_interrupted_set(set);
2146 cfs_restore_sigs(blocked_sigs);
2147 }
2148
2149 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2150
2151 /* -EINTR => all requests have been flagged rq_intr so next
2152 * check completes.
2153 * -ETIMEDOUT => someone timed out. When all reqs have
2154 * timed out, signals are enabled allowing completion with
2155 * EINTR.
2156 * I don't really care if we go once more round the loop in
2157 * the error cases -eeb. */
2158 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2159 list_for_each(tmp, &set->set_requests) {
2160 req = list_entry(tmp, struct ptlrpc_request,
2161 rq_set_chain);
2162 spin_lock(&req->rq_lock);
2163 req->rq_invalid_rqset = 1;
2164 spin_unlock(&req->rq_lock);
2165 }
2166 }
2167 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2168
2169 LASSERT(atomic_read(&set->set_remaining) == 0);
2170
2171 rc = set->set_rc; /* rq_status of already freed requests if any */
2172 list_for_each(tmp, &set->set_requests) {
2173 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2174
2175 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2176 if (req->rq_status != 0)
2177 rc = req->rq_status;
2178 }
2179
2180 if (set->set_interpret != NULL) {
2181 int (*interpreter)(struct ptlrpc_request_set *set,void *,int) =
2182 set->set_interpret;
2183 rc = interpreter (set, set->set_arg, rc);
2184 } else {
2185 struct ptlrpc_set_cbdata *cbdata, *n;
2186 int err;
2187
2188 list_for_each_entry_safe(cbdata, n,
2189 &set->set_cblist, psc_item) {
2190 list_del_init(&cbdata->psc_item);
2191 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2192 if (err && !rc)
2193 rc = err;
2194 OBD_FREE_PTR(cbdata);
2195 }
2196 }
2197
2198 return rc;
2199 }
2200 EXPORT_SYMBOL(ptlrpc_set_wait);
2201
2202 /**
2203 * Helper function for request freeing.
2204 * Called when request count reached zero and request needs to be freed.
2205 * Removes request from all sorts of sending/replay lists it might be on,
2206 * frees network buffers if any are present.
2207 * If \a locked is set, that means caller is already holding import imp_lock
2208 * and so we no longer need to reobtain it (for certain lists manipulations)
2209 */
2210 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2211 {
2212 if (request == NULL) {
2213 return;
2214 }
2215
2216 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2217 LASSERTF(request->rq_rqbd == NULL, "req %p\n",request);/* client-side */
2218 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2219 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2220 LASSERTF(list_empty(&request->rq_exp_list), "req %p\n", request);
2221 LASSERTF(!request->rq_replay, "req %p\n", request);
2222
2223 req_capsule_fini(&request->rq_pill);
2224
2225 /* We must take it off the imp_replay_list first. Otherwise, we'll set
2226 * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2227 if (request->rq_import != NULL) {
2228 if (!locked)
2229 spin_lock(&request->rq_import->imp_lock);
2230 list_del_init(&request->rq_replay_list);
2231 if (!locked)
2232 spin_unlock(&request->rq_import->imp_lock);
2233 }
2234 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2235
2236 if (atomic_read(&request->rq_refcount) != 0) {
2237 DEBUG_REQ(D_ERROR, request,
2238 "freeing request with nonzero refcount");
2239 LBUG();
2240 }
2241
2242 if (request->rq_repbuf != NULL)
2243 sptlrpc_cli_free_repbuf(request);
2244 if (request->rq_export != NULL) {
2245 class_export_put(request->rq_export);
2246 request->rq_export = NULL;
2247 }
2248 if (request->rq_import != NULL) {
2249 class_import_put(request->rq_import);
2250 request->rq_import = NULL;
2251 }
2252 if (request->rq_bulk != NULL)
2253 ptlrpc_free_bulk_pin(request->rq_bulk);
2254
2255 if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2256 sptlrpc_cli_free_reqbuf(request);
2257
2258 if (request->rq_cli_ctx)
2259 sptlrpc_req_put_ctx(request, !locked);
2260
2261 if (request->rq_pool)
2262 __ptlrpc_free_req_to_pool(request);
2263 else
2264 ptlrpc_request_cache_free(request);
2265 }
2266
2267 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2268 /**
2269 * Drop one request reference. Must be called with import imp_lock held.
2270 * When reference count drops to zero, request is freed.
2271 */
2272 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2273 {
2274 assert_spin_locked(&request->rq_import->imp_lock);
2275 (void)__ptlrpc_req_finished(request, 1);
2276 }
2277 EXPORT_SYMBOL(ptlrpc_req_finished_with_imp_lock);
2278
2279 /**
2280 * Helper function
2281 * Drops one reference count for request \a request.
2282 * \a locked set indicates that caller holds import imp_lock.
2283 * Frees the request when reference count reaches zero.
2284 */
2285 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2286 {
2287 if (request == NULL)
2288 return 1;
2289
2290 if (request == LP_POISON ||
2291 request->rq_reqmsg == LP_POISON) {
2292 CERROR("dereferencing freed request (bug 575)\n");
2293 LBUG();
2294 return 1;
2295 }
2296
2297 DEBUG_REQ(D_INFO, request, "refcount now %u",
2298 atomic_read(&request->rq_refcount) - 1);
2299
2300 if (atomic_dec_and_test(&request->rq_refcount)) {
2301 __ptlrpc_free_req(request, locked);
2302 return 1;
2303 }
2304
2305 return 0;
2306 }
2307
2308 /**
2309 * Drops one reference count for a request.
2310 */
2311 void ptlrpc_req_finished(struct ptlrpc_request *request)
2312 {
2313 __ptlrpc_req_finished(request, 0);
2314 }
2315 EXPORT_SYMBOL(ptlrpc_req_finished);
2316
2317 /**
2318 * Returns xid of a \a request
2319 */
2320 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2321 {
2322 return request->rq_xid;
2323 }
2324 EXPORT_SYMBOL(ptlrpc_req_xid);
2325
2326 /**
2327 * Disengage the client's reply buffer from the network
2328 * NB does _NOT_ unregister any client-side bulk.
2329 * IDEMPOTENT, but _not_ safe against concurrent callers.
2330 * The request owner (i.e. the thread doing the I/O) must call...
2331 * Returns 0 on success or 1 if unregistering cannot be made.
2332 */
2333 int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2334 {
2335 int rc;
2336 wait_queue_head_t *wq;
2337 struct l_wait_info lwi;
2338
2339 /*
2340 * Might sleep.
2341 */
2342 LASSERT(!in_interrupt());
2343
2344 /*
2345 * Let's setup deadline for reply unlink.
2346 */
2347 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2348 async && request->rq_reply_deadline == 0)
2349 request->rq_reply_deadline = cfs_time_current_sec()+LONG_UNLINK;
2350
2351 /*
2352 * Nothing left to do.
2353 */
2354 if (!ptlrpc_client_recv_or_unlink(request))
2355 return 1;
2356
2357 LNetMDUnlink(request->rq_reply_md_h);
2358
2359 /*
2360 * Let's check it once again.
2361 */
2362 if (!ptlrpc_client_recv_or_unlink(request))
2363 return 1;
2364
2365 /*
2366 * Move to "Unregistering" phase as reply was not unlinked yet.
2367 */
2368 ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING);
2369
2370 /*
2371 * Do not wait for unlink to finish.
2372 */
2373 if (async)
2374 return 0;
2375
2376 /*
2377 * We have to l_wait_event() whatever the result, to give liblustre
2378 * a chance to run reply_in_callback(), and to make sure we've
2379 * unlinked before returning a req to the pool.
2380 */
2381 if (request->rq_set != NULL)
2382 wq = &request->rq_set->set_waitq;
2383 else
2384 wq = &request->rq_reply_waitq;
2385
2386 for (;;) {
2387 /* Network access will complete in finite time but the HUGE
2388 * timeout lets us CWARN for visibility of sluggish NALs */
2389 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2390 cfs_time_seconds(1), NULL, NULL);
2391 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2392 &lwi);
2393 if (rc == 0) {
2394 ptlrpc_rqphase_move(request, request->rq_next_phase);
2395 return 1;
2396 }
2397
2398 LASSERT(rc == -ETIMEDOUT);
2399 DEBUG_REQ(D_WARNING, request, "Unexpectedly long timeout "
2400 "rvcng=%d unlnk=%d", request->rq_receiving_reply,
2401 request->rq_must_unlink);
2402 }
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(ptlrpc_unregister_reply);
2406
2407 static void ptlrpc_free_request(struct ptlrpc_request *req)
2408 {
2409 spin_lock(&req->rq_lock);
2410 req->rq_replay = 0;
2411 spin_unlock(&req->rq_lock);
2412
2413 if (req->rq_commit_cb != NULL)
2414 req->rq_commit_cb(req);
2415 list_del_init(&req->rq_replay_list);
2416
2417 __ptlrpc_req_finished(req, 1);
2418 }
2419
2420 /**
2421 * the request is committed and dropped from the replay list of its import
2422 */
2423 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2424 {
2425 struct obd_import *imp = req->rq_import;
2426
2427 spin_lock(&imp->imp_lock);
2428 if (list_empty(&req->rq_replay_list)) {
2429 spin_unlock(&imp->imp_lock);
2430 return;
2431 }
2432
2433 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2434 ptlrpc_free_request(req);
2435
2436 spin_unlock(&imp->imp_lock);
2437 }
2438 EXPORT_SYMBOL(ptlrpc_request_committed);
2439
2440 /**
2441 * Iterates through replay_list on import and prunes
2442 * all requests have transno smaller than last_committed for the
2443 * import and don't have rq_replay set.
2444 * Since requests are sorted in transno order, stops when meeting first
2445 * transno bigger than last_committed.
2446 * caller must hold imp->imp_lock
2447 */
2448 void ptlrpc_free_committed(struct obd_import *imp)
2449 {
2450 struct ptlrpc_request *req, *saved;
2451 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2452 bool skip_committed_list = true;
2453
2454 LASSERT(imp != NULL);
2455 assert_spin_locked(&imp->imp_lock);
2456
2457 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2458 imp->imp_generation == imp->imp_last_generation_checked) {
2459 CDEBUG(D_INFO, "%s: skip recheck: last_committed "LPU64"\n",
2460 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2461 return;
2462 }
2463 CDEBUG(D_RPCTRACE, "%s: committing for last_committed "LPU64" gen %d\n",
2464 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2465 imp->imp_generation);
2466
2467 if (imp->imp_generation != imp->imp_last_generation_checked)
2468 skip_committed_list = false;
2469
2470 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2471 imp->imp_last_generation_checked = imp->imp_generation;
2472
2473 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2474 rq_replay_list) {
2475 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2476 LASSERT(req != last_req);
2477 last_req = req;
2478
2479 if (req->rq_transno == 0) {
2480 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2481 LBUG();
2482 }
2483 if (req->rq_import_generation < imp->imp_generation) {
2484 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2485 GOTO(free_req, 0);
2486 }
2487
2488 /* not yet committed */
2489 if (req->rq_transno > imp->imp_peer_committed_transno) {
2490 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2491 break;
2492 }
2493
2494 if (req->rq_replay) {
2495 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2496 list_move_tail(&req->rq_replay_list,
2497 &imp->imp_committed_list);
2498 continue;
2499 }
2500
2501 DEBUG_REQ(D_INFO, req, "commit (last_committed "LPU64")",
2502 imp->imp_peer_committed_transno);
2503 free_req:
2504 ptlrpc_free_request(req);
2505 }
2506 if (skip_committed_list)
2507 return;
2508
2509 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2510 rq_replay_list) {
2511 LASSERT(req->rq_transno != 0);
2512 if (req->rq_import_generation < imp->imp_generation) {
2513 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2514 ptlrpc_free_request(req);
2515 }
2516 }
2517 }
2518
2519 void ptlrpc_cleanup_client(struct obd_import *imp)
2520 {
2521 }
2522 EXPORT_SYMBOL(ptlrpc_cleanup_client);
2523
2524 /**
2525 * Schedule previously sent request for resend.
2526 * For bulk requests we assign new xid (to avoid problems with
2527 * lost replies and therefore several transfers landing into same buffer
2528 * from different sending attempts).
2529 */
2530 void ptlrpc_resend_req(struct ptlrpc_request *req)
2531 {
2532 DEBUG_REQ(D_HA, req, "going to resend");
2533 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2534 req->rq_status = -EAGAIN;
2535
2536 spin_lock(&req->rq_lock);
2537 req->rq_resend = 1;
2538 req->rq_net_err = 0;
2539 req->rq_timedout = 0;
2540 if (req->rq_bulk) {
2541 __u64 old_xid = req->rq_xid;
2542
2543 /* ensure previous bulk fails */
2544 req->rq_xid = ptlrpc_next_xid();
2545 CDEBUG(D_HA, "resend bulk old x"LPU64" new x"LPU64"\n",
2546 old_xid, req->rq_xid);
2547 }
2548 ptlrpc_client_wake_req(req);
2549 spin_unlock(&req->rq_lock);
2550 }
2551 EXPORT_SYMBOL(ptlrpc_resend_req);
2552
2553 /* XXX: this function and rq_status are currently unused */
2554 void ptlrpc_restart_req(struct ptlrpc_request *req)
2555 {
2556 DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2557 req->rq_status = -ERESTARTSYS;
2558
2559 spin_lock(&req->rq_lock);
2560 req->rq_restart = 1;
2561 req->rq_timedout = 0;
2562 ptlrpc_client_wake_req(req);
2563 spin_unlock(&req->rq_lock);
2564 }
2565 EXPORT_SYMBOL(ptlrpc_restart_req);
2566
2567 /**
2568 * Grab additional reference on a request \a req
2569 */
2570 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2571 {
2572 atomic_inc(&req->rq_refcount);
2573 return req;
2574 }
2575 EXPORT_SYMBOL(ptlrpc_request_addref);
2576
2577 /**
2578 * Add a request to import replay_list.
2579 * Must be called under imp_lock
2580 */
2581 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2582 struct obd_import *imp)
2583 {
2584 struct list_head *tmp;
2585
2586 assert_spin_locked(&imp->imp_lock);
2587
2588 if (req->rq_transno == 0) {
2589 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2590 LBUG();
2591 }
2592
2593 /* clear this for new requests that were resent as well
2594 as resent replayed requests. */
2595 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2596
2597 /* don't re-add requests that have been replayed */
2598 if (!list_empty(&req->rq_replay_list))
2599 return;
2600
2601 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2602
2603 LASSERT(imp->imp_replayable);
2604 /* Balanced in ptlrpc_free_committed, usually. */
2605 ptlrpc_request_addref(req);
2606 list_for_each_prev(tmp, &imp->imp_replay_list) {
2607 struct ptlrpc_request *iter =
2608 list_entry(tmp, struct ptlrpc_request,
2609 rq_replay_list);
2610
2611 /* We may have duplicate transnos if we create and then
2612 * open a file, or for closes retained if to match creating
2613 * opens, so use req->rq_xid as a secondary key.
2614 * (See bugs 684, 685, and 428.)
2615 * XXX no longer needed, but all opens need transnos!
2616 */
2617 if (iter->rq_transno > req->rq_transno)
2618 continue;
2619
2620 if (iter->rq_transno == req->rq_transno) {
2621 LASSERT(iter->rq_xid != req->rq_xid);
2622 if (iter->rq_xid > req->rq_xid)
2623 continue;
2624 }
2625
2626 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2627 return;
2628 }
2629
2630 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2631 }
2632 EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2633
2634 /**
2635 * Send request and wait until it completes.
2636 * Returns request processing status.
2637 */
2638 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2639 {
2640 struct ptlrpc_request_set *set;
2641 int rc;
2642
2643 LASSERT(req->rq_set == NULL);
2644 LASSERT(!req->rq_receiving_reply);
2645
2646 set = ptlrpc_prep_set();
2647 if (set == NULL) {
2648 CERROR("Unable to allocate ptlrpc set.");
2649 return -ENOMEM;
2650 }
2651
2652 /* for distributed debugging */
2653 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2654
2655 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2656 ptlrpc_request_addref(req);
2657 ptlrpc_set_add_req(set, req);
2658 rc = ptlrpc_set_wait(set);
2659 ptlrpc_set_destroy(set);
2660
2661 return rc;
2662 }
2663 EXPORT_SYMBOL(ptlrpc_queue_wait);
2664
2665 struct ptlrpc_replay_async_args {
2666 int praa_old_state;
2667 int praa_old_status;
2668 };
2669
2670 /**
2671 * Callback used for replayed requests reply processing.
2672 * In case of successful reply calls registered request replay callback.
2673 * In case of error restart replay process.
2674 */
2675 static int ptlrpc_replay_interpret(const struct lu_env *env,
2676 struct ptlrpc_request *req,
2677 void * data, int rc)
2678 {
2679 struct ptlrpc_replay_async_args *aa = data;
2680 struct obd_import *imp = req->rq_import;
2681
2682 atomic_dec(&imp->imp_replay_inflight);
2683
2684 if (!ptlrpc_client_replied(req)) {
2685 CERROR("request replay timed out, restarting recovery\n");
2686 GOTO(out, rc = -ETIMEDOUT);
2687 }
2688
2689 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2690 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2691 lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
2692 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
2693
2694 /** VBR: check version failure */
2695 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2696 /** replay was failed due to version mismatch */
2697 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2698 spin_lock(&imp->imp_lock);
2699 imp->imp_vbr_failed = 1;
2700 imp->imp_no_lock_replay = 1;
2701 spin_unlock(&imp->imp_lock);
2702 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2703 } else {
2704 /** The transno had better not change over replay. */
2705 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2706 lustre_msg_get_transno(req->rq_repmsg) ||
2707 lustre_msg_get_transno(req->rq_repmsg) == 0,
2708 LPX64"/"LPX64"\n",
2709 lustre_msg_get_transno(req->rq_reqmsg),
2710 lustre_msg_get_transno(req->rq_repmsg));
2711 }
2712
2713 spin_lock(&imp->imp_lock);
2714 /** if replays by version then gap occur on server, no trust to locks */
2715 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2716 imp->imp_no_lock_replay = 1;
2717 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2718 spin_unlock(&imp->imp_lock);
2719 LASSERT(imp->imp_last_replay_transno);
2720
2721 /* transaction number shouldn't be bigger than the latest replayed */
2722 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2723 DEBUG_REQ(D_ERROR, req,
2724 "Reported transno "LPU64" is bigger than the "
2725 "replayed one: "LPU64, req->rq_transno,
2726 lustre_msg_get_transno(req->rq_reqmsg));
2727 GOTO(out, rc = -EINVAL);
2728 }
2729
2730 DEBUG_REQ(D_HA, req, "got rep");
2731
2732 /* let the callback do fixups, possibly including in the request */
2733 if (req->rq_replay_cb)
2734 req->rq_replay_cb(req);
2735
2736 if (ptlrpc_client_replied(req) &&
2737 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2738 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2739 lustre_msg_get_status(req->rq_repmsg),
2740 aa->praa_old_status);
2741 } else {
2742 /* Put it back for re-replay. */
2743 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2744 }
2745
2746 /*
2747 * Errors while replay can set transno to 0, but
2748 * imp_last_replay_transno shouldn't be set to 0 anyway
2749 */
2750 if (req->rq_transno == 0)
2751 CERROR("Transno is 0 during replay!\n");
2752
2753 /* continue with recovery */
2754 rc = ptlrpc_import_recovery_state_machine(imp);
2755 out:
2756 req->rq_send_state = aa->praa_old_state;
2757
2758 if (rc != 0)
2759 /* this replay failed, so restart recovery */
2760 ptlrpc_connect_import(imp);
2761
2762 return rc;
2763 }
2764
2765 /**
2766 * Prepares and queues request for replay.
2767 * Adds it to ptlrpcd queue for actual sending.
2768 * Returns 0 on success.
2769 */
2770 int ptlrpc_replay_req(struct ptlrpc_request *req)
2771 {
2772 struct ptlrpc_replay_async_args *aa;
2773
2774 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2775
2776 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
2777 aa = ptlrpc_req_async_args(req);
2778 memset(aa, 0, sizeof(*aa));
2779
2780 /* Prepare request to be resent with ptlrpcd */
2781 aa->praa_old_state = req->rq_send_state;
2782 req->rq_send_state = LUSTRE_IMP_REPLAY;
2783 req->rq_phase = RQ_PHASE_NEW;
2784 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2785 if (req->rq_repmsg)
2786 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2787 req->rq_status = 0;
2788 req->rq_interpret_reply = ptlrpc_replay_interpret;
2789 /* Readjust the timeout for current conditions */
2790 ptlrpc_at_set_req_timeout(req);
2791
2792 /* Tell server the net_latency, so the server can calculate how long
2793 * it should wait for next replay */
2794 lustre_msg_set_service_time(req->rq_reqmsg,
2795 ptlrpc_at_get_net_latency(req));
2796 DEBUG_REQ(D_HA, req, "REPLAY");
2797
2798 atomic_inc(&req->rq_import->imp_replay_inflight);
2799 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2800
2801 ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1);
2802 return 0;
2803 }
2804 EXPORT_SYMBOL(ptlrpc_replay_req);
2805
2806 /**
2807 * Aborts all in-flight request on import \a imp sending and delayed lists
2808 */
2809 void ptlrpc_abort_inflight(struct obd_import *imp)
2810 {
2811 struct list_head *tmp, *n;
2812
2813 /* Make sure that no new requests get processed for this import.
2814 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2815 * this flag and then putting requests on sending_list or delayed_list.
2816 */
2817 spin_lock(&imp->imp_lock);
2818
2819 /* XXX locking? Maybe we should remove each request with the list
2820 * locked? Also, how do we know if the requests on the list are
2821 * being freed at this time?
2822 */
2823 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2824 struct ptlrpc_request *req =
2825 list_entry(tmp, struct ptlrpc_request, rq_list);
2826
2827 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2828
2829 spin_lock(&req->rq_lock);
2830 if (req->rq_import_generation < imp->imp_generation) {
2831 req->rq_err = 1;
2832 req->rq_status = -EIO;
2833 ptlrpc_client_wake_req(req);
2834 }
2835 spin_unlock(&req->rq_lock);
2836 }
2837
2838 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2839 struct ptlrpc_request *req =
2840 list_entry(tmp, struct ptlrpc_request, rq_list);
2841
2842 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2843
2844 spin_lock(&req->rq_lock);
2845 if (req->rq_import_generation < imp->imp_generation) {
2846 req->rq_err = 1;
2847 req->rq_status = -EIO;
2848 ptlrpc_client_wake_req(req);
2849 }
2850 spin_unlock(&req->rq_lock);
2851 }
2852
2853 /* Last chance to free reqs left on the replay list, but we
2854 * will still leak reqs that haven't committed. */
2855 if (imp->imp_replayable)
2856 ptlrpc_free_committed(imp);
2857
2858 spin_unlock(&imp->imp_lock);
2859 }
2860 EXPORT_SYMBOL(ptlrpc_abort_inflight);
2861
2862 /**
2863 * Abort all uncompleted requests in request set \a set
2864 */
2865 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2866 {
2867 struct list_head *tmp, *pos;
2868
2869 LASSERT(set != NULL);
2870
2871 list_for_each_safe(pos, tmp, &set->set_requests) {
2872 struct ptlrpc_request *req =
2873 list_entry(pos, struct ptlrpc_request,
2874 rq_set_chain);
2875
2876 spin_lock(&req->rq_lock);
2877 if (req->rq_phase != RQ_PHASE_RPC) {
2878 spin_unlock(&req->rq_lock);
2879 continue;
2880 }
2881
2882 req->rq_err = 1;
2883 req->rq_status = -EINTR;
2884 ptlrpc_client_wake_req(req);
2885 spin_unlock(&req->rq_lock);
2886 }
2887 }
2888
2889 static __u64 ptlrpc_last_xid;
2890 static spinlock_t ptlrpc_last_xid_lock;
2891
2892 /**
2893 * Initialize the XID for the node. This is common among all requests on
2894 * this node, and only requires the property that it is monotonically
2895 * increasing. It does not need to be sequential. Since this is also used
2896 * as the RDMA match bits, it is important that a single client NOT have
2897 * the same match bits for two different in-flight requests, hence we do
2898 * NOT want to have an XID per target or similar.
2899 *
2900 * To avoid an unlikely collision between match bits after a client reboot
2901 * (which would deliver old data into the wrong RDMA buffer) initialize
2902 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2903 * If the time is clearly incorrect, we instead use a 62-bit random number.
2904 * In the worst case the random number will overflow 1M RPCs per second in
2905 * 9133 years, or permutations thereof.
2906 */
2907 #define YEAR_2004 (1ULL << 30)
2908 void ptlrpc_init_xid(void)
2909 {
2910 time_t now = cfs_time_current_sec();
2911
2912 spin_lock_init(&ptlrpc_last_xid_lock);
2913 if (now < YEAR_2004) {
2914 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2915 ptlrpc_last_xid >>= 2;
2916 ptlrpc_last_xid |= (1ULL << 61);
2917 } else {
2918 ptlrpc_last_xid = (__u64)now << 20;
2919 }
2920
2921 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
2922 CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
2923 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2924 }
2925
2926 /**
2927 * Increase xid and returns resulting new value to the caller.
2928 *
2929 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2930 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2931 * itself uses the last bulk xid needed, so the server can determine the
2932 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2933 * xid must align to a power-of-two value.
2934 *
2935 * This is assumed to be true due to the initial ptlrpc_last_xid
2936 * value also being initialized to a power-of-two value. LU-1431
2937 */
2938 __u64 ptlrpc_next_xid(void)
2939 {
2940 __u64 next;
2941
2942 spin_lock(&ptlrpc_last_xid_lock);
2943 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2944 ptlrpc_last_xid = next;
2945 spin_unlock(&ptlrpc_last_xid_lock);
2946
2947 return next;
2948 }
2949 EXPORT_SYMBOL(ptlrpc_next_xid);
2950
2951 /**
2952 * Get a glimpse at what next xid value might have been.
2953 * Returns possible next xid.
2954 */
2955 __u64 ptlrpc_sample_next_xid(void)
2956 {
2957 #if BITS_PER_LONG == 32
2958 /* need to avoid possible word tearing on 32-bit systems */
2959 __u64 next;
2960
2961 spin_lock(&ptlrpc_last_xid_lock);
2962 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2963 spin_unlock(&ptlrpc_last_xid_lock);
2964
2965 return next;
2966 #else
2967 /* No need to lock, since returned value is racy anyways */
2968 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2969 #endif
2970 }
2971 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
2972
2973 /**
2974 * Functions for operating ptlrpc workers.
2975 *
2976 * A ptlrpc work is a function which will be running inside ptlrpc context.
2977 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
2978 *
2979 * 1. after a work is created, it can be used many times, that is:
2980 * handler = ptlrpcd_alloc_work();
2981 * ptlrpcd_queue_work();
2982 *
2983 * queue it again when necessary:
2984 * ptlrpcd_queue_work();
2985 * ptlrpcd_destroy_work();
2986 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
2987 * it will only be queued once in any time. Also as its name implies, it may
2988 * have delay before it really runs by ptlrpcd thread.
2989 */
2990 struct ptlrpc_work_async_args {
2991 int (*cb)(const struct lu_env *, void *);
2992 void *cbdata;
2993 };
2994
2995 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
2996 {
2997 /* re-initialize the req */
2998 req->rq_timeout = obd_timeout;
2999 req->rq_sent = cfs_time_current_sec();
3000 req->rq_deadline = req->rq_sent + req->rq_timeout;
3001 req->rq_reply_deadline = req->rq_deadline;
3002 req->rq_phase = RQ_PHASE_INTERPRET;
3003 req->rq_next_phase = RQ_PHASE_COMPLETE;
3004 req->rq_xid = ptlrpc_next_xid();
3005 req->rq_import_generation = req->rq_import->imp_generation;
3006
3007 ptlrpcd_add_req(req, PDL_POLICY_ROUND, -1);
3008 }
3009
3010 static int work_interpreter(const struct lu_env *env,
3011 struct ptlrpc_request *req, void *data, int rc)
3012 {
3013 struct ptlrpc_work_async_args *arg = data;
3014
3015 LASSERT(ptlrpcd_check_work(req));
3016 LASSERT(arg->cb != NULL);
3017
3018 rc = arg->cb(env, arg->cbdata);
3019
3020 list_del_init(&req->rq_set_chain);
3021 req->rq_set = NULL;
3022
3023 if (atomic_dec_return(&req->rq_refcount) > 1) {
3024 atomic_set(&req->rq_refcount, 2);
3025 ptlrpcd_add_work_req(req);
3026 }
3027 return rc;
3028 }
3029
3030 static int worker_format;
3031
3032 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3033 {
3034 return req->rq_pill.rc_fmt == (void *)&worker_format;
3035 }
3036
3037 /**
3038 * Create a work for ptlrpc.
3039 */
3040 void *ptlrpcd_alloc_work(struct obd_import *imp,
3041 int (*cb)(const struct lu_env *, void *), void *cbdata)
3042 {
3043 struct ptlrpc_request *req = NULL;
3044 struct ptlrpc_work_async_args *args;
3045
3046 might_sleep();
3047
3048 if (cb == NULL)
3049 return ERR_PTR(-EINVAL);
3050
3051 /* copy some code from deprecated fakereq. */
3052 req = ptlrpc_request_cache_alloc(GFP_NOFS);
3053 if (req == NULL) {
3054 CERROR("ptlrpc: run out of memory!\n");
3055 return ERR_PTR(-ENOMEM);
3056 }
3057
3058 req->rq_send_state = LUSTRE_IMP_FULL;
3059 req->rq_type = PTL_RPC_MSG_REQUEST;
3060 req->rq_import = class_import_get(imp);
3061 req->rq_export = NULL;
3062 req->rq_interpret_reply = work_interpreter;
3063 /* don't want reply */
3064 req->rq_receiving_reply = 0;
3065 req->rq_must_unlink = 0;
3066 req->rq_no_delay = req->rq_no_resend = 1;
3067 req->rq_pill.rc_fmt = (void *)&worker_format;
3068
3069 spin_lock_init(&req->rq_lock);
3070 INIT_LIST_HEAD(&req->rq_list);
3071 INIT_LIST_HEAD(&req->rq_replay_list);
3072 INIT_LIST_HEAD(&req->rq_set_chain);
3073 INIT_LIST_HEAD(&req->rq_history_list);
3074 INIT_LIST_HEAD(&req->rq_exp_list);
3075 init_waitqueue_head(&req->rq_reply_waitq);
3076 init_waitqueue_head(&req->rq_set_waitq);
3077 atomic_set(&req->rq_refcount, 1);
3078
3079 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3080 args = ptlrpc_req_async_args(req);
3081 args->cb = cb;
3082 args->cbdata = cbdata;
3083
3084 return req;
3085 }
3086 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3087
3088 void ptlrpcd_destroy_work(void *handler)
3089 {
3090 struct ptlrpc_request *req = handler;
3091
3092 if (req)
3093 ptlrpc_req_finished(req);
3094 }
3095 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3096
3097 int ptlrpcd_queue_work(void *handler)
3098 {
3099 struct ptlrpc_request *req = handler;
3100
3101 /*
3102 * Check if the req is already being queued.
3103 *
3104 * Here comes a trick: it lacks a way of checking if a req is being
3105 * processed reliably in ptlrpc. Here I have to use refcount of req
3106 * for this purpose. This is okay because the caller should use this
3107 * req as opaque data. - Jinshan
3108 */
3109 LASSERT(atomic_read(&req->rq_refcount) > 0);
3110 if (atomic_inc_return(&req->rq_refcount) == 2)
3111 ptlrpcd_add_work_req(req);
3112 return 0;
3113 }
3114 EXPORT_SYMBOL(ptlrpcd_queue_work);
This page took 0.151118 seconds and 6 git commands to generate.