staging: lustre: Coalesce string fragments
[deliverable/linux.git] / drivers / staging / lustre / lustre / ptlrpc / nrs.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License version 2 for more details. A copy is
14 * included in the COPYING file that accompanied this code.
15
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2011 Intel Corporation
24 *
25 * Copyright 2012 Xyratex Technology Limited
26 */
27 /*
28 * lustre/ptlrpc/nrs.c
29 *
30 * Network Request Scheduler (NRS)
31 *
32 * Allows to reorder the handling of RPCs at servers.
33 *
34 * Author: Liang Zhen <liang@whamcloud.com>
35 * Author: Nikitas Angelinas <nikitas_angelinas@xyratex.com>
36 */
37 /**
38 * \addtogoup nrs
39 * @{
40 */
41
42 #define DEBUG_SUBSYSTEM S_RPC
43 #include "../include/obd_support.h"
44 #include "../include/obd_class.h"
45 #include "../include/lustre_net.h"
46 #include "../include/lprocfs_status.h"
47 #include "../../include/linux/libcfs/libcfs.h"
48 #include "ptlrpc_internal.h"
49
50 /* XXX: This is just for liblustre. Remove the #if defined directive when the
51 * "cfs_" prefix is dropped from cfs_list_head. */
52 extern struct list_head ptlrpc_all_services;
53
54 /**
55 * NRS core object.
56 */
57 struct nrs_core nrs_core;
58
59 static int nrs_policy_init(struct ptlrpc_nrs_policy *policy)
60 {
61 return policy->pol_desc->pd_ops->op_policy_init != NULL ?
62 policy->pol_desc->pd_ops->op_policy_init(policy) : 0;
63 }
64
65 static void nrs_policy_fini(struct ptlrpc_nrs_policy *policy)
66 {
67 LASSERT(policy->pol_ref == 0);
68 LASSERT(policy->pol_req_queued == 0);
69
70 if (policy->pol_desc->pd_ops->op_policy_fini != NULL)
71 policy->pol_desc->pd_ops->op_policy_fini(policy);
72 }
73
74 static int nrs_policy_ctl_locked(struct ptlrpc_nrs_policy *policy,
75 enum ptlrpc_nrs_ctl opc, void *arg)
76 {
77 /**
78 * The policy may be stopped, but the lprocfs files and
79 * ptlrpc_nrs_policy instances remain present until unregistration time.
80 * Do not perform the ctl operation if the policy is stopped, as
81 * policy->pol_private will be NULL in such a case.
82 */
83 if (policy->pol_state == NRS_POL_STATE_STOPPED)
84 return -ENODEV;
85
86 return policy->pol_desc->pd_ops->op_policy_ctl != NULL ?
87 policy->pol_desc->pd_ops->op_policy_ctl(policy, opc, arg) :
88 -ENOSYS;
89 }
90
91 static void nrs_policy_stop0(struct ptlrpc_nrs_policy *policy)
92 {
93 struct ptlrpc_nrs *nrs = policy->pol_nrs;
94
95 if (policy->pol_desc->pd_ops->op_policy_stop != NULL) {
96 spin_unlock(&nrs->nrs_lock);
97
98 policy->pol_desc->pd_ops->op_policy_stop(policy);
99
100 spin_lock(&nrs->nrs_lock);
101 }
102
103 LASSERT(list_empty(&policy->pol_list_queued));
104 LASSERT(policy->pol_req_queued == 0 &&
105 policy->pol_req_started == 0);
106
107 policy->pol_private = NULL;
108
109 policy->pol_state = NRS_POL_STATE_STOPPED;
110
111 if (atomic_dec_and_test(&policy->pol_desc->pd_refs))
112 module_put(policy->pol_desc->pd_owner);
113 }
114
115 static int nrs_policy_stop_locked(struct ptlrpc_nrs_policy *policy)
116 {
117 struct ptlrpc_nrs *nrs = policy->pol_nrs;
118
119 if (nrs->nrs_policy_fallback == policy && !nrs->nrs_stopping)
120 return -EPERM;
121
122 if (policy->pol_state == NRS_POL_STATE_STARTING)
123 return -EAGAIN;
124
125 /* In progress or already stopped */
126 if (policy->pol_state != NRS_POL_STATE_STARTED)
127 return 0;
128
129 policy->pol_state = NRS_POL_STATE_STOPPING;
130
131 /* Immediately make it invisible */
132 if (nrs->nrs_policy_primary == policy) {
133 nrs->nrs_policy_primary = NULL;
134
135 } else {
136 LASSERT(nrs->nrs_policy_fallback == policy);
137 nrs->nrs_policy_fallback = NULL;
138 }
139
140 /* I have the only refcount */
141 if (policy->pol_ref == 1)
142 nrs_policy_stop0(policy);
143
144 return 0;
145 }
146
147 /**
148 * Transitions the \a nrs NRS head's primary policy to
149 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING and if the policy has no
150 * pending usage references, to ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPED.
151 *
152 * \param[in] nrs the NRS head to carry out this operation on
153 */
154 static void nrs_policy_stop_primary(struct ptlrpc_nrs *nrs)
155 {
156 struct ptlrpc_nrs_policy *tmp = nrs->nrs_policy_primary;
157
158 if (tmp == NULL) {
159 return;
160 }
161
162 nrs->nrs_policy_primary = NULL;
163
164 LASSERT(tmp->pol_state == NRS_POL_STATE_STARTED);
165 tmp->pol_state = NRS_POL_STATE_STOPPING;
166
167 if (tmp->pol_ref == 0)
168 nrs_policy_stop0(tmp);
169 }
170
171 /**
172 * Transitions a policy across the ptlrpc_nrs_pol_state range of values, in
173 * response to an lprocfs command to start a policy.
174 *
175 * If a primary policy different to the current one is specified, this function
176 * will transition the new policy to the
177 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTING and then to
178 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED, and will then transition
179 * the old primary policy (if there is one) to
180 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING, and if there are no outstanding
181 * references on the policy to ptlrpc_nrs_pol_stae::NRS_POL_STATE_STOPPED.
182 *
183 * If the fallback policy is specified, this is taken to indicate an instruction
184 * to stop the current primary policy, without substituting it with another
185 * primary policy, so the primary policy (if any) is transitioned to
186 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING, and if there are no outstanding
187 * references on the policy to ptlrpc_nrs_pol_stae::NRS_POL_STATE_STOPPED. In
188 * this case, the fallback policy is only left active in the NRS head.
189 */
190 static int nrs_policy_start_locked(struct ptlrpc_nrs_policy *policy)
191 {
192 struct ptlrpc_nrs *nrs = policy->pol_nrs;
193 int rc = 0;
194
195 /**
196 * Don't allow multiple starting which is too complex, and has no real
197 * benefit.
198 */
199 if (nrs->nrs_policy_starting)
200 return -EAGAIN;
201
202 LASSERT(policy->pol_state != NRS_POL_STATE_STARTING);
203
204 if (policy->pol_state == NRS_POL_STATE_STOPPING)
205 return -EAGAIN;
206
207 if (policy->pol_flags & PTLRPC_NRS_FL_FALLBACK) {
208 /**
209 * This is for cases in which the user sets the policy to the
210 * fallback policy (currently fifo for all services); i.e. the
211 * user is resetting the policy to the default; so we stop the
212 * primary policy, if any.
213 */
214 if (policy == nrs->nrs_policy_fallback) {
215 nrs_policy_stop_primary(nrs);
216 return 0;
217 }
218
219 /**
220 * If we reach here, we must be setting up the fallback policy
221 * at service startup time, and only a single policy with the
222 * nrs_policy_flags::PTLRPC_NRS_FL_FALLBACK flag set can
223 * register with NRS core.
224 */
225 LASSERT(nrs->nrs_policy_fallback == NULL);
226 } else {
227 /**
228 * Shouldn't start primary policy if w/o fallback policy.
229 */
230 if (nrs->nrs_policy_fallback == NULL)
231 return -EPERM;
232
233 if (policy->pol_state == NRS_POL_STATE_STARTED)
234 return 0;
235 }
236
237 /**
238 * Increase the module usage count for policies registering from other
239 * modules.
240 */
241 if (atomic_inc_return(&policy->pol_desc->pd_refs) == 1 &&
242 !try_module_get(policy->pol_desc->pd_owner)) {
243 atomic_dec(&policy->pol_desc->pd_refs);
244 CERROR("NRS: cannot get module for policy %s; is it alive?\n",
245 policy->pol_desc->pd_name);
246 return -ENODEV;
247 }
248
249 /**
250 * Serialize policy starting across the NRS head
251 */
252 nrs->nrs_policy_starting = 1;
253
254 policy->pol_state = NRS_POL_STATE_STARTING;
255
256 if (policy->pol_desc->pd_ops->op_policy_start) {
257 spin_unlock(&nrs->nrs_lock);
258
259 rc = policy->pol_desc->pd_ops->op_policy_start(policy);
260
261 spin_lock(&nrs->nrs_lock);
262 if (rc != 0) {
263 if (atomic_dec_and_test(&policy->pol_desc->pd_refs))
264 module_put(policy->pol_desc->pd_owner);
265
266 policy->pol_state = NRS_POL_STATE_STOPPED;
267 goto out;
268 }
269 }
270
271 policy->pol_state = NRS_POL_STATE_STARTED;
272
273 if (policy->pol_flags & PTLRPC_NRS_FL_FALLBACK) {
274 /**
275 * This path is only used at PTLRPC service setup time.
276 */
277 nrs->nrs_policy_fallback = policy;
278 } else {
279 /*
280 * Try to stop the current primary policy if there is one.
281 */
282 nrs_policy_stop_primary(nrs);
283
284 /**
285 * And set the newly-started policy as the primary one.
286 */
287 nrs->nrs_policy_primary = policy;
288 }
289
290 out:
291 nrs->nrs_policy_starting = 0;
292
293 return rc;
294 }
295
296 /**
297 * Increases the policy's usage reference count.
298 */
299 static inline void nrs_policy_get_locked(struct ptlrpc_nrs_policy *policy)
300 {
301 policy->pol_ref++;
302 }
303
304 /**
305 * Decreases the policy's usage reference count, and stops the policy in case it
306 * was already stopping and have no more outstanding usage references (which
307 * indicates it has no more queued or started requests, and can be safely
308 * stopped).
309 */
310 static void nrs_policy_put_locked(struct ptlrpc_nrs_policy *policy)
311 {
312 LASSERT(policy->pol_ref > 0);
313
314 policy->pol_ref--;
315 if (unlikely(policy->pol_ref == 0 &&
316 policy->pol_state == NRS_POL_STATE_STOPPING))
317 nrs_policy_stop0(policy);
318 }
319
320 static void nrs_policy_put(struct ptlrpc_nrs_policy *policy)
321 {
322 spin_lock(&policy->pol_nrs->nrs_lock);
323 nrs_policy_put_locked(policy);
324 spin_unlock(&policy->pol_nrs->nrs_lock);
325 }
326
327 /**
328 * Find and return a policy by name.
329 */
330 static struct ptlrpc_nrs_policy *nrs_policy_find_locked(struct ptlrpc_nrs *nrs,
331 char *name)
332 {
333 struct ptlrpc_nrs_policy *tmp;
334
335 list_for_each_entry(tmp, &nrs->nrs_policy_list, pol_list) {
336 if (strncmp(tmp->pol_desc->pd_name, name,
337 NRS_POL_NAME_MAX) == 0) {
338 nrs_policy_get_locked(tmp);
339 return tmp;
340 }
341 }
342 return NULL;
343 }
344
345 /**
346 * Release references for the resource hierarchy moving upwards towards the
347 * policy instance resource.
348 */
349 static void nrs_resource_put(struct ptlrpc_nrs_resource *res)
350 {
351 struct ptlrpc_nrs_policy *policy = res->res_policy;
352
353 if (policy->pol_desc->pd_ops->op_res_put != NULL) {
354 struct ptlrpc_nrs_resource *parent;
355
356 for (; res != NULL; res = parent) {
357 parent = res->res_parent;
358 policy->pol_desc->pd_ops->op_res_put(policy, res);
359 }
360 }
361 }
362
363 /**
364 * Obtains references for each resource in the resource hierarchy for request
365 * \a nrq if it is to be handled by \a policy.
366 *
367 * \param[in] policy the policy
368 * \param[in] nrq the request
369 * \param[in] moving_req denotes whether this is a call to the function by
370 * ldlm_lock_reorder_req(), in order to move \a nrq to
371 * the high-priority NRS head; we should not sleep when
372 * set.
373 *
374 * \retval NULL resource hierarchy references not obtained
375 * \retval valid-pointer the bottom level of the resource hierarchy
376 *
377 * \see ptlrpc_nrs_pol_ops::op_res_get()
378 */
379 static
380 struct ptlrpc_nrs_resource *nrs_resource_get(struct ptlrpc_nrs_policy *policy,
381 struct ptlrpc_nrs_request *nrq,
382 bool moving_req)
383 {
384 /**
385 * Set to NULL to traverse the resource hierarchy from the top.
386 */
387 struct ptlrpc_nrs_resource *res = NULL;
388 struct ptlrpc_nrs_resource *tmp = NULL;
389 int rc;
390
391 while (1) {
392 rc = policy->pol_desc->pd_ops->op_res_get(policy, nrq, res,
393 &tmp, moving_req);
394 if (rc < 0) {
395 if (res != NULL)
396 nrs_resource_put(res);
397 return NULL;
398 }
399
400 LASSERT(tmp != NULL);
401 tmp->res_parent = res;
402 tmp->res_policy = policy;
403 res = tmp;
404 tmp = NULL;
405 /**
406 * Return once we have obtained a reference to the bottom level
407 * of the resource hierarchy.
408 */
409 if (rc > 0)
410 return res;
411 }
412 }
413
414 /**
415 * Obtains resources for the resource hierarchies and policy references for
416 * the fallback and current primary policy (if any), that will later be used
417 * to handle request \a nrq.
418 *
419 * \param[in] nrs the NRS head instance that will be handling request \a nrq.
420 * \param[in] nrq the request that is being handled.
421 * \param[out] resp the array where references to the resource hierarchy are
422 * stored.
423 * \param[in] moving_req is set when obtaining resources while moving a
424 * request from a policy on the regular NRS head to a
425 * policy on the HP NRS head (via
426 * ldlm_lock_reorder_req()). It signifies that
427 * allocations to get resources should be atomic; for
428 * a full explanation, see comment in
429 * ptlrpc_nrs_pol_ops::op_res_get().
430 */
431 static void nrs_resource_get_safe(struct ptlrpc_nrs *nrs,
432 struct ptlrpc_nrs_request *nrq,
433 struct ptlrpc_nrs_resource **resp,
434 bool moving_req)
435 {
436 struct ptlrpc_nrs_policy *primary = NULL;
437 struct ptlrpc_nrs_policy *fallback = NULL;
438
439 memset(resp, 0, sizeof(resp[0]) * NRS_RES_MAX);
440
441 /**
442 * Obtain policy references.
443 */
444 spin_lock(&nrs->nrs_lock);
445
446 fallback = nrs->nrs_policy_fallback;
447 nrs_policy_get_locked(fallback);
448
449 primary = nrs->nrs_policy_primary;
450 if (primary != NULL)
451 nrs_policy_get_locked(primary);
452
453 spin_unlock(&nrs->nrs_lock);
454
455 /**
456 * Obtain resource hierarchy references.
457 */
458 resp[NRS_RES_FALLBACK] = nrs_resource_get(fallback, nrq, moving_req);
459 LASSERT(resp[NRS_RES_FALLBACK] != NULL);
460
461 if (primary != NULL) {
462 resp[NRS_RES_PRIMARY] = nrs_resource_get(primary, nrq,
463 moving_req);
464 /**
465 * A primary policy may exist which may not wish to serve a
466 * particular request for different reasons; release the
467 * reference on the policy as it will not be used for this
468 * request.
469 */
470 if (resp[NRS_RES_PRIMARY] == NULL)
471 nrs_policy_put(primary);
472 }
473 }
474
475 /**
476 * Releases references to resource hierarchies and policies, because they are no
477 * longer required; used when request handling has been completed, or the
478 * request is moving to the high priority NRS head.
479 *
480 * \param resp the resource hierarchy that is being released
481 *
482 * \see ptlrpcnrs_req_hp_move()
483 * \see ptlrpc_nrs_req_finalize()
484 */
485 static void nrs_resource_put_safe(struct ptlrpc_nrs_resource **resp)
486 {
487 struct ptlrpc_nrs_policy *pols[NRS_RES_MAX];
488 struct ptlrpc_nrs *nrs = NULL;
489 int i;
490
491 for (i = 0; i < NRS_RES_MAX; i++) {
492 if (resp[i] != NULL) {
493 pols[i] = resp[i]->res_policy;
494 nrs_resource_put(resp[i]);
495 resp[i] = NULL;
496 } else {
497 pols[i] = NULL;
498 }
499 }
500
501 for (i = 0; i < NRS_RES_MAX; i++) {
502 if (pols[i] == NULL)
503 continue;
504
505 if (nrs == NULL) {
506 nrs = pols[i]->pol_nrs;
507 spin_lock(&nrs->nrs_lock);
508 }
509 nrs_policy_put_locked(pols[i]);
510 }
511
512 if (nrs != NULL)
513 spin_unlock(&nrs->nrs_lock);
514 }
515
516 /**
517 * Obtains an NRS request from \a policy for handling or examination; the
518 * request should be removed in the 'handling' case.
519 *
520 * Calling into this function implies we already know the policy has a request
521 * waiting to be handled.
522 *
523 * \param[in] policy the policy from which a request
524 * \param[in] peek when set, signifies that we just want to examine the
525 * request, and not handle it, so the request is not removed
526 * from the policy.
527 * \param[in] force when set, it will force a policy to return a request if it
528 * has one pending
529 *
530 * \retval the NRS request to be handled
531 */
532 static inline
533 struct ptlrpc_nrs_request *nrs_request_get(struct ptlrpc_nrs_policy *policy,
534 bool peek, bool force)
535 {
536 struct ptlrpc_nrs_request *nrq;
537
538 LASSERT(policy->pol_req_queued > 0);
539
540 nrq = policy->pol_desc->pd_ops->op_req_get(policy, peek, force);
541
542 LASSERT(ergo(nrq != NULL, nrs_request_policy(nrq) == policy));
543
544 return nrq;
545 }
546
547 /**
548 * Enqueues request \a nrq for later handling, via one one the policies for
549 * which resources where earlier obtained via nrs_resource_get_safe(). The
550 * function attempts to enqueue the request first on the primary policy
551 * (if any), since this is the preferred choice.
552 *
553 * \param nrq the request being enqueued
554 *
555 * \see nrs_resource_get_safe()
556 */
557 static inline void nrs_request_enqueue(struct ptlrpc_nrs_request *nrq)
558 {
559 struct ptlrpc_nrs_policy *policy;
560 int rc;
561 int i;
562
563 /**
564 * Try in descending order, because the primary policy (if any) is
565 * the preferred choice.
566 */
567 for (i = NRS_RES_MAX - 1; i >= 0; i--) {
568 if (nrq->nr_res_ptrs[i] == NULL)
569 continue;
570
571 nrq->nr_res_idx = i;
572 policy = nrq->nr_res_ptrs[i]->res_policy;
573
574 rc = policy->pol_desc->pd_ops->op_req_enqueue(policy, nrq);
575 if (rc == 0) {
576 policy->pol_nrs->nrs_req_queued++;
577 policy->pol_req_queued++;
578 return;
579 }
580 }
581 /**
582 * Should never get here, as at least the primary policy's
583 * ptlrpc_nrs_pol_ops::op_req_enqueue() implementation should always
584 * succeed.
585 */
586 LBUG();
587 }
588
589 /**
590 * Called when a request has been handled
591 *
592 * \param[in] nrs the request that has been handled; can be used for
593 * job/resource control.
594 *
595 * \see ptlrpc_nrs_req_stop_nolock()
596 */
597 static inline void nrs_request_stop(struct ptlrpc_nrs_request *nrq)
598 {
599 struct ptlrpc_nrs_policy *policy = nrs_request_policy(nrq);
600
601 if (policy->pol_desc->pd_ops->op_req_stop)
602 policy->pol_desc->pd_ops->op_req_stop(policy, nrq);
603
604 LASSERT(policy->pol_nrs->nrs_req_started > 0);
605 LASSERT(policy->pol_req_started > 0);
606
607 policy->pol_nrs->nrs_req_started--;
608 policy->pol_req_started--;
609 }
610
611 /**
612 * Handler for operations that can be carried out on policies.
613 *
614 * Handles opcodes that are common to all policy types within NRS core, and
615 * passes any unknown opcodes to the policy-specific control function.
616 *
617 * \param[in] nrs the NRS head this policy belongs to.
618 * \param[in] name the human-readable policy name; should be the same as
619 * ptlrpc_nrs_pol_desc::pd_name.
620 * \param[in] opc the opcode of the operation being carried out.
621 * \param[in,out] arg can be used to pass information in and out between when
622 * carrying an operation; usually data that is private to
623 * the policy at some level, or generic policy status
624 * information.
625 *
626 * \retval -ve error condition
627 * \retval 0 operation was carried out successfully
628 */
629 static int nrs_policy_ctl(struct ptlrpc_nrs *nrs, char *name,
630 enum ptlrpc_nrs_ctl opc, void *arg)
631 {
632 struct ptlrpc_nrs_policy *policy;
633 int rc = 0;
634
635 spin_lock(&nrs->nrs_lock);
636
637 policy = nrs_policy_find_locked(nrs, name);
638 if (policy == NULL) {
639 rc = -ENOENT;
640 goto out;
641 }
642
643 switch (opc) {
644 /**
645 * Unknown opcode, pass it down to the policy-specific control
646 * function for handling.
647 */
648 default:
649 rc = nrs_policy_ctl_locked(policy, opc, arg);
650 break;
651
652 /**
653 * Start \e policy
654 */
655 case PTLRPC_NRS_CTL_START:
656 rc = nrs_policy_start_locked(policy);
657 break;
658 }
659 out:
660 if (policy != NULL)
661 nrs_policy_put_locked(policy);
662
663 spin_unlock(&nrs->nrs_lock);
664
665 return rc;
666 }
667
668 /**
669 * Unregisters a policy by name.
670 *
671 * \param[in] nrs the NRS head this policy belongs to.
672 * \param[in] name the human-readable policy name; should be the same as
673 * ptlrpc_nrs_pol_desc::pd_name
674 *
675 * \retval -ve error
676 * \retval 0 success
677 */
678 static int nrs_policy_unregister(struct ptlrpc_nrs *nrs, char *name)
679 {
680 struct ptlrpc_nrs_policy *policy = NULL;
681
682 spin_lock(&nrs->nrs_lock);
683
684 policy = nrs_policy_find_locked(nrs, name);
685 if (policy == NULL) {
686 spin_unlock(&nrs->nrs_lock);
687
688 CERROR("Can't find NRS policy %s\n", name);
689 return -ENOENT;
690 }
691
692 if (policy->pol_ref > 1) {
693 CERROR("Policy %s is busy with %d references\n", name,
694 (int)policy->pol_ref);
695 nrs_policy_put_locked(policy);
696
697 spin_unlock(&nrs->nrs_lock);
698 return -EBUSY;
699 }
700
701 LASSERT(policy->pol_req_queued == 0);
702 LASSERT(policy->pol_req_started == 0);
703
704 if (policy->pol_state != NRS_POL_STATE_STOPPED) {
705 nrs_policy_stop_locked(policy);
706 LASSERT(policy->pol_state == NRS_POL_STATE_STOPPED);
707 }
708
709 list_del(&policy->pol_list);
710 nrs->nrs_num_pols--;
711
712 nrs_policy_put_locked(policy);
713
714 spin_unlock(&nrs->nrs_lock);
715
716 nrs_policy_fini(policy);
717
718 LASSERT(policy->pol_private == NULL);
719 OBD_FREE_PTR(policy);
720
721 return 0;
722 }
723
724 /**
725 * Register a policy from \policy descriptor \a desc with NRS head \a nrs.
726 *
727 * \param[in] nrs the NRS head on which the policy will be registered.
728 * \param[in] desc the policy descriptor from which the information will be
729 * obtained to register the policy.
730 *
731 * \retval -ve error
732 * \retval 0 success
733 */
734 static int nrs_policy_register(struct ptlrpc_nrs *nrs,
735 struct ptlrpc_nrs_pol_desc *desc)
736 {
737 struct ptlrpc_nrs_policy *policy;
738 struct ptlrpc_nrs_policy *tmp;
739 struct ptlrpc_service_part *svcpt = nrs->nrs_svcpt;
740 int rc;
741
742 LASSERT(svcpt != NULL);
743 LASSERT(desc->pd_ops != NULL);
744 LASSERT(desc->pd_ops->op_res_get != NULL);
745 LASSERT(desc->pd_ops->op_req_get != NULL);
746 LASSERT(desc->pd_ops->op_req_enqueue != NULL);
747 LASSERT(desc->pd_ops->op_req_dequeue != NULL);
748 LASSERT(desc->pd_compat != NULL);
749
750 OBD_CPT_ALLOC_GFP(policy, svcpt->scp_service->srv_cptable,
751 svcpt->scp_cpt, sizeof(*policy), GFP_NOFS);
752 if (policy == NULL)
753 return -ENOMEM;
754
755 policy->pol_nrs = nrs;
756 policy->pol_desc = desc;
757 policy->pol_state = NRS_POL_STATE_STOPPED;
758 policy->pol_flags = desc->pd_flags;
759
760 INIT_LIST_HEAD(&policy->pol_list);
761 INIT_LIST_HEAD(&policy->pol_list_queued);
762
763 rc = nrs_policy_init(policy);
764 if (rc != 0) {
765 OBD_FREE_PTR(policy);
766 return rc;
767 }
768
769 spin_lock(&nrs->nrs_lock);
770
771 tmp = nrs_policy_find_locked(nrs, policy->pol_desc->pd_name);
772 if (tmp != NULL) {
773 CERROR("NRS policy %s has been registered, can't register it for %s\n",
774 policy->pol_desc->pd_name,
775 svcpt->scp_service->srv_name);
776 nrs_policy_put_locked(tmp);
777
778 spin_unlock(&nrs->nrs_lock);
779 nrs_policy_fini(policy);
780 OBD_FREE_PTR(policy);
781
782 return -EEXIST;
783 }
784
785 list_add_tail(&policy->pol_list, &nrs->nrs_policy_list);
786 nrs->nrs_num_pols++;
787
788 if (policy->pol_flags & PTLRPC_NRS_FL_REG_START)
789 rc = nrs_policy_start_locked(policy);
790
791 spin_unlock(&nrs->nrs_lock);
792
793 if (rc != 0)
794 (void) nrs_policy_unregister(nrs, policy->pol_desc->pd_name);
795
796 return rc;
797 }
798
799 /**
800 * Enqueue request \a req using one of the policies its resources are referring
801 * to.
802 *
803 * \param[in] req the request to enqueue.
804 */
805 static void ptlrpc_nrs_req_add_nolock(struct ptlrpc_request *req)
806 {
807 struct ptlrpc_nrs_policy *policy;
808
809 LASSERT(req->rq_nrq.nr_initialized);
810 LASSERT(!req->rq_nrq.nr_enqueued);
811
812 nrs_request_enqueue(&req->rq_nrq);
813 req->rq_nrq.nr_enqueued = 1;
814
815 policy = nrs_request_policy(&req->rq_nrq);
816 /**
817 * Add the policy to the NRS head's list of policies with enqueued
818 * requests, if it has not been added there.
819 */
820 if (unlikely(list_empty(&policy->pol_list_queued)))
821 list_add_tail(&policy->pol_list_queued,
822 &policy->pol_nrs->nrs_policy_queued);
823 }
824
825 /**
826 * Enqueue a request on the high priority NRS head.
827 *
828 * \param req the request to enqueue.
829 */
830 static void ptlrpc_nrs_hpreq_add_nolock(struct ptlrpc_request *req)
831 {
832 int opc = lustre_msg_get_opc(req->rq_reqmsg);
833
834 spin_lock(&req->rq_lock);
835 req->rq_hp = 1;
836 ptlrpc_nrs_req_add_nolock(req);
837 if (opc != OBD_PING)
838 DEBUG_REQ(D_NET, req, "high priority req");
839 spin_unlock(&req->rq_lock);
840 }
841
842 /**
843 * Returns a boolean predicate indicating whether the policy described by
844 * \a desc is adequate for use with service \a svc.
845 *
846 * \param[in] svc the service
847 * \param[in] desc the policy descriptor
848 *
849 * \retval false the policy is not compatible with the service
850 * \retval true the policy is compatible with the service
851 */
852 static inline bool nrs_policy_compatible(const struct ptlrpc_service *svc,
853 const struct ptlrpc_nrs_pol_desc *desc)
854 {
855 return desc->pd_compat(svc, desc);
856 }
857
858 /**
859 * Registers all compatible policies in nrs_core.nrs_policies, for NRS head
860 * \a nrs.
861 *
862 * \param[in] nrs the NRS head
863 *
864 * \retval -ve error
865 * \retval 0 success
866 *
867 * \pre mutex_is_locked(&nrs_core.nrs_mutex)
868 *
869 * \see ptlrpc_service_nrs_setup()
870 */
871 static int nrs_register_policies_locked(struct ptlrpc_nrs *nrs)
872 {
873 struct ptlrpc_nrs_pol_desc *desc;
874 /* for convenience */
875 struct ptlrpc_service_part *svcpt = nrs->nrs_svcpt;
876 struct ptlrpc_service *svc = svcpt->scp_service;
877 int rc = -EINVAL;
878
879 LASSERT(mutex_is_locked(&nrs_core.nrs_mutex));
880
881 list_for_each_entry(desc, &nrs_core.nrs_policies, pd_list) {
882 if (nrs_policy_compatible(svc, desc)) {
883 rc = nrs_policy_register(nrs, desc);
884 if (rc != 0) {
885 CERROR("Failed to register NRS policy %s for partition %d of service %s: %d\n",
886 desc->pd_name, svcpt->scp_cpt,
887 svc->srv_name, rc);
888 /**
889 * Fail registration if any of the policies'
890 * registration fails.
891 */
892 break;
893 }
894 }
895 }
896
897 return rc;
898 }
899
900 /**
901 * Initializes NRS head \a nrs of service partition \a svcpt, and registers all
902 * compatible policies in NRS core, with the NRS head.
903 *
904 * \param[in] nrs the NRS head
905 * \param[in] svcpt the PTLRPC service partition to setup
906 *
907 * \retval -ve error
908 * \retval 0 success
909 *
910 * \pre mutex_is_locked(&nrs_core.nrs_mutex)
911 */
912 static int nrs_svcpt_setup_locked0(struct ptlrpc_nrs *nrs,
913 struct ptlrpc_service_part *svcpt)
914 {
915 int rc;
916 enum ptlrpc_nrs_queue_type queue;
917
918 LASSERT(mutex_is_locked(&nrs_core.nrs_mutex));
919
920 if (nrs == &svcpt->scp_nrs_reg)
921 queue = PTLRPC_NRS_QUEUE_REG;
922 else if (nrs == svcpt->scp_nrs_hp)
923 queue = PTLRPC_NRS_QUEUE_HP;
924 else
925 LBUG();
926
927 nrs->nrs_svcpt = svcpt;
928 nrs->nrs_queue_type = queue;
929 spin_lock_init(&nrs->nrs_lock);
930 INIT_LIST_HEAD(&nrs->nrs_policy_list);
931 INIT_LIST_HEAD(&nrs->nrs_policy_queued);
932
933 rc = nrs_register_policies_locked(nrs);
934
935 return rc;
936 }
937
938 /**
939 * Allocates a regular and optionally a high-priority NRS head (if the service
940 * handles high-priority RPCs), and then registers all available compatible
941 * policies on those NRS heads.
942 *
943 * \param[in,out] svcpt the PTLRPC service partition to setup
944 *
945 * \pre mutex_is_locked(&nrs_core.nrs_mutex)
946 */
947 static int nrs_svcpt_setup_locked(struct ptlrpc_service_part *svcpt)
948 {
949 struct ptlrpc_nrs *nrs;
950 int rc;
951
952 LASSERT(mutex_is_locked(&nrs_core.nrs_mutex));
953
954 /**
955 * Initialize the regular NRS head.
956 */
957 nrs = nrs_svcpt2nrs(svcpt, false);
958 rc = nrs_svcpt_setup_locked0(nrs, svcpt);
959 if (rc < 0)
960 goto out;
961
962 /**
963 * Optionally allocate a high-priority NRS head.
964 */
965 if (svcpt->scp_service->srv_ops.so_hpreq_handler == NULL)
966 goto out;
967
968 OBD_CPT_ALLOC_PTR(svcpt->scp_nrs_hp,
969 svcpt->scp_service->srv_cptable,
970 svcpt->scp_cpt);
971 if (svcpt->scp_nrs_hp == NULL) {
972 rc = -ENOMEM;
973 goto out;
974 }
975
976 nrs = nrs_svcpt2nrs(svcpt, true);
977 rc = nrs_svcpt_setup_locked0(nrs, svcpt);
978
979 out:
980 return rc;
981 }
982
983 /**
984 * Unregisters all policies on all available NRS heads in a service partition;
985 * called at PTLRPC service unregistration time.
986 *
987 * \param[in] svcpt the PTLRPC service partition
988 *
989 * \pre mutex_is_locked(&nrs_core.nrs_mutex)
990 */
991 static void nrs_svcpt_cleanup_locked(struct ptlrpc_service_part *svcpt)
992 {
993 struct ptlrpc_nrs *nrs;
994 struct ptlrpc_nrs_policy *policy;
995 struct ptlrpc_nrs_policy *tmp;
996 int rc;
997 bool hp = false;
998
999 LASSERT(mutex_is_locked(&nrs_core.nrs_mutex));
1000
1001 again:
1002 nrs = nrs_svcpt2nrs(svcpt, hp);
1003 nrs->nrs_stopping = 1;
1004
1005 list_for_each_entry_safe(policy, tmp, &nrs->nrs_policy_list,
1006 pol_list) {
1007 rc = nrs_policy_unregister(nrs, policy->pol_desc->pd_name);
1008 LASSERT(rc == 0);
1009 }
1010
1011 /**
1012 * If the service partition has an HP NRS head, clean that up as well.
1013 */
1014 if (!hp && nrs_svcpt_has_hp(svcpt)) {
1015 hp = true;
1016 goto again;
1017 }
1018
1019 if (hp)
1020 OBD_FREE_PTR(nrs);
1021 }
1022
1023 /**
1024 * Returns the descriptor for a policy as identified by by \a name.
1025 *
1026 * \param[in] name the policy name
1027 *
1028 * \retval the policy descriptor
1029 * \retval NULL
1030 */
1031 static struct ptlrpc_nrs_pol_desc *nrs_policy_find_desc_locked(const char *name)
1032 {
1033 struct ptlrpc_nrs_pol_desc *tmp;
1034
1035 list_for_each_entry(tmp, &nrs_core.nrs_policies, pd_list) {
1036 if (strncmp(tmp->pd_name, name, NRS_POL_NAME_MAX) == 0)
1037 return tmp;
1038 }
1039 return NULL;
1040 }
1041
1042 /**
1043 * Removes the policy from all supported NRS heads of all partitions of all
1044 * PTLRPC services.
1045 *
1046 * \param[in] desc the policy descriptor to unregister
1047 *
1048 * \retval -ve error
1049 * \retval 0 successfully unregistered policy on all supported NRS heads
1050 *
1051 * \pre mutex_is_locked(&nrs_core.nrs_mutex)
1052 * \pre mutex_is_locked(&ptlrpc_all_services_mutex)
1053 */
1054 static int nrs_policy_unregister_locked(struct ptlrpc_nrs_pol_desc *desc)
1055 {
1056 struct ptlrpc_nrs *nrs;
1057 struct ptlrpc_service *svc;
1058 struct ptlrpc_service_part *svcpt;
1059 int i;
1060 int rc = 0;
1061
1062 LASSERT(mutex_is_locked(&nrs_core.nrs_mutex));
1063 LASSERT(mutex_is_locked(&ptlrpc_all_services_mutex));
1064
1065 list_for_each_entry(svc, &ptlrpc_all_services, srv_list) {
1066
1067 if (!nrs_policy_compatible(svc, desc) ||
1068 unlikely(svc->srv_is_stopping))
1069 continue;
1070
1071 ptlrpc_service_for_each_part(svcpt, i, svc) {
1072 bool hp = false;
1073
1074 again:
1075 nrs = nrs_svcpt2nrs(svcpt, hp);
1076 rc = nrs_policy_unregister(nrs, desc->pd_name);
1077 /**
1078 * Ignore -ENOENT as the policy may not have registered
1079 * successfully on all service partitions.
1080 */
1081 if (rc == -ENOENT) {
1082 rc = 0;
1083 } else if (rc != 0) {
1084 CERROR("Failed to unregister NRS policy %s for partition %d of service %s: %d\n",
1085 desc->pd_name, svcpt->scp_cpt,
1086 svcpt->scp_service->srv_name, rc);
1087 return rc;
1088 }
1089
1090 if (!hp && nrs_svc_has_hp(svc)) {
1091 hp = true;
1092 goto again;
1093 }
1094 }
1095
1096 if (desc->pd_ops->op_lprocfs_fini != NULL)
1097 desc->pd_ops->op_lprocfs_fini(svc);
1098 }
1099
1100 return rc;
1101 }
1102
1103 /**
1104 * Registers a new policy with NRS core.
1105 *
1106 * The function will only succeed if policy registration with all compatible
1107 * service partitions (if any) is successful.
1108 *
1109 * N.B. This function should be called either at ptlrpc module initialization
1110 * time when registering a policy that ships with NRS core, or in a
1111 * module's init() function for policies registering from other modules.
1112 *
1113 * \param[in] conf configuration information for the new policy to register
1114 *
1115 * \retval -ve error
1116 * \retval 0 success
1117 */
1118 int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf)
1119 {
1120 struct ptlrpc_service *svc;
1121 struct ptlrpc_nrs_pol_desc *desc;
1122 int rc = 0;
1123
1124 LASSERT(conf != NULL);
1125 LASSERT(conf->nc_ops != NULL);
1126 LASSERT(conf->nc_compat != NULL);
1127 LASSERT(ergo(conf->nc_compat == nrs_policy_compat_one,
1128 conf->nc_compat_svc_name != NULL));
1129 LASSERT(ergo((conf->nc_flags & PTLRPC_NRS_FL_REG_EXTERN) != 0,
1130 conf->nc_owner != NULL));
1131
1132 conf->nc_name[NRS_POL_NAME_MAX - 1] = '\0';
1133
1134 /**
1135 * External policies are not allowed to start immediately upon
1136 * registration, as there is a relatively higher chance that their
1137 * registration might fail. In such a case, some policy instances may
1138 * already have requests queued wen unregistration needs to happen as
1139 * part o cleanup; since there is currently no way to drain requests
1140 * from a policy unless the service is unregistering, we just disallow
1141 * this.
1142 */
1143 if ((conf->nc_flags & PTLRPC_NRS_FL_REG_EXTERN) &&
1144 (conf->nc_flags & (PTLRPC_NRS_FL_FALLBACK |
1145 PTLRPC_NRS_FL_REG_START))) {
1146 CERROR("NRS: failing to register policy %s. Please check policy flags; external policies cannot act as fallback policies, or be started immediately upon registration without interaction with lprocfs\n",
1147 conf->nc_name);
1148 return -EINVAL;
1149 }
1150
1151 mutex_lock(&nrs_core.nrs_mutex);
1152
1153 if (nrs_policy_find_desc_locked(conf->nc_name) != NULL) {
1154 CERROR("NRS: failing to register policy %s which has already been registered with NRS core!\n",
1155 conf->nc_name);
1156 rc = -EEXIST;
1157 goto fail;
1158 }
1159
1160 OBD_ALLOC_PTR(desc);
1161 if (desc == NULL) {
1162 rc = -ENOMEM;
1163 goto fail;
1164 }
1165
1166 strncpy(desc->pd_name, conf->nc_name, NRS_POL_NAME_MAX);
1167 desc->pd_ops = conf->nc_ops;
1168 desc->pd_compat = conf->nc_compat;
1169 desc->pd_compat_svc_name = conf->nc_compat_svc_name;
1170 if ((conf->nc_flags & PTLRPC_NRS_FL_REG_EXTERN) != 0)
1171 desc->pd_owner = conf->nc_owner;
1172 desc->pd_flags = conf->nc_flags;
1173 atomic_set(&desc->pd_refs, 0);
1174
1175 /**
1176 * For policies that are held in the same module as NRS (currently
1177 * ptlrpc), do not register the policy with all compatible services,
1178 * as the services will not have started at this point, since we are
1179 * calling from ptlrpc module initialization code. In such cases each
1180 * service will register all compatible policies later, via
1181 * ptlrpc_service_nrs_setup().
1182 */
1183 if ((conf->nc_flags & PTLRPC_NRS_FL_REG_EXTERN) == 0)
1184 goto internal;
1185
1186 /**
1187 * Register the new policy on all compatible services
1188 */
1189 mutex_lock(&ptlrpc_all_services_mutex);
1190
1191 list_for_each_entry(svc, &ptlrpc_all_services, srv_list) {
1192 struct ptlrpc_service_part *svcpt;
1193 int i;
1194 int rc2;
1195
1196 if (!nrs_policy_compatible(svc, desc) ||
1197 unlikely(svc->srv_is_stopping))
1198 continue;
1199
1200 ptlrpc_service_for_each_part(svcpt, i, svc) {
1201 struct ptlrpc_nrs *nrs;
1202 bool hp = false;
1203 again:
1204 nrs = nrs_svcpt2nrs(svcpt, hp);
1205 rc = nrs_policy_register(nrs, desc);
1206 if (rc != 0) {
1207 CERROR("Failed to register NRS policy %s for partition %d of service %s: %d\n",
1208 desc->pd_name, svcpt->scp_cpt,
1209 svcpt->scp_service->srv_name, rc);
1210
1211 rc2 = nrs_policy_unregister_locked(desc);
1212 /**
1213 * Should not fail at this point
1214 */
1215 LASSERT(rc2 == 0);
1216 mutex_unlock(&ptlrpc_all_services_mutex);
1217 OBD_FREE_PTR(desc);
1218 goto fail;
1219 }
1220
1221 if (!hp && nrs_svc_has_hp(svc)) {
1222 hp = true;
1223 goto again;
1224 }
1225 }
1226
1227 /**
1228 * No need to take a reference to other modules here, as we
1229 * will be calling from the module's init() function.
1230 */
1231 if (desc->pd_ops->op_lprocfs_init != NULL) {
1232 rc = desc->pd_ops->op_lprocfs_init(svc);
1233 if (rc != 0) {
1234 rc2 = nrs_policy_unregister_locked(desc);
1235 /**
1236 * Should not fail at this point
1237 */
1238 LASSERT(rc2 == 0);
1239 mutex_unlock(&ptlrpc_all_services_mutex);
1240 OBD_FREE_PTR(desc);
1241 goto fail;
1242 }
1243 }
1244 }
1245
1246 mutex_unlock(&ptlrpc_all_services_mutex);
1247 internal:
1248 list_add_tail(&desc->pd_list, &nrs_core.nrs_policies);
1249 fail:
1250 mutex_unlock(&nrs_core.nrs_mutex);
1251
1252 return rc;
1253 }
1254 EXPORT_SYMBOL(ptlrpc_nrs_policy_register);
1255
1256 /**
1257 * Unregisters a previously registered policy with NRS core. All instances of
1258 * the policy on all NRS heads of all supported services are removed.
1259 *
1260 * N.B. This function should only be called from a module's exit() function.
1261 * Although it can be used for policies that ship alongside NRS core, the
1262 * function is primarily intended for policies that register externally,
1263 * from other modules.
1264 *
1265 * \param[in] conf configuration information for the policy to unregister
1266 *
1267 * \retval -ve error
1268 * \retval 0 success
1269 */
1270 int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf)
1271 {
1272 struct ptlrpc_nrs_pol_desc *desc;
1273 int rc;
1274
1275 LASSERT(conf != NULL);
1276
1277 if (conf->nc_flags & PTLRPC_NRS_FL_FALLBACK) {
1278 CERROR("Unable to unregister a fallback policy, unless the PTLRPC service is stopping.\n");
1279 return -EPERM;
1280 }
1281
1282 conf->nc_name[NRS_POL_NAME_MAX - 1] = '\0';
1283
1284 mutex_lock(&nrs_core.nrs_mutex);
1285
1286 desc = nrs_policy_find_desc_locked(conf->nc_name);
1287 if (desc == NULL) {
1288 CERROR("Failing to unregister NRS policy %s which has not been registered with NRS core!\n",
1289 conf->nc_name);
1290 rc = -ENOENT;
1291 goto not_exist;
1292 }
1293
1294 mutex_lock(&ptlrpc_all_services_mutex);
1295
1296 rc = nrs_policy_unregister_locked(desc);
1297 if (rc < 0) {
1298 if (rc == -EBUSY)
1299 CERROR("Please first stop policy %s on all service partitions and then retry to unregister the policy.\n",
1300 conf->nc_name);
1301 goto fail;
1302 }
1303
1304 CDEBUG(D_INFO, "Unregistering policy %s from NRS core.\n",
1305 conf->nc_name);
1306
1307 list_del(&desc->pd_list);
1308 OBD_FREE_PTR(desc);
1309
1310 fail:
1311 mutex_unlock(&ptlrpc_all_services_mutex);
1312
1313 not_exist:
1314 mutex_unlock(&nrs_core.nrs_mutex);
1315
1316 return rc;
1317 }
1318 EXPORT_SYMBOL(ptlrpc_nrs_policy_unregister);
1319
1320 /**
1321 * Setup NRS heads on all service partitions of service \a svc, and register
1322 * all compatible policies on those NRS heads.
1323 *
1324 * To be called from within ptl
1325 * \param[in] svc the service to setup
1326 *
1327 * \retval -ve error, the calling logic should eventually call
1328 * ptlrpc_service_nrs_cleanup() to undo any work performed
1329 * by this function.
1330 *
1331 * \see ptlrpc_register_service()
1332 * \see ptlrpc_service_nrs_cleanup()
1333 */
1334 int ptlrpc_service_nrs_setup(struct ptlrpc_service *svc)
1335 {
1336 struct ptlrpc_service_part *svcpt;
1337 const struct ptlrpc_nrs_pol_desc *desc;
1338 int i;
1339 int rc = 0;
1340
1341 mutex_lock(&nrs_core.nrs_mutex);
1342
1343 /**
1344 * Initialize NRS heads on all service CPTs.
1345 */
1346 ptlrpc_service_for_each_part(svcpt, i, svc) {
1347 rc = nrs_svcpt_setup_locked(svcpt);
1348 if (rc != 0)
1349 goto failed;
1350 }
1351
1352 /**
1353 * Set up lprocfs interfaces for all supported policies for the
1354 * service.
1355 */
1356 list_for_each_entry(desc, &nrs_core.nrs_policies, pd_list) {
1357 if (!nrs_policy_compatible(svc, desc))
1358 continue;
1359
1360 if (desc->pd_ops->op_lprocfs_init != NULL) {
1361 rc = desc->pd_ops->op_lprocfs_init(svc);
1362 if (rc != 0)
1363 goto failed;
1364 }
1365 }
1366
1367 failed:
1368
1369 mutex_unlock(&nrs_core.nrs_mutex);
1370
1371 return rc;
1372 }
1373
1374 /**
1375 * Unregisters all policies on all service partitions of service \a svc.
1376 *
1377 * \param[in] svc the PTLRPC service to unregister
1378 */
1379 void ptlrpc_service_nrs_cleanup(struct ptlrpc_service *svc)
1380 {
1381 struct ptlrpc_service_part *svcpt;
1382 const struct ptlrpc_nrs_pol_desc *desc;
1383 int i;
1384
1385 mutex_lock(&nrs_core.nrs_mutex);
1386
1387 /**
1388 * Clean up NRS heads on all service partitions
1389 */
1390 ptlrpc_service_for_each_part(svcpt, i, svc)
1391 nrs_svcpt_cleanup_locked(svcpt);
1392
1393 /**
1394 * Clean up lprocfs interfaces for all supported policies for the
1395 * service.
1396 */
1397 list_for_each_entry(desc, &nrs_core.nrs_policies, pd_list) {
1398 if (!nrs_policy_compatible(svc, desc))
1399 continue;
1400
1401 if (desc->pd_ops->op_lprocfs_fini != NULL)
1402 desc->pd_ops->op_lprocfs_fini(svc);
1403 }
1404
1405 mutex_unlock(&nrs_core.nrs_mutex);
1406 }
1407
1408 /**
1409 * Obtains NRS head resources for request \a req.
1410 *
1411 * These could be either on the regular or HP NRS head of \a svcpt; resources
1412 * taken on the regular head can later be swapped for HP head resources by
1413 * ldlm_lock_reorder_req().
1414 *
1415 * \param[in] svcpt the service partition
1416 * \param[in] req the request
1417 * \param[in] hp which NRS head of \a svcpt to use
1418 */
1419 void ptlrpc_nrs_req_initialize(struct ptlrpc_service_part *svcpt,
1420 struct ptlrpc_request *req, bool hp)
1421 {
1422 struct ptlrpc_nrs *nrs = nrs_svcpt2nrs(svcpt, hp);
1423
1424 memset(&req->rq_nrq, 0, sizeof(req->rq_nrq));
1425 nrs_resource_get_safe(nrs, &req->rq_nrq, req->rq_nrq.nr_res_ptrs,
1426 false);
1427
1428 /**
1429 * It is fine to access \e nr_initialized without locking as there is
1430 * no contention at this early stage.
1431 */
1432 req->rq_nrq.nr_initialized = 1;
1433 }
1434
1435 /**
1436 * Releases resources for a request; is called after the request has been
1437 * handled.
1438 *
1439 * \param[in] req the request
1440 *
1441 * \see ptlrpc_server_finish_request()
1442 */
1443 void ptlrpc_nrs_req_finalize(struct ptlrpc_request *req)
1444 {
1445 if (req->rq_nrq.nr_initialized) {
1446 nrs_resource_put_safe(req->rq_nrq.nr_res_ptrs);
1447 /* no protection on bit nr_initialized because no
1448 * contention at this late stage */
1449 req->rq_nrq.nr_finalized = 1;
1450 }
1451 }
1452
1453 void ptlrpc_nrs_req_stop_nolock(struct ptlrpc_request *req)
1454 {
1455 if (req->rq_nrq.nr_started)
1456 nrs_request_stop(&req->rq_nrq);
1457 }
1458
1459 /**
1460 * Enqueues request \a req on either the regular or high-priority NRS head
1461 * of service partition \a svcpt.
1462 *
1463 * \param[in] svcpt the service partition
1464 * \param[in] req the request to be enqueued
1465 * \param[in] hp whether to enqueue the request on the regular or
1466 * high-priority NRS head.
1467 */
1468 void ptlrpc_nrs_req_add(struct ptlrpc_service_part *svcpt,
1469 struct ptlrpc_request *req, bool hp)
1470 {
1471 spin_lock(&svcpt->scp_req_lock);
1472
1473 if (hp)
1474 ptlrpc_nrs_hpreq_add_nolock(req);
1475 else
1476 ptlrpc_nrs_req_add_nolock(req);
1477
1478 spin_unlock(&svcpt->scp_req_lock);
1479 }
1480
1481 static void nrs_request_removed(struct ptlrpc_nrs_policy *policy)
1482 {
1483 LASSERT(policy->pol_nrs->nrs_req_queued > 0);
1484 LASSERT(policy->pol_req_queued > 0);
1485
1486 policy->pol_nrs->nrs_req_queued--;
1487 policy->pol_req_queued--;
1488
1489 /**
1490 * If the policy has no more requests queued, remove it from
1491 * ptlrpc_nrs::nrs_policy_queued.
1492 */
1493 if (unlikely(policy->pol_req_queued == 0)) {
1494 list_del_init(&policy->pol_list_queued);
1495
1496 /**
1497 * If there are other policies with queued requests, move the
1498 * current policy to the end so that we can round robin over
1499 * all policies and drain the requests.
1500 */
1501 } else if (policy->pol_req_queued != policy->pol_nrs->nrs_req_queued) {
1502 LASSERT(policy->pol_req_queued <
1503 policy->pol_nrs->nrs_req_queued);
1504
1505 list_move_tail(&policy->pol_list_queued,
1506 &policy->pol_nrs->nrs_policy_queued);
1507 }
1508 }
1509
1510 /**
1511 * Obtains a request for handling from an NRS head of service partition
1512 * \a svcpt.
1513 *
1514 * \param[in] svcpt the service partition
1515 * \param[in] hp whether to obtain a request from the regular or
1516 * high-priority NRS head.
1517 * \param[in] peek when set, signifies that we just want to examine the
1518 * request, and not handle it, so the request is not removed
1519 * from the policy.
1520 * \param[in] force when set, it will force a policy to return a request if it
1521 * has one pending
1522 *
1523 * \retval the request to be handled
1524 * \retval NULL the head has no requests to serve
1525 */
1526 struct ptlrpc_request *
1527 ptlrpc_nrs_req_get_nolock0(struct ptlrpc_service_part *svcpt, bool hp,
1528 bool peek, bool force)
1529 {
1530 struct ptlrpc_nrs *nrs = nrs_svcpt2nrs(svcpt, hp);
1531 struct ptlrpc_nrs_policy *policy;
1532 struct ptlrpc_nrs_request *nrq;
1533
1534 /**
1535 * Always try to drain requests from all NRS polices even if they are
1536 * inactive, because the user can change policy status at runtime.
1537 */
1538 list_for_each_entry(policy, &nrs->nrs_policy_queued,
1539 pol_list_queued) {
1540 nrq = nrs_request_get(policy, peek, force);
1541 if (nrq != NULL) {
1542 if (likely(!peek)) {
1543 nrq->nr_started = 1;
1544
1545 policy->pol_req_started++;
1546 policy->pol_nrs->nrs_req_started++;
1547
1548 nrs_request_removed(policy);
1549 }
1550
1551 return container_of(nrq, struct ptlrpc_request, rq_nrq);
1552 }
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /**
1559 * Dequeues request \a req from the policy it has been enqueued on.
1560 *
1561 * \param[in] req the request
1562 */
1563 void ptlrpc_nrs_req_del_nolock(struct ptlrpc_request *req)
1564 {
1565 struct ptlrpc_nrs_policy *policy = nrs_request_policy(&req->rq_nrq);
1566
1567 policy->pol_desc->pd_ops->op_req_dequeue(policy, &req->rq_nrq);
1568
1569 req->rq_nrq.nr_enqueued = 0;
1570
1571 nrs_request_removed(policy);
1572 }
1573
1574 /**
1575 * Returns whether there are any requests currently enqueued on any of the
1576 * policies of service partition's \a svcpt NRS head specified by \a hp. Should
1577 * be called while holding ptlrpc_service_part::scp_req_lock to get a reliable
1578 * result.
1579 *
1580 * \param[in] svcpt the service partition to enquire.
1581 * \param[in] hp whether the regular or high-priority NRS head is to be
1582 * enquired.
1583 *
1584 * \retval false the indicated NRS head has no enqueued requests.
1585 * \retval true the indicated NRS head has some enqueued requests.
1586 */
1587 bool ptlrpc_nrs_req_pending_nolock(struct ptlrpc_service_part *svcpt, bool hp)
1588 {
1589 struct ptlrpc_nrs *nrs = nrs_svcpt2nrs(svcpt, hp);
1590
1591 return nrs->nrs_req_queued > 0;
1592 };
1593
1594 /**
1595 * Moves request \a req from the regular to the high-priority NRS head.
1596 *
1597 * \param[in] req the request to move
1598 */
1599 void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req)
1600 {
1601 struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1602 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
1603 struct ptlrpc_nrs_resource *res1[NRS_RES_MAX];
1604 struct ptlrpc_nrs_resource *res2[NRS_RES_MAX];
1605
1606 /**
1607 * Obtain the high-priority NRS head resources.
1608 */
1609 nrs_resource_get_safe(nrs_svcpt2nrs(svcpt, true), nrq, res1, true);
1610
1611 spin_lock(&svcpt->scp_req_lock);
1612
1613 if (!ptlrpc_nrs_req_can_move(req))
1614 goto out;
1615
1616 ptlrpc_nrs_req_del_nolock(req);
1617
1618 memcpy(res2, nrq->nr_res_ptrs, NRS_RES_MAX * sizeof(res2[0]));
1619 memcpy(nrq->nr_res_ptrs, res1, NRS_RES_MAX * sizeof(res1[0]));
1620
1621 ptlrpc_nrs_hpreq_add_nolock(req);
1622
1623 memcpy(res1, res2, NRS_RES_MAX * sizeof(res1[0]));
1624 out:
1625 spin_unlock(&svcpt->scp_req_lock);
1626
1627 /**
1628 * Release either the regular NRS head resources if we moved the
1629 * request, or the high-priority NRS head resources if we took a
1630 * reference earlier in this function and ptlrpc_nrs_req_can_move()
1631 * returned false.
1632 */
1633 nrs_resource_put_safe(res1);
1634 }
1635
1636 /**
1637 * Carries out a control operation \a opc on the policy identified by the
1638 * human-readable \a name, on either all partitions, or only on the first
1639 * partition of service \a svc.
1640 *
1641 * \param[in] svc the service the policy belongs to.
1642 * \param[in] queue whether to carry out the command on the policy which
1643 * belongs to the regular, high-priority, or both NRS
1644 * heads of service partitions of \a svc.
1645 * \param[in] name the policy to act upon, by human-readable name
1646 * \param[in] opc the opcode of the operation to carry out
1647 * \param[in] single when set, the operation will only be carried out on the
1648 * NRS heads of the first service partition of \a svc.
1649 * This is useful for some policies which e.g. share
1650 * identical values on the same parameters of different
1651 * service partitions; when reading these parameters via
1652 * lprocfs, these policies may just want to obtain and
1653 * print out the values from the first service partition.
1654 * Storing these values centrally elsewhere then could be
1655 * another solution for this.
1656 * \param[in,out] arg can be used as a generic in/out buffer between control
1657 * operations and the user environment.
1658 *
1659 *\retval -ve error condition
1660 *\retval 0 operation was carried out successfully
1661 */
1662 int ptlrpc_nrs_policy_control(const struct ptlrpc_service *svc,
1663 enum ptlrpc_nrs_queue_type queue, char *name,
1664 enum ptlrpc_nrs_ctl opc, bool single, void *arg)
1665 {
1666 struct ptlrpc_service_part *svcpt;
1667 int i;
1668 int rc = 0;
1669
1670 LASSERT(opc != PTLRPC_NRS_CTL_INVALID);
1671
1672 if ((queue & PTLRPC_NRS_QUEUE_BOTH) == 0)
1673 return -EINVAL;
1674
1675 ptlrpc_service_for_each_part(svcpt, i, svc) {
1676 if ((queue & PTLRPC_NRS_QUEUE_REG) != 0) {
1677 rc = nrs_policy_ctl(nrs_svcpt2nrs(svcpt, false), name,
1678 opc, arg);
1679 if (rc != 0 || (queue == PTLRPC_NRS_QUEUE_REG &&
1680 single))
1681 goto out;
1682 }
1683
1684 if ((queue & PTLRPC_NRS_QUEUE_HP) != 0) {
1685 /**
1686 * XXX: We could optionally check for
1687 * nrs_svc_has_hp(svc) here, and return an error if it
1688 * is false. Right now we rely on the policies' lprocfs
1689 * handlers that call the present function to make this
1690 * check; if they fail to do so, they might hit the
1691 * assertion inside nrs_svcpt2nrs() below.
1692 */
1693 rc = nrs_policy_ctl(nrs_svcpt2nrs(svcpt, true), name,
1694 opc, arg);
1695 if (rc != 0 || single)
1696 goto out;
1697 }
1698 }
1699 out:
1700 return rc;
1701 }
1702
1703
1704 /* ptlrpc/nrs_fifo.c */
1705 extern struct ptlrpc_nrs_pol_conf nrs_conf_fifo;
1706
1707 /**
1708 * Adds all policies that ship with the ptlrpc module, to NRS core's list of
1709 * policies \e nrs_core.nrs_policies.
1710 *
1711 * \retval 0 all policies have been registered successfully
1712 * \retval -ve error
1713 */
1714 int ptlrpc_nrs_init(void)
1715 {
1716 int rc;
1717
1718 mutex_init(&nrs_core.nrs_mutex);
1719 INIT_LIST_HEAD(&nrs_core.nrs_policies);
1720
1721 rc = ptlrpc_nrs_policy_register(&nrs_conf_fifo);
1722 if (rc != 0)
1723 goto fail;
1724
1725
1726 return rc;
1727 fail:
1728 /**
1729 * Since no PTLRPC services have been started at this point, all we need
1730 * to do for cleanup is to free the descriptors.
1731 */
1732 ptlrpc_nrs_fini();
1733
1734 return rc;
1735 }
1736
1737 /**
1738 * Removes all policy descriptors from nrs_core::nrs_policies, and frees the
1739 * policy descriptors.
1740 *
1741 * Since all PTLRPC services are stopped at this point, there are no more
1742 * instances of any policies, because each service will have stopped its policy
1743 * instances in ptlrpc_service_nrs_cleanup(), so we just need to free the
1744 * descriptors here.
1745 */
1746 void ptlrpc_nrs_fini(void)
1747 {
1748 struct ptlrpc_nrs_pol_desc *desc;
1749 struct ptlrpc_nrs_pol_desc *tmp;
1750
1751 list_for_each_entry_safe(desc, tmp, &nrs_core.nrs_policies,
1752 pd_list) {
1753 list_del_init(&desc->pd_list);
1754 OBD_FREE_PTR(desc);
1755 }
1756 }
1757
1758 /** @} nrs */
This page took 0.076152 seconds and 5 git commands to generate.