staging: delete non-required instances of include <linux/init.h>
[deliverable/linux.git] / drivers / staging / media / cxd2099 / cxd2099.c
1 /*
2 * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
3 *
4 * Copyright (C) 2010-2011 Digital Devices GmbH
5 *
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 only, as published by the Free Software Foundation.
10 *
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA
22 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
23 */
24
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/i2c.h>
30 #include <linux/wait.h>
31 #include <linux/delay.h>
32 #include <linux/mutex.h>
33 #include <linux/io.h>
34
35 #include "cxd2099.h"
36
37 #define MAX_BUFFER_SIZE 248
38
39 struct cxd {
40 struct dvb_ca_en50221 en;
41
42 struct i2c_adapter *i2c;
43 struct cxd2099_cfg cfg;
44
45 u8 regs[0x23];
46 u8 lastaddress;
47 u8 clk_reg_f;
48 u8 clk_reg_b;
49 int mode;
50 int ready;
51 int dr;
52 int slot_stat;
53
54 u8 amem[1024];
55 int amem_read;
56
57 int cammode;
58 struct mutex lock;
59 };
60
61 static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
62 u8 reg, u8 data)
63 {
64 u8 m[2] = {reg, data};
65 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
66
67 if (i2c_transfer(adapter, &msg, 1) != 1) {
68 dev_err(&adapter->dev,
69 "Failed to write to I2C register %02x@%02x!\n",
70 reg, adr);
71 return -1;
72 }
73 return 0;
74 }
75
76 static int i2c_write(struct i2c_adapter *adapter, u8 adr,
77 u8 *data, u8 len)
78 {
79 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
80
81 if (i2c_transfer(adapter, &msg, 1) != 1) {
82 dev_err(&adapter->dev, "Failed to write to I2C!\n");
83 return -1;
84 }
85 return 0;
86 }
87
88 static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
89 u8 reg, u8 *val)
90 {
91 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
92 .buf = &reg, .len = 1},
93 {.addr = adr, .flags = I2C_M_RD,
94 .buf = val, .len = 1} };
95
96 if (i2c_transfer(adapter, msgs, 2) != 2) {
97 dev_err(&adapter->dev, "error in i2c_read_reg\n");
98 return -1;
99 }
100 return 0;
101 }
102
103 static int i2c_read(struct i2c_adapter *adapter, u8 adr,
104 u8 reg, u8 *data, u8 n)
105 {
106 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
107 .buf = &reg, .len = 1},
108 {.addr = adr, .flags = I2C_M_RD,
109 .buf = data, .len = n} };
110
111 if (i2c_transfer(adapter, msgs, 2) != 2) {
112 dev_err(&adapter->dev, "error in i2c_read\n");
113 return -1;
114 }
115 return 0;
116 }
117
118 static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
119 {
120 int status;
121
122 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
123 if (!status) {
124 ci->lastaddress = adr;
125 status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
126 }
127 return status;
128 }
129
130 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
131 {
132 return read_block(ci, reg, val, 1);
133 }
134
135
136 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
137 {
138 int status;
139 u8 addr[3] = {2, address & 0xff, address >> 8};
140
141 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
142 if (!status)
143 status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
144 return status;
145 }
146
147 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
148 {
149 int status;
150 u8 addr[3] = {2, address & 0xff, address >> 8};
151
152 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
153 if (!status) {
154 u8 buf[256] = {3};
155 memcpy(buf+1, data, n);
156 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
157 }
158 return status;
159 }
160
161 static int read_io(struct cxd *ci, u16 address, u8 *val)
162 {
163 int status;
164 u8 addr[3] = {2, address & 0xff, address >> 8};
165
166 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
167 if (!status)
168 status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
169 return status;
170 }
171
172 static int write_io(struct cxd *ci, u16 address, u8 val)
173 {
174 int status;
175 u8 addr[3] = {2, address & 0xff, address >> 8};
176 u8 buf[2] = {3, val};
177
178 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
179 if (!status)
180 status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
181 return status;
182 }
183
184 #if 0
185 static int read_io_data(struct cxd *ci, u8 *data, u8 n)
186 {
187 int status;
188 u8 addr[3] = { 2, 0, 0 };
189
190 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
191 if (!status)
192 status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
193 return 0;
194 }
195
196 static int write_io_data(struct cxd *ci, u8 *data, u8 n)
197 {
198 int status;
199 u8 addr[3] = {2, 0, 0};
200
201 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
202 if (!status) {
203 u8 buf[256] = {3};
204 memcpy(buf+1, data, n);
205 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
206 }
207 return 0;
208 }
209 #endif
210
211 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
212 {
213 int status;
214
215 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
216 if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
217 status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
218 ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
219 if (!status) {
220 ci->lastaddress = reg;
221 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
222 }
223 if (reg == 0x20)
224 ci->regs[reg] &= 0x7f;
225 return status;
226 }
227
228 static int write_reg(struct cxd *ci, u8 reg, u8 val)
229 {
230 return write_regm(ci, reg, val, 0xff);
231 }
232
233 #ifdef BUFFER_MODE
234 static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
235 {
236 int status;
237 u8 buf[256] = {1};
238
239 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
240 if (!status) {
241 ci->lastaddress = adr;
242 memcpy(buf + 1, data, n);
243 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
244 }
245 return status;
246 }
247 #endif
248
249 static void set_mode(struct cxd *ci, int mode)
250 {
251 if (mode == ci->mode)
252 return;
253
254 switch (mode) {
255 case 0x00: /* IO mem */
256 write_regm(ci, 0x06, 0x00, 0x07);
257 break;
258 case 0x01: /* ATT mem */
259 write_regm(ci, 0x06, 0x02, 0x07);
260 break;
261 default:
262 break;
263 }
264 ci->mode = mode;
265 }
266
267 static void cam_mode(struct cxd *ci, int mode)
268 {
269 if (mode == ci->cammode)
270 return;
271
272 switch (mode) {
273 case 0x00:
274 write_regm(ci, 0x20, 0x80, 0x80);
275 break;
276 case 0x01:
277 #ifdef BUFFER_MODE
278 if (!ci->en.read_data)
279 return;
280 dev_info(&ci->i2c->dev, "enable cam buffer mode\n");
281 /* write_reg(ci, 0x0d, 0x00); */
282 /* write_reg(ci, 0x0e, 0x01); */
283 write_regm(ci, 0x08, 0x40, 0x40);
284 /* read_reg(ci, 0x12, &dummy); */
285 write_regm(ci, 0x08, 0x80, 0x80);
286 #endif
287 break;
288 default:
289 break;
290 }
291 ci->cammode = mode;
292 }
293
294
295
296 static int init(struct cxd *ci)
297 {
298 int status;
299
300 mutex_lock(&ci->lock);
301 ci->mode = -1;
302 do {
303 status = write_reg(ci, 0x00, 0x00);
304 if (status < 0)
305 break;
306 status = write_reg(ci, 0x01, 0x00);
307 if (status < 0)
308 break;
309 status = write_reg(ci, 0x02, 0x10);
310 if (status < 0)
311 break;
312 status = write_reg(ci, 0x03, 0x00);
313 if (status < 0)
314 break;
315 status = write_reg(ci, 0x05, 0xFF);
316 if (status < 0)
317 break;
318 status = write_reg(ci, 0x06, 0x1F);
319 if (status < 0)
320 break;
321 status = write_reg(ci, 0x07, 0x1F);
322 if (status < 0)
323 break;
324 status = write_reg(ci, 0x08, 0x28);
325 if (status < 0)
326 break;
327 status = write_reg(ci, 0x14, 0x20);
328 if (status < 0)
329 break;
330
331 #if 0
332 status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
333 if (status < 0)
334 break;
335 #endif
336 status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
337 if (status < 0)
338 break;
339
340 status = write_reg(ci, 0x0B, 0x33);
341 if (status < 0)
342 break;
343 status = write_reg(ci, 0x0C, 0x33);
344 if (status < 0)
345 break;
346
347 status = write_regm(ci, 0x14, 0x00, 0x0F);
348 if (status < 0)
349 break;
350 status = write_reg(ci, 0x15, ci->clk_reg_b);
351 if (status < 0)
352 break;
353 status = write_regm(ci, 0x16, 0x00, 0x0F);
354 if (status < 0)
355 break;
356 status = write_reg(ci, 0x17, ci->clk_reg_f);
357 if (status < 0)
358 break;
359
360 if (ci->cfg.clock_mode) {
361 if (ci->cfg.polarity) {
362 status = write_reg(ci, 0x09, 0x6f);
363 if (status < 0)
364 break;
365 } else {
366 status = write_reg(ci, 0x09, 0x6d);
367 if (status < 0)
368 break;
369 }
370 status = write_reg(ci, 0x20, 0x68);
371 if (status < 0)
372 break;
373 status = write_reg(ci, 0x21, 0x00);
374 if (status < 0)
375 break;
376 status = write_reg(ci, 0x22, 0x02);
377 if (status < 0)
378 break;
379 } else {
380 if (ci->cfg.polarity) {
381 status = write_reg(ci, 0x09, 0x4f);
382 if (status < 0)
383 break;
384 } else {
385 status = write_reg(ci, 0x09, 0x4d);
386 if (status < 0)
387 break;
388 }
389
390 status = write_reg(ci, 0x20, 0x28);
391 if (status < 0)
392 break;
393 status = write_reg(ci, 0x21, 0x00);
394 if (status < 0)
395 break;
396 status = write_reg(ci, 0x22, 0x07);
397 if (status < 0)
398 break;
399 }
400
401 status = write_regm(ci, 0x20, 0x80, 0x80);
402 if (status < 0)
403 break;
404 status = write_regm(ci, 0x03, 0x02, 0x02);
405 if (status < 0)
406 break;
407 status = write_reg(ci, 0x01, 0x04);
408 if (status < 0)
409 break;
410 status = write_reg(ci, 0x00, 0x31);
411 if (status < 0)
412 break;
413
414 /* Put TS in bypass */
415 status = write_regm(ci, 0x09, 0x08, 0x08);
416 if (status < 0)
417 break;
418 ci->cammode = -1;
419 cam_mode(ci, 0);
420 } while (0);
421 mutex_unlock(&ci->lock);
422
423 return 0;
424 }
425
426 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
427 int slot, int address)
428 {
429 struct cxd *ci = ca->data;
430 #if 0
431 if (ci->amem_read) {
432 if (address <= 0 || address > 1024)
433 return -EIO;
434 return ci->amem[address];
435 }
436
437 mutex_lock(&ci->lock);
438 write_regm(ci, 0x06, 0x00, 0x05);
439 read_pccard(ci, 0, &ci->amem[0], 128);
440 read_pccard(ci, 128, &ci->amem[0], 128);
441 read_pccard(ci, 256, &ci->amem[0], 128);
442 read_pccard(ci, 384, &ci->amem[0], 128);
443 write_regm(ci, 0x06, 0x05, 0x05);
444 mutex_unlock(&ci->lock);
445 return ci->amem[address];
446 #else
447 u8 val;
448 mutex_lock(&ci->lock);
449 set_mode(ci, 1);
450 read_pccard(ci, address, &val, 1);
451 mutex_unlock(&ci->lock);
452 /* printk(KERN_INFO "%02x:%02x\n", address,val); */
453 return val;
454 #endif
455 }
456
457 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
458 int address, u8 value)
459 {
460 struct cxd *ci = ca->data;
461
462 mutex_lock(&ci->lock);
463 set_mode(ci, 1);
464 write_pccard(ci, address, &value, 1);
465 mutex_unlock(&ci->lock);
466 return 0;
467 }
468
469 static int read_cam_control(struct dvb_ca_en50221 *ca,
470 int slot, u8 address)
471 {
472 struct cxd *ci = ca->data;
473 u8 val;
474
475 mutex_lock(&ci->lock);
476 set_mode(ci, 0);
477 read_io(ci, address, &val);
478 mutex_unlock(&ci->lock);
479 return val;
480 }
481
482 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
483 u8 address, u8 value)
484 {
485 struct cxd *ci = ca->data;
486
487 mutex_lock(&ci->lock);
488 set_mode(ci, 0);
489 write_io(ci, address, value);
490 mutex_unlock(&ci->lock);
491 return 0;
492 }
493
494 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
495 {
496 struct cxd *ci = ca->data;
497
498 mutex_lock(&ci->lock);
499 #if 0
500 write_reg(ci, 0x00, 0x21);
501 write_reg(ci, 0x06, 0x1F);
502 write_reg(ci, 0x00, 0x31);
503 #else
504 #if 0
505 write_reg(ci, 0x06, 0x1F);
506 write_reg(ci, 0x06, 0x2F);
507 #else
508 cam_mode(ci, 0);
509 write_reg(ci, 0x00, 0x21);
510 write_reg(ci, 0x06, 0x1F);
511 write_reg(ci, 0x00, 0x31);
512 write_regm(ci, 0x20, 0x80, 0x80);
513 write_reg(ci, 0x03, 0x02);
514 ci->ready = 0;
515 #endif
516 #endif
517 ci->mode = -1;
518 {
519 int i;
520 #if 0
521 u8 val;
522 #endif
523 for (i = 0; i < 100; i++) {
524 msleep(10);
525 #if 0
526 read_reg(ci, 0x06, &val);
527 dev_info(&ci->i2c->dev, "%d:%02x\n", i, val);
528 if (!(val&0x10))
529 break;
530 #else
531 if (ci->ready)
532 break;
533 #endif
534 }
535 }
536 mutex_unlock(&ci->lock);
537 /* msleep(500); */
538 return 0;
539 }
540
541 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
542 {
543 struct cxd *ci = ca->data;
544
545 dev_info(&ci->i2c->dev, "slot_shutdown\n");
546 mutex_lock(&ci->lock);
547 write_regm(ci, 0x09, 0x08, 0x08);
548 write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
549 write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
550 ci->mode = -1;
551 mutex_unlock(&ci->lock);
552 return 0;
553 }
554
555 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
556 {
557 struct cxd *ci = ca->data;
558
559 mutex_lock(&ci->lock);
560 write_regm(ci, 0x09, 0x00, 0x08);
561 set_mode(ci, 0);
562 #ifdef BUFFER_MODE
563 cam_mode(ci, 1);
564 #endif
565 mutex_unlock(&ci->lock);
566 return 0;
567 }
568
569
570 static int campoll(struct cxd *ci)
571 {
572 u8 istat;
573
574 read_reg(ci, 0x04, &istat);
575 if (!istat)
576 return 0;
577 write_reg(ci, 0x05, istat);
578
579 if (istat&0x40) {
580 ci->dr = 1;
581 dev_info(&ci->i2c->dev, "DR\n");
582 }
583 if (istat&0x20)
584 dev_info(&ci->i2c->dev, "WC\n");
585
586 if (istat&2) {
587 u8 slotstat;
588
589 read_reg(ci, 0x01, &slotstat);
590 if (!(2&slotstat)) {
591 if (!ci->slot_stat) {
592 ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT;
593 write_regm(ci, 0x03, 0x08, 0x08);
594 }
595
596 } else {
597 if (ci->slot_stat) {
598 ci->slot_stat = 0;
599 write_regm(ci, 0x03, 0x00, 0x08);
600 dev_info(&ci->i2c->dev, "NO CAM\n");
601 ci->ready = 0;
602 }
603 }
604 if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
605 ci->ready = 1;
606 ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
607 }
608 }
609 return 0;
610 }
611
612
613 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
614 {
615 struct cxd *ci = ca->data;
616 u8 slotstat;
617
618 mutex_lock(&ci->lock);
619 campoll(ci);
620 read_reg(ci, 0x01, &slotstat);
621 mutex_unlock(&ci->lock);
622
623 return ci->slot_stat;
624 }
625
626 #ifdef BUFFER_MODE
627 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
628 {
629 struct cxd *ci = ca->data;
630 u8 msb, lsb;
631 u16 len;
632
633 mutex_lock(&ci->lock);
634 campoll(ci);
635 mutex_unlock(&ci->lock);
636
637 dev_info(&ci->i2c->dev, "read_data\n");
638 if (!ci->dr)
639 return 0;
640
641 mutex_lock(&ci->lock);
642 read_reg(ci, 0x0f, &msb);
643 read_reg(ci, 0x10, &lsb);
644 len = (msb<<8)|lsb;
645 read_block(ci, 0x12, ebuf, len);
646 ci->dr = 0;
647 mutex_unlock(&ci->lock);
648
649 return len;
650 }
651
652 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
653 {
654 struct cxd *ci = ca->data;
655
656 mutex_lock(&ci->lock);
657 printk(kern_INFO "write_data %d\n", ecount);
658 write_reg(ci, 0x0d, ecount>>8);
659 write_reg(ci, 0x0e, ecount&0xff);
660 write_block(ci, 0x11, ebuf, ecount);
661 mutex_unlock(&ci->lock);
662 return ecount;
663 }
664 #endif
665
666 static struct dvb_ca_en50221 en_templ = {
667 .read_attribute_mem = read_attribute_mem,
668 .write_attribute_mem = write_attribute_mem,
669 .read_cam_control = read_cam_control,
670 .write_cam_control = write_cam_control,
671 .slot_reset = slot_reset,
672 .slot_shutdown = slot_shutdown,
673 .slot_ts_enable = slot_ts_enable,
674 .poll_slot_status = poll_slot_status,
675 #ifdef BUFFER_MODE
676 .read_data = read_data,
677 .write_data = write_data,
678 #endif
679
680 };
681
682 struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
683 void *priv,
684 struct i2c_adapter *i2c)
685 {
686 struct cxd *ci;
687 u8 val;
688
689 if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
690 dev_info(&i2c->dev, "No CXD2099 detected at %02x\n", cfg->adr);
691 return NULL;
692 }
693
694 ci = kzalloc(sizeof(struct cxd), GFP_KERNEL);
695 if (!ci)
696 return NULL;
697
698 mutex_init(&ci->lock);
699 ci->cfg = *cfg;
700 ci->i2c = i2c;
701 ci->lastaddress = 0xff;
702 ci->clk_reg_b = 0x4a;
703 ci->clk_reg_f = 0x1b;
704
705 ci->en = en_templ;
706 ci->en.data = ci;
707 init(ci);
708 dev_info(&i2c->dev, "Attached CXD2099AR at %02x\n", ci->cfg.adr);
709 return &ci->en;
710 }
711 EXPORT_SYMBOL(cxd2099_attach);
712
713 MODULE_DESCRIPTION("cxd2099");
714 MODULE_AUTHOR("Ralph Metzler");
715 MODULE_LICENSE("GPL");
This page took 0.04635 seconds and 5 git commands to generate.