7f8c1b72116250df4cf0ea1f148756078789cf2b
[deliverable/linux.git] / drivers / staging / panel / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #include <linux/module.h>
38
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/smp_lock.h>
45 #include <linux/interrupt.h>
46 #include <linux/miscdevice.h>
47 #include <linux/slab.h>
48 #include <linux/ioport.h>
49 #include <linux/fcntl.h>
50 #include <linux/init.h>
51 #include <linux/delay.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/version.h>
55 #include <linux/list.h>
56 #include <linux/notifier.h>
57 #include <linux/reboot.h>
58 #include <linux/utsrelease.h>
59
60 #include <linux/io.h>
61 #include <asm/uaccess.h>
62 #include <asm/system.h>
63
64 /* smartcard length */
65 #define SMARTCARD_BYTES 64
66 #define LCD_MINOR 156
67 #define KEYPAD_MINOR 185
68 #define SMARTCARD_MINOR 186
69
70 #define PANEL_VERSION "0.9.5"
71
72 #define LCD_MAXBYTES 256 /* max burst write */
73
74 #define SMARTCARD_LOGICAL_DETECTOR "S6" /* D6 wired to SELECT = card inserted */
75
76 #define KEYPAD_BUFFER 64
77 #define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
78 #define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
79 #define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
80
81 #define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 #define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
94 #define PNL_PSELECP 0x08 /* inverted output, active low */
95 #define PNL_PINITP 0x04 /* direct output, active low */
96 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
97 #define PNL_PSTROBE 0x01 /* inverted output */
98
99 #define PNL_PD0 0x01
100 #define PNL_PD1 0x02
101 #define PNL_PD2 0x04
102 #define PNL_PD3 0x08
103 #define PNL_PD4 0x10
104 #define PNL_PD5 0x20
105 #define PNL_PD6 0x40
106 #define PNL_PD7 0x80
107
108 #define PIN_NONE 0
109 #define PIN_STROBE 1
110 #define PIN_D0 2
111 #define PIN_D1 3
112 #define PIN_D2 4
113 #define PIN_D3 5
114 #define PIN_D4 6
115 #define PIN_D5 7
116 #define PIN_D6 8
117 #define PIN_D7 9
118 #define PIN_AUTOLF 14
119 #define PIN_INITP 16
120 #define PIN_SELECP 17
121 #define PIN_NOT_SET 127
122
123 /* some smartcard-specific signals */
124 #define PNL_SC_IO PNL_PD1 /* Warning! inverted output, 0=highZ */
125 #define PNL_SC_RST PNL_PD2
126 #define PNL_SC_CLK PNL_PD3
127 #define PNL_SC_RW PNL_PD4
128 #define PNL_SC_ENA PNL_PINITP
129 #define PNL_SC_IOR PNL_PACK
130 #define PNL_SC_BITS (PNL_SC_IO | PNL_SC_RST | PNL_SC_CLK | PNL_SC_RW)
131
132 #define LCD_FLAG_S 0x0001
133 #define LCD_FLAG_ID 0x0002
134 #define LCD_FLAG_B 0x0004 /* blink on */
135 #define LCD_FLAG_C 0x0008 /* cursor on */
136 #define LCD_FLAG_D 0x0010 /* display on */
137 #define LCD_FLAG_F 0x0020 /* large font mode */
138 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
139 #define LCD_FLAG_L 0x0080 /* backlight enabled */
140
141 #define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
142 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
143
144 /* macros to simplify use of the parallel port */
145 #define r_ctr(x) (parport_read_control((x)->port))
146 #define r_dtr(x) (parport_read_data((x)->port))
147 #define r_str(x) (parport_read_status((x)->port))
148 #define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
149 #define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
150
151 /* this defines which bits are to be used and which ones to be ignored */
152 static __u8 scan_mask_o; /* logical or of the output bits involved in the scan matrix */
153 static __u8 scan_mask_i; /* logical or of the input bits involved in the scan matrix */
154
155 typedef __u64 pmask_t;
156
157 enum input_type {
158 INPUT_TYPE_STD,
159 INPUT_TYPE_KBD,
160 };
161
162 enum input_state {
163 INPUT_ST_LOW,
164 INPUT_ST_RISING,
165 INPUT_ST_HIGH,
166 INPUT_ST_FALLING,
167 };
168
169 struct logical_input {
170 struct list_head list;
171 pmask_t mask;
172 pmask_t value;
173 enum input_type type;
174 enum input_state state;
175 __u8 rise_time, fall_time;
176 __u8 rise_timer, fall_timer, high_timer;
177
178 union {
179 struct { /* this structure is valid when type == INPUT_TYPE_STD */
180 void (*press_fct) (int);
181 void (*release_fct) (int);
182 int press_data;
183 int release_data;
184 } std;
185 struct { /* this structure is valid when type == INPUT_TYPE_KBD */
186 /* strings can be full-length (ie. non null-terminated) */
187 char press_str[sizeof(void *) + sizeof(int)];
188 char repeat_str[sizeof(void *) + sizeof(int)];
189 char release_str[sizeof(void *) + sizeof(int)];
190 } kbd;
191 } u;
192 };
193
194 LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
195
196 /* physical contacts history
197 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
198 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
199 * corresponds to the ground.
200 * Within each group, bits are stored in the same order as read on the port :
201 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
202 * So, each __u64 (or pmask_t) is represented like this :
203 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
204 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
205 */
206 static pmask_t phys_read; /* what has just been read from the I/O ports */
207 static pmask_t phys_read_prev; /* previous phys_read */
208 static pmask_t phys_curr; /* stabilized phys_read (phys_read|phys_read_prev) */
209 static pmask_t phys_prev; /* previous phys_curr */
210 static char inputs_stable; /* 0 means that at least one logical signal needs be computed */
211
212 /* these variables are specific to the smartcard */
213 static __u8 smartcard_data[SMARTCARD_BYTES];
214 static int smartcard_ptr; /* pointer to half bytes in smartcard_data */
215
216 /* these variables are specific to the keypad */
217 static char keypad_buffer[KEYPAD_BUFFER];
218 static int keypad_buflen;
219 static int keypad_start;
220 static char keypressed;
221 static wait_queue_head_t keypad_read_wait;
222 static wait_queue_head_t smartcard_read_wait;
223
224 /* lcd-specific variables */
225 static unsigned long int lcd_flags; /* contains the LCD config state */
226 static unsigned long int lcd_addr_x; /* contains the LCD X offset */
227 static unsigned long int lcd_addr_y; /* contains the LCD Y offset */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1]; /* current escape sequence, 0 terminated */
229 static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
230
231 /*
232 * Bit masks to convert LCD signals to parallel port outputs.
233 * _d_ are values for data port, _c_ are for control port.
234 * [0] = signal OFF, [1] = signal ON, [2] = mask
235 */
236 #define BIT_CLR 0
237 #define BIT_SET 1
238 #define BIT_MSK 2
239 #define BIT_STATES 3
240 /*
241 * one entry for each bit on the LCD
242 */
243 #define LCD_BIT_E 0
244 #define LCD_BIT_RS 1
245 #define LCD_BIT_RW 2
246 #define LCD_BIT_BL 3
247 #define LCD_BIT_CL 4
248 #define LCD_BIT_DA 5
249 #define LCD_BITS 6
250
251 /*
252 * each bit can be either connected to a DATA or CTRL port
253 */
254 #define LCD_PORT_C 0
255 #define LCD_PORT_D 1
256 #define LCD_PORTS 2
257
258 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
259
260 /*
261 * LCD protocols
262 */
263 #define LCD_PROTO_PARALLEL 0
264 #define LCD_PROTO_SERIAL 1
265
266 /*
267 * LCD character sets
268 */
269 #define LCD_CHARSET_NORMAL 0
270 #define LCD_CHARSET_KS0074 1
271
272 /*
273 * LCD types
274 */
275 #define LCD_TYPE_NONE 0
276 #define LCD_TYPE_OLD 1
277 #define LCD_TYPE_KS0074 2
278 #define LCD_TYPE_HANTRONIX 3
279 #define LCD_TYPE_NEXCOM 4
280 #define LCD_TYPE_CUSTOM 5
281
282 /*
283 * keypad types
284 */
285 #define KEYPAD_TYPE_NONE 0
286 #define KEYPAD_TYPE_OLD 1
287 #define KEYPAD_TYPE_NEW 2
288 #define KEYPAD_TYPE_NEXCOM 3
289
290 /*
291 * panel profiles
292 */
293 #define PANEL_PROFILE_CUSTOM 0
294 #define PANEL_PROFILE_OLD 1
295 #define PANEL_PROFILE_NEW 2
296 #define PANEL_PROFILE_HANTRONIX 3
297 #define PANEL_PROFILE_NEXCOM 4
298 #define PANEL_PROFILE_LARGE 5
299
300 /*
301 * Construct custom config from the kernel's configuration
302 */
303 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
304 #define DEFAULT_PARPORT 0
305 #define DEFAULT_LCD LCD_TYPE_OLD
306 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
307 #define DEFAULT_SMARTCARD 0
308 #define DEFAULT_LCD_WIDTH 40
309 #define DEFAULT_LCD_BWIDTH 40
310 #define DEFAULT_LCD_HWIDTH 64
311 #define DEFAULT_LCD_HEIGHT 2
312 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
313
314 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
315 #define DEFAULT_LCD_PIN_RS PIN_SELECP
316 #define DEFAULT_LCD_PIN_RW PIN_INITP
317 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
318 #define DEFAULT_LCD_PIN_SDA PIN_D0
319 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
320 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
321
322 #ifdef CONFIG_PANEL_PROFILE
323 #undef DEFAULT_PROFILE
324 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
325 #endif
326
327 #ifdef CONFIG_PANEL_PARPORT
328 #undef DEFAULT_PARPORT
329 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
330 #endif
331
332 #if DEFAULT_PROFILE == 0 /* custom */
333 #ifdef CONFIG_PANEL_KEYPAD
334 #undef DEFAULT_KEYPAD
335 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
336 #endif
337
338 #ifdef CONFIG_PANEL_SMARTCARD
339 #undef DEFAULT_SMARTCARD
340 #define DEFAULT_SMARTCARD 1
341 #endif
342
343 #ifdef CONFIG_PANEL_LCD
344 #undef DEFAULT_LCD
345 #define DEFAULT_LCD CONFIG_PANEL_LCD
346 #endif
347
348 #ifdef CONFIG_PANEL_LCD_WIDTH
349 #undef DEFAULT_LCD_WIDTH
350 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
351 #endif
352
353 #ifdef CONFIG_PANEL_LCD_BWIDTH
354 #undef DEFAULT_LCD_BWIDTH
355 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
356 #endif
357
358 #ifdef CONFIG_PANEL_LCD_HWIDTH
359 #undef DEFAULT_LCD_HWIDTH
360 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
361 #endif
362
363 #ifdef CONFIG_PANEL_LCD_HEIGHT
364 #undef DEFAULT_LCD_HEIGHT
365 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
366 #endif
367
368 #ifdef CONFIG_PANEL_LCD_PROTO
369 #undef DEFAULT_LCD_PROTO
370 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
371 #endif
372
373 #ifdef CONFIG_PANEL_LCD_PIN_E
374 #undef DEFAULT_LCD_PIN_E
375 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
376 #endif
377
378 #ifdef CONFIG_PANEL_LCD_PIN_RS
379 #undef DEFAULT_LCD_PIN_RS
380 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
381 #endif
382
383 #ifdef CONFIG_PANEL_LCD_PIN_RW
384 #undef DEFAULT_LCD_PIN_RW
385 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
386 #endif
387
388 #ifdef CONFIG_PANEL_LCD_PIN_SCL
389 #undef DEFAULT_LCD_PIN_SCL
390 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
391 #endif
392
393 #ifdef CONFIG_PANEL_LCD_PIN_SDA
394 #undef DEFAULT_LCD_PIN_SDA
395 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
396 #endif
397
398 #ifdef CONFIG_PANEL_LCD_PIN_BL
399 #undef DEFAULT_LCD_PIN_BL
400 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
401 #endif
402
403 #ifdef CONFIG_PANEL_LCD_CHARSET
404 #undef DEFAULT_LCD_CHARSET
405 #define DEFAULT_LCD_CHARSET
406 #endif
407
408 #endif /* DEFAULT_PROFILE == 0 */
409
410 /* global variables */
411 static int smartcard_open_cnt; /* #times opened */
412 static int keypad_open_cnt; /* #times opened */
413 static int lcd_open_cnt; /* #times opened */
414 static struct pardevice *pprt;
415
416 static int lcd_initialized;
417 static int keypad_initialized;
418 static int smartcard_initialized;
419
420 static int light_tempo;
421
422 static char lcd_must_clear;
423 static char lcd_left_shift;
424 static char init_in_progress;
425
426 static void (*lcd_write_cmd) (int);
427 static void (*lcd_write_data) (int);
428 static void (*lcd_clear_fast) (void);
429
430 static DEFINE_SPINLOCK(pprt_lock);
431 static struct timer_list scan_timer;
432
433 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad/Smartcard driver");
434
435 static int parport = -1;
436 module_param(parport, int, 0000);
437 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
438
439 static int lcd_height = -1;
440 module_param(lcd_height, int, 0000);
441 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
442
443 static int lcd_width = -1;
444 module_param(lcd_width, int, 0000);
445 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
446
447 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
448 module_param(lcd_bwidth, int, 0000);
449 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
450
451 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
452 module_param(lcd_hwidth, int, 0000);
453 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
454
455 static int lcd_enabled = -1;
456 module_param(lcd_enabled, int, 0000);
457 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
458
459 static int keypad_enabled = -1;
460 module_param(keypad_enabled, int, 0000);
461 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
462
463 static int lcd_type = -1;
464 module_param(lcd_type, int, 0000);
465 MODULE_PARM_DESC(lcd_type,
466 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
467
468 static int lcd_proto = -1;
469 module_param(lcd_proto, int, 0000);
470 MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial");
471
472 static int lcd_charset = -1;
473 module_param(lcd_charset, int, 0000);
474 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
475
476 static int keypad_type = -1;
477 module_param(keypad_type, int, 0000);
478 MODULE_PARM_DESC(keypad_type,
479 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
480
481 static int smartcard_enabled = -1;
482 module_param(smartcard_enabled, int, 0000);
483 MODULE_PARM_DESC(smartcard_enabled,
484 "Smartcard reader: 0=disabled (default), 1=enabled");
485
486 static int profile = DEFAULT_PROFILE;
487 module_param(profile, int, 0000);
488 MODULE_PARM_DESC(profile,
489 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
490
491 /*
492 * These are the parallel port pins the LCD control signals are connected to.
493 * Set this to 0 if the signal is not used. Set it to its opposite value
494 * (negative) if the signal is negated. -MAXINT is used to indicate that the
495 * pin has not been explicitly specified.
496 *
497 * WARNING! no check will be performed about collisions with keypad/smartcard !
498 */
499
500 static int lcd_e_pin = PIN_NOT_SET;
501 module_param(lcd_e_pin, int, 0000);
502 MODULE_PARM_DESC(lcd_e_pin,
503 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
504
505 static int lcd_rs_pin = PIN_NOT_SET;
506 module_param(lcd_rs_pin, int, 0000);
507 MODULE_PARM_DESC(lcd_rs_pin,
508 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
509
510 static int lcd_rw_pin = PIN_NOT_SET;
511 module_param(lcd_rw_pin, int, 0000);
512 MODULE_PARM_DESC(lcd_rw_pin,
513 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
514
515 static int lcd_bl_pin = PIN_NOT_SET;
516 module_param(lcd_bl_pin, int, 0000);
517 MODULE_PARM_DESC(lcd_bl_pin,
518 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
519
520 static int lcd_da_pin = PIN_NOT_SET;
521 module_param(lcd_da_pin, int, 0000);
522 MODULE_PARM_DESC(lcd_da_pin,
523 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
524
525 static int lcd_cl_pin = PIN_NOT_SET;
526 module_param(lcd_cl_pin, int, 0000);
527 MODULE_PARM_DESC(lcd_cl_pin,
528 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
529
530 static unsigned char *lcd_char_conv;
531
532 /* for some LCD drivers (ks0074) we need a charset conversion table. */
533 static unsigned char lcd_char_conv_ks0074[256] = {
534 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
535 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
536 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
537 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
538 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
539 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
540 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
541 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
542 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
543 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
544 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
545 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
546 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
547 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
548 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
549 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
550 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
551 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
552 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
553 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
554 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
555 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
556 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
557 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
558 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
559 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
560 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
561 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
562 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
563 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
564 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
565 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
566 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
567 };
568
569 char old_keypad_profile[][4][9] = {
570 {"S0", "Left\n", "Left\n", ""},
571 {"S1", "Down\n", "Down\n", ""},
572 {"S2", "Up\n", "Up\n", ""},
573 {"S3", "Right\n", "Right\n", ""},
574 {"S4", "Esc\n", "Esc\n", ""},
575 {"S5", "Ret\n", "Ret\n", ""},
576 {"", "", "", ""}
577 };
578
579 /* signals, press, repeat, release */
580 char new_keypad_profile[][4][9] = {
581 {"S0", "Left\n", "Left\n", ""},
582 {"S1", "Down\n", "Down\n", ""},
583 {"S2", "Up\n", "Up\n", ""},
584 {"S3", "Right\n", "Right\n", ""},
585 {"S4s5", "", "Esc\n", "Esc\n"},
586 {"s4S5", "", "Ret\n", "Ret\n"},
587 {"S4S5", "Help\n", "", ""},
588 /* add new signals above this line */
589 {"", "", "", ""}
590 };
591
592 /* signals, press, repeat, release */
593 char nexcom_keypad_profile[][4][9] = {
594 {"a-p-e-", "Down\n", "Down\n", ""},
595 {"a-p-E-", "Ret\n", "Ret\n", ""},
596 {"a-P-E-", "Esc\n", "Esc\n", ""},
597 {"a-P-e-", "Up\n", "Up\n", ""},
598 /* add new signals above this line */
599 {"", "", "", ""}
600 };
601
602 static char (*keypad_profile)[4][9] = old_keypad_profile;
603
604 /* FIXME: this should be converted to a bit array containing signals states */
605 static struct {
606 unsigned char e; /* parallel LCD E (data latch on falling edge) */
607 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
608 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
609 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
610 unsigned char cl; /* serial LCD clock (latch on rising edge) */
611 unsigned char da; /* serial LCD data */
612 } bits;
613
614 static void init_scan_timer(void);
615
616 /* sets data port bits according to current signals values */
617 static int set_data_bits(void)
618 {
619 int val, bit;
620
621 val = r_dtr(pprt);
622 for (bit = 0; bit < LCD_BITS; bit++)
623 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
624
625 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
626 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
627 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
628 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
629 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
630 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
631
632 w_dtr(pprt, val);
633 return val;
634 }
635
636 /* sets ctrl port bits according to current signals values */
637 static int set_ctrl_bits(void)
638 {
639 int val, bit;
640
641 val = r_ctr(pprt);
642 for (bit = 0; bit < LCD_BITS; bit++)
643 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
644
645 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
646 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
647 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
648 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
649 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
650 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
651
652 w_ctr(pprt, val);
653 return val;
654 }
655
656 /* sets ctrl & data port bits according to current signals values */
657 static void set_bits(void)
658 {
659 set_data_bits();
660 set_ctrl_bits();
661 }
662
663 /*
664 * Converts a parallel port pin (from -25 to 25) to data and control ports
665 * masks, and data and control port bits. The signal will be considered
666 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
667 *
668 * Result will be used this way :
669 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
670 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
671 */
672 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
673 {
674 int d_bit, c_bit, inv;
675
676 d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
677 d_val[2] = c_val[2] = 0xFF;
678
679 if (pin == 0)
680 return;
681
682 inv = (pin < 0);
683 if (inv)
684 pin = -pin;
685
686 d_bit = c_bit = 0;
687
688 switch (pin) {
689 case PIN_STROBE: /* strobe, inverted */
690 c_bit = PNL_PSTROBE;
691 inv = !inv;
692 break;
693 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
694 d_bit = 1 << (pin - 2);
695 break;
696 case PIN_AUTOLF: /* autofeed, inverted */
697 c_bit = PNL_PAUTOLF;
698 inv = !inv;
699 break;
700 case PIN_INITP: /* init, direct */
701 c_bit = PNL_PINITP;
702 break;
703 case PIN_SELECP: /* select_in, inverted */
704 c_bit = PNL_PSELECP;
705 inv = !inv;
706 break;
707 default: /* unknown pin, ignore */
708 break;
709 }
710
711 if (c_bit) {
712 c_val[2] &= ~c_bit;
713 c_val[!inv] = c_bit;
714 } else if (d_bit) {
715 d_val[2] &= ~d_bit;
716 d_val[!inv] = d_bit;
717 }
718 }
719
720 /* sleeps that many milliseconds with a reschedule */
721 static void long_sleep(int ms)
722 {
723
724 if (in_interrupt())
725 mdelay(ms);
726 else {
727 current->state = TASK_INTERRUPTIBLE;
728 schedule_timeout((ms * HZ + 999) / 1000);
729 }
730 }
731
732 /* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
733 static void lcd_send_serial(int byte)
734 {
735 int bit;
736
737 /* the data bit is set on D0, and the clock on STROBE.
738 * LCD reads D0 on STROBE's rising edge.
739 */
740 for (bit = 0; bit < 8; bit++) {
741 bits.cl = BIT_CLR; /* CLK low */
742 set_bits();
743 bits.da = byte & 1;
744 set_bits();
745 udelay(2); /* maintain the data during 2 us before CLK up */
746 bits.cl = BIT_SET; /* CLK high */
747 set_bits();
748 udelay(1); /* maintain the strobe during 1 us */
749 byte >>= 1;
750 }
751 }
752
753 /* turn the backlight on or off */
754 static void lcd_backlight(int on)
755 {
756 if (lcd_bl_pin == PIN_NONE)
757 return;
758
759 /* The backlight is activated by seting the AUTOFEED line to +5V */
760 spin_lock(&pprt_lock);
761 bits.bl = on;
762 set_bits();
763 spin_unlock(&pprt_lock);
764 }
765
766 /* send a command to the LCD panel in serial mode */
767 static void lcd_write_cmd_s(int cmd)
768 {
769 spin_lock(&pprt_lock);
770 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
771 lcd_send_serial(cmd & 0x0F);
772 lcd_send_serial((cmd >> 4) & 0x0F);
773 udelay(40); /* the shortest command takes at least 40 us */
774 spin_unlock(&pprt_lock);
775 }
776
777 /* send data to the LCD panel in serial mode */
778 static void lcd_write_data_s(int data)
779 {
780 spin_lock(&pprt_lock);
781 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
782 lcd_send_serial(data & 0x0F);
783 lcd_send_serial((data >> 4) & 0x0F);
784 udelay(40); /* the shortest data takes at least 40 us */
785 spin_unlock(&pprt_lock);
786 }
787
788 /* send a command to the LCD panel in 8 bits parallel mode */
789 static void lcd_write_cmd_p8(int cmd)
790 {
791 spin_lock(&pprt_lock);
792 /* present the data to the data port */
793 w_dtr(pprt, cmd);
794 udelay(20); /* maintain the data during 20 us before the strobe */
795
796 bits.e = BIT_SET;
797 bits.rs = BIT_CLR;
798 bits.rw = BIT_CLR;
799 set_ctrl_bits();
800
801 udelay(40); /* maintain the strobe during 40 us */
802
803 bits.e = BIT_CLR;
804 set_ctrl_bits();
805
806 udelay(120); /* the shortest command takes at least 120 us */
807 spin_unlock(&pprt_lock);
808 }
809
810 /* send data to the LCD panel in 8 bits parallel mode */
811 static void lcd_write_data_p8(int data)
812 {
813 spin_lock(&pprt_lock);
814 /* present the data to the data port */
815 w_dtr(pprt, data);
816 udelay(20); /* maintain the data during 20 us before the strobe */
817
818 bits.e = BIT_SET;
819 bits.rs = BIT_SET;
820 bits.rw = BIT_CLR;
821 set_ctrl_bits();
822
823 udelay(40); /* maintain the strobe during 40 us */
824
825 bits.e = BIT_CLR;
826 set_ctrl_bits();
827
828 udelay(45); /* the shortest data takes at least 45 us */
829 spin_unlock(&pprt_lock);
830 }
831
832 static void lcd_gotoxy(void)
833 {
834 lcd_write_cmd(0x80 /* set DDRAM address */
835 | (lcd_addr_y ? lcd_hwidth : 0)
836 /* we force the cursor to stay at the end of the line if it wants to go farther */
837 | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
838 (lcd_hwidth - 1) : lcd_bwidth - 1));
839 }
840
841 static void lcd_print(char c)
842 {
843 if (lcd_addr_x < lcd_bwidth) {
844 if (lcd_char_conv != NULL)
845 c = lcd_char_conv[(unsigned char)c];
846 lcd_write_data(c);
847 lcd_addr_x++;
848 }
849 /* prevents the cursor from wrapping onto the next line */
850 if (lcd_addr_x == lcd_bwidth)
851 lcd_gotoxy();
852 }
853
854 /* fills the display with spaces and resets X/Y */
855 static void lcd_clear_fast_s(void)
856 {
857 int pos;
858 lcd_addr_x = lcd_addr_y = 0;
859 lcd_gotoxy();
860
861 spin_lock(&pprt_lock);
862 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
863 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
864 lcd_send_serial(' ' & 0x0F);
865 lcd_send_serial((' ' >> 4) & 0x0F);
866 udelay(40); /* the shortest data takes at least 40 us */
867 }
868 spin_unlock(&pprt_lock);
869
870 lcd_addr_x = lcd_addr_y = 0;
871 lcd_gotoxy();
872 }
873
874 /* fills the display with spaces and resets X/Y */
875 static void lcd_clear_fast_p8(void)
876 {
877 int pos;
878 lcd_addr_x = lcd_addr_y = 0;
879 lcd_gotoxy();
880
881 spin_lock(&pprt_lock);
882 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
883 /* present the data to the data port */
884 w_dtr(pprt, ' ');
885 udelay(20); /* maintain the data during 20 us before the strobe */
886
887 bits.e = BIT_SET;
888 bits.rs = BIT_SET;
889 bits.rw = BIT_CLR;
890 set_ctrl_bits();
891
892 udelay(40); /* maintain the strobe during 40 us */
893
894 bits.e = BIT_CLR;
895 set_ctrl_bits();
896
897 udelay(45); /* the shortest data takes at least 45 us */
898 }
899 spin_unlock(&pprt_lock);
900
901 lcd_addr_x = lcd_addr_y = 0;
902 lcd_gotoxy();
903 }
904
905 /* clears the display and resets X/Y */
906 static void lcd_clear_display(void)
907 {
908 lcd_write_cmd(0x01); /* clear display */
909 lcd_addr_x = lcd_addr_y = 0;
910 /* we must wait a few milliseconds (15) */
911 long_sleep(15);
912 }
913
914 static void lcd_init_display(void)
915 {
916
917 lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
918 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
919
920 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
921
922 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
923 long_sleep(10);
924 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
925 long_sleep(10);
926 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
927 long_sleep(10);
928
929 lcd_write_cmd(0x30 /* set font height and lines number */
930 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
931 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
932 );
933 long_sleep(10);
934
935 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
936 long_sleep(10);
937
938 lcd_write_cmd(0x08 /* set display mode */
939 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
940 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
941 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
942 );
943
944 lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
945
946 long_sleep(10);
947
948 lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
949
950 lcd_clear_display();
951 }
952
953 /*
954 * These are the file operation function for user access to /dev/lcd
955 * This function can also be called from inside the kernel, by
956 * setting file and ppos to NULL.
957 *
958 */
959
960 static ssize_t lcd_write(struct file *file,
961 const char *buf, size_t count, loff_t *ppos)
962 {
963
964 const char *tmp = buf;
965 char c;
966
967 for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
968 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
969 schedule(); /* let's be a little nice with other processes that need some CPU */
970
971 if (ppos == NULL && file == NULL)
972 c = *tmp; /* let's not use get_user() from the kernel ! */
973 else if (get_user(c, tmp))
974 return -EFAULT;
975
976 /* first, we'll test if we're in escape mode */
977 if ((c != '\n') && lcd_escape_len >= 0) { /* yes, let's add this char to the buffer */
978 lcd_escape[lcd_escape_len++] = c;
979 lcd_escape[lcd_escape_len] = 0;
980 } else {
981 lcd_escape_len = -1; /* aborts any previous escape sequence */
982
983 switch (c) {
984 case LCD_ESCAPE_CHAR: /* start of an escape sequence */
985 lcd_escape_len = 0;
986 lcd_escape[lcd_escape_len] = 0;
987 break;
988 case '\b': /* go back one char and clear it */
989 if (lcd_addr_x > 0) {
990 if (lcd_addr_x < lcd_bwidth) /* check if we're not at the end of the line */
991 lcd_write_cmd(0x10); /* back one char */
992 lcd_addr_x--;
993 }
994 lcd_write_data(' '); /* replace with a space */
995 lcd_write_cmd(0x10); /* back one char again */
996 break;
997 case '\014': /* quickly clear the display */
998 lcd_clear_fast();
999 break;
1000 case '\n': /* flush the remainder of the current line and go to the
1001 beginning of the next line */
1002 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1003 lcd_write_data(' ');
1004 lcd_addr_x = 0;
1005 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1006 lcd_gotoxy();
1007 break;
1008 case '\r': /* go to the beginning of the same line */
1009 lcd_addr_x = 0;
1010 lcd_gotoxy();
1011 break;
1012 case '\t': /* print a space instead of the tab */
1013 lcd_print(' ');
1014 break;
1015 default: /* simply print this char */
1016 lcd_print(c);
1017 break;
1018 }
1019 }
1020
1021 /* now we'll see if we're in an escape mode and if the current
1022 escape sequence can be understood.
1023 */
1024 if (lcd_escape_len >= 2) { /* minimal length for an escape command */
1025 int processed = 0; /* 1 means the command has been processed */
1026
1027 if (!strcmp(lcd_escape, "[2J")) { /* Clear the display */
1028 lcd_clear_fast(); /* clear display */
1029 processed = 1;
1030 } else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
1031 lcd_addr_x = lcd_addr_y = 0;
1032 lcd_gotoxy();
1033 processed = 1;
1034 }
1035 /* codes starting with ^[[L */
1036 else if ((lcd_escape_len >= 3) &&
1037 (lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) { /* LCD special codes */
1038
1039 char *esc = lcd_escape + 2;
1040 int oldflags = lcd_flags;
1041
1042 /* check for display mode flags */
1043 switch (*esc) {
1044 case 'D': /* Display ON */
1045 lcd_flags |= LCD_FLAG_D;
1046 processed = 1;
1047 break;
1048 case 'd': /* Display OFF */
1049 lcd_flags &= ~LCD_FLAG_D;
1050 processed = 1;
1051 break;
1052 case 'C': /* Cursor ON */
1053 lcd_flags |= LCD_FLAG_C;
1054 processed = 1;
1055 break;
1056 case 'c': /* Cursor OFF */
1057 lcd_flags &= ~LCD_FLAG_C;
1058 processed = 1;
1059 break;
1060 case 'B': /* Blink ON */
1061 lcd_flags |= LCD_FLAG_B;
1062 processed = 1;
1063 break;
1064 case 'b': /* Blink OFF */
1065 lcd_flags &= ~LCD_FLAG_B;
1066 processed = 1;
1067 break;
1068 case '+': /* Back light ON */
1069 lcd_flags |= LCD_FLAG_L;
1070 processed = 1;
1071 break;
1072 case '-': /* Back light OFF */
1073 lcd_flags &= ~LCD_FLAG_L;
1074 processed = 1;
1075 break;
1076 case '*': /* flash back light using the keypad timer */
1077 if (scan_timer.function != NULL) {
1078 if (light_tempo == 0
1079 && ((lcd_flags & LCD_FLAG_L)
1080 == 0))
1081 lcd_backlight(1);
1082 light_tempo = FLASH_LIGHT_TEMPO;
1083 }
1084 processed = 1;
1085 break;
1086 case 'f': /* Small Font */
1087 lcd_flags &= ~LCD_FLAG_F;
1088 processed = 1;
1089 break;
1090 case 'F': /* Large Font */
1091 lcd_flags |= LCD_FLAG_F;
1092 processed = 1;
1093 break;
1094 case 'n': /* One Line */
1095 lcd_flags &= ~LCD_FLAG_N;
1096 processed = 1;
1097 break;
1098 case 'N': /* Two Lines */
1099 lcd_flags |= LCD_FLAG_N;
1100 break;
1101
1102 case 'l': /* Shift Cursor Left */
1103 if (lcd_addr_x > 0) {
1104 if (lcd_addr_x < lcd_bwidth)
1105 lcd_write_cmd(0x10); /* back one char if not at end of line */
1106 lcd_addr_x--;
1107 }
1108 processed = 1;
1109 break;
1110
1111 case 'r': /* shift cursor right */
1112 if (lcd_addr_x < lcd_width) {
1113 if (lcd_addr_x < (lcd_bwidth - 1))
1114 lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
1115 lcd_addr_x++;
1116 }
1117 processed = 1;
1118 break;
1119
1120 case 'L': /* shift display left */
1121 lcd_left_shift++;
1122 lcd_write_cmd(0x18);
1123 processed = 1;
1124 break;
1125
1126 case 'R': /* shift display right */
1127 lcd_left_shift--;
1128 lcd_write_cmd(0x1C);
1129 processed = 1;
1130 break;
1131
1132 case 'k':{ /* kill end of line */
1133 int x;
1134 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1135 lcd_write_data(' ');
1136 lcd_gotoxy(); /* restore cursor position */
1137 processed = 1;
1138 break;
1139 }
1140 case 'I': /* reinitialize display */
1141 lcd_init_display();
1142 lcd_left_shift = 0;
1143 processed = 1;
1144 break;
1145
1146 case 'G': /* Generator : LGcxxxxx...xx; */ {
1147 /* must have <c> between '0' and '7', representing the numerical
1148 * ASCII code of the redefined character, and <xx...xx> a sequence
1149 * of 16 hex digits representing 8 bytes for each character. Most
1150 * LCDs will only use 5 lower bits of the 7 first bytes.
1151 */
1152
1153 unsigned char cgbytes[8];
1154 unsigned char cgaddr;
1155 int cgoffset;
1156 int shift;
1157 char value;
1158 int addr;
1159
1160 if (strchr(esc, ';') == NULL)
1161 break;
1162
1163 esc++;
1164
1165 cgaddr = *(esc++) - '0';
1166 if (cgaddr > 7) {
1167 processed = 1;
1168 break;
1169 }
1170
1171 cgoffset = 0;
1172 shift = 0;
1173 value = 0;
1174 while (*esc && cgoffset < 8) {
1175 shift ^= 4;
1176 if (*esc >= '0' && *esc <= '9')
1177 value |= (*esc - '0') << shift;
1178 else if (*esc >= 'A' && *esc <= 'Z')
1179 value |= (*esc - 'A' + 10) << shift;
1180 else if (*esc >= 'a' && *esc <= 'z')
1181 value |= (*esc - 'a' + 10) << shift;
1182 else {
1183 esc++;
1184 continue;
1185 }
1186
1187 if (shift == 0) {
1188 cgbytes[cgoffset++] = value;
1189 value = 0;
1190 }
1191
1192 esc++;
1193 }
1194
1195 lcd_write_cmd(0x40 | (cgaddr * 8));
1196 for (addr = 0; addr < cgoffset; addr++)
1197 lcd_write_data(cgbytes[addr]);
1198
1199 lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
1200 processed = 1;
1201 break;
1202 }
1203 case 'x': /* gotoxy : LxXXX[yYYY]; */
1204 case 'y': /* gotoxy : LyYYY[xXXX]; */
1205 if (strchr(esc, ';') == NULL)
1206 break;
1207
1208 while (*esc) {
1209 if (*esc == 'x') {
1210 esc++;
1211 lcd_addr_x = 0;
1212 while (isdigit(*esc)) {
1213 lcd_addr_x =
1214 lcd_addr_x *
1215 10 + (*esc -
1216 '0');
1217 esc++;
1218 }
1219 } else if (*esc == 'y') {
1220 esc++;
1221 lcd_addr_y = 0;
1222 while (isdigit(*esc)) {
1223 lcd_addr_y =
1224 lcd_addr_y *
1225 10 + (*esc -
1226 '0');
1227 esc++;
1228 }
1229 } else
1230 break;
1231 }
1232
1233 lcd_gotoxy();
1234 processed = 1;
1235 break;
1236 } /* end of switch */
1237
1238 /* Check wether one flag was changed */
1239 if (oldflags != lcd_flags) {
1240 /* check wether one of B,C,D flags was changed */
1241 if ((oldflags ^ lcd_flags) &
1242 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1243 /* set display mode */
1244 lcd_write_cmd(0x08 |
1245 ((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
1246 ((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
1247 ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1248 /* check wether one of F,N flags was changed */
1249 else if ((oldflags ^ lcd_flags) &
1250 (LCD_FLAG_F | LCD_FLAG_N))
1251 lcd_write_cmd(0x30 |
1252 ((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
1253 ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1254 /* check wether L flag was changed */
1255 else if ((oldflags ^ lcd_flags) &
1256 (LCD_FLAG_L)) {
1257 if (lcd_flags & (LCD_FLAG_L))
1258 lcd_backlight(1);
1259 else if (light_tempo == 0) /* switch off the light only when the tempo lighting is gone */
1260 lcd_backlight(0);
1261 }
1262 }
1263 }
1264
1265 /* LCD special escape codes */
1266 /* flush the escape sequence if it's been processed or if it is
1267 getting too long. */
1268 if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1269 lcd_escape_len = -1;
1270 } /* escape codes */
1271 }
1272
1273 return tmp - buf;
1274 }
1275
1276 static int lcd_open(struct inode *inode, struct file *file)
1277 {
1278 if (lcd_open_cnt)
1279 return -EBUSY; /* open only once at a time */
1280
1281 if (file->f_mode & FMODE_READ) /* device is write-only */
1282 return -EPERM;
1283
1284 if (lcd_must_clear) {
1285 lcd_clear_display();
1286 lcd_must_clear = 0;
1287 }
1288 lcd_open_cnt++;
1289 return 0;
1290 }
1291
1292 static int lcd_release(struct inode *inode, struct file *file)
1293 {
1294 lcd_open_cnt--;
1295 return 0;
1296 }
1297
1298 static struct file_operations lcd_fops = {
1299 .write = lcd_write,
1300 .open = lcd_open,
1301 .release = lcd_release,
1302 };
1303
1304 static struct miscdevice lcd_dev = {
1305 LCD_MINOR,
1306 "lcd",
1307 &lcd_fops
1308 };
1309
1310 /* public function usable from the kernel for any purpose */
1311 void panel_lcd_print(char *s)
1312 {
1313 if (lcd_enabled && lcd_initialized)
1314 lcd_write(NULL, s, strlen(s), NULL);
1315 }
1316
1317 /* initialize the LCD driver */
1318 void lcd_init(void)
1319 {
1320 switch (lcd_type) {
1321 case LCD_TYPE_OLD: /* parallel mode, 8 bits */
1322 if (lcd_proto < 0)
1323 lcd_proto = LCD_PROTO_PARALLEL;
1324 if (lcd_charset < 0)
1325 lcd_charset = LCD_CHARSET_NORMAL;
1326 if (lcd_e_pin == PIN_NOT_SET)
1327 lcd_e_pin = PIN_STROBE;
1328 if (lcd_rs_pin == PIN_NOT_SET)
1329 lcd_rs_pin = PIN_AUTOLF;
1330
1331 if (lcd_width < 0)
1332 lcd_width = 40;
1333 if (lcd_bwidth < 0)
1334 lcd_bwidth = 40;
1335 if (lcd_hwidth < 0)
1336 lcd_hwidth = 64;
1337 if (lcd_height < 0)
1338 lcd_height = 2;
1339 break;
1340 case LCD_TYPE_KS0074: /* serial mode, ks0074 */
1341 if (lcd_proto < 0)
1342 lcd_proto = LCD_PROTO_SERIAL;
1343 if (lcd_charset < 0)
1344 lcd_charset = LCD_CHARSET_KS0074;
1345 if (lcd_bl_pin == PIN_NOT_SET)
1346 lcd_bl_pin = PIN_AUTOLF;
1347 if (lcd_cl_pin == PIN_NOT_SET)
1348 lcd_cl_pin = PIN_STROBE;
1349 if (lcd_da_pin == PIN_NOT_SET)
1350 lcd_da_pin = PIN_D0;
1351
1352 if (lcd_width < 0)
1353 lcd_width = 16;
1354 if (lcd_bwidth < 0)
1355 lcd_bwidth = 40;
1356 if (lcd_hwidth < 0)
1357 lcd_hwidth = 16;
1358 if (lcd_height < 0)
1359 lcd_height = 2;
1360 break;
1361 case LCD_TYPE_NEXCOM: /* parallel mode, 8 bits, generic */
1362 if (lcd_proto < 0)
1363 lcd_proto = LCD_PROTO_PARALLEL;
1364 if (lcd_charset < 0)
1365 lcd_charset = LCD_CHARSET_NORMAL;
1366 if (lcd_e_pin == PIN_NOT_SET)
1367 lcd_e_pin = PIN_AUTOLF;
1368 if (lcd_rs_pin == PIN_NOT_SET)
1369 lcd_rs_pin = PIN_SELECP;
1370 if (lcd_rw_pin == PIN_NOT_SET)
1371 lcd_rw_pin = PIN_INITP;
1372
1373 if (lcd_width < 0)
1374 lcd_width = 16;
1375 if (lcd_bwidth < 0)
1376 lcd_bwidth = 40;
1377 if (lcd_hwidth < 0)
1378 lcd_hwidth = 64;
1379 if (lcd_height < 0)
1380 lcd_height = 2;
1381 break;
1382 case LCD_TYPE_CUSTOM: /* customer-defined */
1383 if (lcd_proto < 0)
1384 lcd_proto = DEFAULT_LCD_PROTO;
1385 if (lcd_charset < 0)
1386 lcd_charset = DEFAULT_LCD_CHARSET;
1387 /* default geometry will be set later */
1388 break;
1389 case LCD_TYPE_HANTRONIX: /* parallel mode, 8 bits, hantronix-like */
1390 default:
1391 if (lcd_proto < 0)
1392 lcd_proto = LCD_PROTO_PARALLEL;
1393 if (lcd_charset < 0)
1394 lcd_charset = LCD_CHARSET_NORMAL;
1395 if (lcd_e_pin == PIN_NOT_SET)
1396 lcd_e_pin = PIN_STROBE;
1397 if (lcd_rs_pin == PIN_NOT_SET)
1398 lcd_rs_pin = PIN_SELECP;
1399
1400 if (lcd_width < 0)
1401 lcd_width = 16;
1402 if (lcd_bwidth < 0)
1403 lcd_bwidth = 40;
1404 if (lcd_hwidth < 0)
1405 lcd_hwidth = 64;
1406 if (lcd_height < 0)
1407 lcd_height = 2;
1408 break;
1409 }
1410
1411 /* this is used to catch wrong and default values */
1412 if (lcd_width <= 0)
1413 lcd_width = DEFAULT_LCD_WIDTH;
1414 if (lcd_bwidth <= 0)
1415 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1416 if (lcd_hwidth <= 0)
1417 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1418 if (lcd_height <= 0)
1419 lcd_height = DEFAULT_LCD_HEIGHT;
1420
1421 if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1422 lcd_write_cmd = lcd_write_cmd_s;
1423 lcd_write_data = lcd_write_data_s;
1424 lcd_clear_fast = lcd_clear_fast_s;
1425
1426 if (lcd_cl_pin == PIN_NOT_SET)
1427 lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1428 if (lcd_da_pin == PIN_NOT_SET)
1429 lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1430
1431 } else { /* PARALLEL */
1432 lcd_write_cmd = lcd_write_cmd_p8;
1433 lcd_write_data = lcd_write_data_p8;
1434 lcd_clear_fast = lcd_clear_fast_p8;
1435
1436 if (lcd_e_pin == PIN_NOT_SET)
1437 lcd_e_pin = DEFAULT_LCD_PIN_E;
1438 if (lcd_rs_pin == PIN_NOT_SET)
1439 lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1440 if (lcd_rw_pin == PIN_NOT_SET)
1441 lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1442 }
1443
1444 if (lcd_bl_pin == PIN_NOT_SET)
1445 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1446
1447 if (lcd_e_pin == PIN_NOT_SET)
1448 lcd_e_pin = PIN_NONE;
1449 if (lcd_rs_pin == PIN_NOT_SET)
1450 lcd_rs_pin = PIN_NONE;
1451 if (lcd_rw_pin == PIN_NOT_SET)
1452 lcd_rw_pin = PIN_NONE;
1453 if (lcd_bl_pin == PIN_NOT_SET)
1454 lcd_bl_pin = PIN_NONE;
1455 if (lcd_cl_pin == PIN_NOT_SET)
1456 lcd_cl_pin = PIN_NONE;
1457 if (lcd_da_pin == PIN_NOT_SET)
1458 lcd_da_pin = PIN_NONE;
1459
1460 if (lcd_charset < 0)
1461 lcd_charset = DEFAULT_LCD_CHARSET;
1462
1463 if (lcd_charset == LCD_CHARSET_KS0074)
1464 lcd_char_conv = lcd_char_conv_ks0074;
1465 else
1466 lcd_char_conv = NULL;
1467
1468 if (lcd_bl_pin != PIN_NONE)
1469 init_scan_timer();
1470
1471 pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1472 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1473 pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1474 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1475 pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1476 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1477 pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1478 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1479 pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1480 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1481 pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1482 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1483
1484 /* before this line, we must NOT send anything to the display.
1485 * Since lcd_init_display() needs to write data, we have to
1486 * enable mark the LCD initialized just before.
1487 */
1488 lcd_initialized = 1;
1489 lcd_init_display();
1490
1491 /* display a short message */
1492 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1493 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1494 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1495 #endif
1496 #else
1497 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1498 PANEL_VERSION);
1499 #endif
1500 lcd_addr_x = lcd_addr_y = 0;
1501 lcd_must_clear = 1; /* clear the display on the next device opening */
1502 lcd_gotoxy();
1503 }
1504
1505 /*
1506 * These are the file operation function for user access to /dev/keypad
1507 */
1508
1509 static ssize_t keypad_read(struct file *file,
1510 char *buf, size_t count, loff_t *ppos)
1511 {
1512
1513 unsigned i = *ppos;
1514 char *tmp = buf;
1515
1516 if (keypad_buflen == 0) {
1517 if (file->f_flags & O_NONBLOCK)
1518 return -EAGAIN;
1519
1520 interruptible_sleep_on(&keypad_read_wait);
1521 if (signal_pending(current))
1522 return -EINTR;
1523 }
1524
1525 for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
1526 put_user(keypad_buffer[keypad_start], tmp);
1527 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1528 }
1529 *ppos = i;
1530
1531 return tmp - buf;
1532 }
1533
1534 static int keypad_open(struct inode *inode, struct file *file)
1535 {
1536
1537 if (keypad_open_cnt)
1538 return -EBUSY; /* open only once at a time */
1539
1540 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1541 return -EPERM;
1542
1543 keypad_buflen = 0; /* flush the buffer on opening */
1544 keypad_open_cnt++;
1545 return 0;
1546 }
1547
1548 static int keypad_release(struct inode *inode, struct file *file)
1549 {
1550 keypad_open_cnt--;
1551 return 0;
1552 }
1553
1554 static struct file_operations keypad_fops = {
1555 .read = keypad_read, /* read */
1556 .open = keypad_open, /* open */
1557 .release = keypad_release, /* close */
1558 };
1559
1560 static struct miscdevice keypad_dev = {
1561 KEYPAD_MINOR,
1562 "keypad",
1563 &keypad_fops
1564 };
1565
1566 static void keypad_send_key(char *string, int max_len)
1567 {
1568 if (init_in_progress)
1569 return;
1570
1571 /* send the key to the device only if a process is attached to it. */
1572 if (keypad_open_cnt > 0) {
1573 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1574 keypad_buffer[(keypad_start + keypad_buflen++) %
1575 KEYPAD_BUFFER] = *string++;
1576 }
1577 wake_up_interruptible(&keypad_read_wait);
1578 }
1579 }
1580
1581 /* this function scans all the bits involving at least one logical signal, and puts the
1582 * results in the bitfield "phys_read" (one bit per established contact), and sets
1583 * "phys_read_prev" to "phys_read".
1584 *
1585 * Note: to debounce input signals, we will only consider as switched a signal which is
1586 * stable across 2 measures. Signals which are different between two reads will be kept
1587 * as they previously were in their logical form (phys_prev). A signal which has just
1588 * switched will have a 1 in (phys_read ^ phys_read_prev).
1589 */
1590 static void phys_scan_contacts(void)
1591 {
1592 int bit, bitval;
1593 char oldval;
1594 char bitmask;
1595 char gndmask;
1596
1597 phys_prev = phys_curr;
1598 phys_read_prev = phys_read;
1599 phys_read = 0; /* flush all signals */
1600
1601 oldval = r_dtr(pprt) | scan_mask_o; /* keep track of old value, with all outputs disabled */
1602 w_dtr(pprt, oldval & ~scan_mask_o); /* activate all keyboard outputs (active low) */
1603 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* will have a 1 for each bit set to gnd */
1604 w_dtr(pprt, oldval); /* disable all matrix signals */
1605
1606 /* now that all outputs are cleared, the only active input bits are
1607 * directly connected to the ground
1608 */
1609 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* 1 for each grounded input */
1610
1611 phys_read |= (pmask_t) gndmask << 40; /* grounded inputs are signals 40-44 */
1612
1613 if (bitmask != gndmask) {
1614 /* since clearing the outputs changed some inputs, we know that some
1615 * input signals are currently tied to some outputs. So we'll scan them.
1616 */
1617 for (bit = 0; bit < 8; bit++) {
1618 bitval = 1 << bit;
1619
1620 if (!(scan_mask_o & bitval)) /* skip unused bits */
1621 continue;
1622
1623 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1624 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1625 phys_read |= (pmask_t) bitmask << (5 * bit);
1626 }
1627 w_dtr(pprt, oldval); /* disable all outputs */
1628 }
1629 /* this is easy: use old bits when they are flapping, use new ones when stable */
1630 phys_curr =
1631 (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
1632 ~(phys_read ^
1633 phys_read_prev));
1634 }
1635
1636 static void panel_process_inputs(void)
1637 {
1638 struct list_head *item;
1639 struct logical_input *input;
1640
1641 #if 0
1642 printk(KERN_DEBUG
1643 "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1644 phys_prev, phys_curr);
1645 #endif
1646
1647 keypressed = 0;
1648 inputs_stable = 1;
1649 list_for_each(item, &logical_inputs) {
1650 input = list_entry(item, struct logical_input, list);
1651
1652 switch (input->state) {
1653 case INPUT_ST_LOW:
1654 if ((phys_curr & input->mask) != input->value)
1655 break;
1656 /* if all needed ones were already set previously, this means that
1657 * this logical signal has been activated by the releasing of
1658 * another combined signal, so we don't want to match.
1659 * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
1660 */
1661 if ((phys_prev & input->mask) == input->value)
1662 break;
1663 input->rise_timer = 0;
1664 input->state = INPUT_ST_RISING;
1665 /* no break here, fall through */
1666 case INPUT_ST_RISING:
1667 if ((phys_curr & input->mask) != input->value) {
1668 input->state = INPUT_ST_LOW;
1669 break;
1670 }
1671 if (input->rise_timer < input->rise_time) {
1672 inputs_stable = 0;
1673 input->rise_timer++;
1674 break;
1675 }
1676 input->high_timer = 0;
1677 input->state = INPUT_ST_HIGH;
1678 /* no break here, fall through */
1679 case INPUT_ST_HIGH:
1680 #if 0
1681 /* FIXME:
1682 * this is an invalid test. It tries to catch transitions from single-key
1683 * to multiple-key, but doesn't take into account the contacts polarity.
1684 * The only solution to the problem is to parse keys from the most complex
1685 * to the simplest combinations, and mark them as 'caught' once a combination
1686 * matches, then unmatch it for all other ones.
1687 */
1688
1689 /* try to catch dangerous transitions cases :
1690 * someone adds a bit, so this signal was a false
1691 * positive resulting from a transition. We should invalidate
1692 * the signal immediately and not call the release function.
1693 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1694 */
1695 if (((phys_prev & input->mask) == input->value)
1696 && ((phys_curr & input->mask) > input->value)) {
1697 input->state = INPUT_ST_LOW; /* invalidate */
1698 break;
1699 }
1700 #endif
1701
1702 if ((phys_curr & input->mask) == input->value) {
1703 if ((input->type == INPUT_TYPE_STD)
1704 && (input->high_timer == 0)) {
1705 input->high_timer++;
1706 if (input->u.std.press_fct != NULL)
1707 input->u.std.press_fct(input->u.
1708 std.
1709 press_data);
1710 } else if (input->type == INPUT_TYPE_KBD) {
1711 keypressed = 1; /* will turn on the light */
1712
1713 if (input->high_timer == 0) {
1714 if (input->u.kbd.press_str[0])
1715 keypad_send_key(input->
1716 u.kbd.
1717 press_str,
1718 sizeof
1719 (input->
1720 u.kbd.
1721 press_str));
1722 }
1723
1724 if (input->u.kbd.repeat_str[0]) {
1725 if (input->high_timer >=
1726 KEYPAD_REP_START) {
1727 input->high_timer -=
1728 KEYPAD_REP_DELAY;
1729 keypad_send_key(input->
1730 u.kbd.
1731 repeat_str,
1732 sizeof
1733 (input->
1734 u.kbd.
1735 repeat_str));
1736 }
1737 inputs_stable = 0; /* we will need to come back here soon */
1738 }
1739
1740 if (input->high_timer < 255)
1741 input->high_timer++;
1742 }
1743 break;
1744 } else {
1745 /* else signal falling down. Let's fall through. */
1746 input->state = INPUT_ST_FALLING;
1747 input->fall_timer = 0;
1748 }
1749 /* no break here, fall through */
1750 case INPUT_ST_FALLING:
1751 #if 0
1752 /* FIXME !!! same comment as above */
1753 if (((phys_prev & input->mask) == input->value)
1754 && ((phys_curr & input->mask) > input->value)) {
1755 input->state = INPUT_ST_LOW; /* invalidate */
1756 break;
1757 }
1758 #endif
1759
1760 if ((phys_curr & input->mask) == input->value) {
1761 if (input->type == INPUT_TYPE_KBD) {
1762 keypressed = 1; /* will turn on the light */
1763
1764 if (input->u.kbd.repeat_str[0]) {
1765 if (input->high_timer >= KEYPAD_REP_START)
1766 input->high_timer -= KEYPAD_REP_DELAY;
1767 keypad_send_key(input->u.kbd.repeat_str,
1768 sizeof(input->u.kbd.repeat_str));
1769 inputs_stable = 0; /* we will need to come back here soon */
1770 }
1771
1772 if (input->high_timer < 255)
1773 input->high_timer++;
1774 }
1775 input->state = INPUT_ST_HIGH;
1776 break;
1777 } else if (input->fall_timer >= input->fall_time) {
1778 /* call release event */
1779 if (input->type == INPUT_TYPE_STD) {
1780 if (input->u.std.release_fct != NULL)
1781 input->u.std.release_fct(input->u.std.release_data);
1782
1783 } else if (input->type == INPUT_TYPE_KBD) {
1784 if (input->u.kbd.release_str[0])
1785 keypad_send_key(input->u.kbd.release_str,
1786 sizeof(input->u.kbd.release_str));
1787 }
1788
1789 input->state = INPUT_ST_LOW;
1790 break;
1791 } else {
1792 input->fall_timer++;
1793 inputs_stable = 0;
1794 break;
1795 }
1796 }
1797 }
1798 }
1799
1800 static void panel_scan_timer(void)
1801 {
1802 if ((keypad_enabled && keypad_initialized)
1803 || (smartcard_enabled && smartcard_enabled)) {
1804
1805 if (spin_trylock(&pprt_lock)) {
1806 phys_scan_contacts();
1807 spin_unlock(&pprt_lock); /* no need for the parport anymore */
1808 }
1809
1810 if (!inputs_stable || phys_curr != phys_prev)
1811 panel_process_inputs();
1812 }
1813
1814 if (lcd_enabled && lcd_initialized) {
1815 if (keypressed) {
1816 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1817 lcd_backlight(1);
1818 light_tempo = FLASH_LIGHT_TEMPO;
1819 } else if (light_tempo > 0) {
1820 light_tempo--;
1821 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1822 lcd_backlight(0);
1823 }
1824 }
1825
1826 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1827 }
1828
1829 /* send a high / low clock impulse of <duration> microseconds high and low */
1830 static void smartcard_send_clock(int duration)
1831 {
1832 int old;
1833
1834 w_dtr(pprt, (old = r_dtr(pprt)) | PNL_SC_CLK);
1835 udelay(duration);
1836 w_dtr(pprt, (old & ~PNL_SC_CLK));
1837 udelay(duration);
1838 }
1839
1840 static void smartcard_insert(int dummy)
1841 {
1842 int ofs;
1843
1844 spin_lock(&pprt_lock);
1845 w_dtr(pprt, (r_dtr(pprt) & ~PNL_SC_BITS));
1846 w_ctr(pprt, (r_ctr(pprt) | PNL_SC_ENA));
1847
1848 udelay(30); /* ensure the rst is low at least 30 us */
1849
1850 smartcard_send_clock(100); /* reset address counter */
1851
1852 w_dtr(pprt, r_dtr(pprt) | PNL_SC_RST);
1853 udelay(30); /* ensure the rst is high at least 30 us */
1854
1855 for (ofs = 0; ofs < SMARTCARD_BYTES; ofs++) {
1856 int bit, byte;
1857 byte = 0;
1858 for (bit = 128; bit > 0; bit >>= 1) {
1859 if (!(r_str(pprt) & PNL_SC_IOR))
1860 byte |= bit;
1861 smartcard_send_clock(15); /* 15 us are enough for data */
1862 }
1863 smartcard_data[ofs] = byte;
1864 }
1865
1866 w_dtr(pprt, (r_dtr(pprt) & ~PNL_SC_BITS));
1867 w_ctr(pprt, (r_ctr(pprt) & ~PNL_SC_ENA));
1868
1869 spin_unlock(&pprt_lock);
1870
1871 printk(KERN_INFO "Panel: smart card inserted : %02x%02x%02x%02x%1x\n",
1872 smartcard_data[2], smartcard_data[3], smartcard_data[4],
1873 smartcard_data[5], smartcard_data[6] >> 4);
1874 keypad_send_key("CardIn\n", 7);
1875 }
1876
1877 static void smartcard_remove(int dummy)
1878 {
1879 printk(KERN_INFO "Panel: smart card removed : %02x%02x%02x%02x%1x\n",
1880 smartcard_data[2], smartcard_data[3], smartcard_data[4],
1881 smartcard_data[5], smartcard_data[6] >> 4);
1882 memset(smartcard_data, 0, sizeof(smartcard_data));
1883 keypad_send_key("CardOut\n", 8);
1884 }
1885
1886 /*
1887 * These are the file operation function for user access to /dev/smartcard
1888 */
1889
1890 static ssize_t smartcard_read(struct file *file,
1891 char *buf, size_t count, loff_t *ppos)
1892 {
1893
1894 unsigned i = *ppos;
1895 char *tmp = buf;
1896
1897 for (; count-- > 0 && (smartcard_ptr < 9); ++i, ++tmp, ++smartcard_ptr) {
1898 if (smartcard_ptr & 1)
1899 put_user('0' +
1900 (smartcard_data[2 + (smartcard_ptr >> 1)] &
1901 0xF), tmp);
1902 else
1903 put_user('0' +
1904 (smartcard_data[2 + (smartcard_ptr >> 1)] >>
1905 4), tmp);
1906 }
1907 *ppos = i;
1908
1909 return tmp - buf;
1910 }
1911
1912 static int smartcard_open(struct inode *inode, struct file *file)
1913 {
1914
1915 if (smartcard_open_cnt)
1916 return -EBUSY; /* open only once at a time */
1917
1918 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1919 return -EPERM;
1920
1921 smartcard_ptr = 0; /* flush the buffer on opening */
1922 smartcard_open_cnt++;
1923 return 0;
1924 }
1925
1926 static int smartcard_release(struct inode *inode, struct file *file)
1927 {
1928 smartcard_open_cnt--;
1929 return 0;
1930 }
1931
1932 static struct file_operations smartcard_fops = {
1933 .read = smartcard_read, /* read */
1934 .open = smartcard_open, /* open */
1935 .release = smartcard_release, /* close */
1936 };
1937
1938 static struct miscdevice smartcard_dev = {
1939 SMARTCARD_MINOR,
1940 "smartcard",
1941 &smartcard_fops
1942 };
1943
1944 static void init_scan_timer(void)
1945 {
1946 if (scan_timer.function != NULL)
1947 return; /* already started */
1948
1949 init_timer(&scan_timer);
1950 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1951 scan_timer.data = 0;
1952 scan_timer.function = (void *)&panel_scan_timer;
1953 add_timer(&scan_timer);
1954 }
1955
1956 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1957 * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
1958 * to out and in bits respectively.
1959 * returns 1 if ok, 0 if error (in which case, nothing is written).
1960 */
1961 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1962 char *imask, char *omask)
1963 {
1964 static char sigtab[10] = "EeSsPpAaBb";
1965 char im, om;
1966 pmask_t m, v;
1967
1968 om = im = m = v = 0ULL;
1969 while (*name) {
1970 int in, out, bit, neg;
1971 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
1972 ;
1973 if (in >= sizeof(sigtab))
1974 return 0; /* input name not found */
1975 neg = (in & 1); /* odd (lower) names are negated */
1976 in >>= 1;
1977 im |= (1 << in);
1978
1979 name++;
1980 if (isdigit(*name)) {
1981 out = *name - '0';
1982 om |= (1 << out);
1983 } else if (*name == '-')
1984 out = 8;
1985 else
1986 return 0; /* unknown bit name */
1987
1988 bit = (out * 5) + in;
1989
1990 m |= 1ULL << bit;
1991 if (!neg)
1992 v |= 1ULL << bit;
1993 name++;
1994 }
1995 *mask = m;
1996 *value = v;
1997 if (imask)
1998 *imask |= im;
1999 if (omask)
2000 *omask |= om;
2001 return 1;
2002 }
2003
2004 /* tries to bind a key to the signal name <name>. The key will send the
2005 * strings <press>, <repeat>, <release> for these respective events.
2006 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2007 */
2008 static struct logical_input *panel_bind_key(char *name, char *press,
2009 char *repeat, char *release)
2010 {
2011 struct logical_input *key;
2012
2013 key = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2014 if (!key) {
2015 printk(KERN_ERR "panel: not enough memory\n");
2016 return NULL;
2017 }
2018 memset(key, 0, sizeof(struct logical_input));
2019 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2020 &scan_mask_o))
2021 return NULL;
2022
2023 key->type = INPUT_TYPE_KBD;
2024 key->state = INPUT_ST_LOW;
2025 key->rise_time = 1;
2026 key->fall_time = 1;
2027
2028 #if 0
2029 printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2030 key->value);
2031 #endif
2032 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2033 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2034 strncpy(key->u.kbd.release_str, release,
2035 sizeof(key->u.kbd.release_str));
2036 list_add(&key->list, &logical_inputs);
2037 return key;
2038 }
2039
2040 /* tries to bind a callback function to the signal name <name>. The function
2041 * <press_fct> will be called with the <press_data> arg when the signal is
2042 * activated, and so on for <release_fct>/<release_data>
2043 * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
2044 */
2045 static struct logical_input *panel_bind_callback(char *name,
2046 void (*press_fct) (int),
2047 int press_data,
2048 void (*release_fct) (int),
2049 int release_data)
2050 {
2051 struct logical_input *callback;
2052
2053 callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2054 if (!callback) {
2055 printk(KERN_ERR "panel: not enough memory\n");
2056 return NULL;
2057 }
2058 memset(callback, 0, sizeof(struct logical_input));
2059 if (!input_name2mask(name, &callback->mask, &callback->value,
2060 &scan_mask_i, &scan_mask_o))
2061 return NULL;
2062
2063 callback->type = INPUT_TYPE_STD;
2064 callback->state = INPUT_ST_LOW;
2065 callback->rise_time = 1;
2066 callback->fall_time = 1;
2067 callback->u.std.press_fct = press_fct;
2068 callback->u.std.press_data = press_data;
2069 callback->u.std.release_fct = release_fct;
2070 callback->u.std.release_data = release_data;
2071 list_add(&callback->list, &logical_inputs);
2072 return callback;
2073 }
2074
2075 static void keypad_init(void)
2076 {
2077 int keynum;
2078 init_waitqueue_head(&keypad_read_wait);
2079 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2080
2081 /* Let's create all known keys */
2082
2083 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2084 panel_bind_key(keypad_profile[keynum][0],
2085 keypad_profile[keynum][1],
2086 keypad_profile[keynum][2],
2087 keypad_profile[keynum][3]);
2088 }
2089
2090 init_scan_timer();
2091 keypad_initialized = 1;
2092 }
2093
2094 static void smartcard_init(void)
2095 {
2096 init_waitqueue_head(&smartcard_read_wait);
2097
2098 panel_bind_callback(SMARTCARD_LOGICAL_DETECTOR, &smartcard_insert, 0,
2099 &smartcard_remove, 0);
2100 init_scan_timer();
2101 smartcard_enabled = 1;
2102 }
2103
2104 /**************************************************/
2105 /* device initialization */
2106 /**************************************************/
2107
2108 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2109 void *unused)
2110 {
2111 if (lcd_enabled && lcd_initialized) {
2112 switch (code) {
2113 case SYS_DOWN:
2114 panel_lcd_print
2115 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2116 break;
2117 case SYS_HALT:
2118 panel_lcd_print
2119 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2120 break;
2121 case SYS_POWER_OFF:
2122 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2123 break;
2124 default:
2125 break;
2126 }
2127 }
2128 return NOTIFY_DONE;
2129 }
2130
2131 static struct notifier_block panel_notifier = {
2132 panel_notify_sys,
2133 NULL,
2134 0
2135 };
2136
2137 static void panel_attach(struct parport *port)
2138 {
2139 if (port->number != parport)
2140 return;
2141
2142 if (pprt) {
2143 printk(KERN_ERR
2144 "panel_attach(): port->number=%d parport=%d, already registered !\n",
2145 port->number, parport);
2146 return;
2147 }
2148
2149 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2150 NULL,
2151 /*PARPORT_DEV_EXCL */
2152 0, (void *)&pprt);
2153
2154 if (parport_claim(pprt)) {
2155 printk(KERN_ERR
2156 "Panel: could not claim access to parport%d. Aborting.\n",
2157 parport);
2158 return;
2159 }
2160
2161 /* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
2162 if (lcd_enabled) {
2163 lcd_init();
2164 misc_register(&lcd_dev);
2165 }
2166
2167 if (keypad_enabled) {
2168 keypad_init();
2169 misc_register(&keypad_dev);
2170 }
2171
2172 if (smartcard_enabled) {
2173 smartcard_init();
2174 misc_register(&smartcard_dev);
2175 }
2176 }
2177
2178 static void panel_detach(struct parport *port)
2179 {
2180 if (port->number != parport)
2181 return;
2182
2183 if (!pprt) {
2184 printk(KERN_ERR
2185 "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
2186 port->number, parport);
2187 return;
2188 }
2189
2190 if (smartcard_enabled && smartcard_initialized)
2191 misc_deregister(&smartcard_dev);
2192
2193 if (keypad_enabled && keypad_initialized)
2194 misc_deregister(&keypad_dev);
2195
2196 if (lcd_enabled && lcd_initialized)
2197 misc_deregister(&lcd_dev);
2198
2199 parport_release(pprt);
2200 parport_unregister_device(pprt);
2201 pprt = NULL;
2202 }
2203
2204 static struct parport_driver panel_driver = {
2205 .name = "panel",
2206 .attach = panel_attach,
2207 .detach = panel_detach,
2208 };
2209
2210 /* init function */
2211 int panel_init(void)
2212 {
2213 /* for backwards compatibility */
2214 if (keypad_type < 0)
2215 keypad_type = keypad_enabled;
2216
2217 if (lcd_type < 0)
2218 lcd_type = lcd_enabled;
2219
2220 if (parport < 0)
2221 parport = DEFAULT_PARPORT;
2222
2223 /* take care of an eventual profile */
2224 switch (profile) {
2225 case PANEL_PROFILE_CUSTOM: /* custom profile */
2226 if (keypad_type < 0)
2227 keypad_type = DEFAULT_KEYPAD;
2228 if (smartcard_enabled < 0)
2229 smartcard_enabled = DEFAULT_SMARTCARD;
2230 if (lcd_type < 0)
2231 lcd_type = DEFAULT_LCD;
2232 break;
2233 case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
2234 if (keypad_type < 0)
2235 keypad_type = KEYPAD_TYPE_OLD;
2236 if (smartcard_enabled < 0)
2237 smartcard_enabled = 0;
2238 if (lcd_type < 0)
2239 lcd_type = LCD_TYPE_OLD;
2240 if (lcd_width < 0)
2241 lcd_width = 16;
2242 if (lcd_hwidth < 0)
2243 lcd_hwidth = 16;
2244 break;
2245 case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
2246 if (keypad_type < 0)
2247 keypad_type = KEYPAD_TYPE_NEW;
2248 if (smartcard_enabled < 0)
2249 smartcard_enabled = 1;
2250 if (lcd_type < 0)
2251 lcd_type = LCD_TYPE_KS0074;
2252 break;
2253 case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */
2254 if (keypad_type < 0)
2255 keypad_type = KEYPAD_TYPE_NONE;
2256 if (smartcard_enabled < 0)
2257 smartcard_enabled = 0;
2258 if (lcd_type < 0)
2259 lcd_type = LCD_TYPE_HANTRONIX;
2260 break;
2261 case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2262 if (keypad_type < 0)
2263 keypad_type = KEYPAD_TYPE_NEXCOM;
2264 if (smartcard_enabled < 0)
2265 smartcard_enabled = 0;
2266 if (lcd_type < 0)
2267 lcd_type = LCD_TYPE_NEXCOM;
2268 break;
2269 case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */
2270 if (keypad_type < 0)
2271 keypad_type = KEYPAD_TYPE_OLD;
2272 if (smartcard_enabled < 0)
2273 smartcard_enabled = 0;
2274 if (lcd_type < 0)
2275 lcd_type = LCD_TYPE_OLD;
2276 break;
2277 }
2278
2279 lcd_enabled = (lcd_type > 0);
2280 keypad_enabled = (keypad_type > 0);
2281
2282 switch (keypad_type) {
2283 case KEYPAD_TYPE_OLD:
2284 keypad_profile = old_keypad_profile;
2285 break;
2286 case KEYPAD_TYPE_NEW:
2287 keypad_profile = new_keypad_profile;
2288 break;
2289 case KEYPAD_TYPE_NEXCOM:
2290 keypad_profile = nexcom_keypad_profile;
2291 break;
2292 default:
2293 keypad_profile = NULL;
2294 break;
2295 }
2296
2297 /* tells various subsystems about the fact that we are initializing */
2298 init_in_progress = 1;
2299
2300 if (parport_register_driver(&panel_driver)) {
2301 printk(KERN_ERR
2302 "Panel: could not register with parport. Aborting.\n");
2303 return -EIO;
2304 }
2305
2306 if (!lcd_enabled && !keypad_enabled && !smartcard_enabled) { /* no device enabled, let's release the parport */
2307 if (pprt) {
2308 parport_release(pprt);
2309 parport_unregister_device(pprt);
2310 }
2311 parport_unregister_driver(&panel_driver);
2312 printk(KERN_ERR "Panel driver version " PANEL_VERSION
2313 " disabled.\n");
2314 return -ENODEV;
2315 }
2316
2317 register_reboot_notifier(&panel_notifier);
2318
2319 if (pprt)
2320 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2321 " registered on parport%d (io=0x%lx).\n", parport,
2322 pprt->port->base);
2323 else
2324 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2325 " not yet registered\n");
2326 /* tells various subsystems about the fact that initialization is finished */
2327 init_in_progress = 0;
2328 return 0;
2329 }
2330
2331 static int __init panel_init_module(void)
2332 {
2333 return panel_init();
2334 }
2335
2336 static void __exit panel_cleanup_module(void)
2337 {
2338 unregister_reboot_notifier(&panel_notifier);
2339
2340 if (scan_timer.function != NULL)
2341 del_timer(&scan_timer);
2342
2343 if (keypad_enabled)
2344 misc_deregister(&keypad_dev);
2345
2346 if (smartcard_enabled)
2347 misc_deregister(&smartcard_dev);
2348
2349 if (lcd_enabled) {
2350 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2351 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2352 misc_deregister(&lcd_dev);
2353 }
2354
2355 /* TODO: free all input signals */
2356
2357 parport_release(pprt);
2358 parport_unregister_device(pprt);
2359 parport_unregister_driver(&panel_driver);
2360 }
2361
2362 module_init(panel_init_module);
2363 module_exit(panel_cleanup_module);
2364 MODULE_AUTHOR("Willy Tarreau");
2365 MODULE_LICENSE("GPL");
2366
2367 /*
2368 * Local variables:
2369 * c-indent-level: 4
2370 * tab-width: 8
2371 * End:
2372 */
This page took 0.110121 seconds and 4 git commands to generate.