staging: panel: Remove unused variable
[deliverable/linux.git] / drivers / staging / panel / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
135
136 #define NOT_SET -1
137
138 /* macros to simplify use of the parallel port */
139 #define r_ctr(x) (parport_read_control((x)->port))
140 #define r_dtr(x) (parport_read_data((x)->port))
141 #define r_str(x) (parport_read_status((x)->port))
142 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
143 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
144
145 /* this defines which bits are to be used and which ones to be ignored */
146 /* logical or of the output bits involved in the scan matrix */
147 static __u8 scan_mask_o;
148 /* logical or of the input bits involved in the scan matrix */
149 static __u8 scan_mask_i;
150
151 typedef __u64 pmask_t;
152
153 enum input_type {
154 INPUT_TYPE_STD,
155 INPUT_TYPE_KBD,
156 };
157
158 enum input_state {
159 INPUT_ST_LOW,
160 INPUT_ST_RISING,
161 INPUT_ST_HIGH,
162 INPUT_ST_FALLING,
163 };
164
165 struct logical_input {
166 struct list_head list;
167 pmask_t mask;
168 pmask_t value;
169 enum input_type type;
170 enum input_state state;
171 __u8 rise_time, fall_time;
172 __u8 rise_timer, fall_timer, high_timer;
173
174 union {
175 struct { /* valid when type == INPUT_TYPE_STD */
176 void (*press_fct)(int);
177 void (*release_fct)(int);
178 int press_data;
179 int release_data;
180 } std;
181 struct { /* valid when type == INPUT_TYPE_KBD */
182 /* strings can be non null-terminated */
183 char press_str[sizeof(void *) + sizeof(int)];
184 char repeat_str[sizeof(void *) + sizeof(int)];
185 char release_str[sizeof(void *) + sizeof(int)];
186 } kbd;
187 } u;
188 };
189
190 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
191
192 /* physical contacts history
193 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
194 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
195 * corresponds to the ground.
196 * Within each group, bits are stored in the same order as read on the port :
197 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
198 * So, each __u64 (or pmask_t) is represented like this :
199 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
200 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
201 */
202
203 /* what has just been read from the I/O ports */
204 static pmask_t phys_read;
205 /* previous phys_read */
206 static pmask_t phys_read_prev;
207 /* stabilized phys_read (phys_read|phys_read_prev) */
208 static pmask_t phys_curr;
209 /* previous phys_curr */
210 static pmask_t phys_prev;
211 /* 0 means that at least one logical signal needs be computed */
212 static char inputs_stable;
213
214 /* these variables are specific to the keypad */
215 static struct {
216 bool enabled;
217 } keypad;
218
219 static char keypad_buffer[KEYPAD_BUFFER];
220 static int keypad_buflen;
221 static int keypad_start;
222 static char keypressed;
223 static wait_queue_head_t keypad_read_wait;
224
225 /* lcd-specific variables */
226 static struct {
227 bool enabled;
228 bool initialized;
229 bool must_clear;
230
231 int height;
232 int width;
233 int bwidth;
234 int hwidth;
235 int charset;
236 int proto;
237 int light_tempo;
238
239 /* TODO: use union here? */
240 struct {
241 int e;
242 int rs;
243 int rw;
244 int cl;
245 int da;
246 int bl;
247 } pins;
248
249 /* contains the LCD config state */
250 unsigned long int flags;
251
252 /* Contains the LCD X and Y offset */
253 struct {
254 unsigned long int x;
255 unsigned long int y;
256 } addr;
257
258 /* Current escape sequence and it's length or -1 if outside */
259 struct {
260 char buf[LCD_ESCAPE_LEN + 1];
261 int len;
262 } esc_seq;
263 } lcd;
264
265 /* Needed only for init */
266 static int selected_lcd_type = NOT_SET;
267
268 /*
269 * Bit masks to convert LCD signals to parallel port outputs.
270 * _d_ are values for data port, _c_ are for control port.
271 * [0] = signal OFF, [1] = signal ON, [2] = mask
272 */
273 #define BIT_CLR 0
274 #define BIT_SET 1
275 #define BIT_MSK 2
276 #define BIT_STATES 3
277 /*
278 * one entry for each bit on the LCD
279 */
280 #define LCD_BIT_E 0
281 #define LCD_BIT_RS 1
282 #define LCD_BIT_RW 2
283 #define LCD_BIT_BL 3
284 #define LCD_BIT_CL 4
285 #define LCD_BIT_DA 5
286 #define LCD_BITS 6
287
288 /*
289 * each bit can be either connected to a DATA or CTRL port
290 */
291 #define LCD_PORT_C 0
292 #define LCD_PORT_D 1
293 #define LCD_PORTS 2
294
295 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
296
297 /*
298 * LCD protocols
299 */
300 #define LCD_PROTO_PARALLEL 0
301 #define LCD_PROTO_SERIAL 1
302 #define LCD_PROTO_TI_DA8XX_LCD 2
303
304 /*
305 * LCD character sets
306 */
307 #define LCD_CHARSET_NORMAL 0
308 #define LCD_CHARSET_KS0074 1
309
310 /*
311 * LCD types
312 */
313 #define LCD_TYPE_NONE 0
314 #define LCD_TYPE_OLD 1
315 #define LCD_TYPE_KS0074 2
316 #define LCD_TYPE_HANTRONIX 3
317 #define LCD_TYPE_NEXCOM 4
318 #define LCD_TYPE_CUSTOM 5
319
320 /*
321 * keypad types
322 */
323 #define KEYPAD_TYPE_NONE 0
324 #define KEYPAD_TYPE_OLD 1
325 #define KEYPAD_TYPE_NEW 2
326 #define KEYPAD_TYPE_NEXCOM 3
327
328 /*
329 * panel profiles
330 */
331 #define PANEL_PROFILE_CUSTOM 0
332 #define PANEL_PROFILE_OLD 1
333 #define PANEL_PROFILE_NEW 2
334 #define PANEL_PROFILE_HANTRONIX 3
335 #define PANEL_PROFILE_NEXCOM 4
336 #define PANEL_PROFILE_LARGE 5
337
338 /*
339 * Construct custom config from the kernel's configuration
340 */
341 #define DEFAULT_PARPORT 0
342 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
343 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
344 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
345 #define DEFAULT_LCD_HEIGHT 2
346 #define DEFAULT_LCD_WIDTH 40
347 #define DEFAULT_LCD_BWIDTH 40
348 #define DEFAULT_LCD_HWIDTH 64
349 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
350 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
351
352 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
353 #define DEFAULT_LCD_PIN_RS PIN_SELECP
354 #define DEFAULT_LCD_PIN_RW PIN_INITP
355 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
356 #define DEFAULT_LCD_PIN_SDA PIN_D0
357 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
358
359 #ifdef CONFIG_PANEL_PARPORT
360 #undef DEFAULT_PARPORT
361 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
362 #endif
363
364 #ifdef CONFIG_PANEL_PROFILE
365 #undef DEFAULT_PROFILE
366 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
367 #endif
368
369 #if DEFAULT_PROFILE == 0 /* custom */
370 #ifdef CONFIG_PANEL_KEYPAD
371 #undef DEFAULT_KEYPAD_TYPE
372 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
373 #endif
374
375 #ifdef CONFIG_PANEL_LCD
376 #undef DEFAULT_LCD_TYPE
377 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
378 #endif
379
380 #ifdef CONFIG_PANEL_LCD_HEIGHT
381 #undef DEFAULT_LCD_HEIGHT
382 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
383 #endif
384
385 #ifdef CONFIG_PANEL_LCD_WIDTH
386 #undef DEFAULT_LCD_WIDTH
387 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
388 #endif
389
390 #ifdef CONFIG_PANEL_LCD_BWIDTH
391 #undef DEFAULT_LCD_BWIDTH
392 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
393 #endif
394
395 #ifdef CONFIG_PANEL_LCD_HWIDTH
396 #undef DEFAULT_LCD_HWIDTH
397 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
398 #endif
399
400 #ifdef CONFIG_PANEL_LCD_CHARSET
401 #undef DEFAULT_LCD_CHARSET
402 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
403 #endif
404
405 #ifdef CONFIG_PANEL_LCD_PROTO
406 #undef DEFAULT_LCD_PROTO
407 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
408 #endif
409
410 #ifdef CONFIG_PANEL_LCD_PIN_E
411 #undef DEFAULT_LCD_PIN_E
412 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
413 #endif
414
415 #ifdef CONFIG_PANEL_LCD_PIN_RS
416 #undef DEFAULT_LCD_PIN_RS
417 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
418 #endif
419
420 #ifdef CONFIG_PANEL_LCD_PIN_RW
421 #undef DEFAULT_LCD_PIN_RW
422 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
423 #endif
424
425 #ifdef CONFIG_PANEL_LCD_PIN_SCL
426 #undef DEFAULT_LCD_PIN_SCL
427 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
428 #endif
429
430 #ifdef CONFIG_PANEL_LCD_PIN_SDA
431 #undef DEFAULT_LCD_PIN_SDA
432 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
433 #endif
434
435 #ifdef CONFIG_PANEL_LCD_PIN_BL
436 #undef DEFAULT_LCD_PIN_BL
437 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
438 #endif
439
440 #endif /* DEFAULT_PROFILE == 0 */
441
442 /* global variables */
443
444 /* Device single-open policy control */
445 static atomic_t lcd_available = ATOMIC_INIT(1);
446 static atomic_t keypad_available = ATOMIC_INIT(1);
447
448 static struct pardevice *pprt;
449
450 static int keypad_initialized;
451
452 static char init_in_progress;
453
454 static void (*lcd_write_cmd)(int);
455 static void (*lcd_write_data)(int);
456 static void (*lcd_clear_fast)(void);
457
458 static DEFINE_SPINLOCK(pprt_lock);
459 static struct timer_list scan_timer;
460
461 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
462
463 static int parport = DEFAULT_PARPORT;
464 module_param(parport, int, 0000);
465 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
466
467 static int profile = DEFAULT_PROFILE;
468 module_param(profile, int, 0000);
469 MODULE_PARM_DESC(profile,
470 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
471 "4=16x2 nexcom; default=40x2, old kp");
472
473 static int keypad_type = NOT_SET;
474 module_param(keypad_type, int, 0000);
475 MODULE_PARM_DESC(keypad_type,
476 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
477
478 static int lcd_type = NOT_SET;
479 module_param(lcd_type, int, 0000);
480 MODULE_PARM_DESC(lcd_type,
481 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
482
483 static int lcd_height = NOT_SET;
484 module_param(lcd_height, int, 0000);
485 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
486
487 static int lcd_width = NOT_SET;
488 module_param(lcd_width, int, 0000);
489 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
490
491 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
492 module_param(lcd_bwidth, int, 0000);
493 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
494
495 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
496 module_param(lcd_hwidth, int, 0000);
497 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
498
499 static int lcd_charset = NOT_SET;
500 module_param(lcd_charset, int, 0000);
501 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
502
503 static int lcd_proto = NOT_SET;
504 module_param(lcd_proto, int, 0000);
505 MODULE_PARM_DESC(lcd_proto,
506 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
507
508 /*
509 * These are the parallel port pins the LCD control signals are connected to.
510 * Set this to 0 if the signal is not used. Set it to its opposite value
511 * (negative) if the signal is negated. -MAXINT is used to indicate that the
512 * pin has not been explicitly specified.
513 *
514 * WARNING! no check will be performed about collisions with keypad !
515 */
516
517 static int lcd_e_pin = PIN_NOT_SET;
518 module_param(lcd_e_pin, int, 0000);
519 MODULE_PARM_DESC(lcd_e_pin,
520 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
521
522 static int lcd_rs_pin = PIN_NOT_SET;
523 module_param(lcd_rs_pin, int, 0000);
524 MODULE_PARM_DESC(lcd_rs_pin,
525 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
526
527 static int lcd_rw_pin = PIN_NOT_SET;
528 module_param(lcd_rw_pin, int, 0000);
529 MODULE_PARM_DESC(lcd_rw_pin,
530 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
531
532 static int lcd_cl_pin = PIN_NOT_SET;
533 module_param(lcd_cl_pin, int, 0000);
534 MODULE_PARM_DESC(lcd_cl_pin,
535 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
536
537 static int lcd_da_pin = PIN_NOT_SET;
538 module_param(lcd_da_pin, int, 0000);
539 MODULE_PARM_DESC(lcd_da_pin,
540 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
541
542 static int lcd_bl_pin = PIN_NOT_SET;
543 module_param(lcd_bl_pin, int, 0000);
544 MODULE_PARM_DESC(lcd_bl_pin,
545 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
546
547 /* Deprecated module parameters - consider not using them anymore */
548
549 static int lcd_enabled = NOT_SET;
550 module_param(lcd_enabled, int, 0000);
551 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
552
553 static int keypad_enabled = NOT_SET;
554 module_param(keypad_enabled, int, 0000);
555 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
556
557
558 static const unsigned char *lcd_char_conv;
559
560 /* for some LCD drivers (ks0074) we need a charset conversion table. */
561 static const unsigned char lcd_char_conv_ks0074[256] = {
562 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
563 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
564 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
565 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
566 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
567 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
568 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
569 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
570 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
571 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
572 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
573 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
574 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
575 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
576 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
577 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
578 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
579 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
580 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
581 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
582 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
583 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
584 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
585 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
586 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
587 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
588 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
589 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
590 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
591 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
592 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
593 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
594 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
595 };
596
597 static const char old_keypad_profile[][4][9] = {
598 {"S0", "Left\n", "Left\n", ""},
599 {"S1", "Down\n", "Down\n", ""},
600 {"S2", "Up\n", "Up\n", ""},
601 {"S3", "Right\n", "Right\n", ""},
602 {"S4", "Esc\n", "Esc\n", ""},
603 {"S5", "Ret\n", "Ret\n", ""},
604 {"", "", "", ""}
605 };
606
607 /* signals, press, repeat, release */
608 static const char new_keypad_profile[][4][9] = {
609 {"S0", "Left\n", "Left\n", ""},
610 {"S1", "Down\n", "Down\n", ""},
611 {"S2", "Up\n", "Up\n", ""},
612 {"S3", "Right\n", "Right\n", ""},
613 {"S4s5", "", "Esc\n", "Esc\n"},
614 {"s4S5", "", "Ret\n", "Ret\n"},
615 {"S4S5", "Help\n", "", ""},
616 /* add new signals above this line */
617 {"", "", "", ""}
618 };
619
620 /* signals, press, repeat, release */
621 static const char nexcom_keypad_profile[][4][9] = {
622 {"a-p-e-", "Down\n", "Down\n", ""},
623 {"a-p-E-", "Ret\n", "Ret\n", ""},
624 {"a-P-E-", "Esc\n", "Esc\n", ""},
625 {"a-P-e-", "Up\n", "Up\n", ""},
626 /* add new signals above this line */
627 {"", "", "", ""}
628 };
629
630 static const char (*keypad_profile)[4][9] = old_keypad_profile;
631
632 /* FIXME: this should be converted to a bit array containing signals states */
633 static struct {
634 unsigned char e; /* parallel LCD E (data latch on falling edge) */
635 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
636 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
637 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
638 unsigned char cl; /* serial LCD clock (latch on rising edge) */
639 unsigned char da; /* serial LCD data */
640 } bits;
641
642 static void init_scan_timer(void);
643
644 /* sets data port bits according to current signals values */
645 static int set_data_bits(void)
646 {
647 int val, bit;
648
649 val = r_dtr(pprt);
650 for (bit = 0; bit < LCD_BITS; bit++)
651 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
652
653 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
654 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
655 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
656 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
657 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
658 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
659
660 w_dtr(pprt, val);
661 return val;
662 }
663
664 /* sets ctrl port bits according to current signals values */
665 static int set_ctrl_bits(void)
666 {
667 int val, bit;
668
669 val = r_ctr(pprt);
670 for (bit = 0; bit < LCD_BITS; bit++)
671 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
672
673 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
674 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
675 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
676 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
677 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
678 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
679
680 w_ctr(pprt, val);
681 return val;
682 }
683
684 /* sets ctrl & data port bits according to current signals values */
685 static void panel_set_bits(void)
686 {
687 set_data_bits();
688 set_ctrl_bits();
689 }
690
691 /*
692 * Converts a parallel port pin (from -25 to 25) to data and control ports
693 * masks, and data and control port bits. The signal will be considered
694 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
695 *
696 * Result will be used this way :
697 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
698 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
699 */
700 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
701 {
702 int d_bit, c_bit, inv;
703
704 d_val[0] = 0;
705 c_val[0] = 0;
706 d_val[1] = 0;
707 c_val[1] = 0;
708 d_val[2] = 0xFF;
709 c_val[2] = 0xFF;
710
711 if (pin == 0)
712 return;
713
714 inv = (pin < 0);
715 if (inv)
716 pin = -pin;
717
718 d_bit = 0;
719 c_bit = 0;
720
721 switch (pin) {
722 case PIN_STROBE: /* strobe, inverted */
723 c_bit = PNL_PSTROBE;
724 inv = !inv;
725 break;
726 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
727 d_bit = 1 << (pin - 2);
728 break;
729 case PIN_AUTOLF: /* autofeed, inverted */
730 c_bit = PNL_PAUTOLF;
731 inv = !inv;
732 break;
733 case PIN_INITP: /* init, direct */
734 c_bit = PNL_PINITP;
735 break;
736 case PIN_SELECP: /* select_in, inverted */
737 c_bit = PNL_PSELECP;
738 inv = !inv;
739 break;
740 default: /* unknown pin, ignore */
741 break;
742 }
743
744 if (c_bit) {
745 c_val[2] &= ~c_bit;
746 c_val[!inv] = c_bit;
747 } else if (d_bit) {
748 d_val[2] &= ~d_bit;
749 d_val[!inv] = d_bit;
750 }
751 }
752
753 /* sleeps that many milliseconds with a reschedule */
754 static void long_sleep(int ms)
755 {
756 if (in_interrupt()) {
757 mdelay(ms);
758 } else {
759 current->state = TASK_INTERRUPTIBLE;
760 schedule_timeout((ms * HZ + 999) / 1000);
761 }
762 }
763
764 /* send a serial byte to the LCD panel. The caller is responsible for locking
765 if needed. */
766 static void lcd_send_serial(int byte)
767 {
768 int bit;
769
770 /* the data bit is set on D0, and the clock on STROBE.
771 * LCD reads D0 on STROBE's rising edge. */
772 for (bit = 0; bit < 8; bit++) {
773 bits.cl = BIT_CLR; /* CLK low */
774 panel_set_bits();
775 bits.da = byte & 1;
776 panel_set_bits();
777 udelay(2); /* maintain the data during 2 us before CLK up */
778 bits.cl = BIT_SET; /* CLK high */
779 panel_set_bits();
780 udelay(1); /* maintain the strobe during 1 us */
781 byte >>= 1;
782 }
783 }
784
785 /* turn the backlight on or off */
786 static void lcd_backlight(int on)
787 {
788 if (lcd.pins.bl == PIN_NONE)
789 return;
790
791 /* The backlight is activated by setting the AUTOFEED line to +5V */
792 spin_lock_irq(&pprt_lock);
793 bits.bl = on;
794 panel_set_bits();
795 spin_unlock_irq(&pprt_lock);
796 }
797
798 /* send a command to the LCD panel in serial mode */
799 static void lcd_write_cmd_s(int cmd)
800 {
801 spin_lock_irq(&pprt_lock);
802 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
803 lcd_send_serial(cmd & 0x0F);
804 lcd_send_serial((cmd >> 4) & 0x0F);
805 udelay(40); /* the shortest command takes at least 40 us */
806 spin_unlock_irq(&pprt_lock);
807 }
808
809 /* send data to the LCD panel in serial mode */
810 static void lcd_write_data_s(int data)
811 {
812 spin_lock_irq(&pprt_lock);
813 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
814 lcd_send_serial(data & 0x0F);
815 lcd_send_serial((data >> 4) & 0x0F);
816 udelay(40); /* the shortest data takes at least 40 us */
817 spin_unlock_irq(&pprt_lock);
818 }
819
820 /* send a command to the LCD panel in 8 bits parallel mode */
821 static void lcd_write_cmd_p8(int cmd)
822 {
823 spin_lock_irq(&pprt_lock);
824 /* present the data to the data port */
825 w_dtr(pprt, cmd);
826 udelay(20); /* maintain the data during 20 us before the strobe */
827
828 bits.e = BIT_SET;
829 bits.rs = BIT_CLR;
830 bits.rw = BIT_CLR;
831 set_ctrl_bits();
832
833 udelay(40); /* maintain the strobe during 40 us */
834
835 bits.e = BIT_CLR;
836 set_ctrl_bits();
837
838 udelay(120); /* the shortest command takes at least 120 us */
839 spin_unlock_irq(&pprt_lock);
840 }
841
842 /* send data to the LCD panel in 8 bits parallel mode */
843 static void lcd_write_data_p8(int data)
844 {
845 spin_lock_irq(&pprt_lock);
846 /* present the data to the data port */
847 w_dtr(pprt, data);
848 udelay(20); /* maintain the data during 20 us before the strobe */
849
850 bits.e = BIT_SET;
851 bits.rs = BIT_SET;
852 bits.rw = BIT_CLR;
853 set_ctrl_bits();
854
855 udelay(40); /* maintain the strobe during 40 us */
856
857 bits.e = BIT_CLR;
858 set_ctrl_bits();
859
860 udelay(45); /* the shortest data takes at least 45 us */
861 spin_unlock_irq(&pprt_lock);
862 }
863
864 /* send a command to the TI LCD panel */
865 static void lcd_write_cmd_tilcd(int cmd)
866 {
867 spin_lock_irq(&pprt_lock);
868 /* present the data to the control port */
869 w_ctr(pprt, cmd);
870 udelay(60);
871 spin_unlock_irq(&pprt_lock);
872 }
873
874 /* send data to the TI LCD panel */
875 static void lcd_write_data_tilcd(int data)
876 {
877 spin_lock_irq(&pprt_lock);
878 /* present the data to the data port */
879 w_dtr(pprt, data);
880 udelay(60);
881 spin_unlock_irq(&pprt_lock);
882 }
883
884 static void lcd_gotoxy(void)
885 {
886 lcd_write_cmd(0x80 /* set DDRAM address */
887 | (lcd.addr.y ? lcd.hwidth : 0)
888 /* we force the cursor to stay at the end of the
889 line if it wants to go farther */
890 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
891 (lcd.hwidth - 1) : lcd.bwidth - 1));
892 }
893
894 static void lcd_print(char c)
895 {
896 if (lcd.addr.x < lcd.bwidth) {
897 if (lcd_char_conv != NULL)
898 c = lcd_char_conv[(unsigned char)c];
899 lcd_write_data(c);
900 lcd.addr.x++;
901 }
902 /* prevents the cursor from wrapping onto the next line */
903 if (lcd.addr.x == lcd.bwidth)
904 lcd_gotoxy();
905 }
906
907 /* fills the display with spaces and resets X/Y */
908 static void lcd_clear_fast_s(void)
909 {
910 int pos;
911
912 lcd.addr.x = 0;
913 lcd.addr.y = 0;
914 lcd_gotoxy();
915
916 spin_lock_irq(&pprt_lock);
917 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
918 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
919 lcd_send_serial(' ' & 0x0F);
920 lcd_send_serial((' ' >> 4) & 0x0F);
921 udelay(40); /* the shortest data takes at least 40 us */
922 }
923 spin_unlock_irq(&pprt_lock);
924
925 lcd.addr.x = 0;
926 lcd.addr.y = 0;
927 lcd_gotoxy();
928 }
929
930 /* fills the display with spaces and resets X/Y */
931 static void lcd_clear_fast_p8(void)
932 {
933 int pos;
934
935 lcd.addr.x = 0;
936 lcd.addr.y = 0;
937 lcd_gotoxy();
938
939 spin_lock_irq(&pprt_lock);
940 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
941 /* present the data to the data port */
942 w_dtr(pprt, ' ');
943
944 /* maintain the data during 20 us before the strobe */
945 udelay(20);
946
947 bits.e = BIT_SET;
948 bits.rs = BIT_SET;
949 bits.rw = BIT_CLR;
950 set_ctrl_bits();
951
952 /* maintain the strobe during 40 us */
953 udelay(40);
954
955 bits.e = BIT_CLR;
956 set_ctrl_bits();
957
958 /* the shortest data takes at least 45 us */
959 udelay(45);
960 }
961 spin_unlock_irq(&pprt_lock);
962
963 lcd.addr.x = 0;
964 lcd.addr.y = 0;
965 lcd_gotoxy();
966 }
967
968 /* fills the display with spaces and resets X/Y */
969 static void lcd_clear_fast_tilcd(void)
970 {
971 int pos;
972
973 lcd.addr.x = 0;
974 lcd.addr.y = 0;
975 lcd_gotoxy();
976
977 spin_lock_irq(&pprt_lock);
978 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
979 /* present the data to the data port */
980 w_dtr(pprt, ' ');
981 udelay(60);
982 }
983
984 spin_unlock_irq(&pprt_lock);
985
986 lcd.addr.x = 0;
987 lcd.addr.y = 0;
988 lcd_gotoxy();
989 }
990
991 /* clears the display and resets X/Y */
992 static void lcd_clear_display(void)
993 {
994 lcd_write_cmd(0x01); /* clear display */
995 lcd.addr.x = 0;
996 lcd.addr.y = 0;
997 /* we must wait a few milliseconds (15) */
998 long_sleep(15);
999 }
1000
1001 static void lcd_init_display(void)
1002 {
1003 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1004 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1005
1006 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1007
1008 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
1009 long_sleep(10);
1010 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
1011 long_sleep(10);
1012 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
1013 long_sleep(10);
1014
1015 lcd_write_cmd(0x30 /* set font height and lines number */
1016 | ((lcd.flags & LCD_FLAG_F) ? 4 : 0)
1017 | ((lcd.flags & LCD_FLAG_N) ? 8 : 0)
1018 );
1019 long_sleep(10);
1020
1021 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
1022 long_sleep(10);
1023
1024 lcd_write_cmd(0x08 /* set display mode */
1025 | ((lcd.flags & LCD_FLAG_D) ? 4 : 0)
1026 | ((lcd.flags & LCD_FLAG_C) ? 2 : 0)
1027 | ((lcd.flags & LCD_FLAG_B) ? 1 : 0)
1028 );
1029
1030 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1031
1032 long_sleep(10);
1033
1034 /* entry mode set : increment, cursor shifting */
1035 lcd_write_cmd(0x06);
1036
1037 lcd_clear_display();
1038 }
1039
1040 /*
1041 * These are the file operation function for user access to /dev/lcd
1042 * This function can also be called from inside the kernel, by
1043 * setting file and ppos to NULL.
1044 *
1045 */
1046
1047 static inline int handle_lcd_special_code(void)
1048 {
1049 /* LCD special codes */
1050
1051 int processed = 0;
1052
1053 char *esc = lcd.esc_seq.buf + 2;
1054 int oldflags = lcd.flags;
1055
1056 /* check for display mode flags */
1057 switch (*esc) {
1058 case 'D': /* Display ON */
1059 lcd.flags |= LCD_FLAG_D;
1060 processed = 1;
1061 break;
1062 case 'd': /* Display OFF */
1063 lcd.flags &= ~LCD_FLAG_D;
1064 processed = 1;
1065 break;
1066 case 'C': /* Cursor ON */
1067 lcd.flags |= LCD_FLAG_C;
1068 processed = 1;
1069 break;
1070 case 'c': /* Cursor OFF */
1071 lcd.flags &= ~LCD_FLAG_C;
1072 processed = 1;
1073 break;
1074 case 'B': /* Blink ON */
1075 lcd.flags |= LCD_FLAG_B;
1076 processed = 1;
1077 break;
1078 case 'b': /* Blink OFF */
1079 lcd.flags &= ~LCD_FLAG_B;
1080 processed = 1;
1081 break;
1082 case '+': /* Back light ON */
1083 lcd.flags |= LCD_FLAG_L;
1084 processed = 1;
1085 break;
1086 case '-': /* Back light OFF */
1087 lcd.flags &= ~LCD_FLAG_L;
1088 processed = 1;
1089 break;
1090 case '*':
1091 /* flash back light using the keypad timer */
1092 if (scan_timer.function != NULL) {
1093 if (lcd.light_tempo == 0
1094 && ((lcd.flags & LCD_FLAG_L) == 0))
1095 lcd_backlight(1);
1096 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1097 }
1098 processed = 1;
1099 break;
1100 case 'f': /* Small Font */
1101 lcd.flags &= ~LCD_FLAG_F;
1102 processed = 1;
1103 break;
1104 case 'F': /* Large Font */
1105 lcd.flags |= LCD_FLAG_F;
1106 processed = 1;
1107 break;
1108 case 'n': /* One Line */
1109 lcd.flags &= ~LCD_FLAG_N;
1110 processed = 1;
1111 break;
1112 case 'N': /* Two Lines */
1113 lcd.flags |= LCD_FLAG_N;
1114 break;
1115 case 'l': /* Shift Cursor Left */
1116 if (lcd.addr.x > 0) {
1117 /* back one char if not at end of line */
1118 if (lcd.addr.x < lcd.bwidth)
1119 lcd_write_cmd(0x10);
1120 lcd.addr.x--;
1121 }
1122 processed = 1;
1123 break;
1124 case 'r': /* shift cursor right */
1125 if (lcd.addr.x < lcd.width) {
1126 /* allow the cursor to pass the end of the line */
1127 if (lcd.addr.x <
1128 (lcd.bwidth - 1))
1129 lcd_write_cmd(0x14);
1130 lcd.addr.x++;
1131 }
1132 processed = 1;
1133 break;
1134 case 'L': /* shift display left */
1135 lcd_write_cmd(0x18);
1136 processed = 1;
1137 break;
1138 case 'R': /* shift display right */
1139 lcd_write_cmd(0x1C);
1140 processed = 1;
1141 break;
1142 case 'k': { /* kill end of line */
1143 int x;
1144
1145 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1146 lcd_write_data(' ');
1147
1148 /* restore cursor position */
1149 lcd_gotoxy();
1150 processed = 1;
1151 break;
1152 }
1153 case 'I': /* reinitialize display */
1154 lcd_init_display();
1155 processed = 1;
1156 break;
1157 case 'G': {
1158 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1159 * and '7', representing the numerical ASCII code of the
1160 * redefined character, and <xx...xx> a sequence of 16
1161 * hex digits representing 8 bytes for each character.
1162 * Most LCDs will only use 5 lower bits of the 7 first
1163 * bytes.
1164 */
1165
1166 unsigned char cgbytes[8];
1167 unsigned char cgaddr;
1168 int cgoffset;
1169 int shift;
1170 char value;
1171 int addr;
1172
1173 if (strchr(esc, ';') == NULL)
1174 break;
1175
1176 esc++;
1177
1178 cgaddr = *(esc++) - '0';
1179 if (cgaddr > 7) {
1180 processed = 1;
1181 break;
1182 }
1183
1184 cgoffset = 0;
1185 shift = 0;
1186 value = 0;
1187 while (*esc && cgoffset < 8) {
1188 shift ^= 4;
1189 if (*esc >= '0' && *esc <= '9') {
1190 value |= (*esc - '0') << shift;
1191 } else if (*esc >= 'A' && *esc <= 'Z') {
1192 value |= (*esc - 'A' + 10) << shift;
1193 } else if (*esc >= 'a' && *esc <= 'z') {
1194 value |= (*esc - 'a' + 10) << shift;
1195 } else {
1196 esc++;
1197 continue;
1198 }
1199
1200 if (shift == 0) {
1201 cgbytes[cgoffset++] = value;
1202 value = 0;
1203 }
1204
1205 esc++;
1206 }
1207
1208 lcd_write_cmd(0x40 | (cgaddr * 8));
1209 for (addr = 0; addr < cgoffset; addr++)
1210 lcd_write_data(cgbytes[addr]);
1211
1212 /* ensures that we stop writing to CGRAM */
1213 lcd_gotoxy();
1214 processed = 1;
1215 break;
1216 }
1217 case 'x': /* gotoxy : LxXXX[yYYY]; */
1218 case 'y': /* gotoxy : LyYYY[xXXX]; */
1219 if (strchr(esc, ';') == NULL)
1220 break;
1221
1222 while (*esc) {
1223 if (*esc == 'x') {
1224 esc++;
1225 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1226 break;
1227 } else if (*esc == 'y') {
1228 esc++;
1229 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1230 break;
1231 } else {
1232 break;
1233 }
1234 }
1235
1236 lcd_gotoxy();
1237 processed = 1;
1238 break;
1239 }
1240
1241 /* Check whether one flag was changed */
1242 if (oldflags != lcd.flags) {
1243 /* check whether one of B,C,D flags were changed */
1244 if ((oldflags ^ lcd.flags) &
1245 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1246 /* set display mode */
1247 lcd_write_cmd(0x08
1248 | ((lcd.flags & LCD_FLAG_D) ? 4 : 0)
1249 | ((lcd.flags & LCD_FLAG_C) ? 2 : 0)
1250 | ((lcd.flags & LCD_FLAG_B) ? 1 : 0));
1251 /* check whether one of F,N flags was changed */
1252 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1253 lcd_write_cmd(0x30
1254 | ((lcd.flags & LCD_FLAG_F) ? 4 : 0)
1255 | ((lcd.flags & LCD_FLAG_N) ? 8 : 0));
1256 /* check whether L flag was changed */
1257 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1258 if (lcd.flags & (LCD_FLAG_L))
1259 lcd_backlight(1);
1260 else if (lcd.light_tempo == 0)
1261 /* switch off the light only when the tempo
1262 lighting is gone */
1263 lcd_backlight(0);
1264 }
1265 }
1266
1267 return processed;
1268 }
1269
1270 static void lcd_write_char(char c)
1271 {
1272 /* first, we'll test if we're in escape mode */
1273 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1274 /* yes, let's add this char to the buffer */
1275 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1276 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1277 } else {
1278 /* aborts any previous escape sequence */
1279 lcd.esc_seq.len = -1;
1280
1281 switch (c) {
1282 case LCD_ESCAPE_CHAR:
1283 /* start of an escape sequence */
1284 lcd.esc_seq.len = 0;
1285 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1286 break;
1287 case '\b':
1288 /* go back one char and clear it */
1289 if (lcd.addr.x > 0) {
1290 /* check if we're not at the
1291 end of the line */
1292 if (lcd.addr.x < lcd.bwidth)
1293 /* back one char */
1294 lcd_write_cmd(0x10);
1295 lcd.addr.x--;
1296 }
1297 /* replace with a space */
1298 lcd_write_data(' ');
1299 /* back one char again */
1300 lcd_write_cmd(0x10);
1301 break;
1302 case '\014':
1303 /* quickly clear the display */
1304 lcd_clear_fast();
1305 break;
1306 case '\n':
1307 /* flush the remainder of the current line and
1308 go to the beginning of the next line */
1309 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1310 lcd_write_data(' ');
1311 lcd.addr.x = 0;
1312 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1313 lcd_gotoxy();
1314 break;
1315 case '\r':
1316 /* go to the beginning of the same line */
1317 lcd.addr.x = 0;
1318 lcd_gotoxy();
1319 break;
1320 case '\t':
1321 /* print a space instead of the tab */
1322 lcd_print(' ');
1323 break;
1324 default:
1325 /* simply print this char */
1326 lcd_print(c);
1327 break;
1328 }
1329 }
1330
1331 /* now we'll see if we're in an escape mode and if the current
1332 escape sequence can be understood. */
1333 if (lcd.esc_seq.len >= 2) {
1334 int processed = 0;
1335
1336 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1337 /* clear the display */
1338 lcd_clear_fast();
1339 processed = 1;
1340 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1341 /* cursor to home */
1342 lcd.addr.x = 0;
1343 lcd.addr.y = 0;
1344 lcd_gotoxy();
1345 processed = 1;
1346 }
1347 /* codes starting with ^[[L */
1348 else if ((lcd.esc_seq.len >= 3) &&
1349 (lcd.esc_seq.buf[0] == '[') &&
1350 (lcd.esc_seq.buf[1] == 'L')) {
1351 processed = handle_lcd_special_code();
1352 }
1353
1354 /* LCD special escape codes */
1355 /* flush the escape sequence if it's been processed
1356 or if it is getting too long. */
1357 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1358 lcd.esc_seq.len = -1;
1359 } /* escape codes */
1360 }
1361
1362 static ssize_t lcd_write(struct file *file,
1363 const char __user *buf, size_t count, loff_t *ppos)
1364 {
1365 const char __user *tmp = buf;
1366 char c;
1367
1368 for (; count-- > 0; (*ppos)++, tmp++) {
1369 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1370 /* let's be a little nice with other processes
1371 that need some CPU */
1372 schedule();
1373
1374 if (get_user(c, tmp))
1375 return -EFAULT;
1376
1377 lcd_write_char(c);
1378 }
1379
1380 return tmp - buf;
1381 }
1382
1383 static int lcd_open(struct inode *inode, struct file *file)
1384 {
1385 if (!atomic_dec_and_test(&lcd_available))
1386 return -EBUSY; /* open only once at a time */
1387
1388 if (file->f_mode & FMODE_READ) /* device is write-only */
1389 return -EPERM;
1390
1391 if (lcd.must_clear) {
1392 lcd_clear_display();
1393 lcd.must_clear = false;
1394 }
1395 return nonseekable_open(inode, file);
1396 }
1397
1398 static int lcd_release(struct inode *inode, struct file *file)
1399 {
1400 atomic_inc(&lcd_available);
1401 return 0;
1402 }
1403
1404 static const struct file_operations lcd_fops = {
1405 .write = lcd_write,
1406 .open = lcd_open,
1407 .release = lcd_release,
1408 .llseek = no_llseek,
1409 };
1410
1411 static struct miscdevice lcd_dev = {
1412 .minor = LCD_MINOR,
1413 .name = "lcd",
1414 .fops = &lcd_fops,
1415 };
1416
1417 /* public function usable from the kernel for any purpose */
1418 static void panel_lcd_print(const char *s)
1419 {
1420 const char *tmp = s;
1421 int count = strlen(s);
1422
1423 if (lcd.enabled && lcd.initialized) {
1424 for (; count-- > 0; tmp++) {
1425 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1426 /* let's be a little nice with other processes
1427 that need some CPU */
1428 schedule();
1429
1430 lcd_write_char(*tmp);
1431 }
1432 }
1433 }
1434
1435 /* initialize the LCD driver */
1436 static void lcd_init(void)
1437 {
1438 switch (selected_lcd_type) {
1439 case LCD_TYPE_OLD:
1440 /* parallel mode, 8 bits */
1441 lcd.proto = LCD_PROTO_PARALLEL;
1442 lcd.charset = LCD_CHARSET_NORMAL;
1443 lcd.pins.e = PIN_STROBE;
1444 lcd.pins.rs = PIN_AUTOLF;
1445
1446 lcd.width = 40;
1447 lcd.bwidth = 40;
1448 lcd.hwidth = 64;
1449 lcd.height = 2;
1450 break;
1451 case LCD_TYPE_KS0074:
1452 /* serial mode, ks0074 */
1453 lcd.proto = LCD_PROTO_SERIAL;
1454 lcd.charset = LCD_CHARSET_KS0074;
1455 lcd.pins.bl = PIN_AUTOLF;
1456 lcd.pins.cl = PIN_STROBE;
1457 lcd.pins.da = PIN_D0;
1458
1459 lcd.width = 16;
1460 lcd.bwidth = 40;
1461 lcd.hwidth = 16;
1462 lcd.height = 2;
1463 break;
1464 case LCD_TYPE_NEXCOM:
1465 /* parallel mode, 8 bits, generic */
1466 lcd.proto = LCD_PROTO_PARALLEL;
1467 lcd.charset = LCD_CHARSET_NORMAL;
1468 lcd.pins.e = PIN_AUTOLF;
1469 lcd.pins.rs = PIN_SELECP;
1470 lcd.pins.rw = PIN_INITP;
1471
1472 lcd.width = 16;
1473 lcd.bwidth = 40;
1474 lcd.hwidth = 64;
1475 lcd.height = 2;
1476 break;
1477 case LCD_TYPE_CUSTOM:
1478 /* customer-defined */
1479 lcd.proto = DEFAULT_LCD_PROTO;
1480 lcd.charset = DEFAULT_LCD_CHARSET;
1481 /* default geometry will be set later */
1482 break;
1483 case LCD_TYPE_HANTRONIX:
1484 /* parallel mode, 8 bits, hantronix-like */
1485 default:
1486 lcd.proto = LCD_PROTO_PARALLEL;
1487 lcd.charset = LCD_CHARSET_NORMAL;
1488 lcd.pins.e = PIN_STROBE;
1489 lcd.pins.rs = PIN_SELECP;
1490
1491 lcd.width = 16;
1492 lcd.bwidth = 40;
1493 lcd.hwidth = 64;
1494 lcd.height = 2;
1495 break;
1496 }
1497
1498 /* Overwrite with module params set on loading */
1499 if (lcd_height != NOT_SET)
1500 lcd.height = lcd_height;
1501 if (lcd_width != NOT_SET)
1502 lcd.width = lcd_width;
1503 if (lcd_bwidth != NOT_SET)
1504 lcd.bwidth = lcd_bwidth;
1505 if (lcd_hwidth != NOT_SET)
1506 lcd.hwidth = lcd_hwidth;
1507 if (lcd_charset != NOT_SET)
1508 lcd.charset = lcd_charset;
1509 if (lcd_proto != NOT_SET)
1510 lcd.proto = lcd_proto;
1511 if (lcd_e_pin != PIN_NOT_SET)
1512 lcd.pins.e = lcd_e_pin;
1513 if (lcd_rs_pin != PIN_NOT_SET)
1514 lcd.pins.rs = lcd_rs_pin;
1515 if (lcd_rw_pin != PIN_NOT_SET)
1516 lcd.pins.rw = lcd_rw_pin;
1517 if (lcd_cl_pin != PIN_NOT_SET)
1518 lcd.pins.cl = lcd_cl_pin;
1519 if (lcd_da_pin != PIN_NOT_SET)
1520 lcd.pins.da = lcd_da_pin;
1521 if (lcd_bl_pin != PIN_NOT_SET)
1522 lcd.pins.bl = lcd_bl_pin;
1523
1524 /* this is used to catch wrong and default values */
1525 if (lcd.width <= 0)
1526 lcd.width = DEFAULT_LCD_WIDTH;
1527 if (lcd.bwidth <= 0)
1528 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1529 if (lcd.hwidth <= 0)
1530 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1531 if (lcd.height <= 0)
1532 lcd.height = DEFAULT_LCD_HEIGHT;
1533
1534 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1535 lcd_write_cmd = lcd_write_cmd_s;
1536 lcd_write_data = lcd_write_data_s;
1537 lcd_clear_fast = lcd_clear_fast_s;
1538
1539 if (lcd.pins.cl == PIN_NOT_SET)
1540 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1541 if (lcd.pins.da == PIN_NOT_SET)
1542 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1543
1544 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1545 lcd_write_cmd = lcd_write_cmd_p8;
1546 lcd_write_data = lcd_write_data_p8;
1547 lcd_clear_fast = lcd_clear_fast_p8;
1548
1549 if (lcd.pins.e == PIN_NOT_SET)
1550 lcd.pins.e = DEFAULT_LCD_PIN_E;
1551 if (lcd.pins.rs == PIN_NOT_SET)
1552 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1553 if (lcd.pins.rw == PIN_NOT_SET)
1554 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1555 } else {
1556 lcd_write_cmd = lcd_write_cmd_tilcd;
1557 lcd_write_data = lcd_write_data_tilcd;
1558 lcd_clear_fast = lcd_clear_fast_tilcd;
1559 }
1560
1561 if (lcd.pins.bl == PIN_NOT_SET)
1562 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1563
1564 if (lcd.pins.e == PIN_NOT_SET)
1565 lcd.pins.e = PIN_NONE;
1566 if (lcd.pins.rs == PIN_NOT_SET)
1567 lcd.pins.rs = PIN_NONE;
1568 if (lcd.pins.rw == PIN_NOT_SET)
1569 lcd.pins.rw = PIN_NONE;
1570 if (lcd.pins.bl == PIN_NOT_SET)
1571 lcd.pins.bl = PIN_NONE;
1572 if (lcd.pins.cl == PIN_NOT_SET)
1573 lcd.pins.cl = PIN_NONE;
1574 if (lcd.pins.da == PIN_NOT_SET)
1575 lcd.pins.da = PIN_NONE;
1576
1577 if (lcd.charset == NOT_SET)
1578 lcd.charset = DEFAULT_LCD_CHARSET;
1579
1580 if (lcd.charset == LCD_CHARSET_KS0074)
1581 lcd_char_conv = lcd_char_conv_ks0074;
1582 else
1583 lcd_char_conv = NULL;
1584
1585 if (lcd.pins.bl != PIN_NONE)
1586 init_scan_timer();
1587
1588 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1589 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1590 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1591 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1592 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1593 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1594 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1595 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1596 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1597 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1598 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1599 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1600
1601 /* before this line, we must NOT send anything to the display.
1602 * Since lcd_init_display() needs to write data, we have to
1603 * enable mark the LCD initialized just before. */
1604 lcd.initialized = true;
1605 lcd_init_display();
1606
1607 /* display a short message */
1608 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1609 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1610 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1611 #endif
1612 #else
1613 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1614 PANEL_VERSION);
1615 #endif
1616 lcd.addr.x = 0;
1617 lcd.addr.y = 0;
1618 /* clear the display on the next device opening */
1619 lcd.must_clear = true;
1620 lcd_gotoxy();
1621 }
1622
1623 /*
1624 * These are the file operation function for user access to /dev/keypad
1625 */
1626
1627 static ssize_t keypad_read(struct file *file,
1628 char __user *buf, size_t count, loff_t *ppos)
1629 {
1630 unsigned i = *ppos;
1631 char __user *tmp = buf;
1632
1633 if (keypad_buflen == 0) {
1634 if (file->f_flags & O_NONBLOCK)
1635 return -EAGAIN;
1636
1637 if (wait_event_interruptible(keypad_read_wait,
1638 keypad_buflen != 0))
1639 return -EINTR;
1640 }
1641
1642 for (; count-- > 0 && (keypad_buflen > 0);
1643 ++i, ++tmp, --keypad_buflen) {
1644 put_user(keypad_buffer[keypad_start], tmp);
1645 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1646 }
1647 *ppos = i;
1648
1649 return tmp - buf;
1650 }
1651
1652 static int keypad_open(struct inode *inode, struct file *file)
1653 {
1654 if (!atomic_dec_and_test(&keypad_available))
1655 return -EBUSY; /* open only once at a time */
1656
1657 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1658 return -EPERM;
1659
1660 keypad_buflen = 0; /* flush the buffer on opening */
1661 return 0;
1662 }
1663
1664 static int keypad_release(struct inode *inode, struct file *file)
1665 {
1666 atomic_inc(&keypad_available);
1667 return 0;
1668 }
1669
1670 static const struct file_operations keypad_fops = {
1671 .read = keypad_read, /* read */
1672 .open = keypad_open, /* open */
1673 .release = keypad_release, /* close */
1674 .llseek = default_llseek,
1675 };
1676
1677 static struct miscdevice keypad_dev = {
1678 .minor = KEYPAD_MINOR,
1679 .name = "keypad",
1680 .fops = &keypad_fops,
1681 };
1682
1683 static void keypad_send_key(const char *string, int max_len)
1684 {
1685 if (init_in_progress)
1686 return;
1687
1688 /* send the key to the device only if a process is attached to it. */
1689 if (!atomic_read(&keypad_available)) {
1690 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1691 keypad_buffer[(keypad_start + keypad_buflen++) %
1692 KEYPAD_BUFFER] = *string++;
1693 }
1694 wake_up_interruptible(&keypad_read_wait);
1695 }
1696 }
1697
1698 /* this function scans all the bits involving at least one logical signal,
1699 * and puts the results in the bitfield "phys_read" (one bit per established
1700 * contact), and sets "phys_read_prev" to "phys_read".
1701 *
1702 * Note: to debounce input signals, we will only consider as switched a signal
1703 * which is stable across 2 measures. Signals which are different between two
1704 * reads will be kept as they previously were in their logical form (phys_prev).
1705 * A signal which has just switched will have a 1 in
1706 * (phys_read ^ phys_read_prev).
1707 */
1708 static void phys_scan_contacts(void)
1709 {
1710 int bit, bitval;
1711 char oldval;
1712 char bitmask;
1713 char gndmask;
1714
1715 phys_prev = phys_curr;
1716 phys_read_prev = phys_read;
1717 phys_read = 0; /* flush all signals */
1718
1719 /* keep track of old value, with all outputs disabled */
1720 oldval = r_dtr(pprt) | scan_mask_o;
1721 /* activate all keyboard outputs (active low) */
1722 w_dtr(pprt, oldval & ~scan_mask_o);
1723
1724 /* will have a 1 for each bit set to gnd */
1725 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1726 /* disable all matrix signals */
1727 w_dtr(pprt, oldval);
1728
1729 /* now that all outputs are cleared, the only active input bits are
1730 * directly connected to the ground
1731 */
1732
1733 /* 1 for each grounded input */
1734 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1735
1736 /* grounded inputs are signals 40-44 */
1737 phys_read |= (pmask_t) gndmask << 40;
1738
1739 if (bitmask != gndmask) {
1740 /* since clearing the outputs changed some inputs, we know
1741 * that some input signals are currently tied to some outputs.
1742 * So we'll scan them.
1743 */
1744 for (bit = 0; bit < 8; bit++) {
1745 bitval = 1 << bit;
1746
1747 if (!(scan_mask_o & bitval)) /* skip unused bits */
1748 continue;
1749
1750 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1751 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1752 phys_read |= (pmask_t) bitmask << (5 * bit);
1753 }
1754 w_dtr(pprt, oldval); /* disable all outputs */
1755 }
1756 /* this is easy: use old bits when they are flapping,
1757 * use new ones when stable */
1758 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1759 (phys_read & ~(phys_read ^ phys_read_prev));
1760 }
1761
1762 static inline int input_state_high(struct logical_input *input)
1763 {
1764 #if 0
1765 /* FIXME:
1766 * this is an invalid test. It tries to catch
1767 * transitions from single-key to multiple-key, but
1768 * doesn't take into account the contacts polarity.
1769 * The only solution to the problem is to parse keys
1770 * from the most complex to the simplest combinations,
1771 * and mark them as 'caught' once a combination
1772 * matches, then unmatch it for all other ones.
1773 */
1774
1775 /* try to catch dangerous transitions cases :
1776 * someone adds a bit, so this signal was a false
1777 * positive resulting from a transition. We should
1778 * invalidate the signal immediately and not call the
1779 * release function.
1780 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1781 */
1782 if (((phys_prev & input->mask) == input->value) &&
1783 ((phys_curr & input->mask) > input->value)) {
1784 input->state = INPUT_ST_LOW; /* invalidate */
1785 return 1;
1786 }
1787 #endif
1788
1789 if ((phys_curr & input->mask) == input->value) {
1790 if ((input->type == INPUT_TYPE_STD) &&
1791 (input->high_timer == 0)) {
1792 input->high_timer++;
1793 if (input->u.std.press_fct != NULL)
1794 input->u.std.press_fct(input->u.std.press_data);
1795 } else if (input->type == INPUT_TYPE_KBD) {
1796 /* will turn on the light */
1797 keypressed = 1;
1798
1799 if (input->high_timer == 0) {
1800 char *press_str = input->u.kbd.press_str;
1801
1802 if (press_str[0]) {
1803 int s = sizeof(input->u.kbd.press_str);
1804
1805 keypad_send_key(press_str, s);
1806 }
1807 }
1808
1809 if (input->u.kbd.repeat_str[0]) {
1810 char *repeat_str = input->u.kbd.repeat_str;
1811
1812 if (input->high_timer >= KEYPAD_REP_START) {
1813 int s = sizeof(input->u.kbd.repeat_str);
1814
1815 input->high_timer -= KEYPAD_REP_DELAY;
1816 keypad_send_key(repeat_str, s);
1817 }
1818 /* we will need to come back here soon */
1819 inputs_stable = 0;
1820 }
1821
1822 if (input->high_timer < 255)
1823 input->high_timer++;
1824 }
1825 return 1;
1826 }
1827
1828 /* else signal falling down. Let's fall through. */
1829 input->state = INPUT_ST_FALLING;
1830 input->fall_timer = 0;
1831
1832 return 0;
1833 }
1834
1835 static inline void input_state_falling(struct logical_input *input)
1836 {
1837 #if 0
1838 /* FIXME !!! same comment as in input_state_high */
1839 if (((phys_prev & input->mask) == input->value) &&
1840 ((phys_curr & input->mask) > input->value)) {
1841 input->state = INPUT_ST_LOW; /* invalidate */
1842 return;
1843 }
1844 #endif
1845
1846 if ((phys_curr & input->mask) == input->value) {
1847 if (input->type == INPUT_TYPE_KBD) {
1848 /* will turn on the light */
1849 keypressed = 1;
1850
1851 if (input->u.kbd.repeat_str[0]) {
1852 char *repeat_str = input->u.kbd.repeat_str;
1853
1854 if (input->high_timer >= KEYPAD_REP_START) {
1855 int s = sizeof(input->u.kbd.repeat_str);
1856
1857 input->high_timer -= KEYPAD_REP_DELAY;
1858 keypad_send_key(repeat_str, s);
1859 }
1860 /* we will need to come back here soon */
1861 inputs_stable = 0;
1862 }
1863
1864 if (input->high_timer < 255)
1865 input->high_timer++;
1866 }
1867 input->state = INPUT_ST_HIGH;
1868 } else if (input->fall_timer >= input->fall_time) {
1869 /* call release event */
1870 if (input->type == INPUT_TYPE_STD) {
1871 void (*release_fct)(int) = input->u.std.release_fct;
1872
1873 if (release_fct != NULL)
1874 release_fct(input->u.std.release_data);
1875 } else if (input->type == INPUT_TYPE_KBD) {
1876 char *release_str = input->u.kbd.release_str;
1877
1878 if (release_str[0]) {
1879 int s = sizeof(input->u.kbd.release_str);
1880
1881 keypad_send_key(release_str, s);
1882 }
1883 }
1884
1885 input->state = INPUT_ST_LOW;
1886 } else {
1887 input->fall_timer++;
1888 inputs_stable = 0;
1889 }
1890 }
1891
1892 static void panel_process_inputs(void)
1893 {
1894 struct list_head *item;
1895 struct logical_input *input;
1896
1897 keypressed = 0;
1898 inputs_stable = 1;
1899 list_for_each(item, &logical_inputs) {
1900 input = list_entry(item, struct logical_input, list);
1901
1902 switch (input->state) {
1903 case INPUT_ST_LOW:
1904 if ((phys_curr & input->mask) != input->value)
1905 break;
1906 /* if all needed ones were already set previously,
1907 * this means that this logical signal has been
1908 * activated by the releasing of another combined
1909 * signal, so we don't want to match.
1910 * eg: AB -(release B)-> A -(release A)-> 0 :
1911 * don't match A.
1912 */
1913 if ((phys_prev & input->mask) == input->value)
1914 break;
1915 input->rise_timer = 0;
1916 input->state = INPUT_ST_RISING;
1917 /* no break here, fall through */
1918 case INPUT_ST_RISING:
1919 if ((phys_curr & input->mask) != input->value) {
1920 input->state = INPUT_ST_LOW;
1921 break;
1922 }
1923 if (input->rise_timer < input->rise_time) {
1924 inputs_stable = 0;
1925 input->rise_timer++;
1926 break;
1927 }
1928 input->high_timer = 0;
1929 input->state = INPUT_ST_HIGH;
1930 /* no break here, fall through */
1931 case INPUT_ST_HIGH:
1932 if (input_state_high(input))
1933 break;
1934 /* no break here, fall through */
1935 case INPUT_ST_FALLING:
1936 input_state_falling(input);
1937 }
1938 }
1939 }
1940
1941 static void panel_scan_timer(void)
1942 {
1943 if (keypad.enabled && keypad_initialized) {
1944 if (spin_trylock_irq(&pprt_lock)) {
1945 phys_scan_contacts();
1946
1947 /* no need for the parport anymore */
1948 spin_unlock_irq(&pprt_lock);
1949 }
1950
1951 if (!inputs_stable || phys_curr != phys_prev)
1952 panel_process_inputs();
1953 }
1954
1955 if (lcd.enabled && lcd.initialized) {
1956 if (keypressed) {
1957 if (lcd.light_tempo == 0
1958 && ((lcd.flags & LCD_FLAG_L) == 0))
1959 lcd_backlight(1);
1960 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1961 } else if (lcd.light_tempo > 0) {
1962 lcd.light_tempo--;
1963 if (lcd.light_tempo == 0
1964 && ((lcd.flags & LCD_FLAG_L) == 0))
1965 lcd_backlight(0);
1966 }
1967 }
1968
1969 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1970 }
1971
1972 static void init_scan_timer(void)
1973 {
1974 if (scan_timer.function != NULL)
1975 return; /* already started */
1976
1977 init_timer(&scan_timer);
1978 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1979 scan_timer.data = 0;
1980 scan_timer.function = (void *)&panel_scan_timer;
1981 add_timer(&scan_timer);
1982 }
1983
1984 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1985 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1986 * corresponding to out and in bits respectively.
1987 * returns 1 if ok, 0 if error (in which case, nothing is written).
1988 */
1989 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1990 char *imask, char *omask)
1991 {
1992 static char sigtab[10] = "EeSsPpAaBb";
1993 char im, om;
1994 pmask_t m, v;
1995
1996 om = 0ULL;
1997 im = 0ULL;
1998 m = 0ULL;
1999 v = 0ULL;
2000 while (*name) {
2001 int in, out, bit, neg;
2002
2003 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2004 in++)
2005 ;
2006
2007 if (in >= sizeof(sigtab))
2008 return 0; /* input name not found */
2009 neg = (in & 1); /* odd (lower) names are negated */
2010 in >>= 1;
2011 im |= (1 << in);
2012
2013 name++;
2014 if (isdigit(*name)) {
2015 out = *name - '0';
2016 om |= (1 << out);
2017 } else if (*name == '-') {
2018 out = 8;
2019 } else {
2020 return 0; /* unknown bit name */
2021 }
2022
2023 bit = (out * 5) + in;
2024
2025 m |= 1ULL << bit;
2026 if (!neg)
2027 v |= 1ULL << bit;
2028 name++;
2029 }
2030 *mask = m;
2031 *value = v;
2032 if (imask)
2033 *imask |= im;
2034 if (omask)
2035 *omask |= om;
2036 return 1;
2037 }
2038
2039 /* tries to bind a key to the signal name <name>. The key will send the
2040 * strings <press>, <repeat>, <release> for these respective events.
2041 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2042 */
2043 static struct logical_input *panel_bind_key(const char *name, const char *press,
2044 const char *repeat,
2045 const char *release)
2046 {
2047 struct logical_input *key;
2048
2049 key = kzalloc(sizeof(*key), GFP_KERNEL);
2050 if (!key)
2051 return NULL;
2052
2053 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2054 &scan_mask_o)) {
2055 kfree(key);
2056 return NULL;
2057 }
2058
2059 key->type = INPUT_TYPE_KBD;
2060 key->state = INPUT_ST_LOW;
2061 key->rise_time = 1;
2062 key->fall_time = 1;
2063
2064 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2065 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2066 strncpy(key->u.kbd.release_str, release,
2067 sizeof(key->u.kbd.release_str));
2068 list_add(&key->list, &logical_inputs);
2069 return key;
2070 }
2071
2072 #if 0
2073 /* tries to bind a callback function to the signal name <name>. The function
2074 * <press_fct> will be called with the <press_data> arg when the signal is
2075 * activated, and so on for <release_fct>/<release_data>
2076 * Returns the pointer to the new signal if ok, NULL if the signal could not
2077 * be bound.
2078 */
2079 static struct logical_input *panel_bind_callback(char *name,
2080 void (*press_fct)(int),
2081 int press_data,
2082 void (*release_fct)(int),
2083 int release_data)
2084 {
2085 struct logical_input *callback;
2086
2087 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2088 if (!callback)
2089 return NULL;
2090
2091 memset(callback, 0, sizeof(struct logical_input));
2092 if (!input_name2mask(name, &callback->mask, &callback->value,
2093 &scan_mask_i, &scan_mask_o))
2094 return NULL;
2095
2096 callback->type = INPUT_TYPE_STD;
2097 callback->state = INPUT_ST_LOW;
2098 callback->rise_time = 1;
2099 callback->fall_time = 1;
2100 callback->u.std.press_fct = press_fct;
2101 callback->u.std.press_data = press_data;
2102 callback->u.std.release_fct = release_fct;
2103 callback->u.std.release_data = release_data;
2104 list_add(&callback->list, &logical_inputs);
2105 return callback;
2106 }
2107 #endif
2108
2109 static void keypad_init(void)
2110 {
2111 int keynum;
2112
2113 init_waitqueue_head(&keypad_read_wait);
2114 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2115
2116 /* Let's create all known keys */
2117
2118 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2119 panel_bind_key(keypad_profile[keynum][0],
2120 keypad_profile[keynum][1],
2121 keypad_profile[keynum][2],
2122 keypad_profile[keynum][3]);
2123 }
2124
2125 init_scan_timer();
2126 keypad_initialized = 1;
2127 }
2128
2129 /**************************************************/
2130 /* device initialization */
2131 /**************************************************/
2132
2133 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2134 void *unused)
2135 {
2136 if (lcd.enabled && lcd.initialized) {
2137 switch (code) {
2138 case SYS_DOWN:
2139 panel_lcd_print
2140 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2141 break;
2142 case SYS_HALT:
2143 panel_lcd_print
2144 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2145 break;
2146 case SYS_POWER_OFF:
2147 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2148 break;
2149 default:
2150 break;
2151 }
2152 }
2153 return NOTIFY_DONE;
2154 }
2155
2156 static struct notifier_block panel_notifier = {
2157 panel_notify_sys,
2158 NULL,
2159 0
2160 };
2161
2162 static void panel_attach(struct parport *port)
2163 {
2164 if (port->number != parport)
2165 return;
2166
2167 if (pprt) {
2168 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2169 __func__, port->number, parport);
2170 return;
2171 }
2172
2173 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2174 NULL,
2175 /*PARPORT_DEV_EXCL */
2176 0, (void *)&pprt);
2177 if (pprt == NULL) {
2178 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2179 __func__, port->number, parport);
2180 return;
2181 }
2182
2183 if (parport_claim(pprt)) {
2184 pr_err("could not claim access to parport%d. Aborting.\n",
2185 parport);
2186 goto err_unreg_device;
2187 }
2188
2189 /* must init LCD first, just in case an IRQ from the keypad is
2190 * generated at keypad init
2191 */
2192 if (lcd.enabled) {
2193 lcd_init();
2194 if (misc_register(&lcd_dev))
2195 goto err_unreg_device;
2196 }
2197
2198 if (keypad.enabled) {
2199 keypad_init();
2200 if (misc_register(&keypad_dev))
2201 goto err_lcd_unreg;
2202 }
2203 return;
2204
2205 err_lcd_unreg:
2206 if (lcd.enabled)
2207 misc_deregister(&lcd_dev);
2208 err_unreg_device:
2209 parport_unregister_device(pprt);
2210 pprt = NULL;
2211 }
2212
2213 static void panel_detach(struct parport *port)
2214 {
2215 if (port->number != parport)
2216 return;
2217
2218 if (!pprt) {
2219 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2220 __func__, port->number, parport);
2221 return;
2222 }
2223
2224 if (keypad.enabled && keypad_initialized) {
2225 misc_deregister(&keypad_dev);
2226 keypad_initialized = 0;
2227 }
2228
2229 if (lcd.enabled && lcd.initialized) {
2230 misc_deregister(&lcd_dev);
2231 lcd.initialized = false;
2232 }
2233
2234 parport_release(pprt);
2235 parport_unregister_device(pprt);
2236 pprt = NULL;
2237 }
2238
2239 static struct parport_driver panel_driver = {
2240 .name = "panel",
2241 .attach = panel_attach,
2242 .detach = panel_detach,
2243 };
2244
2245 /* init function */
2246 static int __init panel_init_module(void)
2247 {
2248 int selected_keypad_type = NOT_SET;
2249
2250 /* take care of an eventual profile */
2251 switch (profile) {
2252 case PANEL_PROFILE_CUSTOM:
2253 /* custom profile */
2254 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2255 selected_lcd_type = DEFAULT_LCD_TYPE;
2256 break;
2257 case PANEL_PROFILE_OLD:
2258 /* 8 bits, 2*16, old keypad */
2259 selected_keypad_type = KEYPAD_TYPE_OLD;
2260 selected_lcd_type = LCD_TYPE_OLD;
2261
2262 /* TODO: This two are a little hacky, sort it out later */
2263 if (lcd_width == NOT_SET)
2264 lcd_width = 16;
2265 if (lcd_hwidth == NOT_SET)
2266 lcd_hwidth = 16;
2267 break;
2268 case PANEL_PROFILE_NEW:
2269 /* serial, 2*16, new keypad */
2270 selected_keypad_type = KEYPAD_TYPE_NEW;
2271 selected_lcd_type = LCD_TYPE_KS0074;
2272 break;
2273 case PANEL_PROFILE_HANTRONIX:
2274 /* 8 bits, 2*16 hantronix-like, no keypad */
2275 selected_keypad_type = KEYPAD_TYPE_NONE;
2276 selected_lcd_type = LCD_TYPE_HANTRONIX;
2277 break;
2278 case PANEL_PROFILE_NEXCOM:
2279 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2280 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2281 selected_lcd_type = LCD_TYPE_NEXCOM;
2282 break;
2283 case PANEL_PROFILE_LARGE:
2284 /* 8 bits, 2*40, old keypad */
2285 selected_keypad_type = KEYPAD_TYPE_OLD;
2286 selected_lcd_type = LCD_TYPE_OLD;
2287 break;
2288 }
2289
2290 /*
2291 * Init lcd struct with load-time values to preserve exact current
2292 * functionality (at least for now).
2293 */
2294 lcd.height = lcd_height;
2295 lcd.width = lcd_width;
2296 lcd.bwidth = lcd_bwidth;
2297 lcd.hwidth = lcd_hwidth;
2298 lcd.charset = lcd_charset;
2299 lcd.proto = lcd_proto;
2300 lcd.pins.e = lcd_e_pin;
2301 lcd.pins.rs = lcd_rs_pin;
2302 lcd.pins.rw = lcd_rw_pin;
2303 lcd.pins.cl = lcd_cl_pin;
2304 lcd.pins.da = lcd_da_pin;
2305 lcd.pins.bl = lcd_bl_pin;
2306
2307 /* Leave it for now, just in case */
2308 lcd.esc_seq.len = -1;
2309
2310 /*
2311 * Overwrite selection with module param values (both keypad and lcd),
2312 * where the deprecated params have lower prio.
2313 */
2314 if (keypad_enabled != NOT_SET)
2315 selected_keypad_type = keypad_enabled;
2316 if (keypad_type != NOT_SET)
2317 selected_keypad_type = keypad_type;
2318
2319 keypad.enabled = (selected_keypad_type > 0);
2320
2321 if (lcd_enabled != NOT_SET)
2322 selected_lcd_type = lcd_enabled;
2323 if (lcd_type != NOT_SET)
2324 selected_lcd_type = lcd_type;
2325
2326 lcd.enabled = (selected_lcd_type > 0);
2327
2328 switch (selected_keypad_type) {
2329 case KEYPAD_TYPE_OLD:
2330 keypad_profile = old_keypad_profile;
2331 break;
2332 case KEYPAD_TYPE_NEW:
2333 keypad_profile = new_keypad_profile;
2334 break;
2335 case KEYPAD_TYPE_NEXCOM:
2336 keypad_profile = nexcom_keypad_profile;
2337 break;
2338 default:
2339 keypad_profile = NULL;
2340 break;
2341 }
2342
2343 /* tells various subsystems about the fact that we are initializing */
2344 init_in_progress = 1;
2345
2346 if (parport_register_driver(&panel_driver)) {
2347 pr_err("could not register with parport. Aborting.\n");
2348 return -EIO;
2349 }
2350
2351 if (!lcd.enabled && !keypad.enabled) {
2352 /* no device enabled, let's release the parport */
2353 if (pprt) {
2354 parport_release(pprt);
2355 parport_unregister_device(pprt);
2356 pprt = NULL;
2357 }
2358 parport_unregister_driver(&panel_driver);
2359 pr_err("driver version " PANEL_VERSION " disabled.\n");
2360 return -ENODEV;
2361 }
2362
2363 register_reboot_notifier(&panel_notifier);
2364
2365 if (pprt)
2366 pr_info("driver version " PANEL_VERSION
2367 " registered on parport%d (io=0x%lx).\n", parport,
2368 pprt->port->base);
2369 else
2370 pr_info("driver version " PANEL_VERSION
2371 " not yet registered\n");
2372 /* tells various subsystems about the fact that initialization
2373 is finished */
2374 init_in_progress = 0;
2375 return 0;
2376 }
2377
2378 static void __exit panel_cleanup_module(void)
2379 {
2380 unregister_reboot_notifier(&panel_notifier);
2381
2382 if (scan_timer.function != NULL)
2383 del_timer_sync(&scan_timer);
2384
2385 if (pprt != NULL) {
2386 if (keypad.enabled) {
2387 misc_deregister(&keypad_dev);
2388 keypad_initialized = 0;
2389 }
2390
2391 if (lcd.enabled) {
2392 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2393 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2394 misc_deregister(&lcd_dev);
2395 lcd.initialized = false;
2396 }
2397
2398 /* TODO: free all input signals */
2399 parport_release(pprt);
2400 parport_unregister_device(pprt);
2401 pprt = NULL;
2402 }
2403 parport_unregister_driver(&panel_driver);
2404 }
2405
2406 module_init(panel_init_module);
2407 module_exit(panel_cleanup_module);
2408 MODULE_AUTHOR("Willy Tarreau");
2409 MODULE_LICENSE("GPL");
2410
2411 /*
2412 * Local variables:
2413 * c-indent-level: 4
2414 * tab-width: 8
2415 * End:
2416 */
This page took 0.113802 seconds and 6 git commands to generate.