Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / staging / panel / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
135
136 /* macros to simplify use of the parallel port */
137 #define r_ctr(x) (parport_read_control((x)->port))
138 #define r_dtr(x) (parport_read_data((x)->port))
139 #define r_str(x) (parport_read_status((x)->port))
140 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
141 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
142
143 /* this defines which bits are to be used and which ones to be ignored */
144 /* logical or of the output bits involved in the scan matrix */
145 static __u8 scan_mask_o;
146 /* logical or of the input bits involved in the scan matrix */
147 static __u8 scan_mask_i;
148
149 typedef __u64 pmask_t;
150
151 enum input_type {
152 INPUT_TYPE_STD,
153 INPUT_TYPE_KBD,
154 };
155
156 enum input_state {
157 INPUT_ST_LOW,
158 INPUT_ST_RISING,
159 INPUT_ST_HIGH,
160 INPUT_ST_FALLING,
161 };
162
163 struct logical_input {
164 struct list_head list;
165 pmask_t mask;
166 pmask_t value;
167 enum input_type type;
168 enum input_state state;
169 __u8 rise_time, fall_time;
170 __u8 rise_timer, fall_timer, high_timer;
171
172 union {
173 struct { /* valid when type == INPUT_TYPE_STD */
174 void (*press_fct)(int);
175 void (*release_fct)(int);
176 int press_data;
177 int release_data;
178 } std;
179 struct { /* valid when type == INPUT_TYPE_KBD */
180 /* strings can be non null-terminated */
181 char press_str[sizeof(void *) + sizeof(int)];
182 char repeat_str[sizeof(void *) + sizeof(int)];
183 char release_str[sizeof(void *) + sizeof(int)];
184 } kbd;
185 } u;
186 };
187
188 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
189
190 /* physical contacts history
191 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
192 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
193 * corresponds to the ground.
194 * Within each group, bits are stored in the same order as read on the port :
195 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
196 * So, each __u64 (or pmask_t) is represented like this :
197 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
198 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199 */
200
201 /* what has just been read from the I/O ports */
202 static pmask_t phys_read;
203 /* previous phys_read */
204 static pmask_t phys_read_prev;
205 /* stabilized phys_read (phys_read|phys_read_prev) */
206 static pmask_t phys_curr;
207 /* previous phys_curr */
208 static pmask_t phys_prev;
209 /* 0 means that at least one logical signal needs be computed */
210 static char inputs_stable;
211
212 /* these variables are specific to the keypad */
213 static char keypad_buffer[KEYPAD_BUFFER];
214 static int keypad_buflen;
215 static int keypad_start;
216 static char keypressed;
217 static wait_queue_head_t keypad_read_wait;
218
219 /* lcd-specific variables */
220
221 /* contains the LCD config state */
222 static unsigned long int lcd_flags;
223 /* contains the LCD X offset */
224 static unsigned long int lcd_addr_x;
225 /* contains the LCD Y offset */
226 static unsigned long int lcd_addr_y;
227 /* current escape sequence, 0 terminated */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1];
229 /* not in escape state. >=0 = escape cmd len */
230 static int lcd_escape_len = -1;
231
232 /*
233 * Bit masks to convert LCD signals to parallel port outputs.
234 * _d_ are values for data port, _c_ are for control port.
235 * [0] = signal OFF, [1] = signal ON, [2] = mask
236 */
237 #define BIT_CLR 0
238 #define BIT_SET 1
239 #define BIT_MSK 2
240 #define BIT_STATES 3
241 /*
242 * one entry for each bit on the LCD
243 */
244 #define LCD_BIT_E 0
245 #define LCD_BIT_RS 1
246 #define LCD_BIT_RW 2
247 #define LCD_BIT_BL 3
248 #define LCD_BIT_CL 4
249 #define LCD_BIT_DA 5
250 #define LCD_BITS 6
251
252 /*
253 * each bit can be either connected to a DATA or CTRL port
254 */
255 #define LCD_PORT_C 0
256 #define LCD_PORT_D 1
257 #define LCD_PORTS 2
258
259 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260
261 /*
262 * LCD protocols
263 */
264 #define LCD_PROTO_PARALLEL 0
265 #define LCD_PROTO_SERIAL 1
266 #define LCD_PROTO_TI_DA8XX_LCD 2
267
268 /*
269 * LCD character sets
270 */
271 #define LCD_CHARSET_NORMAL 0
272 #define LCD_CHARSET_KS0074 1
273
274 /*
275 * LCD types
276 */
277 #define LCD_TYPE_NONE 0
278 #define LCD_TYPE_OLD 1
279 #define LCD_TYPE_KS0074 2
280 #define LCD_TYPE_HANTRONIX 3
281 #define LCD_TYPE_NEXCOM 4
282 #define LCD_TYPE_CUSTOM 5
283
284 /*
285 * keypad types
286 */
287 #define KEYPAD_TYPE_NONE 0
288 #define KEYPAD_TYPE_OLD 1
289 #define KEYPAD_TYPE_NEW 2
290 #define KEYPAD_TYPE_NEXCOM 3
291
292 /*
293 * panel profiles
294 */
295 #define PANEL_PROFILE_CUSTOM 0
296 #define PANEL_PROFILE_OLD 1
297 #define PANEL_PROFILE_NEW 2
298 #define PANEL_PROFILE_HANTRONIX 3
299 #define PANEL_PROFILE_NEXCOM 4
300 #define PANEL_PROFILE_LARGE 5
301
302 /*
303 * Construct custom config from the kernel's configuration
304 */
305 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
306 #define DEFAULT_PARPORT 0
307 #define DEFAULT_LCD LCD_TYPE_OLD
308 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
309 #define DEFAULT_LCD_WIDTH 40
310 #define DEFAULT_LCD_BWIDTH 40
311 #define DEFAULT_LCD_HWIDTH 64
312 #define DEFAULT_LCD_HEIGHT 2
313 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
314
315 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
316 #define DEFAULT_LCD_PIN_RS PIN_SELECP
317 #define DEFAULT_LCD_PIN_RW PIN_INITP
318 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
319 #define DEFAULT_LCD_PIN_SDA PIN_D0
320 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
321 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
322
323 #ifdef CONFIG_PANEL_PROFILE
324 #undef DEFAULT_PROFILE
325 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
326 #endif
327
328 #ifdef CONFIG_PANEL_PARPORT
329 #undef DEFAULT_PARPORT
330 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
331 #endif
332
333 #if DEFAULT_PROFILE == 0 /* custom */
334 #ifdef CONFIG_PANEL_KEYPAD
335 #undef DEFAULT_KEYPAD
336 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
337 #endif
338
339 #ifdef CONFIG_PANEL_LCD
340 #undef DEFAULT_LCD
341 #define DEFAULT_LCD CONFIG_PANEL_LCD
342 #endif
343
344 #ifdef CONFIG_PANEL_LCD_WIDTH
345 #undef DEFAULT_LCD_WIDTH
346 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
347 #endif
348
349 #ifdef CONFIG_PANEL_LCD_BWIDTH
350 #undef DEFAULT_LCD_BWIDTH
351 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
352 #endif
353
354 #ifdef CONFIG_PANEL_LCD_HWIDTH
355 #undef DEFAULT_LCD_HWIDTH
356 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
357 #endif
358
359 #ifdef CONFIG_PANEL_LCD_HEIGHT
360 #undef DEFAULT_LCD_HEIGHT
361 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
362 #endif
363
364 #ifdef CONFIG_PANEL_LCD_PROTO
365 #undef DEFAULT_LCD_PROTO
366 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
367 #endif
368
369 #ifdef CONFIG_PANEL_LCD_PIN_E
370 #undef DEFAULT_LCD_PIN_E
371 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
372 #endif
373
374 #ifdef CONFIG_PANEL_LCD_PIN_RS
375 #undef DEFAULT_LCD_PIN_RS
376 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
377 #endif
378
379 #ifdef CONFIG_PANEL_LCD_PIN_RW
380 #undef DEFAULT_LCD_PIN_RW
381 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
382 #endif
383
384 #ifdef CONFIG_PANEL_LCD_PIN_SCL
385 #undef DEFAULT_LCD_PIN_SCL
386 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
387 #endif
388
389 #ifdef CONFIG_PANEL_LCD_PIN_SDA
390 #undef DEFAULT_LCD_PIN_SDA
391 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
392 #endif
393
394 #ifdef CONFIG_PANEL_LCD_PIN_BL
395 #undef DEFAULT_LCD_PIN_BL
396 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
397 #endif
398
399 #ifdef CONFIG_PANEL_LCD_CHARSET
400 #undef DEFAULT_LCD_CHARSET
401 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
402 #endif
403
404 #endif /* DEFAULT_PROFILE == 0 */
405
406 /* global variables */
407 static int keypad_open_cnt; /* #times opened */
408 static int lcd_open_cnt; /* #times opened */
409 static struct pardevice *pprt;
410
411 static int lcd_initialized;
412 static int keypad_initialized;
413
414 static int light_tempo;
415
416 static char lcd_must_clear;
417 static char lcd_left_shift;
418 static char init_in_progress;
419
420 static void (*lcd_write_cmd)(int);
421 static void (*lcd_write_data)(int);
422 static void (*lcd_clear_fast)(void);
423
424 static DEFINE_SPINLOCK(pprt_lock);
425 static struct timer_list scan_timer;
426
427 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428
429 static int parport = -1;
430 module_param(parport, int, 0000);
431 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432
433 static int lcd_height = -1;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436
437 static int lcd_width = -1;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440
441 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444
445 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448
449 static int lcd_enabled = -1;
450 module_param(lcd_enabled, int, 0000);
451 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452
453 static int keypad_enabled = -1;
454 module_param(keypad_enabled, int, 0000);
455 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456
457 static int lcd_type = -1;
458 module_param(lcd_type, int, 0000);
459 MODULE_PARM_DESC(lcd_type,
460 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
461
462 static int lcd_proto = -1;
463 module_param(lcd_proto, int, 0000);
464 MODULE_PARM_DESC(lcd_proto,
465 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
466
467 static int lcd_charset = -1;
468 module_param(lcd_charset, int, 0000);
469 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
470
471 static int keypad_type = -1;
472 module_param(keypad_type, int, 0000);
473 MODULE_PARM_DESC(keypad_type,
474 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
475
476 static int profile = DEFAULT_PROFILE;
477 module_param(profile, int, 0000);
478 MODULE_PARM_DESC(profile,
479 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
480 "4=16x2 nexcom; default=40x2, old kp");
481
482 /*
483 * These are the parallel port pins the LCD control signals are connected to.
484 * Set this to 0 if the signal is not used. Set it to its opposite value
485 * (negative) if the signal is negated. -MAXINT is used to indicate that the
486 * pin has not been explicitly specified.
487 *
488 * WARNING! no check will be performed about collisions with keypad !
489 */
490
491 static int lcd_e_pin = PIN_NOT_SET;
492 module_param(lcd_e_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_e_pin,
494 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
495
496 static int lcd_rs_pin = PIN_NOT_SET;
497 module_param(lcd_rs_pin, int, 0000);
498 MODULE_PARM_DESC(lcd_rs_pin,
499 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
500
501 static int lcd_rw_pin = PIN_NOT_SET;
502 module_param(lcd_rw_pin, int, 0000);
503 MODULE_PARM_DESC(lcd_rw_pin,
504 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
505
506 static int lcd_bl_pin = PIN_NOT_SET;
507 module_param(lcd_bl_pin, int, 0000);
508 MODULE_PARM_DESC(lcd_bl_pin,
509 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
510
511 static int lcd_da_pin = PIN_NOT_SET;
512 module_param(lcd_da_pin, int, 0000);
513 MODULE_PARM_DESC(lcd_da_pin,
514 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
515
516 static int lcd_cl_pin = PIN_NOT_SET;
517 module_param(lcd_cl_pin, int, 0000);
518 MODULE_PARM_DESC(lcd_cl_pin,
519 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
520
521 static const unsigned char *lcd_char_conv;
522
523 /* for some LCD drivers (ks0074) we need a charset conversion table. */
524 static const unsigned char lcd_char_conv_ks0074[256] = {
525 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
526 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
527 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
528 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
529 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
530 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
531 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
532 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
533 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
534 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
535 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
536 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
537 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
538 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
539 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
540 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
541 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
542 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
543 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
544 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
545 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
546 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
547 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
548 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
549 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
550 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
551 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
552 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
553 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
554 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
555 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
556 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
557 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
558 };
559
560 static const char old_keypad_profile[][4][9] = {
561 {"S0", "Left\n", "Left\n", ""},
562 {"S1", "Down\n", "Down\n", ""},
563 {"S2", "Up\n", "Up\n", ""},
564 {"S3", "Right\n", "Right\n", ""},
565 {"S4", "Esc\n", "Esc\n", ""},
566 {"S5", "Ret\n", "Ret\n", ""},
567 {"", "", "", ""}
568 };
569
570 /* signals, press, repeat, release */
571 static const char new_keypad_profile[][4][9] = {
572 {"S0", "Left\n", "Left\n", ""},
573 {"S1", "Down\n", "Down\n", ""},
574 {"S2", "Up\n", "Up\n", ""},
575 {"S3", "Right\n", "Right\n", ""},
576 {"S4s5", "", "Esc\n", "Esc\n"},
577 {"s4S5", "", "Ret\n", "Ret\n"},
578 {"S4S5", "Help\n", "", ""},
579 /* add new signals above this line */
580 {"", "", "", ""}
581 };
582
583 /* signals, press, repeat, release */
584 static const char nexcom_keypad_profile[][4][9] = {
585 {"a-p-e-", "Down\n", "Down\n", ""},
586 {"a-p-E-", "Ret\n", "Ret\n", ""},
587 {"a-P-E-", "Esc\n", "Esc\n", ""},
588 {"a-P-e-", "Up\n", "Up\n", ""},
589 /* add new signals above this line */
590 {"", "", "", ""}
591 };
592
593 static const char (*keypad_profile)[4][9] = old_keypad_profile;
594
595 /* FIXME: this should be converted to a bit array containing signals states */
596 static struct {
597 unsigned char e; /* parallel LCD E (data latch on falling edge) */
598 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
599 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
600 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
601 unsigned char cl; /* serial LCD clock (latch on rising edge) */
602 unsigned char da; /* serial LCD data */
603 } bits;
604
605 static void init_scan_timer(void);
606
607 /* sets data port bits according to current signals values */
608 static int set_data_bits(void)
609 {
610 int val, bit;
611
612 val = r_dtr(pprt);
613 for (bit = 0; bit < LCD_BITS; bit++)
614 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
615
616 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
617 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
618 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
619 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
620 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
621 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
622
623 w_dtr(pprt, val);
624 return val;
625 }
626
627 /* sets ctrl port bits according to current signals values */
628 static int set_ctrl_bits(void)
629 {
630 int val, bit;
631
632 val = r_ctr(pprt);
633 for (bit = 0; bit < LCD_BITS; bit++)
634 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
635
636 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
637 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
638 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
639 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
640 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
641 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
642
643 w_ctr(pprt, val);
644 return val;
645 }
646
647 /* sets ctrl & data port bits according to current signals values */
648 static void panel_set_bits(void)
649 {
650 set_data_bits();
651 set_ctrl_bits();
652 }
653
654 /*
655 * Converts a parallel port pin (from -25 to 25) to data and control ports
656 * masks, and data and control port bits. The signal will be considered
657 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
658 *
659 * Result will be used this way :
660 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
661 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
662 */
663 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
664 {
665 int d_bit, c_bit, inv;
666
667 d_val[0] = 0;
668 c_val[0] = 0;
669 d_val[1] = 0;
670 c_val[1] = 0;
671 d_val[2] = 0xFF;
672 c_val[2] = 0xFF;
673
674 if (pin == 0)
675 return;
676
677 inv = (pin < 0);
678 if (inv)
679 pin = -pin;
680
681 d_bit = 0;
682 c_bit = 0;
683
684 switch (pin) {
685 case PIN_STROBE: /* strobe, inverted */
686 c_bit = PNL_PSTROBE;
687 inv = !inv;
688 break;
689 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
690 d_bit = 1 << (pin - 2);
691 break;
692 case PIN_AUTOLF: /* autofeed, inverted */
693 c_bit = PNL_PAUTOLF;
694 inv = !inv;
695 break;
696 case PIN_INITP: /* init, direct */
697 c_bit = PNL_PINITP;
698 break;
699 case PIN_SELECP: /* select_in, inverted */
700 c_bit = PNL_PSELECP;
701 inv = !inv;
702 break;
703 default: /* unknown pin, ignore */
704 break;
705 }
706
707 if (c_bit) {
708 c_val[2] &= ~c_bit;
709 c_val[!inv] = c_bit;
710 } else if (d_bit) {
711 d_val[2] &= ~d_bit;
712 d_val[!inv] = d_bit;
713 }
714 }
715
716 /* sleeps that many milliseconds with a reschedule */
717 static void long_sleep(int ms)
718 {
719 if (in_interrupt()) {
720 mdelay(ms);
721 } else {
722 current->state = TASK_INTERRUPTIBLE;
723 schedule_timeout((ms * HZ + 999) / 1000);
724 }
725 }
726
727 /* send a serial byte to the LCD panel. The caller is responsible for locking
728 if needed. */
729 static void lcd_send_serial(int byte)
730 {
731 int bit;
732
733 /* the data bit is set on D0, and the clock on STROBE.
734 * LCD reads D0 on STROBE's rising edge. */
735 for (bit = 0; bit < 8; bit++) {
736 bits.cl = BIT_CLR; /* CLK low */
737 panel_set_bits();
738 bits.da = byte & 1;
739 panel_set_bits();
740 udelay(2); /* maintain the data during 2 us before CLK up */
741 bits.cl = BIT_SET; /* CLK high */
742 panel_set_bits();
743 udelay(1); /* maintain the strobe during 1 us */
744 byte >>= 1;
745 }
746 }
747
748 /* turn the backlight on or off */
749 static void lcd_backlight(int on)
750 {
751 if (lcd_bl_pin == PIN_NONE)
752 return;
753
754 /* The backlight is activated by setting the AUTOFEED line to +5V */
755 spin_lock_irq(&pprt_lock);
756 bits.bl = on;
757 panel_set_bits();
758 spin_unlock_irq(&pprt_lock);
759 }
760
761 /* send a command to the LCD panel in serial mode */
762 static void lcd_write_cmd_s(int cmd)
763 {
764 spin_lock_irq(&pprt_lock);
765 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
766 lcd_send_serial(cmd & 0x0F);
767 lcd_send_serial((cmd >> 4) & 0x0F);
768 udelay(40); /* the shortest command takes at least 40 us */
769 spin_unlock_irq(&pprt_lock);
770 }
771
772 /* send data to the LCD panel in serial mode */
773 static void lcd_write_data_s(int data)
774 {
775 spin_lock_irq(&pprt_lock);
776 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
777 lcd_send_serial(data & 0x0F);
778 lcd_send_serial((data >> 4) & 0x0F);
779 udelay(40); /* the shortest data takes at least 40 us */
780 spin_unlock_irq(&pprt_lock);
781 }
782
783 /* send a command to the LCD panel in 8 bits parallel mode */
784 static void lcd_write_cmd_p8(int cmd)
785 {
786 spin_lock_irq(&pprt_lock);
787 /* present the data to the data port */
788 w_dtr(pprt, cmd);
789 udelay(20); /* maintain the data during 20 us before the strobe */
790
791 bits.e = BIT_SET;
792 bits.rs = BIT_CLR;
793 bits.rw = BIT_CLR;
794 set_ctrl_bits();
795
796 udelay(40); /* maintain the strobe during 40 us */
797
798 bits.e = BIT_CLR;
799 set_ctrl_bits();
800
801 udelay(120); /* the shortest command takes at least 120 us */
802 spin_unlock_irq(&pprt_lock);
803 }
804
805 /* send data to the LCD panel in 8 bits parallel mode */
806 static void lcd_write_data_p8(int data)
807 {
808 spin_lock_irq(&pprt_lock);
809 /* present the data to the data port */
810 w_dtr(pprt, data);
811 udelay(20); /* maintain the data during 20 us before the strobe */
812
813 bits.e = BIT_SET;
814 bits.rs = BIT_SET;
815 bits.rw = BIT_CLR;
816 set_ctrl_bits();
817
818 udelay(40); /* maintain the strobe during 40 us */
819
820 bits.e = BIT_CLR;
821 set_ctrl_bits();
822
823 udelay(45); /* the shortest data takes at least 45 us */
824 spin_unlock_irq(&pprt_lock);
825 }
826
827 /* send a command to the TI LCD panel */
828 static void lcd_write_cmd_tilcd(int cmd)
829 {
830 spin_lock_irq(&pprt_lock);
831 /* present the data to the control port */
832 w_ctr(pprt, cmd);
833 udelay(60);
834 spin_unlock_irq(&pprt_lock);
835 }
836
837 /* send data to the TI LCD panel */
838 static void lcd_write_data_tilcd(int data)
839 {
840 spin_lock_irq(&pprt_lock);
841 /* present the data to the data port */
842 w_dtr(pprt, data);
843 udelay(60);
844 spin_unlock_irq(&pprt_lock);
845 }
846
847 static void lcd_gotoxy(void)
848 {
849 lcd_write_cmd(0x80 /* set DDRAM address */
850 | (lcd_addr_y ? lcd_hwidth : 0)
851 /* we force the cursor to stay at the end of the
852 line if it wants to go farther */
853 | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
854 (lcd_hwidth - 1) : lcd_bwidth - 1));
855 }
856
857 static void lcd_print(char c)
858 {
859 if (lcd_addr_x < lcd_bwidth) {
860 if (lcd_char_conv != NULL)
861 c = lcd_char_conv[(unsigned char)c];
862 lcd_write_data(c);
863 lcd_addr_x++;
864 }
865 /* prevents the cursor from wrapping onto the next line */
866 if (lcd_addr_x == lcd_bwidth)
867 lcd_gotoxy();
868 }
869
870 /* fills the display with spaces and resets X/Y */
871 static void lcd_clear_fast_s(void)
872 {
873 int pos;
874
875 lcd_addr_x = 0;
876 lcd_addr_y = 0;
877 lcd_gotoxy();
878
879 spin_lock_irq(&pprt_lock);
880 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
881 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
882 lcd_send_serial(' ' & 0x0F);
883 lcd_send_serial((' ' >> 4) & 0x0F);
884 udelay(40); /* the shortest data takes at least 40 us */
885 }
886 spin_unlock_irq(&pprt_lock);
887
888 lcd_addr_x = 0;
889 lcd_addr_y = 0;
890 lcd_gotoxy();
891 }
892
893 /* fills the display with spaces and resets X/Y */
894 static void lcd_clear_fast_p8(void)
895 {
896 int pos;
897
898 lcd_addr_x = 0;
899 lcd_addr_y = 0;
900 lcd_gotoxy();
901
902 spin_lock_irq(&pprt_lock);
903 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904 /* present the data to the data port */
905 w_dtr(pprt, ' ');
906
907 /* maintain the data during 20 us before the strobe */
908 udelay(20);
909
910 bits.e = BIT_SET;
911 bits.rs = BIT_SET;
912 bits.rw = BIT_CLR;
913 set_ctrl_bits();
914
915 /* maintain the strobe during 40 us */
916 udelay(40);
917
918 bits.e = BIT_CLR;
919 set_ctrl_bits();
920
921 /* the shortest data takes at least 45 us */
922 udelay(45);
923 }
924 spin_unlock_irq(&pprt_lock);
925
926 lcd_addr_x = 0;
927 lcd_addr_y = 0;
928 lcd_gotoxy();
929 }
930
931 /* fills the display with spaces and resets X/Y */
932 static void lcd_clear_fast_tilcd(void)
933 {
934 int pos;
935
936 lcd_addr_x = 0;
937 lcd_addr_y = 0;
938 lcd_gotoxy();
939
940 spin_lock_irq(&pprt_lock);
941 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
942 /* present the data to the data port */
943 w_dtr(pprt, ' ');
944 udelay(60);
945 }
946
947 spin_unlock_irq(&pprt_lock);
948
949 lcd_addr_x = 0;
950 lcd_addr_y = 0;
951 lcd_gotoxy();
952 }
953
954 /* clears the display and resets X/Y */
955 static void lcd_clear_display(void)
956 {
957 lcd_write_cmd(0x01); /* clear display */
958 lcd_addr_x = 0;
959 lcd_addr_y = 0;
960 /* we must wait a few milliseconds (15) */
961 long_sleep(15);
962 }
963
964 static void lcd_init_display(void)
965 {
966 lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
967 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
968
969 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
970
971 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
972 long_sleep(10);
973 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
974 long_sleep(10);
975 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
976 long_sleep(10);
977
978 lcd_write_cmd(0x30 /* set font height and lines number */
979 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
980 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
981 );
982 long_sleep(10);
983
984 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
985 long_sleep(10);
986
987 lcd_write_cmd(0x08 /* set display mode */
988 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
989 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
990 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
991 );
992
993 lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
994
995 long_sleep(10);
996
997 /* entry mode set : increment, cursor shifting */
998 lcd_write_cmd(0x06);
999
1000 lcd_clear_display();
1001 }
1002
1003 /*
1004 * These are the file operation function for user access to /dev/lcd
1005 * This function can also be called from inside the kernel, by
1006 * setting file and ppos to NULL.
1007 *
1008 */
1009
1010 static inline int handle_lcd_special_code(void)
1011 {
1012 /* LCD special codes */
1013
1014 int processed = 0;
1015
1016 char *esc = lcd_escape + 2;
1017 int oldflags = lcd_flags;
1018
1019 /* check for display mode flags */
1020 switch (*esc) {
1021 case 'D': /* Display ON */
1022 lcd_flags |= LCD_FLAG_D;
1023 processed = 1;
1024 break;
1025 case 'd': /* Display OFF */
1026 lcd_flags &= ~LCD_FLAG_D;
1027 processed = 1;
1028 break;
1029 case 'C': /* Cursor ON */
1030 lcd_flags |= LCD_FLAG_C;
1031 processed = 1;
1032 break;
1033 case 'c': /* Cursor OFF */
1034 lcd_flags &= ~LCD_FLAG_C;
1035 processed = 1;
1036 break;
1037 case 'B': /* Blink ON */
1038 lcd_flags |= LCD_FLAG_B;
1039 processed = 1;
1040 break;
1041 case 'b': /* Blink OFF */
1042 lcd_flags &= ~LCD_FLAG_B;
1043 processed = 1;
1044 break;
1045 case '+': /* Back light ON */
1046 lcd_flags |= LCD_FLAG_L;
1047 processed = 1;
1048 break;
1049 case '-': /* Back light OFF */
1050 lcd_flags &= ~LCD_FLAG_L;
1051 processed = 1;
1052 break;
1053 case '*':
1054 /* flash back light using the keypad timer */
1055 if (scan_timer.function != NULL) {
1056 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1057 lcd_backlight(1);
1058 light_tempo = FLASH_LIGHT_TEMPO;
1059 }
1060 processed = 1;
1061 break;
1062 case 'f': /* Small Font */
1063 lcd_flags &= ~LCD_FLAG_F;
1064 processed = 1;
1065 break;
1066 case 'F': /* Large Font */
1067 lcd_flags |= LCD_FLAG_F;
1068 processed = 1;
1069 break;
1070 case 'n': /* One Line */
1071 lcd_flags &= ~LCD_FLAG_N;
1072 processed = 1;
1073 break;
1074 case 'N': /* Two Lines */
1075 lcd_flags |= LCD_FLAG_N;
1076 break;
1077 case 'l': /* Shift Cursor Left */
1078 if (lcd_addr_x > 0) {
1079 /* back one char if not at end of line */
1080 if (lcd_addr_x < lcd_bwidth)
1081 lcd_write_cmd(0x10);
1082 lcd_addr_x--;
1083 }
1084 processed = 1;
1085 break;
1086 case 'r': /* shift cursor right */
1087 if (lcd_addr_x < lcd_width) {
1088 /* allow the cursor to pass the end of the line */
1089 if (lcd_addr_x <
1090 (lcd_bwidth - 1))
1091 lcd_write_cmd(0x14);
1092 lcd_addr_x++;
1093 }
1094 processed = 1;
1095 break;
1096 case 'L': /* shift display left */
1097 lcd_left_shift++;
1098 lcd_write_cmd(0x18);
1099 processed = 1;
1100 break;
1101 case 'R': /* shift display right */
1102 lcd_left_shift--;
1103 lcd_write_cmd(0x1C);
1104 processed = 1;
1105 break;
1106 case 'k': { /* kill end of line */
1107 int x;
1108
1109 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1110 lcd_write_data(' ');
1111
1112 /* restore cursor position */
1113 lcd_gotoxy();
1114 processed = 1;
1115 break;
1116 }
1117 case 'I': /* reinitialize display */
1118 lcd_init_display();
1119 lcd_left_shift = 0;
1120 processed = 1;
1121 break;
1122 case 'G': {
1123 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1124 * and '7', representing the numerical ASCII code of the
1125 * redefined character, and <xx...xx> a sequence of 16
1126 * hex digits representing 8 bytes for each character.
1127 * Most LCDs will only use 5 lower bits of the 7 first
1128 * bytes.
1129 */
1130
1131 unsigned char cgbytes[8];
1132 unsigned char cgaddr;
1133 int cgoffset;
1134 int shift;
1135 char value;
1136 int addr;
1137
1138 if (strchr(esc, ';') == NULL)
1139 break;
1140
1141 esc++;
1142
1143 cgaddr = *(esc++) - '0';
1144 if (cgaddr > 7) {
1145 processed = 1;
1146 break;
1147 }
1148
1149 cgoffset = 0;
1150 shift = 0;
1151 value = 0;
1152 while (*esc && cgoffset < 8) {
1153 shift ^= 4;
1154 if (*esc >= '0' && *esc <= '9') {
1155 value |= (*esc - '0') << shift;
1156 } else if (*esc >= 'A' && *esc <= 'Z') {
1157 value |= (*esc - 'A' + 10) << shift;
1158 } else if (*esc >= 'a' && *esc <= 'z') {
1159 value |= (*esc - 'a' + 10) << shift;
1160 } else {
1161 esc++;
1162 continue;
1163 }
1164
1165 if (shift == 0) {
1166 cgbytes[cgoffset++] = value;
1167 value = 0;
1168 }
1169
1170 esc++;
1171 }
1172
1173 lcd_write_cmd(0x40 | (cgaddr * 8));
1174 for (addr = 0; addr < cgoffset; addr++)
1175 lcd_write_data(cgbytes[addr]);
1176
1177 /* ensures that we stop writing to CGRAM */
1178 lcd_gotoxy();
1179 processed = 1;
1180 break;
1181 }
1182 case 'x': /* gotoxy : LxXXX[yYYY]; */
1183 case 'y': /* gotoxy : LyYYY[xXXX]; */
1184 if (strchr(esc, ';') == NULL)
1185 break;
1186
1187 while (*esc) {
1188 if (*esc == 'x') {
1189 esc++;
1190 if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1191 break;
1192 } else if (*esc == 'y') {
1193 esc++;
1194 if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1195 break;
1196 } else {
1197 break;
1198 }
1199 }
1200
1201 lcd_gotoxy();
1202 processed = 1;
1203 break;
1204 }
1205
1206 /* Check whether one flag was changed */
1207 if (oldflags != lcd_flags) {
1208 /* check whether one of B,C,D flags were changed */
1209 if ((oldflags ^ lcd_flags) &
1210 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1211 /* set display mode */
1212 lcd_write_cmd(0x08
1213 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1214 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1215 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1216 /* check whether one of F,N flags was changed */
1217 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1218 lcd_write_cmd(0x30
1219 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1220 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1221 /* check whether L flag was changed */
1222 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1223 if (lcd_flags & (LCD_FLAG_L))
1224 lcd_backlight(1);
1225 else if (light_tempo == 0)
1226 /* switch off the light only when the tempo
1227 lighting is gone */
1228 lcd_backlight(0);
1229 }
1230 }
1231
1232 return processed;
1233 }
1234
1235 static void lcd_write_char(char c)
1236 {
1237 /* first, we'll test if we're in escape mode */
1238 if ((c != '\n') && lcd_escape_len >= 0) {
1239 /* yes, let's add this char to the buffer */
1240 lcd_escape[lcd_escape_len++] = c;
1241 lcd_escape[lcd_escape_len] = 0;
1242 } else {
1243 /* aborts any previous escape sequence */
1244 lcd_escape_len = -1;
1245
1246 switch (c) {
1247 case LCD_ESCAPE_CHAR:
1248 /* start of an escape sequence */
1249 lcd_escape_len = 0;
1250 lcd_escape[lcd_escape_len] = 0;
1251 break;
1252 case '\b':
1253 /* go back one char and clear it */
1254 if (lcd_addr_x > 0) {
1255 /* check if we're not at the
1256 end of the line */
1257 if (lcd_addr_x < lcd_bwidth)
1258 /* back one char */
1259 lcd_write_cmd(0x10);
1260 lcd_addr_x--;
1261 }
1262 /* replace with a space */
1263 lcd_write_data(' ');
1264 /* back one char again */
1265 lcd_write_cmd(0x10);
1266 break;
1267 case '\014':
1268 /* quickly clear the display */
1269 lcd_clear_fast();
1270 break;
1271 case '\n':
1272 /* flush the remainder of the current line and
1273 go to the beginning of the next line */
1274 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1275 lcd_write_data(' ');
1276 lcd_addr_x = 0;
1277 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1278 lcd_gotoxy();
1279 break;
1280 case '\r':
1281 /* go to the beginning of the same line */
1282 lcd_addr_x = 0;
1283 lcd_gotoxy();
1284 break;
1285 case '\t':
1286 /* print a space instead of the tab */
1287 lcd_print(' ');
1288 break;
1289 default:
1290 /* simply print this char */
1291 lcd_print(c);
1292 break;
1293 }
1294 }
1295
1296 /* now we'll see if we're in an escape mode and if the current
1297 escape sequence can be understood. */
1298 if (lcd_escape_len >= 2) {
1299 int processed = 0;
1300
1301 if (!strcmp(lcd_escape, "[2J")) {
1302 /* clear the display */
1303 lcd_clear_fast();
1304 processed = 1;
1305 } else if (!strcmp(lcd_escape, "[H")) {
1306 /* cursor to home */
1307 lcd_addr_x = 0;
1308 lcd_addr_y = 0;
1309 lcd_gotoxy();
1310 processed = 1;
1311 }
1312 /* codes starting with ^[[L */
1313 else if ((lcd_escape_len >= 3) &&
1314 (lcd_escape[0] == '[') &&
1315 (lcd_escape[1] == 'L')) {
1316 processed = handle_lcd_special_code();
1317 }
1318
1319 /* LCD special escape codes */
1320 /* flush the escape sequence if it's been processed
1321 or if it is getting too long. */
1322 if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1323 lcd_escape_len = -1;
1324 } /* escape codes */
1325 }
1326
1327 static ssize_t lcd_write(struct file *file,
1328 const char __user *buf, size_t count, loff_t *ppos)
1329 {
1330 const char __user *tmp = buf;
1331 char c;
1332
1333 for (; count-- > 0; (*ppos)++, tmp++) {
1334 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1335 /* let's be a little nice with other processes
1336 that need some CPU */
1337 schedule();
1338
1339 if (get_user(c, tmp))
1340 return -EFAULT;
1341
1342 lcd_write_char(c);
1343 }
1344
1345 return tmp - buf;
1346 }
1347
1348 static int lcd_open(struct inode *inode, struct file *file)
1349 {
1350 if (lcd_open_cnt)
1351 return -EBUSY; /* open only once at a time */
1352
1353 if (file->f_mode & FMODE_READ) /* device is write-only */
1354 return -EPERM;
1355
1356 if (lcd_must_clear) {
1357 lcd_clear_display();
1358 lcd_must_clear = 0;
1359 }
1360 lcd_open_cnt++;
1361 return nonseekable_open(inode, file);
1362 }
1363
1364 static int lcd_release(struct inode *inode, struct file *file)
1365 {
1366 lcd_open_cnt--;
1367 return 0;
1368 }
1369
1370 static const struct file_operations lcd_fops = {
1371 .write = lcd_write,
1372 .open = lcd_open,
1373 .release = lcd_release,
1374 .llseek = no_llseek,
1375 };
1376
1377 static struct miscdevice lcd_dev = {
1378 LCD_MINOR,
1379 "lcd",
1380 &lcd_fops
1381 };
1382
1383 /* public function usable from the kernel for any purpose */
1384 static void panel_lcd_print(const char *s)
1385 {
1386 const char *tmp = s;
1387 int count = strlen(s);
1388
1389 if (lcd_enabled && lcd_initialized) {
1390 for (; count-- > 0; tmp++) {
1391 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1392 /* let's be a little nice with other processes
1393 that need some CPU */
1394 schedule();
1395
1396 lcd_write_char(*tmp);
1397 }
1398 }
1399 }
1400
1401 /* initialize the LCD driver */
1402 static void lcd_init(void)
1403 {
1404 switch (lcd_type) {
1405 case LCD_TYPE_OLD:
1406 /* parallel mode, 8 bits */
1407 if (lcd_proto < 0)
1408 lcd_proto = LCD_PROTO_PARALLEL;
1409 if (lcd_charset < 0)
1410 lcd_charset = LCD_CHARSET_NORMAL;
1411 if (lcd_e_pin == PIN_NOT_SET)
1412 lcd_e_pin = PIN_STROBE;
1413 if (lcd_rs_pin == PIN_NOT_SET)
1414 lcd_rs_pin = PIN_AUTOLF;
1415
1416 if (lcd_width < 0)
1417 lcd_width = 40;
1418 if (lcd_bwidth < 0)
1419 lcd_bwidth = 40;
1420 if (lcd_hwidth < 0)
1421 lcd_hwidth = 64;
1422 if (lcd_height < 0)
1423 lcd_height = 2;
1424 break;
1425 case LCD_TYPE_KS0074:
1426 /* serial mode, ks0074 */
1427 if (lcd_proto < 0)
1428 lcd_proto = LCD_PROTO_SERIAL;
1429 if (lcd_charset < 0)
1430 lcd_charset = LCD_CHARSET_KS0074;
1431 if (lcd_bl_pin == PIN_NOT_SET)
1432 lcd_bl_pin = PIN_AUTOLF;
1433 if (lcd_cl_pin == PIN_NOT_SET)
1434 lcd_cl_pin = PIN_STROBE;
1435 if (lcd_da_pin == PIN_NOT_SET)
1436 lcd_da_pin = PIN_D0;
1437
1438 if (lcd_width < 0)
1439 lcd_width = 16;
1440 if (lcd_bwidth < 0)
1441 lcd_bwidth = 40;
1442 if (lcd_hwidth < 0)
1443 lcd_hwidth = 16;
1444 if (lcd_height < 0)
1445 lcd_height = 2;
1446 break;
1447 case LCD_TYPE_NEXCOM:
1448 /* parallel mode, 8 bits, generic */
1449 if (lcd_proto < 0)
1450 lcd_proto = LCD_PROTO_PARALLEL;
1451 if (lcd_charset < 0)
1452 lcd_charset = LCD_CHARSET_NORMAL;
1453 if (lcd_e_pin == PIN_NOT_SET)
1454 lcd_e_pin = PIN_AUTOLF;
1455 if (lcd_rs_pin == PIN_NOT_SET)
1456 lcd_rs_pin = PIN_SELECP;
1457 if (lcd_rw_pin == PIN_NOT_SET)
1458 lcd_rw_pin = PIN_INITP;
1459
1460 if (lcd_width < 0)
1461 lcd_width = 16;
1462 if (lcd_bwidth < 0)
1463 lcd_bwidth = 40;
1464 if (lcd_hwidth < 0)
1465 lcd_hwidth = 64;
1466 if (lcd_height < 0)
1467 lcd_height = 2;
1468 break;
1469 case LCD_TYPE_CUSTOM:
1470 /* customer-defined */
1471 if (lcd_proto < 0)
1472 lcd_proto = DEFAULT_LCD_PROTO;
1473 if (lcd_charset < 0)
1474 lcd_charset = DEFAULT_LCD_CHARSET;
1475 /* default geometry will be set later */
1476 break;
1477 case LCD_TYPE_HANTRONIX:
1478 /* parallel mode, 8 bits, hantronix-like */
1479 default:
1480 if (lcd_proto < 0)
1481 lcd_proto = LCD_PROTO_PARALLEL;
1482 if (lcd_charset < 0)
1483 lcd_charset = LCD_CHARSET_NORMAL;
1484 if (lcd_e_pin == PIN_NOT_SET)
1485 lcd_e_pin = PIN_STROBE;
1486 if (lcd_rs_pin == PIN_NOT_SET)
1487 lcd_rs_pin = PIN_SELECP;
1488
1489 if (lcd_width < 0)
1490 lcd_width = 16;
1491 if (lcd_bwidth < 0)
1492 lcd_bwidth = 40;
1493 if (lcd_hwidth < 0)
1494 lcd_hwidth = 64;
1495 if (lcd_height < 0)
1496 lcd_height = 2;
1497 break;
1498 }
1499
1500 /* this is used to catch wrong and default values */
1501 if (lcd_width <= 0)
1502 lcd_width = DEFAULT_LCD_WIDTH;
1503 if (lcd_bwidth <= 0)
1504 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1505 if (lcd_hwidth <= 0)
1506 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1507 if (lcd_height <= 0)
1508 lcd_height = DEFAULT_LCD_HEIGHT;
1509
1510 if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1511 lcd_write_cmd = lcd_write_cmd_s;
1512 lcd_write_data = lcd_write_data_s;
1513 lcd_clear_fast = lcd_clear_fast_s;
1514
1515 if (lcd_cl_pin == PIN_NOT_SET)
1516 lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1517 if (lcd_da_pin == PIN_NOT_SET)
1518 lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1519
1520 } else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1521 lcd_write_cmd = lcd_write_cmd_p8;
1522 lcd_write_data = lcd_write_data_p8;
1523 lcd_clear_fast = lcd_clear_fast_p8;
1524
1525 if (lcd_e_pin == PIN_NOT_SET)
1526 lcd_e_pin = DEFAULT_LCD_PIN_E;
1527 if (lcd_rs_pin == PIN_NOT_SET)
1528 lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1529 if (lcd_rw_pin == PIN_NOT_SET)
1530 lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1531 } else {
1532 lcd_write_cmd = lcd_write_cmd_tilcd;
1533 lcd_write_data = lcd_write_data_tilcd;
1534 lcd_clear_fast = lcd_clear_fast_tilcd;
1535 }
1536
1537 if (lcd_bl_pin == PIN_NOT_SET)
1538 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1539
1540 if (lcd_e_pin == PIN_NOT_SET)
1541 lcd_e_pin = PIN_NONE;
1542 if (lcd_rs_pin == PIN_NOT_SET)
1543 lcd_rs_pin = PIN_NONE;
1544 if (lcd_rw_pin == PIN_NOT_SET)
1545 lcd_rw_pin = PIN_NONE;
1546 if (lcd_bl_pin == PIN_NOT_SET)
1547 lcd_bl_pin = PIN_NONE;
1548 if (lcd_cl_pin == PIN_NOT_SET)
1549 lcd_cl_pin = PIN_NONE;
1550 if (lcd_da_pin == PIN_NOT_SET)
1551 lcd_da_pin = PIN_NONE;
1552
1553 if (lcd_charset < 0)
1554 lcd_charset = DEFAULT_LCD_CHARSET;
1555
1556 if (lcd_charset == LCD_CHARSET_KS0074)
1557 lcd_char_conv = lcd_char_conv_ks0074;
1558 else
1559 lcd_char_conv = NULL;
1560
1561 if (lcd_bl_pin != PIN_NONE)
1562 init_scan_timer();
1563
1564 pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1565 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1566 pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1567 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1568 pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1569 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1570 pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1571 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1572 pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1573 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1574 pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1575 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1576
1577 /* before this line, we must NOT send anything to the display.
1578 * Since lcd_init_display() needs to write data, we have to
1579 * enable mark the LCD initialized just before. */
1580 lcd_initialized = 1;
1581 lcd_init_display();
1582
1583 /* display a short message */
1584 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1585 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1586 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1587 #endif
1588 #else
1589 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1590 PANEL_VERSION);
1591 #endif
1592 lcd_addr_x = 0;
1593 lcd_addr_y = 0;
1594 /* clear the display on the next device opening */
1595 lcd_must_clear = 1;
1596 lcd_gotoxy();
1597 }
1598
1599 /*
1600 * These are the file operation function for user access to /dev/keypad
1601 */
1602
1603 static ssize_t keypad_read(struct file *file,
1604 char __user *buf, size_t count, loff_t *ppos)
1605 {
1606 unsigned i = *ppos;
1607 char __user *tmp = buf;
1608
1609 if (keypad_buflen == 0) {
1610 if (file->f_flags & O_NONBLOCK)
1611 return -EAGAIN;
1612
1613 if (wait_event_interruptible(keypad_read_wait,
1614 keypad_buflen != 0))
1615 return -EINTR;
1616 }
1617
1618 for (; count-- > 0 && (keypad_buflen > 0);
1619 ++i, ++tmp, --keypad_buflen) {
1620 put_user(keypad_buffer[keypad_start], tmp);
1621 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1622 }
1623 *ppos = i;
1624
1625 return tmp - buf;
1626 }
1627
1628 static int keypad_open(struct inode *inode, struct file *file)
1629 {
1630 if (keypad_open_cnt)
1631 return -EBUSY; /* open only once at a time */
1632
1633 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1634 return -EPERM;
1635
1636 keypad_buflen = 0; /* flush the buffer on opening */
1637 keypad_open_cnt++;
1638 return 0;
1639 }
1640
1641 static int keypad_release(struct inode *inode, struct file *file)
1642 {
1643 keypad_open_cnt--;
1644 return 0;
1645 }
1646
1647 static const struct file_operations keypad_fops = {
1648 .read = keypad_read, /* read */
1649 .open = keypad_open, /* open */
1650 .release = keypad_release, /* close */
1651 .llseek = default_llseek,
1652 };
1653
1654 static struct miscdevice keypad_dev = {
1655 KEYPAD_MINOR,
1656 "keypad",
1657 &keypad_fops
1658 };
1659
1660 static void keypad_send_key(const char *string, int max_len)
1661 {
1662 if (init_in_progress)
1663 return;
1664
1665 /* send the key to the device only if a process is attached to it. */
1666 if (keypad_open_cnt > 0) {
1667 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1668 keypad_buffer[(keypad_start + keypad_buflen++) %
1669 KEYPAD_BUFFER] = *string++;
1670 }
1671 wake_up_interruptible(&keypad_read_wait);
1672 }
1673 }
1674
1675 /* this function scans all the bits involving at least one logical signal,
1676 * and puts the results in the bitfield "phys_read" (one bit per established
1677 * contact), and sets "phys_read_prev" to "phys_read".
1678 *
1679 * Note: to debounce input signals, we will only consider as switched a signal
1680 * which is stable across 2 measures. Signals which are different between two
1681 * reads will be kept as they previously were in their logical form (phys_prev).
1682 * A signal which has just switched will have a 1 in
1683 * (phys_read ^ phys_read_prev).
1684 */
1685 static void phys_scan_contacts(void)
1686 {
1687 int bit, bitval;
1688 char oldval;
1689 char bitmask;
1690 char gndmask;
1691
1692 phys_prev = phys_curr;
1693 phys_read_prev = phys_read;
1694 phys_read = 0; /* flush all signals */
1695
1696 /* keep track of old value, with all outputs disabled */
1697 oldval = r_dtr(pprt) | scan_mask_o;
1698 /* activate all keyboard outputs (active low) */
1699 w_dtr(pprt, oldval & ~scan_mask_o);
1700
1701 /* will have a 1 for each bit set to gnd */
1702 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1703 /* disable all matrix signals */
1704 w_dtr(pprt, oldval);
1705
1706 /* now that all outputs are cleared, the only active input bits are
1707 * directly connected to the ground
1708 */
1709
1710 /* 1 for each grounded input */
1711 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1712
1713 /* grounded inputs are signals 40-44 */
1714 phys_read |= (pmask_t) gndmask << 40;
1715
1716 if (bitmask != gndmask) {
1717 /* since clearing the outputs changed some inputs, we know
1718 * that some input signals are currently tied to some outputs.
1719 * So we'll scan them.
1720 */
1721 for (bit = 0; bit < 8; bit++) {
1722 bitval = 1 << bit;
1723
1724 if (!(scan_mask_o & bitval)) /* skip unused bits */
1725 continue;
1726
1727 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1728 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1729 phys_read |= (pmask_t) bitmask << (5 * bit);
1730 }
1731 w_dtr(pprt, oldval); /* disable all outputs */
1732 }
1733 /* this is easy: use old bits when they are flapping,
1734 * use new ones when stable */
1735 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1736 (phys_read & ~(phys_read ^ phys_read_prev));
1737 }
1738
1739 static inline int input_state_high(struct logical_input *input)
1740 {
1741 #if 0
1742 /* FIXME:
1743 * this is an invalid test. It tries to catch
1744 * transitions from single-key to multiple-key, but
1745 * doesn't take into account the contacts polarity.
1746 * The only solution to the problem is to parse keys
1747 * from the most complex to the simplest combinations,
1748 * and mark them as 'caught' once a combination
1749 * matches, then unmatch it for all other ones.
1750 */
1751
1752 /* try to catch dangerous transitions cases :
1753 * someone adds a bit, so this signal was a false
1754 * positive resulting from a transition. We should
1755 * invalidate the signal immediately and not call the
1756 * release function.
1757 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1758 */
1759 if (((phys_prev & input->mask) == input->value) &&
1760 ((phys_curr & input->mask) > input->value)) {
1761 input->state = INPUT_ST_LOW; /* invalidate */
1762 return 1;
1763 }
1764 #endif
1765
1766 if ((phys_curr & input->mask) == input->value) {
1767 if ((input->type == INPUT_TYPE_STD) &&
1768 (input->high_timer == 0)) {
1769 input->high_timer++;
1770 if (input->u.std.press_fct != NULL)
1771 input->u.std.press_fct(input->u.std.press_data);
1772 } else if (input->type == INPUT_TYPE_KBD) {
1773 /* will turn on the light */
1774 keypressed = 1;
1775
1776 if (input->high_timer == 0) {
1777 char *press_str = input->u.kbd.press_str;
1778
1779 if (press_str[0]) {
1780 int s = sizeof(input->u.kbd.press_str);
1781
1782 keypad_send_key(press_str, s);
1783 }
1784 }
1785
1786 if (input->u.kbd.repeat_str[0]) {
1787 char *repeat_str = input->u.kbd.repeat_str;
1788
1789 if (input->high_timer >= KEYPAD_REP_START) {
1790 int s = sizeof(input->u.kbd.repeat_str);
1791
1792 input->high_timer -= KEYPAD_REP_DELAY;
1793 keypad_send_key(repeat_str, s);
1794 }
1795 /* we will need to come back here soon */
1796 inputs_stable = 0;
1797 }
1798
1799 if (input->high_timer < 255)
1800 input->high_timer++;
1801 }
1802 return 1;
1803 }
1804
1805 /* else signal falling down. Let's fall through. */
1806 input->state = INPUT_ST_FALLING;
1807 input->fall_timer = 0;
1808
1809 return 0;
1810 }
1811
1812 static inline void input_state_falling(struct logical_input *input)
1813 {
1814 #if 0
1815 /* FIXME !!! same comment as in input_state_high */
1816 if (((phys_prev & input->mask) == input->value) &&
1817 ((phys_curr & input->mask) > input->value)) {
1818 input->state = INPUT_ST_LOW; /* invalidate */
1819 return;
1820 }
1821 #endif
1822
1823 if ((phys_curr & input->mask) == input->value) {
1824 if (input->type == INPUT_TYPE_KBD) {
1825 /* will turn on the light */
1826 keypressed = 1;
1827
1828 if (input->u.kbd.repeat_str[0]) {
1829 char *repeat_str = input->u.kbd.repeat_str;
1830
1831 if (input->high_timer >= KEYPAD_REP_START) {
1832 int s = sizeof(input->u.kbd.repeat_str);
1833
1834 input->high_timer -= KEYPAD_REP_DELAY;
1835 keypad_send_key(repeat_str, s);
1836 }
1837 /* we will need to come back here soon */
1838 inputs_stable = 0;
1839 }
1840
1841 if (input->high_timer < 255)
1842 input->high_timer++;
1843 }
1844 input->state = INPUT_ST_HIGH;
1845 } else if (input->fall_timer >= input->fall_time) {
1846 /* call release event */
1847 if (input->type == INPUT_TYPE_STD) {
1848 void (*release_fct)(int) = input->u.std.release_fct;
1849
1850 if (release_fct != NULL)
1851 release_fct(input->u.std.release_data);
1852 } else if (input->type == INPUT_TYPE_KBD) {
1853 char *release_str = input->u.kbd.release_str;
1854
1855 if (release_str[0]) {
1856 int s = sizeof(input->u.kbd.release_str);
1857
1858 keypad_send_key(release_str, s);
1859 }
1860 }
1861
1862 input->state = INPUT_ST_LOW;
1863 } else {
1864 input->fall_timer++;
1865 inputs_stable = 0;
1866 }
1867 }
1868
1869 static void panel_process_inputs(void)
1870 {
1871 struct list_head *item;
1872 struct logical_input *input;
1873
1874 keypressed = 0;
1875 inputs_stable = 1;
1876 list_for_each(item, &logical_inputs) {
1877 input = list_entry(item, struct logical_input, list);
1878
1879 switch (input->state) {
1880 case INPUT_ST_LOW:
1881 if ((phys_curr & input->mask) != input->value)
1882 break;
1883 /* if all needed ones were already set previously,
1884 * this means that this logical signal has been
1885 * activated by the releasing of another combined
1886 * signal, so we don't want to match.
1887 * eg: AB -(release B)-> A -(release A)-> 0 :
1888 * don't match A.
1889 */
1890 if ((phys_prev & input->mask) == input->value)
1891 break;
1892 input->rise_timer = 0;
1893 input->state = INPUT_ST_RISING;
1894 /* no break here, fall through */
1895 case INPUT_ST_RISING:
1896 if ((phys_curr & input->mask) != input->value) {
1897 input->state = INPUT_ST_LOW;
1898 break;
1899 }
1900 if (input->rise_timer < input->rise_time) {
1901 inputs_stable = 0;
1902 input->rise_timer++;
1903 break;
1904 }
1905 input->high_timer = 0;
1906 input->state = INPUT_ST_HIGH;
1907 /* no break here, fall through */
1908 case INPUT_ST_HIGH:
1909 if (input_state_high(input))
1910 break;
1911 /* no break here, fall through */
1912 case INPUT_ST_FALLING:
1913 input_state_falling(input);
1914 }
1915 }
1916 }
1917
1918 static void panel_scan_timer(void)
1919 {
1920 if (keypad_enabled && keypad_initialized) {
1921 if (spin_trylock_irq(&pprt_lock)) {
1922 phys_scan_contacts();
1923
1924 /* no need for the parport anymore */
1925 spin_unlock_irq(&pprt_lock);
1926 }
1927
1928 if (!inputs_stable || phys_curr != phys_prev)
1929 panel_process_inputs();
1930 }
1931
1932 if (lcd_enabled && lcd_initialized) {
1933 if (keypressed) {
1934 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1935 lcd_backlight(1);
1936 light_tempo = FLASH_LIGHT_TEMPO;
1937 } else if (light_tempo > 0) {
1938 light_tempo--;
1939 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1940 lcd_backlight(0);
1941 }
1942 }
1943
1944 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1945 }
1946
1947 static void init_scan_timer(void)
1948 {
1949 if (scan_timer.function != NULL)
1950 return; /* already started */
1951
1952 init_timer(&scan_timer);
1953 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1954 scan_timer.data = 0;
1955 scan_timer.function = (void *)&panel_scan_timer;
1956 add_timer(&scan_timer);
1957 }
1958
1959 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1960 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1961 * corresponding to out and in bits respectively.
1962 * returns 1 if ok, 0 if error (in which case, nothing is written).
1963 */
1964 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1965 char *imask, char *omask)
1966 {
1967 static char sigtab[10] = "EeSsPpAaBb";
1968 char im, om;
1969 pmask_t m, v;
1970
1971 om = 0ULL;
1972 im = 0ULL;
1973 m = 0ULL;
1974 v = 0ULL;
1975 while (*name) {
1976 int in, out, bit, neg;
1977
1978 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
1979 in++)
1980 ;
1981
1982 if (in >= sizeof(sigtab))
1983 return 0; /* input name not found */
1984 neg = (in & 1); /* odd (lower) names are negated */
1985 in >>= 1;
1986 im |= (1 << in);
1987
1988 name++;
1989 if (isdigit(*name)) {
1990 out = *name - '0';
1991 om |= (1 << out);
1992 } else if (*name == '-') {
1993 out = 8;
1994 } else {
1995 return 0; /* unknown bit name */
1996 }
1997
1998 bit = (out * 5) + in;
1999
2000 m |= 1ULL << bit;
2001 if (!neg)
2002 v |= 1ULL << bit;
2003 name++;
2004 }
2005 *mask = m;
2006 *value = v;
2007 if (imask)
2008 *imask |= im;
2009 if (omask)
2010 *omask |= om;
2011 return 1;
2012 }
2013
2014 /* tries to bind a key to the signal name <name>. The key will send the
2015 * strings <press>, <repeat>, <release> for these respective events.
2016 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2017 */
2018 static struct logical_input *panel_bind_key(const char *name, const char *press,
2019 const char *repeat,
2020 const char *release)
2021 {
2022 struct logical_input *key;
2023
2024 key = kzalloc(sizeof(*key), GFP_KERNEL);
2025 if (!key)
2026 return NULL;
2027
2028 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2029 &scan_mask_o)) {
2030 kfree(key);
2031 return NULL;
2032 }
2033
2034 key->type = INPUT_TYPE_KBD;
2035 key->state = INPUT_ST_LOW;
2036 key->rise_time = 1;
2037 key->fall_time = 1;
2038
2039 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2040 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2041 strncpy(key->u.kbd.release_str, release,
2042 sizeof(key->u.kbd.release_str));
2043 list_add(&key->list, &logical_inputs);
2044 return key;
2045 }
2046
2047 #if 0
2048 /* tries to bind a callback function to the signal name <name>. The function
2049 * <press_fct> will be called with the <press_data> arg when the signal is
2050 * activated, and so on for <release_fct>/<release_data>
2051 * Returns the pointer to the new signal if ok, NULL if the signal could not
2052 * be bound.
2053 */
2054 static struct logical_input *panel_bind_callback(char *name,
2055 void (*press_fct)(int),
2056 int press_data,
2057 void (*release_fct)(int),
2058 int release_data)
2059 {
2060 struct logical_input *callback;
2061
2062 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2063 if (!callback)
2064 return NULL;
2065
2066 memset(callback, 0, sizeof(struct logical_input));
2067 if (!input_name2mask(name, &callback->mask, &callback->value,
2068 &scan_mask_i, &scan_mask_o))
2069 return NULL;
2070
2071 callback->type = INPUT_TYPE_STD;
2072 callback->state = INPUT_ST_LOW;
2073 callback->rise_time = 1;
2074 callback->fall_time = 1;
2075 callback->u.std.press_fct = press_fct;
2076 callback->u.std.press_data = press_data;
2077 callback->u.std.release_fct = release_fct;
2078 callback->u.std.release_data = release_data;
2079 list_add(&callback->list, &logical_inputs);
2080 return callback;
2081 }
2082 #endif
2083
2084 static void keypad_init(void)
2085 {
2086 int keynum;
2087
2088 init_waitqueue_head(&keypad_read_wait);
2089 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2090
2091 /* Let's create all known keys */
2092
2093 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2094 panel_bind_key(keypad_profile[keynum][0],
2095 keypad_profile[keynum][1],
2096 keypad_profile[keynum][2],
2097 keypad_profile[keynum][3]);
2098 }
2099
2100 init_scan_timer();
2101 keypad_initialized = 1;
2102 }
2103
2104 /**************************************************/
2105 /* device initialization */
2106 /**************************************************/
2107
2108 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2109 void *unused)
2110 {
2111 if (lcd_enabled && lcd_initialized) {
2112 switch (code) {
2113 case SYS_DOWN:
2114 panel_lcd_print
2115 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2116 break;
2117 case SYS_HALT:
2118 panel_lcd_print
2119 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2120 break;
2121 case SYS_POWER_OFF:
2122 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2123 break;
2124 default:
2125 break;
2126 }
2127 }
2128 return NOTIFY_DONE;
2129 }
2130
2131 static struct notifier_block panel_notifier = {
2132 panel_notify_sys,
2133 NULL,
2134 0
2135 };
2136
2137 static void panel_attach(struct parport *port)
2138 {
2139 if (port->number != parport)
2140 return;
2141
2142 if (pprt) {
2143 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2144 __func__, port->number, parport);
2145 return;
2146 }
2147
2148 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2149 NULL,
2150 /*PARPORT_DEV_EXCL */
2151 0, (void *)&pprt);
2152 if (pprt == NULL) {
2153 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2154 __func__, port->number, parport);
2155 return;
2156 }
2157
2158 if (parport_claim(pprt)) {
2159 pr_err("could not claim access to parport%d. Aborting.\n",
2160 parport);
2161 goto err_unreg_device;
2162 }
2163
2164 /* must init LCD first, just in case an IRQ from the keypad is
2165 * generated at keypad init
2166 */
2167 if (lcd_enabled) {
2168 lcd_init();
2169 if (misc_register(&lcd_dev))
2170 goto err_unreg_device;
2171 }
2172
2173 if (keypad_enabled) {
2174 keypad_init();
2175 if (misc_register(&keypad_dev))
2176 goto err_lcd_unreg;
2177 }
2178 return;
2179
2180 err_lcd_unreg:
2181 if (lcd_enabled)
2182 misc_deregister(&lcd_dev);
2183 err_unreg_device:
2184 parport_unregister_device(pprt);
2185 pprt = NULL;
2186 }
2187
2188 static void panel_detach(struct parport *port)
2189 {
2190 if (port->number != parport)
2191 return;
2192
2193 if (!pprt) {
2194 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2195 __func__, port->number, parport);
2196 return;
2197 }
2198
2199 if (keypad_enabled && keypad_initialized) {
2200 misc_deregister(&keypad_dev);
2201 keypad_initialized = 0;
2202 }
2203
2204 if (lcd_enabled && lcd_initialized) {
2205 misc_deregister(&lcd_dev);
2206 lcd_initialized = 0;
2207 }
2208
2209 parport_release(pprt);
2210 parport_unregister_device(pprt);
2211 pprt = NULL;
2212 }
2213
2214 static struct parport_driver panel_driver = {
2215 .name = "panel",
2216 .attach = panel_attach,
2217 .detach = panel_detach,
2218 };
2219
2220 /* init function */
2221 static int panel_init(void)
2222 {
2223 /* for backwards compatibility */
2224 if (keypad_type < 0)
2225 keypad_type = keypad_enabled;
2226
2227 if (lcd_type < 0)
2228 lcd_type = lcd_enabled;
2229
2230 if (parport < 0)
2231 parport = DEFAULT_PARPORT;
2232
2233 /* take care of an eventual profile */
2234 switch (profile) {
2235 case PANEL_PROFILE_CUSTOM:
2236 /* custom profile */
2237 if (keypad_type < 0)
2238 keypad_type = DEFAULT_KEYPAD;
2239 if (lcd_type < 0)
2240 lcd_type = DEFAULT_LCD;
2241 break;
2242 case PANEL_PROFILE_OLD:
2243 /* 8 bits, 2*16, old keypad */
2244 if (keypad_type < 0)
2245 keypad_type = KEYPAD_TYPE_OLD;
2246 if (lcd_type < 0)
2247 lcd_type = LCD_TYPE_OLD;
2248 if (lcd_width < 0)
2249 lcd_width = 16;
2250 if (lcd_hwidth < 0)
2251 lcd_hwidth = 16;
2252 break;
2253 case PANEL_PROFILE_NEW:
2254 /* serial, 2*16, new keypad */
2255 if (keypad_type < 0)
2256 keypad_type = KEYPAD_TYPE_NEW;
2257 if (lcd_type < 0)
2258 lcd_type = LCD_TYPE_KS0074;
2259 break;
2260 case PANEL_PROFILE_HANTRONIX:
2261 /* 8 bits, 2*16 hantronix-like, no keypad */
2262 if (keypad_type < 0)
2263 keypad_type = KEYPAD_TYPE_NONE;
2264 if (lcd_type < 0)
2265 lcd_type = LCD_TYPE_HANTRONIX;
2266 break;
2267 case PANEL_PROFILE_NEXCOM:
2268 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2269 if (keypad_type < 0)
2270 keypad_type = KEYPAD_TYPE_NEXCOM;
2271 if (lcd_type < 0)
2272 lcd_type = LCD_TYPE_NEXCOM;
2273 break;
2274 case PANEL_PROFILE_LARGE:
2275 /* 8 bits, 2*40, old keypad */
2276 if (keypad_type < 0)
2277 keypad_type = KEYPAD_TYPE_OLD;
2278 if (lcd_type < 0)
2279 lcd_type = LCD_TYPE_OLD;
2280 break;
2281 }
2282
2283 lcd_enabled = (lcd_type > 0);
2284 keypad_enabled = (keypad_type > 0);
2285
2286 switch (keypad_type) {
2287 case KEYPAD_TYPE_OLD:
2288 keypad_profile = old_keypad_profile;
2289 break;
2290 case KEYPAD_TYPE_NEW:
2291 keypad_profile = new_keypad_profile;
2292 break;
2293 case KEYPAD_TYPE_NEXCOM:
2294 keypad_profile = nexcom_keypad_profile;
2295 break;
2296 default:
2297 keypad_profile = NULL;
2298 break;
2299 }
2300
2301 /* tells various subsystems about the fact that we are initializing */
2302 init_in_progress = 1;
2303
2304 if (parport_register_driver(&panel_driver)) {
2305 pr_err("could not register with parport. Aborting.\n");
2306 return -EIO;
2307 }
2308
2309 if (!lcd_enabled && !keypad_enabled) {
2310 /* no device enabled, let's release the parport */
2311 if (pprt) {
2312 parport_release(pprt);
2313 parport_unregister_device(pprt);
2314 pprt = NULL;
2315 }
2316 parport_unregister_driver(&panel_driver);
2317 pr_err("driver version " PANEL_VERSION " disabled.\n");
2318 return -ENODEV;
2319 }
2320
2321 register_reboot_notifier(&panel_notifier);
2322
2323 if (pprt)
2324 pr_info("driver version " PANEL_VERSION
2325 " registered on parport%d (io=0x%lx).\n", parport,
2326 pprt->port->base);
2327 else
2328 pr_info("driver version " PANEL_VERSION
2329 " not yet registered\n");
2330 /* tells various subsystems about the fact that initialization
2331 is finished */
2332 init_in_progress = 0;
2333 return 0;
2334 }
2335
2336 static int __init panel_init_module(void)
2337 {
2338 return panel_init();
2339 }
2340
2341 static void __exit panel_cleanup_module(void)
2342 {
2343 unregister_reboot_notifier(&panel_notifier);
2344
2345 if (scan_timer.function != NULL)
2346 del_timer_sync(&scan_timer);
2347
2348 if (pprt != NULL) {
2349 if (keypad_enabled) {
2350 misc_deregister(&keypad_dev);
2351 keypad_initialized = 0;
2352 }
2353
2354 if (lcd_enabled) {
2355 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2356 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2357 misc_deregister(&lcd_dev);
2358 lcd_initialized = 0;
2359 }
2360
2361 /* TODO: free all input signals */
2362 parport_release(pprt);
2363 parport_unregister_device(pprt);
2364 pprt = NULL;
2365 }
2366 parport_unregister_driver(&panel_driver);
2367 }
2368
2369 module_init(panel_init_module);
2370 module_exit(panel_cleanup_module);
2371 MODULE_AUTHOR("Willy Tarreau");
2372 MODULE_LICENSE("GPL");
2373
2374 /*
2375 * Local variables:
2376 * c-indent-level: 4
2377 * tab-width: 8
2378 * End:
2379 */
This page took 0.078675 seconds and 6 git commands to generate.