Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / staging / rtl8192e / r8192E_core.c
1 /******************************************************************************
2 * Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved.
3 * Linux device driver for RTL8192E
4 *
5 * Based on the r8180 driver, which is:
6 * Copyright 2004-2005 Andrea Merello <andreamrl@tiscali.it>, et al.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
19 *
20 * The full GNU General Public License is included in this distribution in the
21 * file called LICENSE.
22 *
23 * Contact Information:
24 * Jerry chuang <wlanfae@realtek.com>
25 */
26
27
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/hardirq.h>
32 #include <asm/uaccess.h>
33 #include "r8192E_hw.h"
34 #include "r8192E.h"
35 #include "r8190_rtl8256.h" /* RTL8225 Radio frontend */
36 #include "r8180_93cx6.h" /* Card EEPROM */
37 #include "r8192E_wx.h"
38 #include "r819xE_phy.h" //added by WB 4.30.2008
39 #include "r819xE_phyreg.h"
40 #include "r819xE_cmdpkt.h"
41 #include "r8192E_dm.h"
42
43 #ifdef CONFIG_PM
44 #include "r8192_pm.h"
45 #endif
46
47 #ifdef ENABLE_DOT11D
48 #include "ieee80211/dot11d.h"
49 #endif
50
51 //set here to open your trace code. //WB
52 u32 rt_global_debug_component = COMP_ERR ; //always open err flags on
53
54 static DEFINE_PCI_DEVICE_TABLE(rtl8192_pci_id_tbl) = {
55 /* Realtek */
56 { PCI_DEVICE(0x10ec, 0x8192) },
57
58 /* Corega */
59 { PCI_DEVICE(0x07aa, 0x0044) },
60 { PCI_DEVICE(0x07aa, 0x0047) },
61 {}
62 };
63
64 static char ifname[IFNAMSIZ] = "wlan%d";
65 static int hwwep = 1; //default use hw. set 0 to use software security
66 static int channels = 0x3fff;
67
68 MODULE_LICENSE("GPL");
69 MODULE_VERSION("V 1.1");
70 MODULE_DEVICE_TABLE(pci, rtl8192_pci_id_tbl);
71 //MODULE_AUTHOR("Andrea Merello <andreamrl@tiscali.it>");
72 MODULE_DESCRIPTION("Linux driver for Realtek RTL819x WiFi cards");
73
74
75 module_param_string(ifname, ifname, sizeof(ifname), S_IRUGO|S_IWUSR);
76 module_param(hwwep,int, S_IRUGO|S_IWUSR);
77 module_param(channels,int, S_IRUGO|S_IWUSR);
78
79 MODULE_PARM_DESC(ifname," Net interface name, wlan%d=default");
80 MODULE_PARM_DESC(hwwep," Try to use hardware WEP support. Still broken and not available on all cards");
81 MODULE_PARM_DESC(channels," Channel bitmask for specific locales. NYI");
82
83 static int __devinit rtl8192_pci_probe(struct pci_dev *pdev,
84 const struct pci_device_id *id);
85 static void __devexit rtl8192_pci_disconnect(struct pci_dev *pdev);
86
87 static struct pci_driver rtl8192_pci_driver = {
88 .name = RTL819xE_MODULE_NAME, /* Driver name */
89 .id_table = rtl8192_pci_id_tbl, /* PCI_ID table */
90 .probe = rtl8192_pci_probe, /* probe fn */
91 .remove = __devexit_p(rtl8192_pci_disconnect), /* remove fn */
92 #ifdef CONFIG_PM
93 .suspend = rtl8192E_suspend, /* PM suspend fn */
94 .resume = rtl8192E_resume, /* PM resume fn */
95 #else
96 .suspend = NULL, /* PM suspend fn */
97 .resume = NULL, /* PM resume fn */
98 #endif
99 };
100
101 static void rtl8192_start_beacon(struct ieee80211_device *ieee80211);
102 static void rtl8192_stop_beacon(struct ieee80211_device *ieee80211);
103 static void rtl819x_watchdog_wqcallback(struct work_struct *work);
104 static void rtl8192_irq_rx_tasklet(unsigned long arg);
105 static void rtl8192_irq_tx_tasklet(unsigned long arg);
106 static void rtl8192_prepare_beacon(unsigned long arg);
107 static irqreturn_t rtl8192_interrupt(int irq, void *param);
108 static void rtl819xE_tx_cmd(struct r8192_priv *priv, struct sk_buff *skb);
109 static void rtl8192_update_ratr_table(struct r8192_priv *priv);
110 static void rtl8192_restart(struct work_struct *work);
111 static void watch_dog_timer_callback(unsigned long data);
112 static int _rtl8192_up(struct r8192_priv *priv);
113 static void rtl8192_cancel_deferred_work(struct r8192_priv* priv);
114 static short rtl8192_tx(struct r8192_priv *priv, struct sk_buff* skb);
115
116 #ifdef ENABLE_DOT11D
117
118 typedef struct _CHANNEL_LIST
119 {
120 u8 Channel[32];
121 u8 Len;
122 }CHANNEL_LIST, *PCHANNEL_LIST;
123
124 static const CHANNEL_LIST ChannelPlan[] = {
125 {{1,2,3,4,5,6,7,8,9,10,11,36,40,44,48,52,56,60,64,149,153,157,161,165},24}, //FCC
126 {{1,2,3,4,5,6,7,8,9,10,11},11}, //IC
127 {{1,2,3,4,5,6,7,8,9,10,11,12,13,36,40,44,48,52,56,60,64},21}, //ETSI
128 {{1,2,3,4,5,6,7,8,9,10,11,12,13},13}, //Spain. Change to ETSI.
129 {{1,2,3,4,5,6,7,8,9,10,11,12,13},13}, //France. Change to ETSI.
130 {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,40,44,48,52,56,60,64},22}, //MKK //MKK
131 {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,40,44,48,52,56,60,64},22},//MKK1
132 {{1,2,3,4,5,6,7,8,9,10,11,12,13},13}, //Israel.
133 {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,40,44,48,52,56,60,64},22}, // For 11a , TELEC
134 {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,40,44,48,52,56,60,64}, 22}, //MIC
135 {{1,2,3,4,5,6,7,8,9,10,11,12,13,14},14} //For Global Domain. 1-11:active scan, 12-14 passive scan. //+YJ, 080626
136 };
137
138 static void rtl819x_set_channel_map(u8 channel_plan, struct r8192_priv* priv)
139 {
140 int i, max_chan=-1, min_chan=-1;
141 struct ieee80211_device* ieee = priv->ieee80211;
142 switch (channel_plan)
143 {
144 case COUNTRY_CODE_FCC:
145 case COUNTRY_CODE_IC:
146 case COUNTRY_CODE_ETSI:
147 case COUNTRY_CODE_SPAIN:
148 case COUNTRY_CODE_FRANCE:
149 case COUNTRY_CODE_MKK:
150 case COUNTRY_CODE_MKK1:
151 case COUNTRY_CODE_ISRAEL:
152 case COUNTRY_CODE_TELEC:
153 case COUNTRY_CODE_MIC:
154 {
155 Dot11d_Init(ieee);
156 ieee->bGlobalDomain = false;
157 //acturally 8225 & 8256 rf chip only support B,G,24N mode
158 min_chan = 1;
159 max_chan = 14;
160
161 if (ChannelPlan[channel_plan].Len != 0){
162 // Clear old channel map
163 memset(GET_DOT11D_INFO(ieee)->channel_map, 0, sizeof(GET_DOT11D_INFO(ieee)->channel_map));
164 // Set new channel map
165 for (i=0;i<ChannelPlan[channel_plan].Len;i++)
166 {
167 if (ChannelPlan[channel_plan].Channel[i] < min_chan || ChannelPlan[channel_plan].Channel[i] > max_chan)
168 break;
169 GET_DOT11D_INFO(ieee)->channel_map[ChannelPlan[channel_plan].Channel[i]] = 1;
170 }
171 }
172 break;
173 }
174 case COUNTRY_CODE_GLOBAL_DOMAIN:
175 {
176 GET_DOT11D_INFO(ieee)->bEnabled = 0; //this flag enabled to follow 11d country IE setting, otherwise, it shall follow global domain setting
177 Dot11d_Reset(ieee);
178 ieee->bGlobalDomain = true;
179 break;
180 }
181 default:
182 break;
183 }
184 }
185 #endif
186
187 static inline bool rx_hal_is_cck_rate(prx_fwinfo_819x_pci pdrvinfo)
188 {
189 return (pdrvinfo->RxRate == DESC90_RATE1M ||
190 pdrvinfo->RxRate == DESC90_RATE2M ||
191 pdrvinfo->RxRate == DESC90_RATE5_5M ||
192 pdrvinfo->RxRate == DESC90_RATE11M) &&
193 !pdrvinfo->RxHT;
194 }
195
196 void CamResetAllEntry(struct r8192_priv* priv)
197 {
198 write_nic_dword(priv, RWCAM, BIT31|BIT30);
199 }
200
201 void write_cam(struct r8192_priv *priv, u8 addr, u32 data)
202 {
203 write_nic_dword(priv, WCAMI, data);
204 write_nic_dword(priv, RWCAM, BIT31|BIT16|(addr&0xff) );
205 }
206
207 u32 read_cam(struct r8192_priv *priv, u8 addr)
208 {
209 write_nic_dword(priv, RWCAM, 0x80000000|(addr&0xff) );
210 return read_nic_dword(priv, 0xa8);
211 }
212
213 u8 read_nic_byte(struct r8192_priv *priv, int x)
214 {
215 return 0xff & readb(priv->mem_start + x);
216 }
217
218 u32 read_nic_dword(struct r8192_priv *priv, int x)
219 {
220 return readl(priv->mem_start + x);
221 }
222
223 u16 read_nic_word(struct r8192_priv *priv, int x)
224 {
225 return readw(priv->mem_start + x);
226 }
227
228 void write_nic_byte(struct r8192_priv *priv, int x,u8 y)
229 {
230 writeb(y, priv->mem_start + x);
231 udelay(20);
232 }
233
234 void write_nic_dword(struct r8192_priv *priv, int x,u32 y)
235 {
236 writel(y, priv->mem_start + x);
237 udelay(20);
238 }
239
240 void write_nic_word(struct r8192_priv *priv, int x,u16 y)
241 {
242 writew(y, priv->mem_start + x);
243 udelay(20);
244 }
245
246 u8 rtl8192e_ap_sec_type(struct ieee80211_device *ieee)
247 {
248 static const u8 ccmp_ie[4] = {0x00,0x50,0xf2,0x04};
249 static const u8 ccmp_rsn_ie[4] = {0x00, 0x0f, 0xac, 0x04};
250 int wpa_ie_len= ieee->wpa_ie_len;
251 struct ieee80211_crypt_data* crypt;
252 int encrypt;
253
254 crypt = ieee->crypt[ieee->tx_keyidx];
255
256 encrypt = (ieee->current_network.capability & WLAN_CAPABILITY_PRIVACY) ||
257 (ieee->host_encrypt && crypt && crypt->ops &&
258 (0 == strcmp(crypt->ops->name,"WEP")));
259
260 /* simply judge */
261 if(encrypt && (wpa_ie_len == 0)) {
262 // wep encryption, no N mode setting */
263 return SEC_ALG_WEP;
264 } else if((wpa_ie_len != 0)) {
265 // parse pairwise key type */
266 if (((ieee->wpa_ie[0] == 0xdd) && (!memcmp(&(ieee->wpa_ie[14]),ccmp_ie,4))) ||
267 ((ieee->wpa_ie[0] == 0x30) && (!memcmp(&ieee->wpa_ie[10],ccmp_rsn_ie, 4))))
268 return SEC_ALG_CCMP;
269 else
270 return SEC_ALG_TKIP;
271 } else {
272 return SEC_ALG_NONE;
273 }
274 }
275
276 void rtl8192e_SetHwReg(struct ieee80211_device *ieee80211, u8 variable, u8 *val)
277 {
278 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
279
280 switch(variable)
281 {
282
283 case HW_VAR_BSSID:
284 write_nic_dword(priv, BSSIDR, ((u32*)(val))[0]);
285 write_nic_word(priv, BSSIDR+2, ((u16*)(val+2))[0]);
286 break;
287
288 case HW_VAR_MEDIA_STATUS:
289 {
290 RT_OP_MODE OpMode = *((RT_OP_MODE *)(val));
291 u8 btMsr = read_nic_byte(priv, MSR);
292
293 btMsr &= 0xfc;
294
295 switch(OpMode)
296 {
297 case RT_OP_MODE_INFRASTRUCTURE:
298 btMsr |= MSR_INFRA;
299 break;
300
301 case RT_OP_MODE_IBSS:
302 btMsr |= MSR_ADHOC;
303 break;
304
305 case RT_OP_MODE_AP:
306 btMsr |= MSR_AP;
307 break;
308
309 default:
310 btMsr |= MSR_NOLINK;
311 break;
312 }
313
314 write_nic_byte(priv, MSR, btMsr);
315 }
316 break;
317
318 case HW_VAR_CHECK_BSSID:
319 {
320 u32 RegRCR, Type;
321
322 Type = ((u8*)(val))[0];
323 RegRCR = read_nic_dword(priv, RCR);
324 priv->ReceiveConfig = RegRCR;
325
326 if (Type == true)
327 RegRCR |= (RCR_CBSSID);
328 else if (Type == false)
329 RegRCR &= (~RCR_CBSSID);
330
331 write_nic_dword(priv, RCR,RegRCR);
332 priv->ReceiveConfig = RegRCR;
333
334 }
335 break;
336
337 case HW_VAR_SLOT_TIME:
338 {
339 priv->slot_time = val[0];
340 write_nic_byte(priv, SLOT_TIME, val[0]);
341
342 }
343 break;
344
345 case HW_VAR_ACK_PREAMBLE:
346 {
347 u32 regTmp = 0;
348 priv->short_preamble = (bool)(*(u8*)val );
349 regTmp = priv->basic_rate;
350 if (priv->short_preamble)
351 regTmp |= BRSR_AckShortPmb;
352 write_nic_dword(priv, RRSR, regTmp);
353 }
354 break;
355
356 case HW_VAR_CPU_RST:
357 write_nic_dword(priv, CPU_GEN, ((u32*)(val))[0]);
358 break;
359
360 default:
361 break;
362 }
363
364 }
365
366 static struct proc_dir_entry *rtl8192_proc = NULL;
367
368 static int proc_get_stats_ap(char *page, char **start,
369 off_t offset, int count,
370 int *eof, void *data)
371 {
372 struct r8192_priv *priv = data;
373 struct ieee80211_device *ieee = priv->ieee80211;
374 struct ieee80211_network *target;
375 int len = 0;
376
377 list_for_each_entry(target, &ieee->network_list, list) {
378
379 len += snprintf(page + len, count - len,
380 "%s ", target->ssid);
381
382 if(target->wpa_ie_len>0 || target->rsn_ie_len>0){
383 len += snprintf(page + len, count - len,
384 "WPA\n");
385 }
386 else{
387 len += snprintf(page + len, count - len,
388 "non_WPA\n");
389 }
390
391 }
392
393 *eof = 1;
394 return len;
395 }
396
397 static int proc_get_registers(char *page, char **start,
398 off_t offset, int count,
399 int *eof, void *data)
400 {
401 struct r8192_priv *priv = data;
402 int len = 0;
403 int i,n;
404 int max=0xff;
405
406 /* This dump the current register page */
407 len += snprintf(page + len, count - len,
408 "\n####################page 0##################\n ");
409
410 for(n=0;n<=max;)
411 {
412 len += snprintf(page + len, count - len,
413 "\nD: %2x > ",n);
414
415 for(i=0;i<16 && n<=max;i++,n++)
416 len += snprintf(page + len, count - len,
417 "%2x ",read_nic_byte(priv,n));
418 }
419 len += snprintf(page + len, count - len,"\n");
420 len += snprintf(page + len, count - len,
421 "\n####################page 1##################\n ");
422 for(n=0;n<=max;)
423 {
424 len += snprintf(page + len, count - len,
425 "\nD: %2x > ",n);
426
427 for(i=0;i<16 && n<=max;i++,n++)
428 len += snprintf(page + len, count - len,
429 "%2x ",read_nic_byte(priv,0x100|n));
430 }
431
432 len += snprintf(page + len, count - len,
433 "\n####################page 3##################\n ");
434 for(n=0;n<=max;)
435 {
436 len += snprintf(page + len, count - len,
437 "\nD: %2x > ",n);
438
439 for(i=0;i<16 && n<=max;i++,n++)
440 len += snprintf(page + len, count - len,
441 "%2x ",read_nic_byte(priv,0x300|n));
442 }
443
444 *eof = 1;
445 return len;
446
447 }
448
449 static int proc_get_stats_tx(char *page, char **start,
450 off_t offset, int count,
451 int *eof, void *data)
452 {
453 struct r8192_priv *priv = data;
454
455 int len = 0;
456
457 len += snprintf(page + len, count - len,
458 "TX VI priority ok int: %lu\n"
459 "TX VO priority ok int: %lu\n"
460 "TX BE priority ok int: %lu\n"
461 "TX BK priority ok int: %lu\n"
462 "TX MANAGE priority ok int: %lu\n"
463 "TX BEACON priority ok int: %lu\n"
464 "TX BEACON priority error int: %lu\n"
465 "TX CMDPKT priority ok int: %lu\n"
466 "TX queue stopped?: %d\n"
467 "TX fifo overflow: %lu\n"
468 "TX total data packets %lu\n"
469 "TX total data bytes :%lu\n",
470 priv->stats.txviokint,
471 priv->stats.txvookint,
472 priv->stats.txbeokint,
473 priv->stats.txbkokint,
474 priv->stats.txmanageokint,
475 priv->stats.txbeaconokint,
476 priv->stats.txbeaconerr,
477 priv->stats.txcmdpktokint,
478 netif_queue_stopped(priv->ieee80211->dev),
479 priv->stats.txoverflow,
480 priv->ieee80211->stats.tx_packets,
481 priv->ieee80211->stats.tx_bytes);
482
483 *eof = 1;
484 return len;
485 }
486
487
488
489 static int proc_get_stats_rx(char *page, char **start,
490 off_t offset, int count,
491 int *eof, void *data)
492 {
493 struct r8192_priv *priv = data;
494 int len = 0;
495
496 len += snprintf(page + len, count - len,
497 "RX packets: %lu\n"
498 "RX desc err: %lu\n"
499 "RX rx overflow error: %lu\n",
500 priv->stats.rxint,
501 priv->stats.rxrdu,
502 priv->stats.rxoverflow);
503
504 *eof = 1;
505 return len;
506 }
507
508 static void rtl8192_proc_module_init(void)
509 {
510 RT_TRACE(COMP_INIT, "Initializing proc filesystem\n");
511 rtl8192_proc=create_proc_entry(RTL819xE_MODULE_NAME, S_IFDIR, init_net.proc_net);
512 }
513
514
515 static void rtl8192_proc_module_remove(void)
516 {
517 remove_proc_entry(RTL819xE_MODULE_NAME, init_net.proc_net);
518 }
519
520
521 static void rtl8192_proc_remove_one(struct r8192_priv *priv)
522 {
523 struct net_device *dev = priv->ieee80211->dev;
524
525 printk("dev name=======> %s\n",dev->name);
526
527 if (priv->dir_dev) {
528 remove_proc_entry("stats-tx", priv->dir_dev);
529 remove_proc_entry("stats-rx", priv->dir_dev);
530 remove_proc_entry("stats-ap", priv->dir_dev);
531 remove_proc_entry("registers", priv->dir_dev);
532 remove_proc_entry("wlan0", rtl8192_proc);
533 priv->dir_dev = NULL;
534 }
535 }
536
537
538 static void rtl8192_proc_init_one(struct r8192_priv *priv)
539 {
540 struct net_device *dev = priv->ieee80211->dev;
541 struct proc_dir_entry *e;
542
543 priv->dir_dev = create_proc_entry(dev->name,
544 S_IFDIR | S_IRUGO | S_IXUGO,
545 rtl8192_proc);
546 if (!priv->dir_dev) {
547 RT_TRACE(COMP_ERR, "Unable to initialize /proc/net/rtl8192/%s\n",
548 dev->name);
549 return;
550 }
551 e = create_proc_read_entry("stats-rx", S_IFREG | S_IRUGO,
552 priv->dir_dev, proc_get_stats_rx, priv);
553
554 if (!e) {
555 RT_TRACE(COMP_ERR,"Unable to initialize "
556 "/proc/net/rtl8192/%s/stats-rx\n",
557 dev->name);
558 }
559
560
561 e = create_proc_read_entry("stats-tx", S_IFREG | S_IRUGO,
562 priv->dir_dev, proc_get_stats_tx, priv);
563
564 if (!e) {
565 RT_TRACE(COMP_ERR, "Unable to initialize "
566 "/proc/net/rtl8192/%s/stats-tx\n",
567 dev->name);
568 }
569
570 e = create_proc_read_entry("stats-ap", S_IFREG | S_IRUGO,
571 priv->dir_dev, proc_get_stats_ap, priv);
572
573 if (!e) {
574 RT_TRACE(COMP_ERR, "Unable to initialize "
575 "/proc/net/rtl8192/%s/stats-ap\n",
576 dev->name);
577 }
578
579 e = create_proc_read_entry("registers", S_IFREG | S_IRUGO,
580 priv->dir_dev, proc_get_registers, priv);
581 if (!e) {
582 RT_TRACE(COMP_ERR, "Unable to initialize "
583 "/proc/net/rtl8192/%s/registers\n",
584 dev->name);
585 }
586 }
587
588 static short check_nic_enough_desc(struct ieee80211_device *ieee, int prio)
589 {
590 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
591 struct rtl8192_tx_ring *ring = &priv->tx_ring[prio];
592
593 /* for now we reserve two free descriptor as a safety boundary
594 * between the tail and the head
595 */
596 return (ring->entries - skb_queue_len(&ring->queue) >= 2);
597 }
598
599 static void tx_timeout(struct net_device *dev)
600 {
601 struct r8192_priv *priv = ieee80211_priv(dev);
602
603 schedule_work(&priv->reset_wq);
604 printk("TXTIMEOUT");
605 }
606
607 static void rtl8192_irq_enable(struct r8192_priv *priv)
608 {
609 u32 mask;
610
611 mask = IMR_ROK | IMR_VODOK | IMR_VIDOK | IMR_BEDOK | IMR_BKDOK |
612 IMR_HCCADOK | IMR_MGNTDOK | IMR_COMDOK | IMR_HIGHDOK |
613 IMR_BDOK | IMR_RXCMDOK | IMR_TIMEOUT0 | IMR_RDU | IMR_RXFOVW |
614 IMR_TXFOVW | IMR_BcnInt | IMR_TBDOK | IMR_TBDER;
615
616 write_nic_dword(priv, INTA_MASK, mask);
617 }
618
619 static void rtl8192_irq_disable(struct r8192_priv *priv)
620 {
621 write_nic_dword(priv, INTA_MASK, 0);
622 synchronize_irq(priv->irq);
623 }
624
625 static void rtl8192_update_msr(struct r8192_priv *priv)
626 {
627 u8 msr;
628
629 msr = read_nic_byte(priv, MSR);
630 msr &= ~ MSR_LINK_MASK;
631
632 /* do not change in link_state != WLAN_LINK_ASSOCIATED.
633 * msr must be updated if the state is ASSOCIATING.
634 * this is intentional and make sense for ad-hoc and
635 * master (see the create BSS/IBSS func)
636 */
637 if (priv->ieee80211->state == IEEE80211_LINKED){
638
639 if (priv->ieee80211->iw_mode == IW_MODE_INFRA)
640 msr |= (MSR_LINK_MANAGED<<MSR_LINK_SHIFT);
641 else if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
642 msr |= (MSR_LINK_ADHOC<<MSR_LINK_SHIFT);
643 else if (priv->ieee80211->iw_mode == IW_MODE_MASTER)
644 msr |= (MSR_LINK_MASTER<<MSR_LINK_SHIFT);
645
646 }else
647 msr |= (MSR_LINK_NONE<<MSR_LINK_SHIFT);
648
649 write_nic_byte(priv, MSR, msr);
650 }
651
652 static void rtl8192_set_chan(struct ieee80211_device *ieee80211, short ch)
653 {
654 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
655
656 priv->chan = ch;
657
658 /* need to implement rf set channel here WB */
659
660 if (priv->rf_set_chan)
661 priv->rf_set_chan(ieee80211, priv->chan);
662 }
663
664 static void rtl8192_rx_enable(struct r8192_priv *priv)
665 {
666 write_nic_dword(priv, RDQDA, priv->rx_ring_dma);
667 }
668
669 /* the TX_DESC_BASE setting is according to the following queue index
670 * BK_QUEUE ===> 0
671 * BE_QUEUE ===> 1
672 * VI_QUEUE ===> 2
673 * VO_QUEUE ===> 3
674 * HCCA_QUEUE ===> 4
675 * TXCMD_QUEUE ===> 5
676 * MGNT_QUEUE ===> 6
677 * HIGH_QUEUE ===> 7
678 * BEACON_QUEUE ===> 8
679 * */
680 static const u32 TX_DESC_BASE[] = {BKQDA, BEQDA, VIQDA, VOQDA, HCCAQDA, CQDA, MQDA, HQDA, BQDA};
681 static void rtl8192_tx_enable(struct r8192_priv *priv)
682 {
683 u32 i;
684
685 for (i = 0; i < MAX_TX_QUEUE_COUNT; i++)
686 write_nic_dword(priv, TX_DESC_BASE[i], priv->tx_ring[i].dma);
687
688 ieee80211_reset_queue(priv->ieee80211);
689 }
690
691
692 static void rtl8192_free_rx_ring(struct r8192_priv *priv)
693 {
694 int i;
695
696 for (i = 0; i < priv->rxringcount; i++) {
697 struct sk_buff *skb = priv->rx_buf[i];
698 if (!skb)
699 continue;
700
701 pci_unmap_single(priv->pdev,
702 *((dma_addr_t *)skb->cb),
703 priv->rxbuffersize, PCI_DMA_FROMDEVICE);
704 kfree_skb(skb);
705 }
706
707 pci_free_consistent(priv->pdev, sizeof(*priv->rx_ring) * priv->rxringcount,
708 priv->rx_ring, priv->rx_ring_dma);
709 priv->rx_ring = NULL;
710 }
711
712 static void rtl8192_free_tx_ring(struct r8192_priv *priv, unsigned int prio)
713 {
714 struct rtl8192_tx_ring *ring = &priv->tx_ring[prio];
715
716 while (skb_queue_len(&ring->queue)) {
717 tx_desc_819x_pci *entry = &ring->desc[ring->idx];
718 struct sk_buff *skb = __skb_dequeue(&ring->queue);
719
720 pci_unmap_single(priv->pdev, le32_to_cpu(entry->TxBuffAddr),
721 skb->len, PCI_DMA_TODEVICE);
722 kfree_skb(skb);
723 ring->idx = (ring->idx + 1) % ring->entries;
724 }
725
726 pci_free_consistent(priv->pdev, sizeof(*ring->desc)*ring->entries,
727 ring->desc, ring->dma);
728 ring->desc = NULL;
729 }
730
731 void PHY_SetRtl8192eRfOff(struct r8192_priv *priv)
732 {
733 //disable RF-Chip A/B
734 rtl8192_setBBreg(priv, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);
735 //analog to digital off, for power save
736 rtl8192_setBBreg(priv, rFPGA0_AnalogParameter4, 0x300, 0x0);
737 //digital to analog off, for power save
738 rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, 0x18, 0x0);
739 //rx antenna off
740 rtl8192_setBBreg(priv, rOFDM0_TRxPathEnable, 0xf, 0x0);
741 //rx antenna off
742 rtl8192_setBBreg(priv, rOFDM1_TRxPathEnable, 0xf, 0x0);
743 //analog to digital part2 off, for power save
744 rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, 0x60, 0x0);
745 rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, 0x4, 0x0);
746 // Analog parameter!!Change bias and Lbus control.
747 write_nic_byte(priv, ANAPAR_FOR_8192PciE, 0x07);
748 }
749
750 static void rtl8192_halt_adapter(struct r8192_priv *priv, bool reset)
751 {
752 int i;
753 u8 OpMode;
754 u32 ulRegRead;
755
756 OpMode = RT_OP_MODE_NO_LINK;
757 priv->ieee80211->SetHwRegHandler(priv->ieee80211, HW_VAR_MEDIA_STATUS, &OpMode);
758
759 if (!priv->ieee80211->bSupportRemoteWakeUp) {
760 /*
761 * disable tx/rx. In 8185 we write 0x10 (Reset bit),
762 * but here we make reference to WMAC and wirte 0x0
763 */
764 write_nic_byte(priv, CMDR, 0);
765 }
766
767 mdelay(20);
768
769 if (!reset) {
770 mdelay(150);
771
772 priv->bHwRfOffAction = 2;
773
774 /*
775 * Call MgntActSet_RF_State instead to
776 * prevent RF config race condition.
777 */
778 if (!priv->ieee80211->bSupportRemoteWakeUp) {
779 PHY_SetRtl8192eRfOff(priv);
780 ulRegRead = read_nic_dword(priv, CPU_GEN);
781 ulRegRead |= CPU_GEN_SYSTEM_RESET;
782 write_nic_dword(priv,CPU_GEN, ulRegRead);
783 } else {
784 /* for WOL */
785 write_nic_dword(priv, WFCRC0, 0xffffffff);
786 write_nic_dword(priv, WFCRC1, 0xffffffff);
787 write_nic_dword(priv, WFCRC2, 0xffffffff);
788
789 /* Write PMR register */
790 write_nic_byte(priv, PMR, 0x5);
791 /* Disable tx, enanble rx */
792 write_nic_byte(priv, MacBlkCtrl, 0xa);
793 }
794 }
795
796 for(i = 0; i < MAX_QUEUE_SIZE; i++) {
797 skb_queue_purge(&priv->ieee80211->skb_waitQ [i]);
798 }
799 for(i = 0; i < MAX_QUEUE_SIZE; i++) {
800 skb_queue_purge(&priv->ieee80211->skb_aggQ [i]);
801 }
802
803 skb_queue_purge(&priv->skb_queue);
804 }
805
806 static void rtl8192_data_hard_stop(struct ieee80211_device *ieee80211)
807 {
808 }
809
810 static void rtl8192_data_hard_resume(struct ieee80211_device *ieee80211)
811 {
812 }
813
814 /*
815 * this function TX data frames when the ieee80211 stack requires this.
816 * It checks also if we need to stop the ieee tx queue, eventually do it
817 */
818 static void rtl8192_hard_data_xmit(struct sk_buff *skb,
819 struct ieee80211_device *ieee80211, int rate)
820 {
821 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
822 int ret;
823 cb_desc *tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
824 u8 queue_index = tcb_desc->queue_index;
825
826 /* shall not be referred by command packet */
827 BUG_ON(queue_index == TXCMD_QUEUE);
828
829 if (priv->bHwRadioOff || (!priv->up))
830 {
831 kfree_skb(skb);
832 return;
833 }
834
835 skb_push(skb, priv->ieee80211->tx_headroom);
836 ret = rtl8192_tx(priv, skb);
837 if (ret != 0) {
838 kfree_skb(skb);
839 }
840
841 if (queue_index != MGNT_QUEUE) {
842 priv->ieee80211->stats.tx_bytes += (skb->len - priv->ieee80211->tx_headroom);
843 priv->ieee80211->stats.tx_packets++;
844 }
845 }
846
847 /*
848 * This is a rough attempt to TX a frame
849 * This is called by the ieee 80211 stack to TX management frames.
850 * If the ring is full packet are dropped (for data frame the queue
851 * is stopped before this can happen).
852 */
853 static int rtl8192_hard_start_xmit(struct sk_buff *skb, struct ieee80211_device *ieee80211)
854 {
855 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
856 int ret;
857 cb_desc *tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
858 u8 queue_index = tcb_desc->queue_index;
859
860 if (queue_index != TXCMD_QUEUE) {
861 if (priv->bHwRadioOff || (!priv->up))
862 {
863 kfree_skb(skb);
864 return 0;
865 }
866 }
867
868 if (queue_index == TXCMD_QUEUE) {
869 rtl819xE_tx_cmd(priv, skb);
870 ret = 0;
871 return ret;
872 } else {
873 tcb_desc->RATRIndex = 7;
874 tcb_desc->bTxDisableRateFallBack = 1;
875 tcb_desc->bTxUseDriverAssingedRate = 1;
876 tcb_desc->bTxEnableFwCalcDur = 1;
877 skb_push(skb, ieee80211->tx_headroom);
878 ret = rtl8192_tx(priv, skb);
879 if (ret != 0) {
880 kfree_skb(skb);
881 }
882 }
883
884 return ret;
885 }
886
887
888 static void rtl8192_tx_isr(struct r8192_priv *priv, int prio)
889 {
890 struct rtl8192_tx_ring *ring = &priv->tx_ring[prio];
891
892 while (skb_queue_len(&ring->queue)) {
893 tx_desc_819x_pci *entry = &ring->desc[ring->idx];
894 struct sk_buff *skb;
895
896 /*
897 * beacon packet will only use the first descriptor defaultly,
898 * and the OWN may not be cleared by the hardware
899 */
900 if (prio != BEACON_QUEUE) {
901 if (entry->OWN)
902 return;
903 ring->idx = (ring->idx + 1) % ring->entries;
904 }
905
906 skb = __skb_dequeue(&ring->queue);
907 pci_unmap_single(priv->pdev, le32_to_cpu(entry->TxBuffAddr),
908 skb->len, PCI_DMA_TODEVICE);
909
910 kfree_skb(skb);
911 }
912
913 if (prio != BEACON_QUEUE) {
914 /* try to deal with the pending packets */
915 tasklet_schedule(&priv->irq_tx_tasklet);
916 }
917 }
918
919 static void rtl8192_stop_beacon(struct ieee80211_device *ieee80211)
920 {
921 }
922
923 static void rtl8192_config_rate(struct r8192_priv *priv, u16* rate_config)
924 {
925 struct ieee80211_network *net;
926 u8 i=0, basic_rate = 0;
927 net = & priv->ieee80211->current_network;
928
929 for (i=0; i<net->rates_len; i++)
930 {
931 basic_rate = net->rates[i]&0x7f;
932 switch(basic_rate)
933 {
934 case MGN_1M: *rate_config |= RRSR_1M; break;
935 case MGN_2M: *rate_config |= RRSR_2M; break;
936 case MGN_5_5M: *rate_config |= RRSR_5_5M; break;
937 case MGN_11M: *rate_config |= RRSR_11M; break;
938 case MGN_6M: *rate_config |= RRSR_6M; break;
939 case MGN_9M: *rate_config |= RRSR_9M; break;
940 case MGN_12M: *rate_config |= RRSR_12M; break;
941 case MGN_18M: *rate_config |= RRSR_18M; break;
942 case MGN_24M: *rate_config |= RRSR_24M; break;
943 case MGN_36M: *rate_config |= RRSR_36M; break;
944 case MGN_48M: *rate_config |= RRSR_48M; break;
945 case MGN_54M: *rate_config |= RRSR_54M; break;
946 }
947 }
948 for (i=0; i<net->rates_ex_len; i++)
949 {
950 basic_rate = net->rates_ex[i]&0x7f;
951 switch(basic_rate)
952 {
953 case MGN_1M: *rate_config |= RRSR_1M; break;
954 case MGN_2M: *rate_config |= RRSR_2M; break;
955 case MGN_5_5M: *rate_config |= RRSR_5_5M; break;
956 case MGN_11M: *rate_config |= RRSR_11M; break;
957 case MGN_6M: *rate_config |= RRSR_6M; break;
958 case MGN_9M: *rate_config |= RRSR_9M; break;
959 case MGN_12M: *rate_config |= RRSR_12M; break;
960 case MGN_18M: *rate_config |= RRSR_18M; break;
961 case MGN_24M: *rate_config |= RRSR_24M; break;
962 case MGN_36M: *rate_config |= RRSR_36M; break;
963 case MGN_48M: *rate_config |= RRSR_48M; break;
964 case MGN_54M: *rate_config |= RRSR_54M; break;
965 }
966 }
967 }
968
969
970 #define SHORT_SLOT_TIME 9
971 #define NON_SHORT_SLOT_TIME 20
972
973 static void rtl8192_update_cap(struct r8192_priv *priv, u16 cap)
974 {
975 u32 tmp = 0;
976 struct ieee80211_network *net = &priv->ieee80211->current_network;
977
978 priv->short_preamble = cap & WLAN_CAPABILITY_SHORT_PREAMBLE;
979 tmp = priv->basic_rate;
980 if (priv->short_preamble)
981 tmp |= BRSR_AckShortPmb;
982 write_nic_dword(priv, RRSR, tmp);
983
984 if (net->mode & (IEEE_G|IEEE_N_24G))
985 {
986 u8 slot_time = 0;
987 if ((cap & WLAN_CAPABILITY_SHORT_SLOT)&&(!priv->ieee80211->pHTInfo->bCurrentRT2RTLongSlotTime))
988 {//short slot time
989 slot_time = SHORT_SLOT_TIME;
990 }
991 else //long slot time
992 slot_time = NON_SHORT_SLOT_TIME;
993 priv->slot_time = slot_time;
994 write_nic_byte(priv, SLOT_TIME, slot_time);
995 }
996
997 }
998
999 static void rtl8192_net_update(struct r8192_priv *priv)
1000 {
1001 struct ieee80211_network *net;
1002 u16 BcnTimeCfg = 0, BcnCW = 6, BcnIFS = 0xf;
1003 u16 rate_config = 0;
1004 net = &priv->ieee80211->current_network;
1005
1006 /* update Basic rate: RR, BRSR */
1007 rtl8192_config_rate(priv, &rate_config);
1008
1009 /*
1010 * Select RRSR (in Legacy-OFDM and CCK)
1011 * For 8190, we select only 24M, 12M, 6M, 11M, 5.5M,
1012 * 2M, and 1M from the Basic rate.
1013 * We do not use other rates.
1014 */
1015 priv->basic_rate = rate_config &= 0x15f;
1016
1017 /* BSSID */
1018 write_nic_dword(priv, BSSIDR, ((u32 *)net->bssid)[0]);
1019 write_nic_word(priv, BSSIDR+4, ((u16 *)net->bssid)[2]);
1020
1021 if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
1022 {
1023 write_nic_word(priv, ATIMWND, 2);
1024 write_nic_word(priv, BCN_DMATIME, 256);
1025 write_nic_word(priv, BCN_INTERVAL, net->beacon_interval);
1026 /*
1027 * BIT15 of BCN_DRV_EARLY_INT will indicate
1028 * whether software beacon or hw beacon is applied.
1029 */
1030 write_nic_word(priv, BCN_DRV_EARLY_INT, 10);
1031 write_nic_byte(priv, BCN_ERR_THRESH, 100);
1032
1033 BcnTimeCfg |= (BcnCW<<BCN_TCFG_CW_SHIFT);
1034 /* TODO: BcnIFS may required to be changed on ASIC */
1035 BcnTimeCfg |= BcnIFS<<BCN_TCFG_IFS;
1036 write_nic_word(priv, BCN_TCFG, BcnTimeCfg);
1037 }
1038 }
1039
1040 static void rtl819xE_tx_cmd(struct r8192_priv *priv, struct sk_buff *skb)
1041 {
1042 struct rtl8192_tx_ring *ring;
1043 tx_desc_819x_pci *entry;
1044 unsigned int idx;
1045 dma_addr_t mapping;
1046 cb_desc *tcb_desc;
1047 unsigned long flags;
1048
1049 ring = &priv->tx_ring[TXCMD_QUEUE];
1050 mapping = pci_map_single(priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
1051
1052 spin_lock_irqsave(&priv->irq_th_lock,flags);
1053 idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries;
1054 entry = &ring->desc[idx];
1055
1056 tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
1057 memset(entry,0,12);
1058 entry->LINIP = tcb_desc->bLastIniPkt;
1059 entry->FirstSeg = 1;//first segment
1060 entry->LastSeg = 1; //last segment
1061 if(tcb_desc->bCmdOrInit == DESC_PACKET_TYPE_INIT) {
1062 entry->CmdInit = DESC_PACKET_TYPE_INIT;
1063 } else {
1064 entry->CmdInit = DESC_PACKET_TYPE_NORMAL;
1065 entry->Offset = sizeof(TX_FWINFO_8190PCI) + 8;
1066 entry->PktSize = (u16)(tcb_desc->pkt_size + entry->Offset);
1067 entry->QueueSelect = QSLT_CMD;
1068 entry->TxFWInfoSize = 0x08;
1069 entry->RATid = (u8)DESC_PACKET_TYPE_INIT;
1070 }
1071 entry->TxBufferSize = skb->len;
1072 entry->TxBuffAddr = cpu_to_le32(mapping);
1073 entry->OWN = 1;
1074
1075 __skb_queue_tail(&ring->queue, skb);
1076 spin_unlock_irqrestore(&priv->irq_th_lock,flags);
1077
1078 write_nic_byte(priv, TPPoll, TPPoll_CQ);
1079
1080 return;
1081 }
1082
1083 /*
1084 * Mapping Software/Hardware descriptor queue id to "Queue Select Field"
1085 * in TxFwInfo data structure
1086 */
1087 static u8 MapHwQueueToFirmwareQueue(u8 QueueID)
1088 {
1089 u8 QueueSelect = 0;
1090
1091 switch (QueueID) {
1092 case BE_QUEUE:
1093 QueueSelect = QSLT_BE;
1094 break;
1095
1096 case BK_QUEUE:
1097 QueueSelect = QSLT_BK;
1098 break;
1099
1100 case VO_QUEUE:
1101 QueueSelect = QSLT_VO;
1102 break;
1103
1104 case VI_QUEUE:
1105 QueueSelect = QSLT_VI;
1106 break;
1107
1108 case MGNT_QUEUE:
1109 QueueSelect = QSLT_MGNT;
1110 break;
1111
1112 case BEACON_QUEUE:
1113 QueueSelect = QSLT_BEACON;
1114 break;
1115
1116 case TXCMD_QUEUE:
1117 QueueSelect = QSLT_CMD;
1118 break;
1119
1120 case HIGH_QUEUE:
1121 default:
1122 RT_TRACE(COMP_ERR, "Impossible Queue Selection: %d\n", QueueID);
1123 break;
1124 }
1125 return QueueSelect;
1126 }
1127
1128 static u8 MRateToHwRate8190Pci(u8 rate)
1129 {
1130 u8 ret = DESC90_RATE1M;
1131
1132 switch(rate) {
1133 case MGN_1M: ret = DESC90_RATE1M; break;
1134 case MGN_2M: ret = DESC90_RATE2M; break;
1135 case MGN_5_5M: ret = DESC90_RATE5_5M; break;
1136 case MGN_11M: ret = DESC90_RATE11M; break;
1137 case MGN_6M: ret = DESC90_RATE6M; break;
1138 case MGN_9M: ret = DESC90_RATE9M; break;
1139 case MGN_12M: ret = DESC90_RATE12M; break;
1140 case MGN_18M: ret = DESC90_RATE18M; break;
1141 case MGN_24M: ret = DESC90_RATE24M; break;
1142 case MGN_36M: ret = DESC90_RATE36M; break;
1143 case MGN_48M: ret = DESC90_RATE48M; break;
1144 case MGN_54M: ret = DESC90_RATE54M; break;
1145
1146 // HT rate since here
1147 case MGN_MCS0: ret = DESC90_RATEMCS0; break;
1148 case MGN_MCS1: ret = DESC90_RATEMCS1; break;
1149 case MGN_MCS2: ret = DESC90_RATEMCS2; break;
1150 case MGN_MCS3: ret = DESC90_RATEMCS3; break;
1151 case MGN_MCS4: ret = DESC90_RATEMCS4; break;
1152 case MGN_MCS5: ret = DESC90_RATEMCS5; break;
1153 case MGN_MCS6: ret = DESC90_RATEMCS6; break;
1154 case MGN_MCS7: ret = DESC90_RATEMCS7; break;
1155 case MGN_MCS8: ret = DESC90_RATEMCS8; break;
1156 case MGN_MCS9: ret = DESC90_RATEMCS9; break;
1157 case MGN_MCS10: ret = DESC90_RATEMCS10; break;
1158 case MGN_MCS11: ret = DESC90_RATEMCS11; break;
1159 case MGN_MCS12: ret = DESC90_RATEMCS12; break;
1160 case MGN_MCS13: ret = DESC90_RATEMCS13; break;
1161 case MGN_MCS14: ret = DESC90_RATEMCS14; break;
1162 case MGN_MCS15: ret = DESC90_RATEMCS15; break;
1163 case (0x80|0x20): ret = DESC90_RATEMCS32; break;
1164
1165 default: break;
1166 }
1167 return ret;
1168 }
1169
1170
1171 static u8 QueryIsShort(u8 TxHT, u8 TxRate, cb_desc *tcb_desc)
1172 {
1173 u8 tmp_Short;
1174
1175 tmp_Short = (TxHT==1)?((tcb_desc->bUseShortGI)?1:0):((tcb_desc->bUseShortPreamble)?1:0);
1176
1177 if(TxHT==1 && TxRate != DESC90_RATEMCS15)
1178 tmp_Short = 0;
1179
1180 return tmp_Short;
1181 }
1182
1183 /*
1184 * The tx procedure is just as following,
1185 * skb->cb will contain all the following information,
1186 * priority, morefrag, rate, &dev.
1187 */
1188 static short rtl8192_tx(struct r8192_priv *priv, struct sk_buff* skb)
1189 {
1190 struct rtl8192_tx_ring *ring;
1191 unsigned long flags;
1192 cb_desc *tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
1193 tx_desc_819x_pci *pdesc = NULL;
1194 TX_FWINFO_8190PCI *pTxFwInfo = NULL;
1195 dma_addr_t mapping;
1196 bool multi_addr = false, broad_addr = false, uni_addr = false;
1197 u8 *pda_addr = NULL;
1198 int idx;
1199
1200 if (priv->bdisable_nic) {
1201 RT_TRACE(COMP_ERR, "Nic is disabled! Can't tx packet len=%d qidx=%d!!!\n",
1202 skb->len, tcb_desc->queue_index);
1203 return skb->len;
1204 }
1205
1206 #ifdef ENABLE_LPS
1207 priv->ieee80211->bAwakePktSent = true;
1208 #endif
1209
1210 mapping = pci_map_single(priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
1211
1212 /* collect the tx packets statitcs */
1213 pda_addr = ((u8 *)skb->data) + sizeof(TX_FWINFO_8190PCI);
1214 if (is_multicast_ether_addr(pda_addr))
1215 multi_addr = true;
1216 else if (is_broadcast_ether_addr(pda_addr))
1217 broad_addr = true;
1218 else
1219 uni_addr = true;
1220
1221 if (uni_addr)
1222 priv->stats.txbytesunicast += (u8)(skb->len) - sizeof(TX_FWINFO_8190PCI);
1223
1224 /* fill tx firmware */
1225 pTxFwInfo = (PTX_FWINFO_8190PCI)skb->data;
1226 memset(pTxFwInfo, 0, sizeof(TX_FWINFO_8190PCI));
1227 pTxFwInfo->TxHT = (tcb_desc->data_rate&0x80) ? 1 : 0;
1228 pTxFwInfo->TxRate = MRateToHwRate8190Pci((u8)tcb_desc->data_rate);
1229 pTxFwInfo->EnableCPUDur = tcb_desc->bTxEnableFwCalcDur;
1230 pTxFwInfo->Short = QueryIsShort(pTxFwInfo->TxHT, pTxFwInfo->TxRate, tcb_desc);
1231
1232 /* Aggregation related */
1233 if (tcb_desc->bAMPDUEnable) {
1234 pTxFwInfo->AllowAggregation = 1;
1235 pTxFwInfo->RxMF = tcb_desc->ampdu_factor;
1236 pTxFwInfo->RxAMD = tcb_desc->ampdu_density;
1237 } else {
1238 pTxFwInfo->AllowAggregation = 0;
1239 pTxFwInfo->RxMF = 0;
1240 pTxFwInfo->RxAMD = 0;
1241 }
1242
1243 /* Protection mode related */
1244 pTxFwInfo->RtsEnable = (tcb_desc->bRTSEnable) ? 1 : 0;
1245 pTxFwInfo->CtsEnable = (tcb_desc->bCTSEnable) ? 1 : 0;
1246 pTxFwInfo->RtsSTBC = (tcb_desc->bRTSSTBC) ? 1 : 0;
1247 pTxFwInfo->RtsHT = (tcb_desc->rts_rate&0x80) ? 1 : 0;
1248 pTxFwInfo->RtsRate = MRateToHwRate8190Pci((u8)tcb_desc->rts_rate);
1249 pTxFwInfo->RtsBandwidth = 0;
1250 pTxFwInfo->RtsSubcarrier = tcb_desc->RTSSC;
1251 pTxFwInfo->RtsShort = (pTxFwInfo->RtsHT == 0) ? (tcb_desc->bRTSUseShortPreamble ? 1 : 0) : (tcb_desc->bRTSUseShortGI? 1 : 0);
1252
1253 /* Set Bandwidth and sub-channel settings. */
1254 if (priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20_40) {
1255 if (tcb_desc->bPacketBW) {
1256 pTxFwInfo->TxBandwidth = 1;
1257 /* use duplicated mode */
1258 pTxFwInfo->TxSubCarrier = 0;
1259 } else {
1260 pTxFwInfo->TxBandwidth = 0;
1261 pTxFwInfo->TxSubCarrier = priv->nCur40MhzPrimeSC;
1262 }
1263 } else {
1264 pTxFwInfo->TxBandwidth = 0;
1265 pTxFwInfo->TxSubCarrier = 0;
1266 }
1267
1268 spin_lock_irqsave(&priv->irq_th_lock, flags);
1269 ring = &priv->tx_ring[tcb_desc->queue_index];
1270 if (tcb_desc->queue_index != BEACON_QUEUE)
1271 idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries;
1272 else
1273 idx = 0;
1274
1275 pdesc = &ring->desc[idx];
1276 if ((pdesc->OWN == 1) && (tcb_desc->queue_index != BEACON_QUEUE)) {
1277 RT_TRACE(COMP_ERR, "No more TX desc@%d, ring->idx = %d,idx = %d,%x\n",
1278 tcb_desc->queue_index, ring->idx, idx, skb->len);
1279 spin_unlock_irqrestore(&priv->irq_th_lock, flags);
1280 return skb->len;
1281 }
1282
1283 /* fill tx descriptor */
1284 memset(pdesc, 0, 12);
1285
1286 /*DWORD 0*/
1287 pdesc->LINIP = 0;
1288 pdesc->CmdInit = 1;
1289 pdesc->Offset = sizeof(TX_FWINFO_8190PCI) + 8; /* We must add 8!! */
1290 pdesc->PktSize = (u16)skb->len-sizeof(TX_FWINFO_8190PCI);
1291
1292 /*DWORD 1*/
1293 pdesc->SecCAMID = 0;
1294 pdesc->RATid = tcb_desc->RATRIndex;
1295
1296 pdesc->NoEnc = 1;
1297 pdesc->SecType = 0x0;
1298 if (tcb_desc->bHwSec) {
1299 switch (priv->ieee80211->pairwise_key_type) {
1300 case KEY_TYPE_WEP40:
1301 case KEY_TYPE_WEP104:
1302 pdesc->SecType = 0x1;
1303 pdesc->NoEnc = 0;
1304 break;
1305 case KEY_TYPE_TKIP:
1306 pdesc->SecType = 0x2;
1307 pdesc->NoEnc = 0;
1308 break;
1309 case KEY_TYPE_CCMP:
1310 pdesc->SecType = 0x3;
1311 pdesc->NoEnc = 0;
1312 break;
1313 case KEY_TYPE_NA:
1314 pdesc->SecType = 0x0;
1315 pdesc->NoEnc = 1;
1316 break;
1317 }
1318 }
1319
1320 /* Set Packet ID */
1321 pdesc->PktId = 0x0;
1322
1323 pdesc->QueueSelect = MapHwQueueToFirmwareQueue(tcb_desc->queue_index);
1324 pdesc->TxFWInfoSize = sizeof(TX_FWINFO_8190PCI);
1325
1326 pdesc->DISFB = tcb_desc->bTxDisableRateFallBack;
1327 pdesc->USERATE = tcb_desc->bTxUseDriverAssingedRate;
1328
1329 pdesc->FirstSeg = 1;
1330 pdesc->LastSeg = 1;
1331 pdesc->TxBufferSize = skb->len;
1332
1333 pdesc->TxBuffAddr = cpu_to_le32(mapping);
1334 __skb_queue_tail(&ring->queue, skb);
1335 pdesc->OWN = 1;
1336 spin_unlock_irqrestore(&priv->irq_th_lock, flags);
1337 priv->ieee80211->dev->trans_start = jiffies;
1338 write_nic_word(priv, TPPoll, 0x01<<tcb_desc->queue_index);
1339 return 0;
1340 }
1341
1342 static short rtl8192_alloc_rx_desc_ring(struct r8192_priv *priv)
1343 {
1344 rx_desc_819x_pci *entry = NULL;
1345 int i;
1346
1347 priv->rx_ring = pci_alloc_consistent(priv->pdev,
1348 sizeof(*priv->rx_ring) * priv->rxringcount, &priv->rx_ring_dma);
1349
1350 if (!priv->rx_ring || (unsigned long)priv->rx_ring & 0xFF) {
1351 RT_TRACE(COMP_ERR,"Cannot allocate RX ring\n");
1352 return -ENOMEM;
1353 }
1354
1355 memset(priv->rx_ring, 0, sizeof(*priv->rx_ring) * priv->rxringcount);
1356 priv->rx_idx = 0;
1357
1358 for (i = 0; i < priv->rxringcount; i++) {
1359 struct sk_buff *skb = dev_alloc_skb(priv->rxbuffersize);
1360 dma_addr_t *mapping;
1361 entry = &priv->rx_ring[i];
1362 if (!skb)
1363 return 0;
1364 priv->rx_buf[i] = skb;
1365 mapping = (dma_addr_t *)skb->cb;
1366 *mapping = pci_map_single(priv->pdev, skb_tail_pointer(skb),
1367 priv->rxbuffersize, PCI_DMA_FROMDEVICE);
1368
1369 entry->BufferAddress = cpu_to_le32(*mapping);
1370
1371 entry->Length = priv->rxbuffersize;
1372 entry->OWN = 1;
1373 }
1374
1375 entry->EOR = 1;
1376 return 0;
1377 }
1378
1379 static int rtl8192_alloc_tx_desc_ring(struct r8192_priv *priv,
1380 unsigned int prio, unsigned int entries)
1381 {
1382 tx_desc_819x_pci *ring;
1383 dma_addr_t dma;
1384 int i;
1385
1386 ring = pci_alloc_consistent(priv->pdev, sizeof(*ring) * entries, &dma);
1387 if (!ring || (unsigned long)ring & 0xFF) {
1388 RT_TRACE(COMP_ERR, "Cannot allocate TX ring (prio = %d)\n", prio);
1389 return -ENOMEM;
1390 }
1391
1392 memset(ring, 0, sizeof(*ring)*entries);
1393 priv->tx_ring[prio].desc = ring;
1394 priv->tx_ring[prio].dma = dma;
1395 priv->tx_ring[prio].idx = 0;
1396 priv->tx_ring[prio].entries = entries;
1397 skb_queue_head_init(&priv->tx_ring[prio].queue);
1398
1399 for (i = 0; i < entries; i++)
1400 ring[i].NextDescAddress =
1401 cpu_to_le32((u32)dma + ((i + 1) % entries) * sizeof(*ring));
1402
1403 return 0;
1404 }
1405
1406 static short rtl8192_pci_initdescring(struct r8192_priv *priv)
1407 {
1408 u32 ret;
1409 int i;
1410
1411 ret = rtl8192_alloc_rx_desc_ring(priv);
1412 if (ret)
1413 return ret;
1414
1415 /* general process for other queue */
1416 for (i = 0; i < MAX_TX_QUEUE_COUNT; i++) {
1417 ret = rtl8192_alloc_tx_desc_ring(priv, i, priv->txringcount);
1418 if (ret)
1419 goto err_free_rings;
1420 }
1421
1422 return 0;
1423
1424 err_free_rings:
1425 rtl8192_free_rx_ring(priv);
1426 for (i = 0; i < MAX_TX_QUEUE_COUNT; i++)
1427 if (priv->tx_ring[i].desc)
1428 rtl8192_free_tx_ring(priv, i);
1429 return 1;
1430 }
1431
1432 static void rtl8192_pci_resetdescring(struct r8192_priv *priv)
1433 {
1434 int i;
1435
1436 /* force the rx_idx to the first one */
1437 if(priv->rx_ring) {
1438 rx_desc_819x_pci *entry = NULL;
1439 for (i = 0; i < priv->rxringcount; i++) {
1440 entry = &priv->rx_ring[i];
1441 entry->OWN = 1;
1442 }
1443 priv->rx_idx = 0;
1444 }
1445
1446 /* after reset, release previous pending packet, and force the
1447 * tx idx to the first one */
1448 for (i = 0; i < MAX_TX_QUEUE_COUNT; i++) {
1449 if (priv->tx_ring[i].desc) {
1450 struct rtl8192_tx_ring *ring = &priv->tx_ring[i];
1451
1452 while (skb_queue_len(&ring->queue)) {
1453 tx_desc_819x_pci *entry = &ring->desc[ring->idx];
1454 struct sk_buff *skb = __skb_dequeue(&ring->queue);
1455
1456 pci_unmap_single(priv->pdev, le32_to_cpu(entry->TxBuffAddr),
1457 skb->len, PCI_DMA_TODEVICE);
1458 kfree_skb(skb);
1459 ring->idx = (ring->idx + 1) % ring->entries;
1460 }
1461 ring->idx = 0;
1462 }
1463 }
1464 }
1465
1466 static void rtl8192_link_change(struct ieee80211_device *ieee)
1467 {
1468 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1469
1470 if (ieee->state == IEEE80211_LINKED)
1471 {
1472 rtl8192_net_update(priv);
1473 rtl8192_update_ratr_table(priv);
1474
1475 //add this as in pure N mode, wep encryption will use software way, but there is no chance to set this as wep will not set group key in wext. WB.2008.07.08
1476 if ((KEY_TYPE_WEP40 == ieee->pairwise_key_type) || (KEY_TYPE_WEP104 == ieee->pairwise_key_type))
1477 EnableHWSecurityConfig8192(priv);
1478 }
1479 else
1480 {
1481 write_nic_byte(priv, 0x173, 0);
1482 }
1483
1484 rtl8192_update_msr(priv);
1485
1486 // 2007/10/16 MH MAC Will update TSF according to all received beacon, so we have
1487 // // To set CBSSID bit when link with any AP or STA.
1488 if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
1489 {
1490 u32 reg = 0;
1491 reg = read_nic_dword(priv, RCR);
1492 if (priv->ieee80211->state == IEEE80211_LINKED)
1493 priv->ReceiveConfig = reg |= RCR_CBSSID;
1494 else
1495 priv->ReceiveConfig = reg &= ~RCR_CBSSID;
1496 write_nic_dword(priv, RCR, reg);
1497 }
1498 }
1499
1500
1501 static const struct ieee80211_qos_parameters def_qos_parameters = {
1502 {3,3,3,3},/* cw_min */
1503 {7,7,7,7},/* cw_max */
1504 {2,2,2,2},/* aifs */
1505 {0,0,0,0},/* flags */
1506 {0,0,0,0} /* tx_op_limit */
1507 };
1508
1509 static void rtl8192_update_beacon(struct work_struct * work)
1510 {
1511 struct r8192_priv *priv = container_of(work, struct r8192_priv, update_beacon_wq.work);
1512 struct ieee80211_device* ieee = priv->ieee80211;
1513 struct ieee80211_network* net = &ieee->current_network;
1514
1515 if (ieee->pHTInfo->bCurrentHTSupport)
1516 HTUpdateSelfAndPeerSetting(ieee, net);
1517 ieee->pHTInfo->bCurrentRT2RTLongSlotTime = net->bssht.bdRT2RTLongSlotTime;
1518 rtl8192_update_cap(priv, net->capability);
1519 }
1520
1521 /*
1522 * background support to run QoS activate functionality
1523 */
1524 static const int WDCAPARA_ADD[] = {EDCAPARA_BE,EDCAPARA_BK,EDCAPARA_VI,EDCAPARA_VO};
1525 static void rtl8192_qos_activate(struct work_struct * work)
1526 {
1527 struct r8192_priv *priv = container_of(work, struct r8192_priv, qos_activate);
1528 struct ieee80211_qos_parameters *qos_parameters = &priv->ieee80211->current_network.qos_data.parameters;
1529 u8 mode = priv->ieee80211->current_network.mode;
1530 u8 u1bAIFS;
1531 u32 u4bAcParam;
1532 int i;
1533
1534 mutex_lock(&priv->mutex);
1535 if(priv->ieee80211->state != IEEE80211_LINKED)
1536 goto success;
1537 RT_TRACE(COMP_QOS,"qos active process with associate response received\n");
1538 /* It better set slot time at first */
1539 /* For we just support b/g mode at present, let the slot time at 9/20 selection */
1540 /* update the ac parameter to related registers */
1541 for(i = 0; i < QOS_QUEUE_NUM; i++) {
1542 //Mode G/A: slotTimeTimer = 9; Mode B: 20
1543 u1bAIFS = qos_parameters->aifs[i] * ((mode&(IEEE_G|IEEE_N_24G)) ?9:20) + aSifsTime;
1544 u4bAcParam = ((((u32)(qos_parameters->tx_op_limit[i]))<< AC_PARAM_TXOP_LIMIT_OFFSET)|
1545 (((u32)(qos_parameters->cw_max[i]))<< AC_PARAM_ECW_MAX_OFFSET)|
1546 (((u32)(qos_parameters->cw_min[i]))<< AC_PARAM_ECW_MIN_OFFSET)|
1547 ((u32)u1bAIFS << AC_PARAM_AIFS_OFFSET));
1548 write_nic_dword(priv, WDCAPARA_ADD[i], u4bAcParam);
1549 }
1550
1551 success:
1552 mutex_unlock(&priv->mutex);
1553 }
1554
1555 static int rtl8192_qos_handle_probe_response(struct r8192_priv *priv,
1556 int active_network,
1557 struct ieee80211_network *network)
1558 {
1559 int ret = 0;
1560 u32 size = sizeof(struct ieee80211_qos_parameters);
1561
1562 if(priv->ieee80211->state !=IEEE80211_LINKED)
1563 return ret;
1564
1565 if ((priv->ieee80211->iw_mode != IW_MODE_INFRA))
1566 return ret;
1567
1568 if (network->flags & NETWORK_HAS_QOS_MASK) {
1569 if (active_network &&
1570 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
1571 network->qos_data.active = network->qos_data.supported;
1572
1573 if ((network->qos_data.active == 1) && (active_network == 1) &&
1574 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
1575 (network->qos_data.old_param_count !=
1576 network->qos_data.param_count)) {
1577 network->qos_data.old_param_count =
1578 network->qos_data.param_count;
1579 queue_work(priv->priv_wq, &priv->qos_activate);
1580 RT_TRACE (COMP_QOS, "QoS parameters change call "
1581 "qos_activate\n");
1582 }
1583 } else {
1584 memcpy(&priv->ieee80211->current_network.qos_data.parameters,
1585 &def_qos_parameters, size);
1586
1587 if ((network->qos_data.active == 1) && (active_network == 1)) {
1588 queue_work(priv->priv_wq, &priv->qos_activate);
1589 RT_TRACE(COMP_QOS, "QoS was disabled call qos_activate\n");
1590 }
1591 network->qos_data.active = 0;
1592 network->qos_data.supported = 0;
1593 }
1594
1595 return 0;
1596 }
1597
1598 /* handle manage frame frame beacon and probe response */
1599 static int rtl8192_handle_beacon(struct ieee80211_device *ieee,
1600 struct ieee80211_beacon * beacon,
1601 struct ieee80211_network * network)
1602 {
1603 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1604
1605 rtl8192_qos_handle_probe_response(priv,1,network);
1606
1607 queue_delayed_work(priv->priv_wq, &priv->update_beacon_wq, 0);
1608 return 0;
1609
1610 }
1611
1612 /*
1613 * handling the beaconing responses. if we get different QoS setting
1614 * off the network from the associated setting, adjust the QoS setting
1615 */
1616 static int rtl8192_qos_association_resp(struct r8192_priv *priv,
1617 struct ieee80211_network *network)
1618 {
1619 int ret = 0;
1620 unsigned long flags;
1621 u32 size = sizeof(struct ieee80211_qos_parameters);
1622 int set_qos_param = 0;
1623
1624 if ((priv == NULL) || (network == NULL))
1625 return ret;
1626
1627 if (priv->ieee80211->state != IEEE80211_LINKED)
1628 return ret;
1629
1630 if ((priv->ieee80211->iw_mode != IW_MODE_INFRA))
1631 return ret;
1632
1633 spin_lock_irqsave(&priv->ieee80211->lock, flags);
1634 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
1635 memcpy(&priv->ieee80211->current_network.qos_data.parameters,
1636 &network->qos_data.parameters,
1637 sizeof(struct ieee80211_qos_parameters));
1638 priv->ieee80211->current_network.qos_data.active = 1;
1639 set_qos_param = 1;
1640 /* update qos parameter for current network */
1641 priv->ieee80211->current_network.qos_data.old_param_count =
1642 priv->ieee80211->current_network.qos_data.param_count;
1643 priv->ieee80211->current_network.qos_data.param_count =
1644 network->qos_data.param_count;
1645
1646 } else {
1647 memcpy(&priv->ieee80211->current_network.qos_data.parameters,
1648 &def_qos_parameters, size);
1649 priv->ieee80211->current_network.qos_data.active = 0;
1650 priv->ieee80211->current_network.qos_data.supported = 0;
1651 set_qos_param = 1;
1652 }
1653
1654 spin_unlock_irqrestore(&priv->ieee80211->lock, flags);
1655
1656 RT_TRACE(COMP_QOS, "%s: network->flags = %d,%d\n", __FUNCTION__,
1657 network->flags, priv->ieee80211->current_network.qos_data.active);
1658 if (set_qos_param == 1)
1659 queue_work(priv->priv_wq, &priv->qos_activate);
1660
1661 return ret;
1662 }
1663
1664
1665 static int rtl8192_handle_assoc_response(struct ieee80211_device *ieee,
1666 struct ieee80211_assoc_response_frame *resp,
1667 struct ieee80211_network *network)
1668 {
1669 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1670 rtl8192_qos_association_resp(priv, network);
1671 return 0;
1672 }
1673
1674
1675 /* updateRATRTabel for MCS only. Basic rate is not implemented. */
1676 static void rtl8192_update_ratr_table(struct r8192_priv* priv)
1677 {
1678 struct ieee80211_device* ieee = priv->ieee80211;
1679 u8* pMcsRate = ieee->dot11HTOperationalRateSet;
1680 u32 ratr_value = 0;
1681 u8 rate_index = 0;
1682
1683 rtl8192_config_rate(priv, (u16*)(&ratr_value));
1684 ratr_value |= (*(u16*)(pMcsRate)) << 12;
1685
1686 switch (ieee->mode)
1687 {
1688 case IEEE_A:
1689 ratr_value &= 0x00000FF0;
1690 break;
1691 case IEEE_B:
1692 ratr_value &= 0x0000000F;
1693 break;
1694 case IEEE_G:
1695 ratr_value &= 0x00000FF7;
1696 break;
1697 case IEEE_N_24G:
1698 case IEEE_N_5G:
1699 if (ieee->pHTInfo->PeerMimoPs == 0) //MIMO_PS_STATIC
1700 ratr_value &= 0x0007F007;
1701 else{
1702 if (priv->rf_type == RF_1T2R)
1703 ratr_value &= 0x000FF007;
1704 else
1705 ratr_value &= 0x0F81F007;
1706 }
1707 break;
1708 default:
1709 break;
1710 }
1711 ratr_value &= 0x0FFFFFFF;
1712 if(ieee->pHTInfo->bCurTxBW40MHz && ieee->pHTInfo->bCurShortGI40MHz){
1713 ratr_value |= 0x80000000;
1714 }else if(!ieee->pHTInfo->bCurTxBW40MHz && ieee->pHTInfo->bCurShortGI20MHz){
1715 ratr_value |= 0x80000000;
1716 }
1717 write_nic_dword(priv, RATR0+rate_index*4, ratr_value);
1718 write_nic_byte(priv, UFWP, 1);
1719 }
1720
1721 static bool GetNmodeSupportBySecCfg8190Pci(struct ieee80211_device *ieee)
1722 {
1723 return !(ieee->rtllib_ap_sec_type &&
1724 (ieee->rtllib_ap_sec_type(ieee)&(SEC_ALG_WEP|SEC_ALG_TKIP)));
1725 }
1726
1727 static void rtl8192_refresh_supportrate(struct r8192_priv* priv)
1728 {
1729 struct ieee80211_device* ieee = priv->ieee80211;
1730 //we donot consider set support rate for ABG mode, only HT MCS rate is set here.
1731 if (ieee->mode == WIRELESS_MODE_N_24G || ieee->mode == WIRELESS_MODE_N_5G)
1732 {
1733 memcpy(ieee->Regdot11HTOperationalRateSet, ieee->RegHTSuppRateSet, 16);
1734 }
1735 else
1736 memset(ieee->Regdot11HTOperationalRateSet, 0, 16);
1737 }
1738
1739 static u8 rtl8192_getSupportedWireleeMode(void)
1740 {
1741 return (WIRELESS_MODE_N_24G|WIRELESS_MODE_G|WIRELESS_MODE_B);
1742 }
1743
1744 static void rtl8192_SetWirelessMode(struct ieee80211_device *ieee, u8 wireless_mode)
1745 {
1746 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1747 u8 bSupportMode = rtl8192_getSupportedWireleeMode();
1748
1749 if ((wireless_mode == WIRELESS_MODE_AUTO) || ((wireless_mode&bSupportMode)==0))
1750 {
1751 if(bSupportMode & WIRELESS_MODE_N_24G)
1752 {
1753 wireless_mode = WIRELESS_MODE_N_24G;
1754 }
1755 else if(bSupportMode & WIRELESS_MODE_N_5G)
1756 {
1757 wireless_mode = WIRELESS_MODE_N_5G;
1758 }
1759 else if((bSupportMode & WIRELESS_MODE_A))
1760 {
1761 wireless_mode = WIRELESS_MODE_A;
1762 }
1763 else if((bSupportMode & WIRELESS_MODE_G))
1764 {
1765 wireless_mode = WIRELESS_MODE_G;
1766 }
1767 else if((bSupportMode & WIRELESS_MODE_B))
1768 {
1769 wireless_mode = WIRELESS_MODE_B;
1770 }
1771 else{
1772 RT_TRACE(COMP_ERR, "%s(), No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n", __FUNCTION__,bSupportMode);
1773 wireless_mode = WIRELESS_MODE_B;
1774 }
1775 }
1776 priv->ieee80211->mode = wireless_mode;
1777
1778 if ((wireless_mode == WIRELESS_MODE_N_24G) || (wireless_mode == WIRELESS_MODE_N_5G))
1779 priv->ieee80211->pHTInfo->bEnableHT = 1;
1780 else
1781 priv->ieee80211->pHTInfo->bEnableHT = 0;
1782 RT_TRACE(COMP_INIT, "Current Wireless Mode is %x\n", wireless_mode);
1783 rtl8192_refresh_supportrate(priv);
1784 }
1785
1786 static bool GetHalfNmodeSupportByAPs819xPci(struct ieee80211_device* ieee)
1787 {
1788 return ieee->bHalfWirelessN24GMode;
1789 }
1790
1791 static short rtl8192_is_tx_queue_empty(struct ieee80211_device *ieee)
1792 {
1793 int i=0;
1794 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1795
1796 for (i=0; i<=MGNT_QUEUE; i++)
1797 {
1798 if ((i== TXCMD_QUEUE) || (i == HCCA_QUEUE) )
1799 continue;
1800 if (skb_queue_len(&(&priv->tx_ring[i])->queue) > 0){
1801 printk("===>tx queue is not empty:%d, %d\n", i, skb_queue_len(&(&priv->tx_ring[i])->queue));
1802 return 0;
1803 }
1804 }
1805 return 1;
1806 }
1807
1808 static void rtl8192_hw_sleep_down(struct r8192_priv *priv)
1809 {
1810 MgntActSet_RF_State(priv, eRfSleep, RF_CHANGE_BY_PS);
1811 }
1812
1813 static void rtl8192_hw_wakeup(struct ieee80211_device *ieee)
1814 {
1815 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1816 MgntActSet_RF_State(priv, eRfOn, RF_CHANGE_BY_PS);
1817 }
1818
1819 static void rtl8192_hw_wakeup_wq (struct work_struct *work)
1820 {
1821 struct delayed_work *dwork = container_of(work,struct delayed_work,work);
1822 struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,hw_wakeup_wq);
1823
1824 rtl8192_hw_wakeup(ieee);
1825 }
1826
1827 #define MIN_SLEEP_TIME 50
1828 #define MAX_SLEEP_TIME 10000
1829 static void rtl8192_hw_to_sleep(struct ieee80211_device *ieee, u32 th, u32 tl)
1830 {
1831 struct r8192_priv *priv = ieee80211_priv(ieee->dev);
1832 u32 tmp;
1833 u32 rb = jiffies;
1834
1835 // Writing HW register with 0 equals to disable
1836 // the timer, that is not really what we want
1837 //
1838 tl -= MSECS(8+16+7);
1839
1840 // If the interval in witch we are requested to sleep is too
1841 // short then give up and remain awake
1842 // when we sleep after send null frame, the timer will be too short to sleep.
1843 //
1844 if(((tl>=rb)&& (tl-rb) <= MSECS(MIN_SLEEP_TIME))
1845 ||((rb>tl)&& (rb-tl) < MSECS(MIN_SLEEP_TIME))) {
1846 printk("too short to sleep::%x, %x, %lx\n",tl, rb, MSECS(MIN_SLEEP_TIME));
1847 return;
1848 }
1849
1850 if(((tl > rb) && ((tl-rb) > MSECS(MAX_SLEEP_TIME)))||
1851 ((tl < rb) && (tl>MSECS(69)) && ((rb-tl) > MSECS(MAX_SLEEP_TIME)))||
1852 ((tl<rb)&&(tl<MSECS(69))&&((tl+0xffffffff-rb)>MSECS(MAX_SLEEP_TIME)))) {
1853 printk("========>too long to sleep:%x, %x, %lx\n", tl, rb, MSECS(MAX_SLEEP_TIME));
1854 return;
1855 }
1856
1857 tmp = (tl>rb)?(tl-rb):(rb-tl);
1858 queue_delayed_work(priv->ieee80211->wq,
1859 &priv->ieee80211->hw_wakeup_wq,tmp);
1860
1861 rtl8192_hw_sleep_down(priv);
1862 }
1863
1864 static void rtl8192_init_priv_variable(struct r8192_priv *priv)
1865 {
1866 u8 i;
1867 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
1868
1869 // Default Halt the NIC if RF is OFF.
1870 pPSC->RegRfPsLevel |= RT_RF_OFF_LEVL_HALT_NIC;
1871 pPSC->RegRfPsLevel |= RT_RF_OFF_LEVL_CLK_REQ;
1872 pPSC->RegRfPsLevel |= RT_RF_OFF_LEVL_ASPM;
1873 pPSC->RegRfPsLevel |= RT_RF_LPS_LEVEL_ASPM;
1874 pPSC->bLeisurePs = true;
1875 priv->ieee80211->RegMaxLPSAwakeIntvl = 5;
1876 priv->bHwRadioOff = false;
1877
1878 priv->being_init_adapter = false;
1879 priv->txringcount = 64;//32;
1880 priv->rxbuffersize = 9100;//2048;//1024;
1881 priv->rxringcount = MAX_RX_COUNT;//64;
1882 priv->chan = 1; //set to channel 1
1883 priv->RegWirelessMode = WIRELESS_MODE_AUTO;
1884 priv->RegChannelPlan = 0xf;
1885 priv->ieee80211->mode = WIRELESS_MODE_AUTO; //SET AUTO
1886 priv->ieee80211->iw_mode = IW_MODE_INFRA;
1887 priv->ieee80211->ieee_up=0;
1888 priv->retry_rts = DEFAULT_RETRY_RTS;
1889 priv->retry_data = DEFAULT_RETRY_DATA;
1890 priv->ieee80211->rts = DEFAULT_RTS_THRESHOLD;
1891 priv->ieee80211->rate = 110; //11 mbps
1892 priv->ieee80211->short_slot = 1;
1893 priv->promisc = (priv->ieee80211->dev->flags & IFF_PROMISC) ? 1:0;
1894 priv->bcck_in_ch14 = false;
1895 priv->CCKPresentAttentuation = 0;
1896 priv->rfa_txpowertrackingindex = 0;
1897 priv->rfc_txpowertrackingindex = 0;
1898 priv->CckPwEnl = 6;
1899 //added by amy for silent reset
1900 priv->ResetProgress = RESET_TYPE_NORESET;
1901 priv->bForcedSilentReset = 0;
1902 priv->bDisableNormalResetCheck = false;
1903 priv->force_reset = false;
1904 //added by amy for power save
1905 priv->RfOffReason = 0;
1906 priv->bHwRfOffAction = 0;
1907 priv->PowerSaveControl.bInactivePs = true;
1908 priv->PowerSaveControl.bIPSModeBackup = false;
1909
1910 priv->ieee80211->current_network.beacon_interval = DEFAULT_BEACONINTERVAL;
1911 priv->ieee80211->iw_mode = IW_MODE_INFRA;
1912 priv->ieee80211->softmac_features = IEEE_SOFTMAC_SCAN |
1913 IEEE_SOFTMAC_ASSOCIATE | IEEE_SOFTMAC_PROBERQ |
1914 IEEE_SOFTMAC_PROBERS | IEEE_SOFTMAC_TX_QUEUE;/* |
1915 IEEE_SOFTMAC_BEACONS;*///added by amy 080604 //| //IEEE_SOFTMAC_SINGLE_QUEUE;
1916
1917 priv->ieee80211->active_scan = 1;
1918 priv->ieee80211->modulation = IEEE80211_CCK_MODULATION | IEEE80211_OFDM_MODULATION;
1919 priv->ieee80211->host_encrypt = 1;
1920 priv->ieee80211->host_decrypt = 1;
1921 priv->ieee80211->start_send_beacons = rtl8192_start_beacon;
1922 priv->ieee80211->stop_send_beacons = rtl8192_stop_beacon;
1923 priv->ieee80211->softmac_hard_start_xmit = rtl8192_hard_start_xmit;
1924 priv->ieee80211->set_chan = rtl8192_set_chan;
1925 priv->ieee80211->link_change = rtl8192_link_change;
1926 priv->ieee80211->softmac_data_hard_start_xmit = rtl8192_hard_data_xmit;
1927 priv->ieee80211->data_hard_stop = rtl8192_data_hard_stop;
1928 priv->ieee80211->data_hard_resume = rtl8192_data_hard_resume;
1929 priv->ieee80211->init_wmmparam_flag = 0;
1930 priv->ieee80211->fts = DEFAULT_FRAG_THRESHOLD;
1931 priv->ieee80211->check_nic_enough_desc = check_nic_enough_desc;
1932 priv->ieee80211->tx_headroom = sizeof(TX_FWINFO_8190PCI);
1933 priv->ieee80211->qos_support = 1;
1934 priv->ieee80211->SetBWModeHandler = rtl8192_SetBWMode;
1935 priv->ieee80211->handle_assoc_response = rtl8192_handle_assoc_response;
1936 priv->ieee80211->handle_beacon = rtl8192_handle_beacon;
1937
1938 priv->ieee80211->sta_wake_up = rtl8192_hw_wakeup;
1939 priv->ieee80211->enter_sleep_state = rtl8192_hw_to_sleep;
1940 priv->ieee80211->ps_is_queue_empty = rtl8192_is_tx_queue_empty;
1941 priv->ieee80211->GetNmodeSupportBySecCfg = GetNmodeSupportBySecCfg8190Pci;
1942 priv->ieee80211->SetWirelessMode = rtl8192_SetWirelessMode;
1943 priv->ieee80211->GetHalfNmodeSupportByAPsHandler = GetHalfNmodeSupportByAPs819xPci;
1944
1945 priv->ieee80211->InitialGainHandler = InitialGain819xPci;
1946
1947 #ifdef ENABLE_IPS
1948 priv->ieee80211->ieee80211_ips_leave_wq = ieee80211_ips_leave_wq;
1949 priv->ieee80211->ieee80211_ips_leave = ieee80211_ips_leave;
1950 #endif
1951 #ifdef ENABLE_LPS
1952 priv->ieee80211->LeisurePSLeave = LeisurePSLeave;
1953 #endif
1954
1955 priv->ieee80211->SetHwRegHandler = rtl8192e_SetHwReg;
1956 priv->ieee80211->rtllib_ap_sec_type = rtl8192e_ap_sec_type;
1957
1958 priv->ShortRetryLimit = 0x30;
1959 priv->LongRetryLimit = 0x30;
1960
1961 priv->ReceiveConfig = RCR_ADD3 |
1962 RCR_AMF | RCR_ADF | //accept management/data
1963 RCR_AICV | //accept control frame for SW AP needs PS-poll, 2005.07.07, by rcnjko.
1964 RCR_AB | RCR_AM | RCR_APM | //accept BC/MC/UC
1965 RCR_AAP | ((u32)7<<RCR_MXDMA_OFFSET) |
1966 ((u32)7 << RCR_FIFO_OFFSET) | RCR_ONLYERLPKT;
1967
1968 priv->pFirmware = vzalloc(sizeof(rt_firmware));
1969
1970 /* rx related queue */
1971 skb_queue_head_init(&priv->skb_queue);
1972
1973 /* Tx related queue */
1974 for(i = 0; i < MAX_QUEUE_SIZE; i++) {
1975 skb_queue_head_init(&priv->ieee80211->skb_waitQ [i]);
1976 }
1977 for(i = 0; i < MAX_QUEUE_SIZE; i++) {
1978 skb_queue_head_init(&priv->ieee80211->skb_aggQ [i]);
1979 }
1980 priv->rf_set_chan = rtl8192_phy_SwChnl;
1981 }
1982
1983 static void rtl8192_init_priv_lock(struct r8192_priv* priv)
1984 {
1985 spin_lock_init(&priv->irq_th_lock);
1986 spin_lock_init(&priv->rf_ps_lock);
1987 sema_init(&priv->wx_sem,1);
1988 sema_init(&priv->rf_sem,1);
1989 mutex_init(&priv->mutex);
1990 }
1991
1992 /* init tasklet and wait_queue here */
1993 #define DRV_NAME "wlan0"
1994 static void rtl8192_init_priv_task(struct r8192_priv *priv)
1995 {
1996 priv->priv_wq = create_workqueue(DRV_NAME);
1997
1998 #ifdef ENABLE_IPS
1999 INIT_WORK(&priv->ieee80211->ips_leave_wq, IPSLeave_wq);
2000 #endif
2001
2002 INIT_WORK(&priv->reset_wq, rtl8192_restart);
2003 INIT_DELAYED_WORK(&priv->watch_dog_wq, rtl819x_watchdog_wqcallback);
2004 INIT_DELAYED_WORK(&priv->txpower_tracking_wq, dm_txpower_trackingcallback);
2005 INIT_DELAYED_WORK(&priv->rfpath_check_wq, dm_rf_pathcheck_workitemcallback);
2006 INIT_DELAYED_WORK(&priv->update_beacon_wq, rtl8192_update_beacon);
2007 INIT_WORK(&priv->qos_activate, rtl8192_qos_activate);
2008 INIT_DELAYED_WORK(&priv->ieee80211->hw_wakeup_wq, rtl8192_hw_wakeup_wq);
2009
2010 tasklet_init(&priv->irq_rx_tasklet, rtl8192_irq_rx_tasklet,
2011 (unsigned long) priv);
2012 tasklet_init(&priv->irq_tx_tasklet, rtl8192_irq_tx_tasklet,
2013 (unsigned long) priv);
2014 tasklet_init(&priv->irq_prepare_beacon_tasklet, rtl8192_prepare_beacon,
2015 (unsigned long) priv);
2016 }
2017
2018 static void rtl8192_get_eeprom_size(struct r8192_priv *priv)
2019 {
2020 u16 curCR = 0;
2021 RT_TRACE(COMP_INIT, "===========>%s()\n", __FUNCTION__);
2022 curCR = read_nic_dword(priv, EPROM_CMD);
2023 RT_TRACE(COMP_INIT, "read from Reg Cmd9346CR(%x):%x\n", EPROM_CMD, curCR);
2024 //whether need I consider BIT5?
2025 priv->epromtype = (curCR & EPROM_CMD_9356SEL) ? EPROM_93c56 : EPROM_93c46;
2026 RT_TRACE(COMP_INIT, "<===========%s(), epromtype:%d\n", __FUNCTION__, priv->epromtype);
2027 }
2028
2029 /*
2030 * Adapter->EEPROMAddressSize should be set before this function call.
2031 * EEPROM address size can be got through GetEEPROMSize8185()
2032 */
2033 static void rtl8192_read_eeprom_info(struct r8192_priv *priv)
2034 {
2035 struct net_device *dev = priv->ieee80211->dev;
2036 u8 tempval;
2037 u8 ICVer8192, ICVer8256;
2038 u16 i,usValue, IC_Version;
2039 u16 EEPROMId;
2040 u8 bMac_Tmp_Addr[6] = {0x00, 0xe0, 0x4c, 0x00, 0x00, 0x01};
2041 RT_TRACE(COMP_INIT, "====> rtl8192_read_eeprom_info\n");
2042
2043
2044 // TODO: I don't know if we need to apply EF function to EEPROM read function
2045
2046 //2 Read EEPROM ID to make sure autoload is success
2047 EEPROMId = eprom_read(priv, 0);
2048 if( EEPROMId != RTL8190_EEPROM_ID )
2049 {
2050 RT_TRACE(COMP_ERR, "EEPROM ID is invalid:%x, %x\n", EEPROMId, RTL8190_EEPROM_ID);
2051 priv->AutoloadFailFlag=true;
2052 }
2053 else
2054 {
2055 priv->AutoloadFailFlag=false;
2056 }
2057
2058 //
2059 // Assign Chip Version ID
2060 //
2061 // Read IC Version && Channel Plan
2062 if(!priv->AutoloadFailFlag)
2063 {
2064 // VID, PID
2065 priv->eeprom_vid = eprom_read(priv, (EEPROM_VID >> 1));
2066 priv->eeprom_did = eprom_read(priv, (EEPROM_DID >> 1));
2067
2068 usValue = eprom_read(priv, (u16)(EEPROM_Customer_ID>>1)) >> 8 ;
2069 priv->eeprom_CustomerID = (u8)( usValue & 0xff);
2070 usValue = eprom_read(priv, (EEPROM_ICVersion_ChannelPlan>>1));
2071 priv->eeprom_ChannelPlan = usValue&0xff;
2072 IC_Version = ((usValue&0xff00)>>8);
2073
2074 ICVer8192 = (IC_Version&0xf); //bit0~3; 1:A cut, 2:B cut, 3:C cut...
2075 ICVer8256 = ((IC_Version&0xf0)>>4);//bit4~6, bit7 reserved for other RF chip; 1:A cut, 2:B cut, 3:C cut...
2076 RT_TRACE(COMP_INIT, "ICVer8192 = 0x%x\n", ICVer8192);
2077 RT_TRACE(COMP_INIT, "ICVer8256 = 0x%x\n", ICVer8256);
2078 if(ICVer8192 == 0x2) //B-cut
2079 {
2080 if(ICVer8256 == 0x5) //E-cut
2081 priv->card_8192_version= VERSION_8190_BE;
2082 }
2083
2084 switch(priv->card_8192_version)
2085 {
2086 case VERSION_8190_BD:
2087 case VERSION_8190_BE:
2088 break;
2089 default:
2090 priv->card_8192_version = VERSION_8190_BD;
2091 break;
2092 }
2093 RT_TRACE(COMP_INIT, "\nIC Version = 0x%x\n", priv->card_8192_version);
2094 }
2095 else
2096 {
2097 priv->card_8192_version = VERSION_8190_BD;
2098 priv->eeprom_vid = 0;
2099 priv->eeprom_did = 0;
2100 priv->eeprom_CustomerID = 0;
2101 priv->eeprom_ChannelPlan = 0;
2102 RT_TRACE(COMP_INIT, "IC Version = 0x%x\n", 0xff);
2103 }
2104
2105 RT_TRACE(COMP_INIT, "EEPROM VID = 0x%4x\n", priv->eeprom_vid);
2106 RT_TRACE(COMP_INIT, "EEPROM DID = 0x%4x\n", priv->eeprom_did);
2107 RT_TRACE(COMP_INIT,"EEPROM Customer ID: 0x%2x\n", priv->eeprom_CustomerID);
2108
2109 //2 Read Permanent MAC address
2110 if(!priv->AutoloadFailFlag)
2111 {
2112 for(i = 0; i < 6; i += 2)
2113 {
2114 usValue = eprom_read(priv, (u16) ((EEPROM_NODE_ADDRESS_BYTE_0+i)>>1));
2115 *(u16*)(&dev->dev_addr[i]) = usValue;
2116 }
2117 } else {
2118 // when auto load failed, the last address byte set to be a random one.
2119 // added by david woo.2007/11/7
2120 memcpy(dev->dev_addr, bMac_Tmp_Addr, 6);
2121 }
2122
2123 RT_TRACE(COMP_INIT, "Permanent Address = %pM\n", dev->dev_addr);
2124
2125 //2 TX Power Check EEPROM Fail or not
2126 if(priv->card_8192_version > VERSION_8190_BD) {
2127 priv->bTXPowerDataReadFromEEPORM = true;
2128 } else {
2129 priv->bTXPowerDataReadFromEEPORM = false;
2130 }
2131
2132 // 2007/11/15 MH 8190PCI Default=2T4R, 8192PCIE default=1T2R
2133 priv->rf_type = RTL819X_DEFAULT_RF_TYPE;
2134
2135 if(priv->card_8192_version > VERSION_8190_BD)
2136 {
2137 // Read RF-indication and Tx Power gain index diff of legacy to HT OFDM rate.
2138 if(!priv->AutoloadFailFlag)
2139 {
2140 tempval = (eprom_read(priv, (EEPROM_RFInd_PowerDiff>>1))) & 0xff;
2141 priv->EEPROMLegacyHTTxPowerDiff = tempval & 0xf; // bit[3:0]
2142
2143 if (tempval&0x80) //RF-indication, bit[7]
2144 priv->rf_type = RF_1T2R;
2145 else
2146 priv->rf_type = RF_2T4R;
2147 }
2148 else
2149 {
2150 priv->EEPROMLegacyHTTxPowerDiff = EEPROM_Default_LegacyHTTxPowerDiff;
2151 }
2152 RT_TRACE(COMP_INIT, "EEPROMLegacyHTTxPowerDiff = %d\n",
2153 priv->EEPROMLegacyHTTxPowerDiff);
2154
2155 // Read ThermalMeter from EEPROM
2156 if(!priv->AutoloadFailFlag)
2157 {
2158 priv->EEPROMThermalMeter = (u8)(((eprom_read(priv, (EEPROM_ThermalMeter>>1))) & 0xff00)>>8);
2159 }
2160 else
2161 {
2162 priv->EEPROMThermalMeter = EEPROM_Default_ThermalMeter;
2163 }
2164 RT_TRACE(COMP_INIT, "ThermalMeter = %d\n", priv->EEPROMThermalMeter);
2165 //vivi, for tx power track
2166 priv->TSSI_13dBm = priv->EEPROMThermalMeter *100;
2167
2168 if(priv->epromtype == EPROM_93c46)
2169 {
2170 // Read antenna tx power offset of B/C/D to A and CrystalCap from EEPROM
2171 if(!priv->AutoloadFailFlag)
2172 {
2173 usValue = eprom_read(priv, (EEPROM_TxPwDiff_CrystalCap>>1));
2174 priv->EEPROMAntPwDiff = (usValue&0x0fff);
2175 priv->EEPROMCrystalCap = (u8)((usValue&0xf000)>>12);
2176 }
2177 else
2178 {
2179 priv->EEPROMAntPwDiff = EEPROM_Default_AntTxPowerDiff;
2180 priv->EEPROMCrystalCap = EEPROM_Default_TxPwDiff_CrystalCap;
2181 }
2182 RT_TRACE(COMP_INIT, "EEPROMAntPwDiff = %d\n", priv->EEPROMAntPwDiff);
2183 RT_TRACE(COMP_INIT, "EEPROMCrystalCap = %d\n", priv->EEPROMCrystalCap);
2184
2185 //
2186 // Get per-channel Tx Power Level
2187 //
2188 for(i=0; i<14; i+=2)
2189 {
2190 if(!priv->AutoloadFailFlag)
2191 {
2192 usValue = eprom_read(priv, (u16) ((EEPROM_TxPwIndex_CCK+i)>>1) );
2193 }
2194 else
2195 {
2196 usValue = EEPROM_Default_TxPower;
2197 }
2198 *((u16*)(&priv->EEPROMTxPowerLevelCCK[i])) = usValue;
2199 RT_TRACE(COMP_INIT,"CCK Tx Power Level, Index %d = 0x%02x\n", i, priv->EEPROMTxPowerLevelCCK[i]);
2200 RT_TRACE(COMP_INIT, "CCK Tx Power Level, Index %d = 0x%02x\n", i+1, priv->EEPROMTxPowerLevelCCK[i+1]);
2201 }
2202 for(i=0; i<14; i+=2)
2203 {
2204 if(!priv->AutoloadFailFlag)
2205 {
2206 usValue = eprom_read(priv, (u16) ((EEPROM_TxPwIndex_OFDM_24G+i)>>1) );
2207 }
2208 else
2209 {
2210 usValue = EEPROM_Default_TxPower;
2211 }
2212 *((u16*)(&priv->EEPROMTxPowerLevelOFDM24G[i])) = usValue;
2213 RT_TRACE(COMP_INIT, "OFDM 2.4G Tx Power Level, Index %d = 0x%02x\n", i, priv->EEPROMTxPowerLevelOFDM24G[i]);
2214 RT_TRACE(COMP_INIT, "OFDM 2.4G Tx Power Level, Index %d = 0x%02x\n", i+1, priv->EEPROMTxPowerLevelOFDM24G[i+1]);
2215 }
2216 }
2217
2218 //
2219 // Update HAL variables.
2220 //
2221 if(priv->epromtype == EPROM_93c46)
2222 {
2223 for(i=0; i<14; i++)
2224 {
2225 priv->TxPowerLevelCCK[i] = priv->EEPROMTxPowerLevelCCK[i];
2226 priv->TxPowerLevelOFDM24G[i] = priv->EEPROMTxPowerLevelOFDM24G[i];
2227 }
2228 priv->LegacyHTTxPowerDiff = priv->EEPROMLegacyHTTxPowerDiff;
2229 // Antenna B gain offset to antenna A, bit0~3
2230 priv->AntennaTxPwDiff[0] = (priv->EEPROMAntPwDiff & 0xf);
2231 // Antenna C gain offset to antenna A, bit4~7
2232 priv->AntennaTxPwDiff[1] = ((priv->EEPROMAntPwDiff & 0xf0)>>4);
2233 // Antenna D gain offset to antenna A, bit8~11
2234 priv->AntennaTxPwDiff[2] = ((priv->EEPROMAntPwDiff & 0xf00)>>8);
2235 // CrystalCap, bit12~15
2236 priv->CrystalCap = priv->EEPROMCrystalCap;
2237 // ThermalMeter, bit0~3 for RFIC1, bit4~7 for RFIC2
2238 priv->ThermalMeter[0] = (priv->EEPROMThermalMeter & 0xf);
2239 priv->ThermalMeter[1] = ((priv->EEPROMThermalMeter & 0xf0)>>4);
2240 }
2241 else if(priv->epromtype == EPROM_93c56)
2242 {
2243 for(i=0; i<3; i++) // channel 1~3 use the same Tx Power Level.
2244 {
2245 priv->TxPowerLevelCCK_A[i] = priv->EEPROMRfACCKChnl1TxPwLevel[0];
2246 priv->TxPowerLevelOFDM24G_A[i] = priv->EEPROMRfAOfdmChnlTxPwLevel[0];
2247 priv->TxPowerLevelCCK_C[i] = priv->EEPROMRfCCCKChnl1TxPwLevel[0];
2248 priv->TxPowerLevelOFDM24G_C[i] = priv->EEPROMRfCOfdmChnlTxPwLevel[0];
2249 }
2250 for(i=3; i<9; i++) // channel 4~9 use the same Tx Power Level
2251 {
2252 priv->TxPowerLevelCCK_A[i] = priv->EEPROMRfACCKChnl1TxPwLevel[1];
2253 priv->TxPowerLevelOFDM24G_A[i] = priv->EEPROMRfAOfdmChnlTxPwLevel[1];
2254 priv->TxPowerLevelCCK_C[i] = priv->EEPROMRfCCCKChnl1TxPwLevel[1];
2255 priv->TxPowerLevelOFDM24G_C[i] = priv->EEPROMRfCOfdmChnlTxPwLevel[1];
2256 }
2257 for(i=9; i<14; i++) // channel 10~14 use the same Tx Power Level
2258 {
2259 priv->TxPowerLevelCCK_A[i] = priv->EEPROMRfACCKChnl1TxPwLevel[2];
2260 priv->TxPowerLevelOFDM24G_A[i] = priv->EEPROMRfAOfdmChnlTxPwLevel[2];
2261 priv->TxPowerLevelCCK_C[i] = priv->EEPROMRfCCCKChnl1TxPwLevel[2];
2262 priv->TxPowerLevelOFDM24G_C[i] = priv->EEPROMRfCOfdmChnlTxPwLevel[2];
2263 }
2264 for(i=0; i<14; i++)
2265 RT_TRACE(COMP_INIT, "priv->TxPowerLevelCCK_A[%d] = 0x%x\n", i, priv->TxPowerLevelCCK_A[i]);
2266 for(i=0; i<14; i++)
2267 RT_TRACE(COMP_INIT,"priv->TxPowerLevelOFDM24G_A[%d] = 0x%x\n", i, priv->TxPowerLevelOFDM24G_A[i]);
2268 for(i=0; i<14; i++)
2269 RT_TRACE(COMP_INIT, "priv->TxPowerLevelCCK_C[%d] = 0x%x\n", i, priv->TxPowerLevelCCK_C[i]);
2270 for(i=0; i<14; i++)
2271 RT_TRACE(COMP_INIT, "priv->TxPowerLevelOFDM24G_C[%d] = 0x%x\n", i, priv->TxPowerLevelOFDM24G_C[i]);
2272 priv->LegacyHTTxPowerDiff = priv->EEPROMLegacyHTTxPowerDiff;
2273 priv->AntennaTxPwDiff[0] = 0;
2274 priv->AntennaTxPwDiff[1] = 0;
2275 priv->AntennaTxPwDiff[2] = 0;
2276 priv->CrystalCap = priv->EEPROMCrystalCap;
2277 // ThermalMeter, bit0~3 for RFIC1, bit4~7 for RFIC2
2278 priv->ThermalMeter[0] = (priv->EEPROMThermalMeter & 0xf);
2279 priv->ThermalMeter[1] = ((priv->EEPROMThermalMeter & 0xf0)>>4);
2280 }
2281 }
2282
2283 if(priv->rf_type == RF_1T2R)
2284 {
2285 RT_TRACE(COMP_INIT, "1T2R config\n");
2286 }
2287 else if (priv->rf_type == RF_2T4R)
2288 {
2289 RT_TRACE(COMP_INIT, "2T4R config\n");
2290 }
2291
2292 // 2008/01/16 MH We can only know RF type in the function. So we have to init
2293 // DIG RATR table again.
2294 init_rate_adaptive(priv);
2295
2296 //1 Make a copy for following variables and we can change them if we want
2297
2298 if(priv->RegChannelPlan == 0xf)
2299 {
2300 priv->ChannelPlan = priv->eeprom_ChannelPlan;
2301 }
2302 else
2303 {
2304 priv->ChannelPlan = priv->RegChannelPlan;
2305 }
2306
2307 //
2308 // Used PID and DID to Set CustomerID
2309 //
2310 if( priv->eeprom_vid == 0x1186 && priv->eeprom_did == 0x3304 )
2311 {
2312 priv->CustomerID = RT_CID_DLINK;
2313 }
2314
2315 switch(priv->eeprom_CustomerID)
2316 {
2317 case EEPROM_CID_DEFAULT:
2318 priv->CustomerID = RT_CID_DEFAULT;
2319 break;
2320 case EEPROM_CID_CAMEO:
2321 priv->CustomerID = RT_CID_819x_CAMEO;
2322 break;
2323 case EEPROM_CID_RUNTOP:
2324 priv->CustomerID = RT_CID_819x_RUNTOP;
2325 break;
2326 case EEPROM_CID_NetCore:
2327 priv->CustomerID = RT_CID_819x_Netcore;
2328 break;
2329 case EEPROM_CID_TOSHIBA: // Merge by Jacken, 2008/01/31
2330 priv->CustomerID = RT_CID_TOSHIBA;
2331 if(priv->eeprom_ChannelPlan&0x80)
2332 priv->ChannelPlan = priv->eeprom_ChannelPlan&0x7f;
2333 else
2334 priv->ChannelPlan = 0x0;
2335 RT_TRACE(COMP_INIT, "Toshiba ChannelPlan = 0x%x\n",
2336 priv->ChannelPlan);
2337 break;
2338 case EEPROM_CID_Nettronix:
2339 priv->CustomerID = RT_CID_Nettronix;
2340 break;
2341 case EEPROM_CID_Pronet:
2342 priv->CustomerID = RT_CID_PRONET;
2343 break;
2344 case EEPROM_CID_DLINK:
2345 priv->CustomerID = RT_CID_DLINK;
2346 break;
2347
2348 case EEPROM_CID_WHQL:
2349 break;
2350 default:
2351 // value from RegCustomerID
2352 break;
2353 }
2354
2355 //Avoid the channel plan array overflow, by Bruce, 2007-08-27.
2356 if(priv->ChannelPlan > CHANNEL_PLAN_LEN - 1)
2357 priv->ChannelPlan = 0; //FCC
2358
2359 if( priv->eeprom_vid == 0x1186 && priv->eeprom_did == 0x3304)
2360 priv->ieee80211->bSupportRemoteWakeUp = true;
2361 else
2362 priv->ieee80211->bSupportRemoteWakeUp = false;
2363
2364
2365 RT_TRACE(COMP_INIT, "RegChannelPlan(%d)\n", priv->RegChannelPlan);
2366 RT_TRACE(COMP_INIT, "ChannelPlan = %d\n", priv->ChannelPlan);
2367 RT_TRACE(COMP_TRACE, "<==== ReadAdapterInfo\n");
2368 }
2369
2370
2371 static short rtl8192_get_channel_map(struct r8192_priv *priv)
2372 {
2373 #ifdef ENABLE_DOT11D
2374 if(priv->ChannelPlan> COUNTRY_CODE_GLOBAL_DOMAIN){
2375 printk("rtl8180_init:Error channel plan! Set to default.\n");
2376 priv->ChannelPlan= 0;
2377 }
2378 RT_TRACE(COMP_INIT, "Channel plan is %d\n",priv->ChannelPlan);
2379
2380 rtl819x_set_channel_map(priv->ChannelPlan, priv);
2381 #else
2382 int ch,i;
2383 //Set Default Channel Plan
2384 if(!channels){
2385 DMESG("No channels, aborting");
2386 return -1;
2387 }
2388 ch=channels;
2389 priv->ChannelPlan= 0;//hikaru
2390 // set channels 1..14 allowed in given locale
2391 for (i=1; i<=14; i++) {
2392 (priv->ieee80211->channel_map)[i] = (u8)(ch & 0x01);
2393 ch >>= 1;
2394 }
2395 #endif
2396 return 0;
2397 }
2398
2399 static short rtl8192_init(struct r8192_priv *priv)
2400 {
2401 struct net_device *dev = priv->ieee80211->dev;
2402
2403 memset(&(priv->stats),0,sizeof(struct Stats));
2404 rtl8192_init_priv_variable(priv);
2405 rtl8192_init_priv_lock(priv);
2406 rtl8192_init_priv_task(priv);
2407 rtl8192_get_eeprom_size(priv);
2408 rtl8192_read_eeprom_info(priv);
2409 rtl8192_get_channel_map(priv);
2410 init_hal_dm(priv);
2411 init_timer(&priv->watch_dog_timer);
2412 priv->watch_dog_timer.data = (unsigned long)priv;
2413 priv->watch_dog_timer.function = watch_dog_timer_callback;
2414 if (request_irq(dev->irq, rtl8192_interrupt, IRQF_SHARED, dev->name, priv)) {
2415 printk("Error allocating IRQ %d",dev->irq);
2416 return -1;
2417 }else{
2418 priv->irq=dev->irq;
2419 printk("IRQ %d",dev->irq);
2420 }
2421 if (rtl8192_pci_initdescring(priv) != 0){
2422 printk("Endopoints initialization failed");
2423 return -1;
2424 }
2425
2426 return 0;
2427 }
2428
2429 /*
2430 * Actually only set RRSR, RATR and BW_OPMODE registers
2431 * not to do all the hw config as its name says
2432 * This part need to modified according to the rate set we filtered
2433 */
2434 static void rtl8192_hwconfig(struct r8192_priv *priv)
2435 {
2436 u32 regRATR = 0, regRRSR = 0;
2437 u8 regBwOpMode = 0, regTmp = 0;
2438
2439 // Set RRSR, RATR, and BW_OPMODE registers
2440 //
2441 switch (priv->ieee80211->mode)
2442 {
2443 case WIRELESS_MODE_B:
2444 regBwOpMode = BW_OPMODE_20MHZ;
2445 regRATR = RATE_ALL_CCK;
2446 regRRSR = RATE_ALL_CCK;
2447 break;
2448 case WIRELESS_MODE_A:
2449 regBwOpMode = BW_OPMODE_5G |BW_OPMODE_20MHZ;
2450 regRATR = RATE_ALL_OFDM_AG;
2451 regRRSR = RATE_ALL_OFDM_AG;
2452 break;
2453 case WIRELESS_MODE_G:
2454 regBwOpMode = BW_OPMODE_20MHZ;
2455 regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
2456 regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
2457 break;
2458 case WIRELESS_MODE_AUTO:
2459 case WIRELESS_MODE_N_24G:
2460 // It support CCK rate by default.
2461 // CCK rate will be filtered out only when associated AP does not support it.
2462 regBwOpMode = BW_OPMODE_20MHZ;
2463 regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
2464 regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
2465 break;
2466 case WIRELESS_MODE_N_5G:
2467 regBwOpMode = BW_OPMODE_5G;
2468 regRATR = RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
2469 regRRSR = RATE_ALL_OFDM_AG;
2470 break;
2471 }
2472
2473 write_nic_byte(priv, BW_OPMODE, regBwOpMode);
2474 {
2475 u32 ratr_value = 0;
2476 ratr_value = regRATR;
2477 if (priv->rf_type == RF_1T2R)
2478 {
2479 ratr_value &= ~(RATE_ALL_OFDM_2SS);
2480 }
2481 write_nic_dword(priv, RATR0, ratr_value);
2482 write_nic_byte(priv, UFWP, 1);
2483 }
2484 regTmp = read_nic_byte(priv, 0x313);
2485 regRRSR = ((regTmp) << 24) | (regRRSR & 0x00ffffff);
2486 write_nic_dword(priv, RRSR, regRRSR);
2487
2488 //
2489 // Set Retry Limit here
2490 //
2491 write_nic_word(priv, RETRY_LIMIT,
2492 priv->ShortRetryLimit << RETRY_LIMIT_SHORT_SHIFT |
2493 priv->LongRetryLimit << RETRY_LIMIT_LONG_SHIFT);
2494 // Set Contention Window here
2495
2496 // Set Tx AGC
2497
2498 // Set Tx Antenna including Feedback control
2499
2500 // Set Auto Rate fallback control
2501
2502
2503 }
2504
2505
2506 static RT_STATUS rtl8192_adapter_start(struct r8192_priv *priv)
2507 {
2508 struct net_device *dev = priv->ieee80211->dev;
2509 u32 ulRegRead;
2510 RT_STATUS rtStatus = RT_STATUS_SUCCESS;
2511 u8 tmpvalue;
2512 u8 ICVersion,SwitchingRegulatorOutput;
2513 bool bfirmwareok = true;
2514 u32 tmpRegA, tmpRegC, TempCCk;
2515 int i =0;
2516
2517 RT_TRACE(COMP_INIT, "====>%s()\n", __FUNCTION__);
2518 priv->being_init_adapter = true;
2519 rtl8192_pci_resetdescring(priv);
2520 // 2007/11/02 MH Before initalizing RF. We can not use FW to do RF-R/W.
2521 priv->Rf_Mode = RF_OP_By_SW_3wire;
2522
2523 //dPLL on
2524 if(priv->ResetProgress == RESET_TYPE_NORESET)
2525 {
2526 write_nic_byte(priv, ANAPAR, 0x37);
2527 // Accordign to designer's explain, LBUS active will never > 10ms. We delay 10ms
2528 // Joseph increae the time to prevent firmware download fail
2529 mdelay(500);
2530 }
2531
2532 //PlatformSleepUs(10000);
2533 // For any kind of InitializeAdapter process, we shall use system now!!
2534 priv->pFirmware->firmware_status = FW_STATUS_0_INIT;
2535
2536 //
2537 //3 //Config CPUReset Register
2538 //3//
2539 //3 Firmware Reset Or Not
2540 ulRegRead = read_nic_dword(priv, CPU_GEN);
2541 if(priv->pFirmware->firmware_status == FW_STATUS_0_INIT)
2542 { //called from MPInitialized. do nothing
2543 ulRegRead |= CPU_GEN_SYSTEM_RESET;
2544 }else if(priv->pFirmware->firmware_status == FW_STATUS_5_READY)
2545 ulRegRead |= CPU_GEN_FIRMWARE_RESET; // Called from MPReset
2546 else
2547 RT_TRACE(COMP_ERR, "ERROR in %s(): undefined firmware state(%d)\n", __FUNCTION__, priv->pFirmware->firmware_status);
2548
2549 write_nic_dword(priv, CPU_GEN, ulRegRead);
2550
2551 //3//
2552 //3 //Fix the issue of E-cut high temperature issue
2553 //3//
2554 // TODO: E cut only
2555 ICVersion = read_nic_byte(priv, IC_VERRSION);
2556 if(ICVersion >= 0x4) //E-cut only
2557 {
2558 // HW SD suggest that we should not wirte this register too often, so driver
2559 // should readback this register. This register will be modified only when
2560 // power on reset
2561 SwitchingRegulatorOutput = read_nic_byte(priv, SWREGULATOR);
2562 if(SwitchingRegulatorOutput != 0xb8)
2563 {
2564 write_nic_byte(priv, SWREGULATOR, 0xa8);
2565 mdelay(1);
2566 write_nic_byte(priv, SWREGULATOR, 0xb8);
2567 }
2568 }
2569
2570 //3//
2571 //3// Initialize BB before MAC
2572 //3//
2573 RT_TRACE(COMP_INIT, "BB Config Start!\n");
2574 rtStatus = rtl8192_BBConfig(priv);
2575 if(rtStatus != RT_STATUS_SUCCESS)
2576 {
2577 RT_TRACE(COMP_ERR, "BB Config failed\n");
2578 return rtStatus;
2579 }
2580 RT_TRACE(COMP_INIT,"BB Config Finished!\n");
2581
2582 //3//Set Loopback mode or Normal mode
2583 //3//
2584 //2006.12.13 by emily. Note!We should not merge these two CPU_GEN register writings
2585 // because setting of System_Reset bit reset MAC to default transmission mode.
2586 //Loopback mode or not
2587 priv->LoopbackMode = RTL819X_NO_LOOPBACK;
2588 if(priv->ResetProgress == RESET_TYPE_NORESET)
2589 {
2590 ulRegRead = read_nic_dword(priv, CPU_GEN);
2591 if(priv->LoopbackMode == RTL819X_NO_LOOPBACK)
2592 {
2593 ulRegRead = ((ulRegRead & CPU_GEN_NO_LOOPBACK_MSK) | CPU_GEN_NO_LOOPBACK_SET);
2594 }
2595 else if (priv->LoopbackMode == RTL819X_MAC_LOOPBACK )
2596 {
2597 ulRegRead |= CPU_CCK_LOOPBACK;
2598 }
2599 else
2600 {
2601 RT_TRACE(COMP_ERR,"Serious error: wrong loopback mode setting\n");
2602 }
2603
2604 //2008.06.03, for WOL
2605 //ulRegRead &= (~(CPU_GEN_GPIO_UART));
2606 write_nic_dword(priv, CPU_GEN, ulRegRead);
2607
2608 // 2006.11.29. After reset cpu, we sholud wait for a second, otherwise, it may fail to write registers. Emily
2609 udelay(500);
2610 }
2611 //3Set Hardware(Do nothing now)
2612 rtl8192_hwconfig(priv);
2613 //2=======================================================
2614 // Common Setting for all of the FPGA platform. (part 1)
2615 //2=======================================================
2616 // If there is changes, please make sure it applies to all of the FPGA version
2617 //3 Turn on Tx/Rx
2618 write_nic_byte(priv, CMDR, CR_RE|CR_TE);
2619
2620 //2Set Tx dma burst
2621 write_nic_byte(priv, PCIF, ((MXDMA2_NoLimit<<MXDMA2_RX_SHIFT) |
2622 (MXDMA2_NoLimit<<MXDMA2_TX_SHIFT) ));
2623
2624 //set IDR0 here
2625 write_nic_dword(priv, MAC0, ((u32*)dev->dev_addr)[0]);
2626 write_nic_word(priv, MAC4, ((u16*)(dev->dev_addr + 4))[0]);
2627 //set RCR
2628 write_nic_dword(priv, RCR, priv->ReceiveConfig);
2629
2630 //3 Initialize Number of Reserved Pages in Firmware Queue
2631 write_nic_dword(priv, RQPN1, NUM_OF_PAGE_IN_FW_QUEUE_BK << RSVD_FW_QUEUE_PAGE_BK_SHIFT |
2632 NUM_OF_PAGE_IN_FW_QUEUE_BE << RSVD_FW_QUEUE_PAGE_BE_SHIFT |
2633 NUM_OF_PAGE_IN_FW_QUEUE_VI << RSVD_FW_QUEUE_PAGE_VI_SHIFT |
2634 NUM_OF_PAGE_IN_FW_QUEUE_VO <<RSVD_FW_QUEUE_PAGE_VO_SHIFT);
2635 write_nic_dword(priv, RQPN2, NUM_OF_PAGE_IN_FW_QUEUE_MGNT << RSVD_FW_QUEUE_PAGE_MGNT_SHIFT);
2636 write_nic_dword(priv, RQPN3, APPLIED_RESERVED_QUEUE_IN_FW|
2637 NUM_OF_PAGE_IN_FW_QUEUE_BCN<<RSVD_FW_QUEUE_PAGE_BCN_SHIFT|
2638 NUM_OF_PAGE_IN_FW_QUEUE_PUB<<RSVD_FW_QUEUE_PAGE_PUB_SHIFT);
2639
2640 rtl8192_tx_enable(priv);
2641 rtl8192_rx_enable(priv);
2642 //3Set Response Rate Setting Register
2643 // CCK rate is supported by default.
2644 // CCK rate will be filtered out only when associated AP does not support it.
2645 ulRegRead = (0xFFF00000 & read_nic_dword(priv, RRSR)) | RATE_ALL_OFDM_AG | RATE_ALL_CCK;
2646 write_nic_dword(priv, RRSR, ulRegRead);
2647 write_nic_dword(priv, RATR0+4*7, (RATE_ALL_OFDM_AG | RATE_ALL_CCK));
2648
2649 //2Set AckTimeout
2650 // TODO: (it value is only for FPGA version). need to be changed!!2006.12.18, by Emily
2651 write_nic_byte(priv, ACK_TIMEOUT, 0x30);
2652
2653 if(priv->ResetProgress == RESET_TYPE_NORESET)
2654 rtl8192_SetWirelessMode(priv->ieee80211, priv->ieee80211->mode);
2655 //-----------------------------------------------------------------------------
2656 // Set up security related. 070106, by rcnjko:
2657 // 1. Clear all H/W keys.
2658 // 2. Enable H/W encryption/decryption.
2659 //-----------------------------------------------------------------------------
2660 CamResetAllEntry(priv);
2661 {
2662 u8 SECR_value = 0x0;
2663 SECR_value |= SCR_TxEncEnable;
2664 SECR_value |= SCR_RxDecEnable;
2665 SECR_value |= SCR_NoSKMC;
2666 write_nic_byte(priv, SECR, SECR_value);
2667 }
2668 //3Beacon related
2669 write_nic_word(priv, ATIMWND, 2);
2670 write_nic_word(priv, BCN_INTERVAL, 100);
2671 for (i=0; i<QOS_QUEUE_NUM; i++)
2672 write_nic_dword(priv, WDCAPARA_ADD[i], 0x005e4332);
2673 //
2674 // Switching regulator controller: This is set temporarily.
2675 // It's not sure if this can be removed in the future.
2676 // PJ advised to leave it by default.
2677 //
2678 write_nic_byte(priv, 0xbe, 0xc0);
2679
2680 //2=======================================================
2681 // Set PHY related configuration defined in MAC register bank
2682 //2=======================================================
2683 rtl8192_phy_configmac(priv);
2684
2685 if (priv->card_8192_version > (u8) VERSION_8190_BD) {
2686 rtl8192_phy_getTxPower(priv);
2687 rtl8192_phy_setTxPower(priv, priv->chan);
2688 }
2689
2690 //if D or C cut
2691 tmpvalue = read_nic_byte(priv, IC_VERRSION);
2692 priv->IC_Cut = tmpvalue;
2693 RT_TRACE(COMP_INIT, "priv->IC_Cut = 0x%x\n", priv->IC_Cut);
2694 if(priv->IC_Cut >= IC_VersionCut_D)
2695 {
2696 //pHalData->bDcut = TRUE;
2697 if(priv->IC_Cut == IC_VersionCut_D)
2698 RT_TRACE(COMP_INIT, "D-cut\n");
2699 if(priv->IC_Cut == IC_VersionCut_E)
2700 {
2701 RT_TRACE(COMP_INIT, "E-cut\n");
2702 // HW SD suggest that we should not wirte this register too often, so driver
2703 // should readback this register. This register will be modified only when
2704 // power on reset
2705 }
2706 }
2707 else
2708 {
2709 //pHalData->bDcut = FALSE;
2710 RT_TRACE(COMP_INIT, "Before C-cut\n");
2711 }
2712
2713 //Firmware download
2714 RT_TRACE(COMP_INIT, "Load Firmware!\n");
2715 bfirmwareok = init_firmware(priv);
2716 if(bfirmwareok != true) {
2717 rtStatus = RT_STATUS_FAILURE;
2718 return rtStatus;
2719 }
2720 RT_TRACE(COMP_INIT, "Load Firmware finished!\n");
2721
2722 //RF config
2723 if(priv->ResetProgress == RESET_TYPE_NORESET)
2724 {
2725 RT_TRACE(COMP_INIT, "RF Config Started!\n");
2726 rtStatus = rtl8192_phy_RFConfig(priv);
2727 if(rtStatus != RT_STATUS_SUCCESS)
2728 {
2729 RT_TRACE(COMP_ERR, "RF Config failed\n");
2730 return rtStatus;
2731 }
2732 RT_TRACE(COMP_INIT, "RF Config Finished!\n");
2733 }
2734 rtl8192_phy_updateInitGain(priv);
2735
2736 /*---- Set CCK and OFDM Block "ON"----*/
2737 rtl8192_setBBreg(priv, rFPGA0_RFMOD, bCCKEn, 0x1);
2738 rtl8192_setBBreg(priv, rFPGA0_RFMOD, bOFDMEn, 0x1);
2739
2740 //Enable Led
2741 write_nic_byte(priv, 0x87, 0x0);
2742
2743 //2=======================================================
2744 // RF Power Save
2745 //2=======================================================
2746 #ifdef ENABLE_IPS
2747
2748 {
2749 if(priv->RfOffReason > RF_CHANGE_BY_PS)
2750 { // H/W or S/W RF OFF before sleep.
2751 RT_TRACE((COMP_INIT|COMP_RF|COMP_POWER), "%s(): Turn off RF for RfOffReason(%d)\n", __FUNCTION__,priv->RfOffReason);
2752 MgntActSet_RF_State(priv, eRfOff, priv->RfOffReason);
2753 }
2754 else if(priv->RfOffReason >= RF_CHANGE_BY_IPS)
2755 { // H/W or S/W RF OFF before sleep.
2756 RT_TRACE((COMP_INIT|COMP_RF|COMP_POWER), "%s(): Turn off RF for RfOffReason(%d)\n", __FUNCTION__, priv->RfOffReason);
2757 MgntActSet_RF_State(priv, eRfOff, priv->RfOffReason);
2758 }
2759 else
2760 {
2761 RT_TRACE((COMP_INIT|COMP_RF|COMP_POWER), "%s(): RF-ON \n",__FUNCTION__);
2762 priv->eRFPowerState = eRfOn;
2763 priv->RfOffReason = 0;
2764 }
2765 }
2766 #endif
2767 // We can force firmware to do RF-R/W
2768 if(priv->ieee80211->FwRWRF)
2769 priv->Rf_Mode = RF_OP_By_FW;
2770 else
2771 priv->Rf_Mode = RF_OP_By_SW_3wire;
2772
2773 if(priv->ResetProgress == RESET_TYPE_NORESET)
2774 {
2775 dm_initialize_txpower_tracking(priv);
2776
2777 if(priv->IC_Cut >= IC_VersionCut_D)
2778 {
2779 tmpRegA = rtl8192_QueryBBReg(priv, rOFDM0_XATxIQImbalance, bMaskDWord);
2780 tmpRegC = rtl8192_QueryBBReg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord);
2781 for(i = 0; i<TxBBGainTableLength; i++)
2782 {
2783 if(tmpRegA == priv->txbbgain_table[i].txbbgain_value)
2784 {
2785 priv->rfa_txpowertrackingindex= (u8)i;
2786 priv->rfa_txpowertrackingindex_real= (u8)i;
2787 priv->rfa_txpowertracking_default = priv->rfa_txpowertrackingindex;
2788 break;
2789 }
2790 }
2791
2792 TempCCk = rtl8192_QueryBBReg(priv, rCCK0_TxFilter1, bMaskByte2);
2793
2794 for(i=0 ; i<CCKTxBBGainTableLength ; i++)
2795 {
2796 if(TempCCk == priv->cck_txbbgain_table[i].ccktxbb_valuearray[0])
2797 {
2798 priv->CCKPresentAttentuation_20Mdefault =(u8) i;
2799 break;
2800 }
2801 }
2802 priv->CCKPresentAttentuation_40Mdefault = 0;
2803 priv->CCKPresentAttentuation_difference = 0;
2804 priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_20Mdefault;
2805 RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex_initial = %d\n", priv->rfa_txpowertrackingindex);
2806 RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex_real__initial = %d\n", priv->rfa_txpowertrackingindex_real);
2807 RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation_difference_initial = %d\n", priv->CCKPresentAttentuation_difference);
2808 RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation_initial = %d\n", priv->CCKPresentAttentuation);
2809 priv->btxpower_tracking = FALSE;//TEMPLY DISABLE
2810 }
2811 }
2812
2813 rtl8192_irq_enable(priv);
2814 priv->being_init_adapter = false;
2815 return rtStatus;
2816
2817 }
2818
2819 static void rtl8192_prepare_beacon(unsigned long arg)
2820 {
2821 struct r8192_priv *priv = (struct r8192_priv*) arg;
2822 struct sk_buff *skb;
2823 cb_desc *tcb_desc;
2824
2825 skb = ieee80211_get_beacon(priv->ieee80211);
2826 tcb_desc = (cb_desc *)(skb->cb + 8);
2827 /* prepare misc info for the beacon xmit */
2828 tcb_desc->queue_index = BEACON_QUEUE;
2829 /* IBSS does not support HT yet, use 1M defaultly */
2830 tcb_desc->data_rate = 2;
2831 tcb_desc->RATRIndex = 7;
2832 tcb_desc->bTxDisableRateFallBack = 1;
2833 tcb_desc->bTxUseDriverAssingedRate = 1;
2834
2835 skb_push(skb, priv->ieee80211->tx_headroom);
2836 if(skb){
2837 rtl8192_tx(priv, skb);
2838 }
2839 }
2840
2841
2842 /*
2843 * configure registers for beacon tx and enables it via
2844 * rtl8192_beacon_tx_enable(). rtl8192_beacon_tx_disable() might
2845 * be used to stop beacon transmission
2846 */
2847 static void rtl8192_start_beacon(struct ieee80211_device *ieee80211)
2848 {
2849 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
2850 struct ieee80211_network *net = &priv->ieee80211->current_network;
2851 u16 BcnTimeCfg = 0;
2852 u16 BcnCW = 6;
2853 u16 BcnIFS = 0xf;
2854
2855 DMESG("Enabling beacon TX");
2856 rtl8192_irq_disable(priv);
2857 //rtl8192_beacon_tx_enable(dev);
2858
2859 /* ATIM window */
2860 write_nic_word(priv, ATIMWND, 2);
2861
2862 /* Beacon interval (in unit of TU) */
2863 write_nic_word(priv, BCN_INTERVAL, net->beacon_interval);
2864
2865 /*
2866 * DrvErlyInt (in unit of TU).
2867 * (Time to send interrupt to notify driver to c
2868 * hange beacon content)
2869 * */
2870 write_nic_word(priv, BCN_DRV_EARLY_INT, 10);
2871
2872 /*
2873 * BcnDMATIM(in unit of us).
2874 * Indicates the time before TBTT to perform beacon queue DMA
2875 * */
2876 write_nic_word(priv, BCN_DMATIME, 256);
2877
2878 /*
2879 * Force beacon frame transmission even after receiving
2880 * beacon frame from other ad hoc STA
2881 * */
2882 write_nic_byte(priv, BCN_ERR_THRESH, 100);
2883
2884 /* Set CW and IFS */
2885 BcnTimeCfg |= BcnCW<<BCN_TCFG_CW_SHIFT;
2886 BcnTimeCfg |= BcnIFS<<BCN_TCFG_IFS;
2887 write_nic_word(priv, BCN_TCFG, BcnTimeCfg);
2888
2889
2890 /* enable the interrupt for ad-hoc process */
2891 rtl8192_irq_enable(priv);
2892 }
2893
2894 static bool HalRxCheckStuck8190Pci(struct r8192_priv *priv)
2895 {
2896 u16 RegRxCounter = read_nic_word(priv, 0x130);
2897 bool bStuck = FALSE;
2898
2899 RT_TRACE(COMP_RESET,"%s(): RegRxCounter is %d,RxCounter is %d\n",__FUNCTION__,RegRxCounter,priv->RxCounter);
2900 // If rssi is small, we should check rx for long time because of bad rx.
2901 // or maybe it will continuous silent reset every 2 seconds.
2902 priv->rx_chk_cnt++;
2903 if(priv->undecorated_smoothed_pwdb >= (RateAdaptiveTH_High+5))
2904 {
2905 priv->rx_chk_cnt = 0; /* high rssi, check rx stuck right now. */
2906 }
2907 else if(priv->undecorated_smoothed_pwdb < (RateAdaptiveTH_High+5) &&
2908 ((priv->CurrentChannelBW!=HT_CHANNEL_WIDTH_20&&priv->undecorated_smoothed_pwdb>=RateAdaptiveTH_Low_40M) ||
2909 (priv->CurrentChannelBW==HT_CHANNEL_WIDTH_20&&priv->undecorated_smoothed_pwdb>=RateAdaptiveTH_Low_20M)) )
2910
2911 {
2912 if(priv->rx_chk_cnt < 2)
2913 {
2914 return bStuck;
2915 }
2916 else
2917 {
2918 priv->rx_chk_cnt = 0;
2919 }
2920 }
2921 else if(((priv->CurrentChannelBW!=HT_CHANNEL_WIDTH_20&&priv->undecorated_smoothed_pwdb<RateAdaptiveTH_Low_40M) ||
2922 (priv->CurrentChannelBW==HT_CHANNEL_WIDTH_20&&priv->undecorated_smoothed_pwdb<RateAdaptiveTH_Low_20M)) &&
2923 priv->undecorated_smoothed_pwdb >= VeryLowRSSI)
2924 {
2925 if(priv->rx_chk_cnt < 4)
2926 {
2927 return bStuck;
2928 }
2929 else
2930 {
2931 priv->rx_chk_cnt = 0;
2932 }
2933 }
2934 else
2935 {
2936 if(priv->rx_chk_cnt < 8)
2937 {
2938 return bStuck;
2939 }
2940 else
2941 {
2942 priv->rx_chk_cnt = 0;
2943 }
2944 }
2945 if(priv->RxCounter==RegRxCounter)
2946 bStuck = TRUE;
2947
2948 priv->RxCounter = RegRxCounter;
2949
2950 return bStuck;
2951 }
2952
2953 static RESET_TYPE RxCheckStuck(struct r8192_priv *priv)
2954 {
2955
2956 if(HalRxCheckStuck8190Pci(priv))
2957 {
2958 RT_TRACE(COMP_RESET, "RxStuck Condition\n");
2959 return RESET_TYPE_SILENT;
2960 }
2961
2962 return RESET_TYPE_NORESET;
2963 }
2964
2965 static RESET_TYPE rtl819x_check_reset(struct r8192_priv *priv)
2966 {
2967 RESET_TYPE RxResetType = RESET_TYPE_NORESET;
2968 RT_RF_POWER_STATE rfState;
2969
2970 rfState = priv->eRFPowerState;
2971
2972 if (rfState != eRfOff && (priv->ieee80211->iw_mode != IW_MODE_ADHOC)) {
2973 /*
2974 * If driver is in the status of firmware download failure,
2975 * driver skips RF initialization and RF is in turned off state.
2976 * Driver should check whether Rx stuck and do silent reset. And
2977 * if driver is in firmware download failure status, driver
2978 * should initialize RF in the following silent reset procedure
2979 *
2980 * Driver should not check RX stuck in IBSS mode because it is
2981 * required to set Check BSSID in order to send beacon, however,
2982 * if check BSSID is set, STA cannot hear any packet a all.
2983 */
2984 RxResetType = RxCheckStuck(priv);
2985 }
2986
2987 RT_TRACE(COMP_RESET, "%s(): RxResetType is %d\n", __FUNCTION__, RxResetType);
2988
2989 return RxResetType;
2990 }
2991
2992 #ifdef ENABLE_IPS
2993 static void InactivePsWorkItemCallback(struct r8192_priv *priv)
2994 {
2995 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
2996
2997 RT_TRACE(COMP_POWER, "InactivePsWorkItemCallback() --------->\n");
2998 //
2999 // This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
3000 // is really scheduled.
3001 // The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
3002 // previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
3003 // blocks the IPS procedure of switching RF.
3004 // By Bruce, 2007-12-25.
3005 //
3006 pPSC->bSwRfProcessing = TRUE;
3007
3008 RT_TRACE(COMP_RF, "InactivePsWorkItemCallback(): Set RF to %s.\n",
3009 pPSC->eInactivePowerState == eRfOff?"OFF":"ON");
3010
3011
3012 MgntActSet_RF_State(priv, pPSC->eInactivePowerState, RF_CHANGE_BY_IPS);
3013
3014 //
3015 // To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
3016 //
3017 pPSC->bSwRfProcessing = FALSE;
3018 RT_TRACE(COMP_POWER, "InactivePsWorkItemCallback() <---------\n");
3019 }
3020
3021 #ifdef ENABLE_LPS
3022 /* Change current and default preamble mode. */
3023 bool MgntActSet_802_11_PowerSaveMode(struct r8192_priv *priv, u8 rtPsMode)
3024 {
3025
3026 // Currently, we do not change power save mode on IBSS mode.
3027 if(priv->ieee80211->iw_mode == IW_MODE_ADHOC)
3028 {
3029 return false;
3030 }
3031
3032 //
3033 // <RJ_NOTE> If we make HW to fill up the PwrMgt bit for us,
3034 // some AP will not response to our mgnt frames with PwrMgt bit set,
3035 // e.g. cannot associate the AP.
3036 // So I commented out it. 2005.02.16, by rcnjko.
3037 //
3038 // // Change device's power save mode.
3039 // Adapter->HalFunc.SetPSModeHandler( Adapter, rtPsMode );
3040
3041 // Update power save mode configured.
3042 //RT_TRACE(COMP_LPS,"%s(): set ieee->ps = %x\n",__FUNCTION__,rtPsMode);
3043 if(!priv->ps_force) {
3044 priv->ieee80211->ps = rtPsMode;
3045 }
3046
3047 // Awake immediately
3048 if(priv->ieee80211->sta_sleep != 0 && rtPsMode == IEEE80211_PS_DISABLED)
3049 {
3050 // Notify the AP we awke.
3051 rtl8192_hw_wakeup(priv->ieee80211);
3052 priv->ieee80211->sta_sleep = 0;
3053
3054 spin_lock(&priv->ieee80211->mgmt_tx_lock);
3055 printk("LPS leave: notify AP we are awaked ++++++++++ SendNullFunctionData\n");
3056 ieee80211_sta_ps_send_null_frame(priv->ieee80211, 0);
3057 spin_unlock(&priv->ieee80211->mgmt_tx_lock);
3058 }
3059
3060 return true;
3061 }
3062
3063 /* Enter the leisure power save mode. */
3064 void LeisurePSEnter(struct ieee80211_device *ieee80211)
3065 {
3066 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
3067 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
3068
3069 if(!((priv->ieee80211->iw_mode == IW_MODE_INFRA) &&
3070 (priv->ieee80211->state == IEEE80211_LINKED)) ||
3071 (priv->ieee80211->iw_mode == IW_MODE_ADHOC) ||
3072 (priv->ieee80211->iw_mode == IW_MODE_MASTER))
3073 return;
3074
3075 if (pPSC->bLeisurePs)
3076 {
3077 // Idle for a while if we connect to AP a while ago.
3078 if(pPSC->LpsIdleCount >= RT_CHECK_FOR_HANG_PERIOD) // 4 Sec
3079 {
3080
3081 if(priv->ieee80211->ps == IEEE80211_PS_DISABLED)
3082 {
3083 MgntActSet_802_11_PowerSaveMode(priv, IEEE80211_PS_MBCAST|IEEE80211_PS_UNICAST);
3084
3085 }
3086 }
3087 else
3088 pPSC->LpsIdleCount++;
3089 }
3090 }
3091
3092
3093 /* Leave leisure power save mode. */
3094 void LeisurePSLeave(struct ieee80211_device *ieee80211)
3095 {
3096 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
3097 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
3098
3099 if (pPSC->bLeisurePs)
3100 {
3101 if(priv->ieee80211->ps != IEEE80211_PS_DISABLED)
3102 {
3103 // move to lps_wakecomplete()
3104 MgntActSet_802_11_PowerSaveMode(priv, IEEE80211_PS_DISABLED);
3105
3106 }
3107 }
3108 }
3109 #endif
3110
3111
3112 /* Enter the inactive power save mode. RF will be off */
3113 void IPSEnter(struct r8192_priv *priv)
3114 {
3115 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
3116 RT_RF_POWER_STATE rtState;
3117
3118 if (pPSC->bInactivePs)
3119 {
3120 rtState = priv->eRFPowerState;
3121 //
3122 // Added by Bruce, 2007-12-25.
3123 // Do not enter IPS in the following conditions:
3124 // (1) RF is already OFF or Sleep
3125 // (2) bSwRfProcessing (indicates the IPS is still under going)
3126 // (3) Connectted (only disconnected can trigger IPS)
3127 // (4) IBSS (send Beacon)
3128 // (5) AP mode (send Beacon)
3129 //
3130 if (rtState == eRfOn && !pPSC->bSwRfProcessing
3131 && (priv->ieee80211->state != IEEE80211_LINKED) )
3132 {
3133 RT_TRACE(COMP_RF,"IPSEnter(): Turn off RF.\n");
3134 pPSC->eInactivePowerState = eRfOff;
3135 // queue_work(priv->priv_wq,&(pPSC->InactivePsWorkItem));
3136 InactivePsWorkItemCallback(priv);
3137 }
3138 }
3139 }
3140
3141 //
3142 // Description:
3143 // Leave the inactive power save mode, RF will be on.
3144 // 2007.08.17, by shien chang.
3145 //
3146 void IPSLeave(struct r8192_priv *priv)
3147 {
3148 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
3149 RT_RF_POWER_STATE rtState;
3150
3151 if (pPSC->bInactivePs)
3152 {
3153 rtState = priv->eRFPowerState;
3154 if (rtState != eRfOn && !pPSC->bSwRfProcessing && priv->RfOffReason <= RF_CHANGE_BY_IPS)
3155 {
3156 RT_TRACE(COMP_POWER, "IPSLeave(): Turn on RF.\n");
3157 pPSC->eInactivePowerState = eRfOn;
3158 InactivePsWorkItemCallback(priv);
3159 }
3160 }
3161 }
3162
3163 void IPSLeave_wq(struct work_struct *work)
3164 {
3165 struct ieee80211_device *ieee = container_of(work, struct ieee80211_device, ips_leave_wq);
3166 struct net_device *dev = ieee->dev;
3167
3168 struct r8192_priv *priv = (struct r8192_priv *)ieee80211_priv(dev);
3169 down(&priv->ieee80211->ips_sem);
3170 IPSLeave(priv);
3171 up(&priv->ieee80211->ips_sem);
3172 }
3173
3174 void ieee80211_ips_leave_wq(struct ieee80211_device *ieee80211)
3175 {
3176 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
3177 RT_RF_POWER_STATE rtState;
3178 rtState = priv->eRFPowerState;
3179
3180 if (priv->PowerSaveControl.bInactivePs){
3181 if(rtState == eRfOff){
3182 if(priv->RfOffReason > RF_CHANGE_BY_IPS)
3183 {
3184 RT_TRACE(COMP_ERR, "%s(): RF is OFF.\n",__FUNCTION__);
3185 return;
3186 }
3187 else{
3188 printk("=========>%s(): IPSLeave\n",__FUNCTION__);
3189 queue_work(priv->ieee80211->wq,&priv->ieee80211->ips_leave_wq);
3190 }
3191 }
3192 }
3193 }
3194 //added by amy 090331 end
3195 void ieee80211_ips_leave(struct ieee80211_device *ieee80211)
3196 {
3197 struct r8192_priv *priv = ieee80211_priv(ieee80211->dev);
3198 down(&ieee80211->ips_sem);
3199 IPSLeave(priv);
3200 up(&ieee80211->ips_sem);
3201 }
3202 #endif
3203
3204 static void rtl819x_update_rxcounts(
3205 struct r8192_priv *priv,
3206 u32* TotalRxBcnNum,
3207 u32* TotalRxDataNum
3208 )
3209 {
3210 u16 SlotIndex;
3211 u8 i;
3212
3213 *TotalRxBcnNum = 0;
3214 *TotalRxDataNum = 0;
3215
3216 SlotIndex = (priv->ieee80211->LinkDetectInfo.SlotIndex++)%(priv->ieee80211->LinkDetectInfo.SlotNum);
3217 priv->ieee80211->LinkDetectInfo.RxBcnNum[SlotIndex] = priv->ieee80211->LinkDetectInfo.NumRecvBcnInPeriod;
3218 priv->ieee80211->LinkDetectInfo.RxDataNum[SlotIndex] = priv->ieee80211->LinkDetectInfo.NumRecvDataInPeriod;
3219 for( i=0; i<priv->ieee80211->LinkDetectInfo.SlotNum; i++ ){
3220 *TotalRxBcnNum += priv->ieee80211->LinkDetectInfo.RxBcnNum[i];
3221 *TotalRxDataNum += priv->ieee80211->LinkDetectInfo.RxDataNum[i];
3222 }
3223 }
3224
3225
3226 static void rtl819x_watchdog_wqcallback(struct work_struct *work)
3227 {
3228 struct delayed_work *dwork = container_of(work,struct delayed_work,work);
3229 struct r8192_priv *priv = container_of(dwork,struct r8192_priv,watch_dog_wq);
3230 struct ieee80211_device* ieee = priv->ieee80211;
3231 RESET_TYPE ResetType = RESET_TYPE_NORESET;
3232 bool bBusyTraffic = false;
3233 bool bEnterPS = false;
3234
3235 if ((!priv->up) || priv->bHwRadioOff)
3236 return;
3237
3238 if(!priv->up)
3239 return;
3240 hal_dm_watchdog(priv);
3241 #ifdef ENABLE_IPS
3242 if(ieee->actscanning == false){
3243 if((ieee->iw_mode == IW_MODE_INFRA) && (ieee->state == IEEE80211_NOLINK) &&
3244 (priv->eRFPowerState == eRfOn) && !ieee->is_set_key &&
3245 (!ieee->proto_stoppping) && !ieee->wx_set_enc){
3246 if (priv->PowerSaveControl.ReturnPoint == IPS_CALLBACK_NONE){
3247 IPSEnter(priv);
3248 }
3249 }
3250 }
3251 #endif
3252 {//to get busy traffic condition
3253 if(ieee->state == IEEE80211_LINKED)
3254 {
3255 if( ieee->LinkDetectInfo.NumRxOkInPeriod> 100 ||
3256 ieee->LinkDetectInfo.NumTxOkInPeriod> 100 ) {
3257 bBusyTraffic = true;
3258 }
3259
3260 #ifdef ENABLE_LPS
3261 //added by amy for Leisure PS
3262 if( ((ieee->LinkDetectInfo.NumRxUnicastOkInPeriod + ieee->LinkDetectInfo.NumTxOkInPeriod) > 8 ) ||
3263 (ieee->LinkDetectInfo.NumRxUnicastOkInPeriod > 2) )
3264 {
3265 bEnterPS= false;
3266 }
3267 else
3268 {
3269 bEnterPS= true;
3270 }
3271
3272 // LeisurePS only work in infra mode.
3273 if(bEnterPS)
3274 {
3275 LeisurePSEnter(priv->ieee80211);
3276 }
3277 else
3278 {
3279 LeisurePSLeave(priv->ieee80211);
3280 }
3281 #endif
3282
3283 }
3284 else
3285 {
3286 #ifdef ENABLE_LPS
3287 LeisurePSLeave(priv->ieee80211);
3288 #endif
3289 }
3290
3291 ieee->LinkDetectInfo.NumRxOkInPeriod = 0;
3292 ieee->LinkDetectInfo.NumTxOkInPeriod = 0;
3293 ieee->LinkDetectInfo.NumRxUnicastOkInPeriod = 0;
3294 ieee->LinkDetectInfo.bBusyTraffic = bBusyTraffic;
3295 }
3296
3297
3298 //added by amy for AP roaming
3299 if(ieee->state == IEEE80211_LINKED && ieee->iw_mode == IW_MODE_INFRA)
3300 {
3301 u32 TotalRxBcnNum = 0;
3302 u32 TotalRxDataNum = 0;
3303
3304 rtl819x_update_rxcounts(priv, &TotalRxBcnNum, &TotalRxDataNum);
3305 if((TotalRxBcnNum+TotalRxDataNum) == 0)
3306 {
3307 if (priv->eRFPowerState == eRfOff)
3308 RT_TRACE(COMP_ERR,"========>%s()\n",__FUNCTION__);
3309 printk("===>%s(): AP is power off,connect another one\n",__FUNCTION__);
3310 // Dot11d_Reset(dev);
3311 ieee->state = IEEE80211_ASSOCIATING;
3312 notify_wx_assoc_event(priv->ieee80211);
3313 RemovePeerTS(priv->ieee80211,priv->ieee80211->current_network.bssid);
3314 ieee->is_roaming = true;
3315 ieee->is_set_key = false;
3316 ieee->link_change(ieee);
3317 queue_work(ieee->wq, &ieee->associate_procedure_wq);
3318 }
3319 }
3320 ieee->LinkDetectInfo.NumRecvBcnInPeriod=0;
3321 ieee->LinkDetectInfo.NumRecvDataInPeriod=0;
3322
3323 //check if reset the driver
3324 if (priv->watchdog_check_reset_cnt++ >= 3 && !ieee->is_roaming &&
3325 priv->watchdog_last_time != 1)
3326 {
3327 ResetType = rtl819x_check_reset(priv);
3328 priv->watchdog_check_reset_cnt = 3;
3329 }
3330 if(!priv->bDisableNormalResetCheck && ResetType == RESET_TYPE_NORMAL)
3331 {
3332 priv->ResetProgress = RESET_TYPE_NORMAL;
3333 RT_TRACE(COMP_RESET,"%s(): NOMAL RESET\n",__FUNCTION__);
3334 return;
3335 }
3336 /* disable silent reset temply 2008.9.11*/
3337
3338 if( ((priv->force_reset) || (!priv->bDisableNormalResetCheck && ResetType==RESET_TYPE_SILENT))) // This is control by OID set in Pomelo
3339 {
3340 priv->watchdog_last_time = 1;
3341 }
3342 else
3343 priv->watchdog_last_time = 0;
3344
3345 priv->force_reset = false;
3346 priv->bForcedSilentReset = false;
3347 priv->bResetInProgress = false;
3348 RT_TRACE(COMP_TRACE, " <==RtUsbCheckForHangWorkItemCallback()\n");
3349
3350 }
3351
3352 void watch_dog_timer_callback(unsigned long data)
3353 {
3354 struct r8192_priv *priv = (struct r8192_priv *) data;
3355 queue_delayed_work(priv->priv_wq,&priv->watch_dog_wq,0);
3356 mod_timer(&priv->watch_dog_timer, jiffies + MSECS(IEEE80211_WATCH_DOG_TIME));
3357
3358 }
3359
3360 static int _rtl8192_up(struct r8192_priv *priv)
3361 {
3362 RT_STATUS init_status = RT_STATUS_SUCCESS;
3363 struct net_device *dev = priv->ieee80211->dev;
3364
3365 priv->up=1;
3366 priv->ieee80211->ieee_up=1;
3367 priv->bdisable_nic = false; //YJ,add,091111
3368 RT_TRACE(COMP_INIT, "Bringing up iface\n");
3369
3370 init_status = rtl8192_adapter_start(priv);
3371 if(init_status != RT_STATUS_SUCCESS)
3372 {
3373 RT_TRACE(COMP_ERR,"ERR!!! %s(): initialization is failed!\n",__FUNCTION__);
3374 return -1;
3375 }
3376 RT_TRACE(COMP_INIT, "start adapter finished\n");
3377
3378 if (priv->eRFPowerState != eRfOn)
3379 MgntActSet_RF_State(priv, eRfOn, priv->RfOffReason);
3380
3381 if(priv->ieee80211->state != IEEE80211_LINKED)
3382 ieee80211_softmac_start_protocol(priv->ieee80211);
3383 ieee80211_reset_queue(priv->ieee80211);
3384 watch_dog_timer_callback((unsigned long) priv);
3385 if(!netif_queue_stopped(dev))
3386 netif_start_queue(dev);
3387 else
3388 netif_wake_queue(dev);
3389
3390 return 0;
3391 }
3392
3393
3394 static int rtl8192_open(struct net_device *dev)
3395 {
3396 struct r8192_priv *priv = ieee80211_priv(dev);
3397 int ret;
3398
3399 down(&priv->wx_sem);
3400 ret = rtl8192_up(dev);
3401 up(&priv->wx_sem);
3402 return ret;
3403
3404 }
3405
3406
3407 int rtl8192_up(struct net_device *dev)
3408 {
3409 struct r8192_priv *priv = ieee80211_priv(dev);
3410
3411 if (priv->up == 1) return -1;
3412
3413 return _rtl8192_up(priv);
3414 }
3415
3416
3417 static int rtl8192_close(struct net_device *dev)
3418 {
3419 struct r8192_priv *priv = ieee80211_priv(dev);
3420 int ret;
3421
3422 down(&priv->wx_sem);
3423
3424 ret = rtl8192_down(dev);
3425
3426 up(&priv->wx_sem);
3427
3428 return ret;
3429
3430 }
3431
3432 int rtl8192_down(struct net_device *dev)
3433 {
3434 struct r8192_priv *priv = ieee80211_priv(dev);
3435
3436 if (priv->up == 0) return -1;
3437
3438 #ifdef ENABLE_LPS
3439 //LZM for PS-Poll AID issue. 090429
3440 if(priv->ieee80211->state == IEEE80211_LINKED)
3441 LeisurePSLeave(priv->ieee80211);
3442 #endif
3443
3444 priv->up=0;
3445 priv->ieee80211->ieee_up = 0;
3446 RT_TRACE(COMP_DOWN, "==========>%s()\n", __FUNCTION__);
3447 /* FIXME */
3448 if (!netif_queue_stopped(dev))
3449 netif_stop_queue(dev);
3450
3451 rtl8192_irq_disable(priv);
3452 rtl8192_cancel_deferred_work(priv);
3453 deinit_hal_dm(priv);
3454 del_timer_sync(&priv->watch_dog_timer);
3455
3456 ieee80211_softmac_stop_protocol(priv->ieee80211,true);
3457
3458 rtl8192_halt_adapter(priv, false);
3459 memset(&priv->ieee80211->current_network, 0 , offsetof(struct ieee80211_network, list));
3460
3461 RT_TRACE(COMP_DOWN, "<==========%s()\n", __FUNCTION__);
3462
3463 return 0;
3464 }
3465
3466
3467 void rtl8192_commit(struct r8192_priv *priv)
3468 {
3469 if (priv->up == 0) return ;
3470
3471
3472 ieee80211_softmac_stop_protocol(priv->ieee80211,true);
3473
3474 rtl8192_irq_disable(priv);
3475 rtl8192_halt_adapter(priv, true);
3476 _rtl8192_up(priv);
3477 }
3478
3479 static void rtl8192_restart(struct work_struct *work)
3480 {
3481 struct r8192_priv *priv = container_of(work, struct r8192_priv, reset_wq);
3482
3483 down(&priv->wx_sem);
3484
3485 rtl8192_commit(priv);
3486
3487 up(&priv->wx_sem);
3488 }
3489
3490 static void r8192_set_multicast(struct net_device *dev)
3491 {
3492 struct r8192_priv *priv = ieee80211_priv(dev);
3493
3494 priv->promisc = (dev->flags & IFF_PROMISC) ? 1 : 0;
3495 }
3496
3497
3498 static int r8192_set_mac_adr(struct net_device *dev, void *mac)
3499 {
3500 struct r8192_priv *priv = ieee80211_priv(dev);
3501 struct sockaddr *addr = mac;
3502
3503 down(&priv->wx_sem);
3504
3505 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3506
3507 schedule_work(&priv->reset_wq);
3508 up(&priv->wx_sem);
3509
3510 return 0;
3511 }
3512
3513 static void r8192e_set_hw_key(struct r8192_priv *priv, struct ieee_param *ipw)
3514 {
3515 struct ieee80211_device *ieee = priv->ieee80211;
3516 u8 broadcast_addr[6] = {0xff,0xff,0xff,0xff,0xff,0xff};
3517 u32 key[4];
3518
3519 if (ipw->u.crypt.set_tx) {
3520 if (strcmp(ipw->u.crypt.alg, "CCMP") == 0)
3521 ieee->pairwise_key_type = KEY_TYPE_CCMP;
3522 else if (strcmp(ipw->u.crypt.alg, "TKIP") == 0)
3523 ieee->pairwise_key_type = KEY_TYPE_TKIP;
3524 else if (strcmp(ipw->u.crypt.alg, "WEP") == 0) {
3525 if (ipw->u.crypt.key_len == 13)
3526 ieee->pairwise_key_type = KEY_TYPE_WEP104;
3527 else if (ipw->u.crypt.key_len == 5)
3528 ieee->pairwise_key_type = KEY_TYPE_WEP40;
3529 } else
3530 ieee->pairwise_key_type = KEY_TYPE_NA;
3531
3532 if (ieee->pairwise_key_type) {
3533 memcpy(key, ipw->u.crypt.key, 16);
3534 EnableHWSecurityConfig8192(priv);
3535 /*
3536 * We fill both index entry and 4th entry for pairwise
3537 * key as in IPW interface, adhoc will only get here,
3538 * so we need index entry for its default key serching!
3539 */
3540 setKey(priv, 4, ipw->u.crypt.idx,
3541 ieee->pairwise_key_type,
3542 (u8*)ieee->ap_mac_addr, 0, key);
3543
3544 /* LEAP WEP will never set this. */
3545 if (ieee->auth_mode != 2)
3546 setKey(priv, ipw->u.crypt.idx, ipw->u.crypt.idx,
3547 ieee->pairwise_key_type,
3548 (u8*)ieee->ap_mac_addr, 0, key);
3549 }
3550 if ((ieee->pairwise_key_type == KEY_TYPE_CCMP) &&
3551 ieee->pHTInfo->bCurrentHTSupport) {
3552 write_nic_byte(priv, 0x173, 1); /* fix aes bug */
3553 }
3554 } else {
3555 memcpy(key, ipw->u.crypt.key, 16);
3556 if (strcmp(ipw->u.crypt.alg, "CCMP") == 0)
3557 ieee->group_key_type= KEY_TYPE_CCMP;
3558 else if (strcmp(ipw->u.crypt.alg, "TKIP") == 0)
3559 ieee->group_key_type = KEY_TYPE_TKIP;
3560 else if (strcmp(ipw->u.crypt.alg, "WEP") == 0) {
3561 if (ipw->u.crypt.key_len == 13)
3562 ieee->group_key_type = KEY_TYPE_WEP104;
3563 else if (ipw->u.crypt.key_len == 5)
3564 ieee->group_key_type = KEY_TYPE_WEP40;
3565 } else
3566 ieee->group_key_type = KEY_TYPE_NA;
3567
3568 if (ieee->group_key_type) {
3569 setKey(priv, ipw->u.crypt.idx, ipw->u.crypt.idx,
3570 ieee->group_key_type, broadcast_addr, 0, key);
3571 }
3572 }
3573 }
3574
3575 /* based on ipw2200 driver */
3576 static int rtl8192_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3577 {
3578 struct r8192_priv *priv = (struct r8192_priv *)ieee80211_priv(dev);
3579 struct iwreq *wrq = (struct iwreq *)rq;
3580 int ret=-1;
3581 struct iw_point *p = &wrq->u.data;
3582 struct ieee_param *ipw = NULL;//(struct ieee_param *)wrq->u.data.pointer;
3583
3584 down(&priv->wx_sem);
3585
3586
3587 if (p->length < sizeof(struct ieee_param) || !p->pointer){
3588 ret = -EINVAL;
3589 goto out;
3590 }
3591
3592 ipw = kmalloc(p->length, GFP_KERNEL);
3593 if (ipw == NULL){
3594 ret = -ENOMEM;
3595 goto out;
3596 }
3597 if (copy_from_user(ipw, p->pointer, p->length)) {
3598 kfree(ipw);
3599 ret = -EFAULT;
3600 goto out;
3601 }
3602
3603 switch (cmd) {
3604 case RTL_IOCTL_WPA_SUPPLICANT:
3605 /* parse here for HW security */
3606 if (ipw->cmd == IEEE_CMD_SET_ENCRYPTION)
3607 r8192e_set_hw_key(priv, ipw);
3608 ret = ieee80211_wpa_supplicant_ioctl(priv->ieee80211, &wrq->u.data);
3609 break;
3610
3611 default:
3612 ret = -EOPNOTSUPP;
3613 break;
3614 }
3615
3616 kfree(ipw);
3617 out:
3618 up(&priv->wx_sem);
3619
3620 return ret;
3621 }
3622
3623 static u8 HwRateToMRate90(bool bIsHT, u8 rate)
3624 {
3625 u8 ret_rate = 0x02;
3626
3627 if(!bIsHT) {
3628 switch(rate) {
3629 case DESC90_RATE1M: ret_rate = MGN_1M; break;
3630 case DESC90_RATE2M: ret_rate = MGN_2M; break;
3631 case DESC90_RATE5_5M: ret_rate = MGN_5_5M; break;
3632 case DESC90_RATE11M: ret_rate = MGN_11M; break;
3633 case DESC90_RATE6M: ret_rate = MGN_6M; break;
3634 case DESC90_RATE9M: ret_rate = MGN_9M; break;
3635 case DESC90_RATE12M: ret_rate = MGN_12M; break;
3636 case DESC90_RATE18M: ret_rate = MGN_18M; break;
3637 case DESC90_RATE24M: ret_rate = MGN_24M; break;
3638 case DESC90_RATE36M: ret_rate = MGN_36M; break;
3639 case DESC90_RATE48M: ret_rate = MGN_48M; break;
3640 case DESC90_RATE54M: ret_rate = MGN_54M; break;
3641
3642 default:
3643 RT_TRACE(COMP_RECV, "HwRateToMRate90(): Non supported Rate [%x], bIsHT = %d!!!\n", rate, bIsHT);
3644 break;
3645 }
3646
3647 } else {
3648 switch(rate) {
3649 case DESC90_RATEMCS0: ret_rate = MGN_MCS0; break;
3650 case DESC90_RATEMCS1: ret_rate = MGN_MCS1; break;
3651 case DESC90_RATEMCS2: ret_rate = MGN_MCS2; break;
3652 case DESC90_RATEMCS3: ret_rate = MGN_MCS3; break;
3653 case DESC90_RATEMCS4: ret_rate = MGN_MCS4; break;
3654 case DESC90_RATEMCS5: ret_rate = MGN_MCS5; break;
3655 case DESC90_RATEMCS6: ret_rate = MGN_MCS6; break;
3656 case DESC90_RATEMCS7: ret_rate = MGN_MCS7; break;
3657 case DESC90_RATEMCS8: ret_rate = MGN_MCS8; break;
3658 case DESC90_RATEMCS9: ret_rate = MGN_MCS9; break;
3659 case DESC90_RATEMCS10: ret_rate = MGN_MCS10; break;
3660 case DESC90_RATEMCS11: ret_rate = MGN_MCS11; break;
3661 case DESC90_RATEMCS12: ret_rate = MGN_MCS12; break;
3662 case DESC90_RATEMCS13: ret_rate = MGN_MCS13; break;
3663 case DESC90_RATEMCS14: ret_rate = MGN_MCS14; break;
3664 case DESC90_RATEMCS15: ret_rate = MGN_MCS15; break;
3665 case DESC90_RATEMCS32: ret_rate = (0x80|0x20); break;
3666
3667 default:
3668 RT_TRACE(COMP_RECV, "HwRateToMRate90(): Non supported Rate [%x], bIsHT = %d!!!\n",rate, bIsHT);
3669 break;
3670 }
3671 }
3672
3673 return ret_rate;
3674 }
3675
3676 /* Record the TSF time stamp when receiving a packet */
3677 static void UpdateRxPktTimeStamp8190(struct r8192_priv *priv, struct ieee80211_rx_stats *stats)
3678 {
3679
3680 if(stats->bIsAMPDU && !stats->bFirstMPDU) {
3681 stats->mac_time[0] = priv->LastRxDescTSFLow;
3682 stats->mac_time[1] = priv->LastRxDescTSFHigh;
3683 } else {
3684 priv->LastRxDescTSFLow = stats->mac_time[0];
3685 priv->LastRxDescTSFHigh = stats->mac_time[1];
3686 }
3687 }
3688
3689 static long rtl819x_translate_todbm(u8 signal_strength_index)// 0-100 index.
3690 {
3691 long signal_power; // in dBm.
3692
3693 // Translate to dBm (x=0.5y-95).
3694 signal_power = (long)((signal_strength_index + 1) >> 1);
3695 signal_power -= 95;
3696
3697 return signal_power;
3698 }
3699
3700 /* 2008/01/22 MH We can not delcare RSSI/EVM total value of sliding window to
3701 be a local static. Otherwise, it may increase when we return from S3/S4. The
3702 value will be kept in memory or disk. We must delcare the value in adapter
3703 and it will be reinitialized when return from S3/S4. */
3704 static void rtl8192_process_phyinfo(struct r8192_priv * priv, u8* buffer,struct ieee80211_rx_stats * pprevious_stats, struct ieee80211_rx_stats * pcurrent_stats)
3705 {
3706 bool bcheck = false;
3707 u8 rfpath;
3708 u32 nspatial_stream, tmp_val;
3709 static u32 slide_rssi_index=0, slide_rssi_statistics=0;
3710 static u32 slide_evm_index=0, slide_evm_statistics=0;
3711 static u32 last_rssi=0, last_evm=0;
3712 //cosa add for beacon rssi smoothing
3713 static u32 slide_beacon_adc_pwdb_index=0, slide_beacon_adc_pwdb_statistics=0;
3714 static u32 last_beacon_adc_pwdb=0;
3715
3716 struct ieee80211_hdr_3addr *hdr;
3717 u16 sc ;
3718 unsigned int frag,seq;
3719 hdr = (struct ieee80211_hdr_3addr *)buffer;
3720 sc = le16_to_cpu(hdr->seq_ctl);
3721 frag = WLAN_GET_SEQ_FRAG(sc);
3722 seq = WLAN_GET_SEQ_SEQ(sc);
3723
3724 //
3725 // Check whether we should take the previous packet into accounting
3726 //
3727 if(!pprevious_stats->bIsAMPDU)
3728 {
3729 // if previous packet is not aggregated packet
3730 bcheck = true;
3731 }
3732
3733 if(slide_rssi_statistics++ >= PHY_RSSI_SLID_WIN_MAX)
3734 {
3735 slide_rssi_statistics = PHY_RSSI_SLID_WIN_MAX;
3736 last_rssi = priv->stats.slide_signal_strength[slide_rssi_index];
3737 priv->stats.slide_rssi_total -= last_rssi;
3738 }
3739 priv->stats.slide_rssi_total += pprevious_stats->SignalStrength;
3740
3741 priv->stats.slide_signal_strength[slide_rssi_index++] = pprevious_stats->SignalStrength;
3742 if(slide_rssi_index >= PHY_RSSI_SLID_WIN_MAX)
3743 slide_rssi_index = 0;
3744
3745 // <1> Showed on UI for user, in dbm
3746 tmp_val = priv->stats.slide_rssi_total/slide_rssi_statistics;
3747 priv->stats.signal_strength = rtl819x_translate_todbm((u8)tmp_val);
3748 pcurrent_stats->rssi = priv->stats.signal_strength;
3749 //
3750 // If the previous packet does not match the criteria, neglect it
3751 //
3752 if(!pprevious_stats->bPacketMatchBSSID)
3753 {
3754 if(!pprevious_stats->bToSelfBA)
3755 return;
3756 }
3757
3758 if(!bcheck)
3759 return;
3760
3761 // <2> Showed on UI for engineering
3762 // hardware does not provide rssi information for each rf path in CCK
3763 if(!pprevious_stats->bIsCCK && pprevious_stats->bPacketToSelf)
3764 {
3765 for (rfpath = RF90_PATH_A; rfpath < RF90_PATH_C; rfpath++)
3766 {
3767 if (!rtl8192_phy_CheckIsLegalRFPath(priv, rfpath))
3768 continue;
3769 RT_TRACE(COMP_DBG, "pPreviousstats->RxMIMOSignalStrength[rfpath] = %d\n", pprevious_stats->RxMIMOSignalStrength[rfpath]);
3770 //Fixed by Jacken 2008-03-20
3771 if(priv->stats.rx_rssi_percentage[rfpath] == 0)
3772 {
3773 priv->stats.rx_rssi_percentage[rfpath] = pprevious_stats->RxMIMOSignalStrength[rfpath];
3774 }
3775 if(pprevious_stats->RxMIMOSignalStrength[rfpath] > priv->stats.rx_rssi_percentage[rfpath])
3776 {
3777 priv->stats.rx_rssi_percentage[rfpath] =
3778 ( (priv->stats.rx_rssi_percentage[rfpath]*(Rx_Smooth_Factor-1)) +
3779 (pprevious_stats->RxMIMOSignalStrength[rfpath])) /(Rx_Smooth_Factor);
3780 priv->stats.rx_rssi_percentage[rfpath] = priv->stats.rx_rssi_percentage[rfpath] + 1;
3781 }
3782 else
3783 {
3784 priv->stats.rx_rssi_percentage[rfpath] =
3785 ( (priv->stats.rx_rssi_percentage[rfpath]*(Rx_Smooth_Factor-1)) +
3786 (pprevious_stats->RxMIMOSignalStrength[rfpath])) /(Rx_Smooth_Factor);
3787 }
3788 RT_TRACE(COMP_DBG, "priv->RxStats.RxRSSIPercentage[rfPath] = %d \n" , priv->stats.rx_rssi_percentage[rfpath]);
3789 }
3790 }
3791
3792
3793 //
3794 // Check PWDB.
3795 //
3796 //cosa add for beacon rssi smoothing by average.
3797 if(pprevious_stats->bPacketBeacon)
3798 {
3799 /* record the beacon pwdb to the sliding window. */
3800 if(slide_beacon_adc_pwdb_statistics++ >= PHY_Beacon_RSSI_SLID_WIN_MAX)
3801 {
3802 slide_beacon_adc_pwdb_statistics = PHY_Beacon_RSSI_SLID_WIN_MAX;
3803 last_beacon_adc_pwdb = priv->stats.Slide_Beacon_pwdb[slide_beacon_adc_pwdb_index];
3804 priv->stats.Slide_Beacon_Total -= last_beacon_adc_pwdb;
3805 // slide_beacon_adc_pwdb_index, last_beacon_adc_pwdb, Adapter->RxStats.Slide_Beacon_Total);
3806 }
3807 priv->stats.Slide_Beacon_Total += pprevious_stats->RxPWDBAll;
3808 priv->stats.Slide_Beacon_pwdb[slide_beacon_adc_pwdb_index] = pprevious_stats->RxPWDBAll;
3809 slide_beacon_adc_pwdb_index++;
3810 if(slide_beacon_adc_pwdb_index >= PHY_Beacon_RSSI_SLID_WIN_MAX)
3811 slide_beacon_adc_pwdb_index = 0;
3812 pprevious_stats->RxPWDBAll = priv->stats.Slide_Beacon_Total/slide_beacon_adc_pwdb_statistics;
3813 if(pprevious_stats->RxPWDBAll >= 3)
3814 pprevious_stats->RxPWDBAll -= 3;
3815 }
3816
3817 RT_TRACE(COMP_RXDESC, "Smooth %s PWDB = %d\n",
3818 pprevious_stats->bIsCCK? "CCK": "OFDM",
3819 pprevious_stats->RxPWDBAll);
3820
3821 if(pprevious_stats->bPacketToSelf || pprevious_stats->bPacketBeacon || pprevious_stats->bToSelfBA)
3822 {
3823 if(priv->undecorated_smoothed_pwdb < 0) // initialize
3824 {
3825 priv->undecorated_smoothed_pwdb = pprevious_stats->RxPWDBAll;
3826 }
3827
3828 if(pprevious_stats->RxPWDBAll > (u32)priv->undecorated_smoothed_pwdb)
3829 {
3830 priv->undecorated_smoothed_pwdb =
3831 ( ((priv->undecorated_smoothed_pwdb)*(Rx_Smooth_Factor-1)) +
3832 (pprevious_stats->RxPWDBAll)) /(Rx_Smooth_Factor);
3833 priv->undecorated_smoothed_pwdb = priv->undecorated_smoothed_pwdb + 1;
3834 }
3835 else
3836 {
3837 priv->undecorated_smoothed_pwdb =
3838 ( ((priv->undecorated_smoothed_pwdb)*(Rx_Smooth_Factor-1)) +
3839 (pprevious_stats->RxPWDBAll)) /(Rx_Smooth_Factor);
3840 }
3841 }
3842
3843 //
3844 // Check EVM
3845 //
3846 /* record the general EVM to the sliding window. */
3847 if(pprevious_stats->SignalQuality == 0)
3848 {
3849 }
3850 else
3851 {
3852 if(pprevious_stats->bPacketToSelf || pprevious_stats->bPacketBeacon || pprevious_stats->bToSelfBA){
3853 if(slide_evm_statistics++ >= PHY_RSSI_SLID_WIN_MAX){
3854 slide_evm_statistics = PHY_RSSI_SLID_WIN_MAX;
3855 last_evm = priv->stats.slide_evm[slide_evm_index];
3856 priv->stats.slide_evm_total -= last_evm;
3857 }
3858
3859 priv->stats.slide_evm_total += pprevious_stats->SignalQuality;
3860
3861 priv->stats.slide_evm[slide_evm_index++] = pprevious_stats->SignalQuality;
3862 if(slide_evm_index >= PHY_RSSI_SLID_WIN_MAX)
3863 slide_evm_index = 0;
3864
3865 // <1> Showed on UI for user, in percentage.
3866 tmp_val = priv->stats.slide_evm_total/slide_evm_statistics;
3867 //cosa add 10/11/2007, Showed on UI for user in Windows Vista, for Link quality.
3868 }
3869
3870 // <2> Showed on UI for engineering
3871 if(pprevious_stats->bPacketToSelf || pprevious_stats->bPacketBeacon || pprevious_stats->bToSelfBA)
3872 {
3873 for(nspatial_stream = 0; nspatial_stream<2 ; nspatial_stream++) // 2 spatial stream
3874 {
3875 if(pprevious_stats->RxMIMOSignalQuality[nspatial_stream] != -1)
3876 {
3877 if(priv->stats.rx_evm_percentage[nspatial_stream] == 0) // initialize
3878 {
3879 priv->stats.rx_evm_percentage[nspatial_stream] = pprevious_stats->RxMIMOSignalQuality[nspatial_stream];
3880 }
3881 priv->stats.rx_evm_percentage[nspatial_stream] =
3882 ( (priv->stats.rx_evm_percentage[nspatial_stream]* (Rx_Smooth_Factor-1)) +
3883 (pprevious_stats->RxMIMOSignalQuality[nspatial_stream]* 1)) / (Rx_Smooth_Factor);
3884 }
3885 }
3886 }
3887 }
3888
3889 }
3890
3891 static u8 rtl819x_query_rxpwrpercentage(
3892 char antpower
3893 )
3894 {
3895 if ((antpower <= -100) || (antpower >= 20))
3896 {
3897 return 0;
3898 }
3899 else if (antpower >= 0)
3900 {
3901 return 100;
3902 }
3903 else
3904 {
3905 return (100+antpower);
3906 }
3907
3908 }
3909
3910 static u8
3911 rtl819x_evm_dbtopercentage(
3912 char value
3913 )
3914 {
3915 char ret_val;
3916
3917 ret_val = value;
3918
3919 if(ret_val >= 0)
3920 ret_val = 0;
3921 if(ret_val <= -33)
3922 ret_val = -33;
3923 ret_val = 0 - ret_val;
3924 ret_val*=3;
3925 if(ret_val == 99)
3926 ret_val = 100;
3927 return ret_val;
3928 }
3929
3930 /* We want good-looking for signal strength/quality */
3931 static long rtl819x_signal_scale_mapping(long currsig)
3932 {
3933 long retsig;
3934
3935 // Step 1. Scale mapping.
3936 if(currsig >= 61 && currsig <= 100)
3937 {
3938 retsig = 90 + ((currsig - 60) / 4);
3939 }
3940 else if(currsig >= 41 && currsig <= 60)
3941 {
3942 retsig = 78 + ((currsig - 40) / 2);
3943 }
3944 else if(currsig >= 31 && currsig <= 40)
3945 {
3946 retsig = 66 + (currsig - 30);
3947 }
3948 else if(currsig >= 21 && currsig <= 30)
3949 {
3950 retsig = 54 + (currsig - 20);
3951 }
3952 else if(currsig >= 5 && currsig <= 20)
3953 {
3954 retsig = 42 + (((currsig - 5) * 2) / 3);
3955 }
3956 else if(currsig == 4)
3957 {
3958 retsig = 36;
3959 }
3960 else if(currsig == 3)
3961 {
3962 retsig = 27;
3963 }
3964 else if(currsig == 2)
3965 {
3966 retsig = 18;
3967 }
3968 else if(currsig == 1)
3969 {
3970 retsig = 9;
3971 }
3972 else
3973 {
3974 retsig = currsig;
3975 }
3976
3977 return retsig;
3978 }
3979
3980 static void rtl8192_query_rxphystatus(
3981 struct r8192_priv * priv,
3982 struct ieee80211_rx_stats * pstats,
3983 prx_desc_819x_pci pdesc,
3984 prx_fwinfo_819x_pci pdrvinfo,
3985 struct ieee80211_rx_stats * precord_stats,
3986 bool bpacket_match_bssid,
3987 bool bpacket_toself,
3988 bool bPacketBeacon,
3989 bool bToSelfBA
3990 )
3991 {
3992 //PRT_RFD_STATUS pRtRfdStatus = &(pRfd->Status);
3993 phy_sts_ofdm_819xpci_t* pofdm_buf;
3994 phy_sts_cck_819xpci_t * pcck_buf;
3995 phy_ofdm_rx_status_rxsc_sgien_exintfflag* prxsc;
3996 u8 *prxpkt;
3997 u8 i,max_spatial_stream, tmp_rxsnr, tmp_rxevm, rxsc_sgien_exflg;
3998 char rx_pwr[4], rx_pwr_all=0;
3999 //long rx_avg_pwr = 0;
4000 char rx_snrX, rx_evmX;
4001 u8 evm, pwdb_all;
4002 u32 RSSI, total_rssi=0;//, total_evm=0;
4003 // long signal_strength_index = 0;
4004 u8 is_cck_rate=0;
4005 u8 rf_rx_num = 0;
4006
4007 is_cck_rate = rx_hal_is_cck_rate(pdrvinfo);
4008
4009 // Record it for next packet processing
4010 memset(precord_stats, 0, sizeof(struct ieee80211_rx_stats));
4011 pstats->bPacketMatchBSSID = precord_stats->bPacketMatchBSSID = bpacket_match_bssid;
4012 pstats->bPacketToSelf = precord_stats->bPacketToSelf = bpacket_toself;
4013 pstats->bIsCCK = precord_stats->bIsCCK = is_cck_rate;//RX_HAL_IS_CCK_RATE(pDrvInfo);
4014 pstats->bPacketBeacon = precord_stats->bPacketBeacon = bPacketBeacon;
4015 pstats->bToSelfBA = precord_stats->bToSelfBA = bToSelfBA;
4016 /*2007.08.30 requested by SD3 Jerry */
4017 if (priv->phy_check_reg824 == 0)
4018 {
4019 priv->phy_reg824_bit9 = rtl8192_QueryBBReg(priv, rFPGA0_XA_HSSIParameter2, 0x200);
4020 priv->phy_check_reg824 = 1;
4021 }
4022
4023
4024 prxpkt = (u8*)pdrvinfo;
4025
4026 /* Move pointer to the 16th bytes. Phy status start address. */
4027 prxpkt += sizeof(rx_fwinfo_819x_pci);
4028
4029 /* Initial the cck and ofdm buffer pointer */
4030 pcck_buf = (phy_sts_cck_819xpci_t *)prxpkt;
4031 pofdm_buf = (phy_sts_ofdm_819xpci_t *)prxpkt;
4032
4033 pstats->RxMIMOSignalQuality[0] = -1;
4034 pstats->RxMIMOSignalQuality[1] = -1;
4035 precord_stats->RxMIMOSignalQuality[0] = -1;
4036 precord_stats->RxMIMOSignalQuality[1] = -1;
4037
4038 if(is_cck_rate)
4039 {
4040 //
4041 // (1)Hardware does not provide RSSI for CCK
4042 //
4043
4044 //
4045 // (2)PWDB, Average PWDB cacluated by hardware (for rate adaptive)
4046 //
4047 u8 report;//, cck_agc_rpt;
4048
4049 if (!priv->phy_reg824_bit9)
4050 {
4051 report = pcck_buf->cck_agc_rpt & 0xc0;
4052 report = report>>6;
4053 switch(report)
4054 {
4055 //Fixed by Jacken from Bryant 2008-03-20
4056 //Original value is -38 , -26 , -14 , -2
4057 //Fixed value is -35 , -23 , -11 , 6
4058 case 0x3:
4059 rx_pwr_all = -35 - (pcck_buf->cck_agc_rpt & 0x3e);
4060 break;
4061 case 0x2:
4062 rx_pwr_all = -23 - (pcck_buf->cck_agc_rpt & 0x3e);
4063 break;
4064 case 0x1:
4065 rx_pwr_all = -11 - (pcck_buf->cck_agc_rpt & 0x3e);
4066 break;
4067 case 0x0:
4068 rx_pwr_all = 8 - (pcck_buf->cck_agc_rpt & 0x3e);
4069 break;
4070 }
4071 }
4072 else
4073 {
4074 report = pcck_buf->cck_agc_rpt & 0x60;
4075 report = report>>5;
4076 switch(report)
4077 {
4078 case 0x3:
4079 rx_pwr_all = -35 - ((pcck_buf->cck_agc_rpt & 0x1f)<<1) ;
4080 break;
4081 case 0x2:
4082 rx_pwr_all = -23 - ((pcck_buf->cck_agc_rpt & 0x1f)<<1);
4083 break;
4084 case 0x1:
4085 rx_pwr_all = -11 - ((pcck_buf->cck_agc_rpt & 0x1f)<<1) ;
4086 break;
4087 case 0x0:
4088 rx_pwr_all = -8 - ((pcck_buf->cck_agc_rpt & 0x1f)<<1) ;
4089 break;
4090 }
4091 }
4092
4093 pwdb_all = rtl819x_query_rxpwrpercentage(rx_pwr_all);
4094 pstats->RxPWDBAll = precord_stats->RxPWDBAll = pwdb_all;
4095 pstats->RecvSignalPower = rx_pwr_all;
4096
4097 //
4098 // (3) Get Signal Quality (EVM)
4099 //
4100 if(bpacket_match_bssid)
4101 {
4102 u8 sq;
4103
4104 if(pstats->RxPWDBAll > 40)
4105 {
4106 sq = 100;
4107 }else
4108 {
4109 sq = pcck_buf->sq_rpt;
4110
4111 if(pcck_buf->sq_rpt > 64)
4112 sq = 0;
4113 else if (pcck_buf->sq_rpt < 20)
4114 sq = 100;
4115 else
4116 sq = ((64-sq) * 100) / 44;
4117 }
4118 pstats->SignalQuality = precord_stats->SignalQuality = sq;
4119 pstats->RxMIMOSignalQuality[0] = precord_stats->RxMIMOSignalQuality[0] = sq;
4120 pstats->RxMIMOSignalQuality[1] = precord_stats->RxMIMOSignalQuality[1] = -1;
4121 }
4122 }
4123 else
4124 {
4125 //
4126 // (1)Get RSSI for HT rate
4127 //
4128 for(i=RF90_PATH_A; i<RF90_PATH_MAX; i++)
4129 {
4130 // 2008/01/30 MH we will judge RF RX path now.
4131 if (priv->brfpath_rxenable[i])
4132 rf_rx_num++;
4133 //else
4134 //continue;
4135
4136 //Fixed by Jacken from Bryant 2008-03-20
4137 //Original value is 106
4138 rx_pwr[i] = ((pofdm_buf->trsw_gain_X[i]&0x3F)*2) - 110;
4139
4140 //Get Rx snr value in DB
4141 tmp_rxsnr = pofdm_buf->rxsnr_X[i];
4142 rx_snrX = (char)(tmp_rxsnr);
4143 rx_snrX /= 2;
4144
4145 /* Translate DBM to percentage. */
4146 RSSI = rtl819x_query_rxpwrpercentage(rx_pwr[i]);
4147 if (priv->brfpath_rxenable[i])
4148 total_rssi += RSSI;
4149
4150 /* Record Signal Strength for next packet */
4151 if(bpacket_match_bssid)
4152 {
4153 pstats->RxMIMOSignalStrength[i] =(u8) RSSI;
4154 precord_stats->RxMIMOSignalStrength[i] =(u8) RSSI;
4155 }
4156 }
4157
4158
4159 //
4160 // (2)PWDB, Average PWDB cacluated by hardware (for rate adaptive)
4161 //
4162 //Fixed by Jacken from Bryant 2008-03-20
4163 //Original value is 106
4164 rx_pwr_all = (((pofdm_buf->pwdb_all ) >> 1 )& 0x7f) -106;
4165 pwdb_all = rtl819x_query_rxpwrpercentage(rx_pwr_all);
4166
4167 pstats->RxPWDBAll = precord_stats->RxPWDBAll = pwdb_all;
4168 pstats->RxPower = precord_stats->RxPower = rx_pwr_all;
4169 pstats->RecvSignalPower = rx_pwr_all;
4170 //
4171 // (3)EVM of HT rate
4172 //
4173 if(pdrvinfo->RxHT && pdrvinfo->RxRate>=DESC90_RATEMCS8 &&
4174 pdrvinfo->RxRate<=DESC90_RATEMCS15)
4175 max_spatial_stream = 2; //both spatial stream make sense
4176 else
4177 max_spatial_stream = 1; //only spatial stream 1 makes sense
4178
4179 for(i=0; i<max_spatial_stream; i++)
4180 {
4181 tmp_rxevm = pofdm_buf->rxevm_X[i];
4182 rx_evmX = (char)(tmp_rxevm);
4183
4184 // Do not use shift operation like "rx_evmX >>= 1" because the compilor of free build environment
4185 // fill most significant bit to "zero" when doing shifting operation which may change a negative
4186 // value to positive one, then the dbm value (which is supposed to be negative) is not correct anymore.
4187 rx_evmX /= 2; //dbm
4188
4189 evm = rtl819x_evm_dbtopercentage(rx_evmX);
4190 if(bpacket_match_bssid)
4191 {
4192 if(i==0) // Fill value in RFD, Get the first spatial stream only
4193 pstats->SignalQuality = precord_stats->SignalQuality = (u8)(evm & 0xff);
4194 pstats->RxMIMOSignalQuality[i] = precord_stats->RxMIMOSignalQuality[i] = (u8)(evm & 0xff);
4195 }
4196 }
4197
4198
4199 /* record rx statistics for debug */
4200 rxsc_sgien_exflg = pofdm_buf->rxsc_sgien_exflg;
4201 prxsc = (phy_ofdm_rx_status_rxsc_sgien_exintfflag *)&rxsc_sgien_exflg;
4202 }
4203
4204 //UI BSS List signal strength(in percentage), make it good looking, from 0~100.
4205 //It is assigned to the BSS List in GetValueFromBeaconOrProbeRsp().
4206 if(is_cck_rate)
4207 {
4208 pstats->SignalStrength = precord_stats->SignalStrength = (u8)(rtl819x_signal_scale_mapping((long)pwdb_all));//PWDB_ALL;
4209
4210 }
4211 else
4212 {
4213 //pRfd->Status.SignalStrength = pRecordRfd->Status.SignalStrength = (u1Byte)(SignalScaleMapping(total_rssi/=RF90_PATH_MAX));//(u1Byte)(total_rssi/=RF90_PATH_MAX);
4214 // We can judge RX path number now.
4215 if (rf_rx_num != 0)
4216 pstats->SignalStrength = precord_stats->SignalStrength = (u8)(rtl819x_signal_scale_mapping((long)(total_rssi/=rf_rx_num)));
4217 }
4218 }
4219
4220 static void
4221 rtl8192_record_rxdesc_forlateruse(
4222 struct ieee80211_rx_stats * psrc_stats,
4223 struct ieee80211_rx_stats * ptarget_stats
4224 )
4225 {
4226 ptarget_stats->bIsAMPDU = psrc_stats->bIsAMPDU;
4227 ptarget_stats->bFirstMPDU = psrc_stats->bFirstMPDU;
4228 }
4229
4230
4231
4232 static void TranslateRxSignalStuff819xpci(struct r8192_priv *priv,
4233 struct sk_buff *skb,
4234 struct ieee80211_rx_stats * pstats,
4235 prx_desc_819x_pci pdesc,
4236 prx_fwinfo_819x_pci pdrvinfo)
4237 {
4238 // TODO: We must only check packet for current MAC address. Not finish
4239 bool bpacket_match_bssid, bpacket_toself;
4240 bool bPacketBeacon=false, bToSelfBA=false;
4241 struct ieee80211_hdr_3addr *hdr;
4242 u16 fc,type;
4243
4244 // Get Signal Quality for only RX data queue (but not command queue)
4245
4246 u8* tmp_buf;
4247 u8 *praddr;
4248
4249 /* Get MAC frame start address. */
4250 tmp_buf = skb->data;
4251
4252 hdr = (struct ieee80211_hdr_3addr *)tmp_buf;
4253 fc = le16_to_cpu(hdr->frame_ctl);
4254 type = WLAN_FC_GET_TYPE(fc);
4255 praddr = hdr->addr1;
4256
4257 /* Check if the received packet is acceptabe. */
4258 bpacket_match_bssid = ((IEEE80211_FTYPE_CTL != type) &&
4259 (!compare_ether_addr(priv->ieee80211->current_network.bssid, (fc & IEEE80211_FCTL_TODS)? hdr->addr1 : (fc & IEEE80211_FCTL_FROMDS )? hdr->addr2 : hdr->addr3))
4260 && (!pstats->bHwError) && (!pstats->bCRC)&& (!pstats->bICV));
4261 bpacket_toself = bpacket_match_bssid & (!compare_ether_addr(praddr, priv->ieee80211->dev->dev_addr));
4262
4263 if(WLAN_FC_GET_FRAMETYPE(fc)== IEEE80211_STYPE_BEACON)
4264 {
4265 bPacketBeacon = true;
4266 }
4267 if(WLAN_FC_GET_FRAMETYPE(fc) == IEEE80211_STYPE_BLOCKACK)
4268 {
4269 if (!compare_ether_addr(praddr, priv->ieee80211->dev->dev_addr))
4270 bToSelfBA = true;
4271 }
4272
4273 //
4274 // Process PHY information for previous packet (RSSI/PWDB/EVM)
4275 //
4276 // Because phy information is contained in the last packet of AMPDU only, so driver
4277 // should process phy information of previous packet
4278 rtl8192_process_phyinfo(priv, tmp_buf, &priv->previous_stats, pstats);
4279 rtl8192_query_rxphystatus(priv, pstats, pdesc, pdrvinfo, &priv->previous_stats, bpacket_match_bssid,
4280 bpacket_toself ,bPacketBeacon, bToSelfBA);
4281 rtl8192_record_rxdesc_forlateruse(pstats, &priv->previous_stats);
4282
4283 }
4284
4285
4286 static void rtl8192_tx_resume(struct r8192_priv *priv)
4287 {
4288 struct ieee80211_device *ieee = priv->ieee80211;
4289 struct sk_buff *skb;
4290 int i;
4291
4292 for (i = BK_QUEUE; i < TXCMD_QUEUE; i++) {
4293 while ((!skb_queue_empty(&ieee->skb_waitQ[i])) &&
4294 (priv->ieee80211->check_nic_enough_desc(ieee, i) > 0)) {
4295 /* 1. dequeue the packet from the wait queue */
4296 skb = skb_dequeue(&ieee->skb_waitQ[i]);
4297 /* 2. tx the packet directly */
4298 ieee->softmac_data_hard_start_xmit(skb, ieee, 0);
4299 }
4300 }
4301 }
4302
4303 static void rtl8192_irq_tx_tasklet(unsigned long arg)
4304 {
4305 struct r8192_priv *priv = (struct r8192_priv*) arg;
4306 struct rtl8192_tx_ring *mgnt_ring = &priv->tx_ring[MGNT_QUEUE];
4307 unsigned long flags;
4308
4309 /* check if we need to report that the management queue is drained */
4310 spin_lock_irqsave(&priv->irq_th_lock, flags);
4311
4312 if (!skb_queue_len(&mgnt_ring->queue) &&
4313 priv->ieee80211->ack_tx_to_ieee &&
4314 rtl8192_is_tx_queue_empty(priv->ieee80211)) {
4315 priv->ieee80211->ack_tx_to_ieee = 0;
4316 ieee80211_ps_tx_ack(priv->ieee80211, 1);
4317 }
4318
4319 spin_unlock_irqrestore(&priv->irq_th_lock, flags);
4320
4321 rtl8192_tx_resume(priv);
4322 }
4323
4324 /* Record the received data rate */
4325 static void UpdateReceivedRateHistogramStatistics8190(
4326 struct r8192_priv *priv,
4327 struct ieee80211_rx_stats* pstats
4328 )
4329 {
4330 u32 rcvType=1; //0: Total, 1:OK, 2:CRC, 3:ICV
4331 u32 rateIndex;
4332 u32 preamble_guardinterval; //1: short preamble/GI, 0: long preamble/GI
4333
4334 if(pstats->bCRC)
4335 rcvType = 2;
4336 else if(pstats->bICV)
4337 rcvType = 3;
4338
4339 if(pstats->bShortPreamble)
4340 preamble_guardinterval = 1;// short
4341 else
4342 preamble_guardinterval = 0;// long
4343
4344 switch(pstats->rate)
4345 {
4346 //
4347 // CCK rate
4348 //
4349 case MGN_1M: rateIndex = 0; break;
4350 case MGN_2M: rateIndex = 1; break;
4351 case MGN_5_5M: rateIndex = 2; break;
4352 case MGN_11M: rateIndex = 3; break;
4353 //
4354 // Legacy OFDM rate
4355 //
4356 case MGN_6M: rateIndex = 4; break;
4357 case MGN_9M: rateIndex = 5; break;
4358 case MGN_12M: rateIndex = 6; break;
4359 case MGN_18M: rateIndex = 7; break;
4360 case MGN_24M: rateIndex = 8; break;
4361 case MGN_36M: rateIndex = 9; break;
4362 case MGN_48M: rateIndex = 10; break;
4363 case MGN_54M: rateIndex = 11; break;
4364 //
4365 // 11n High throughput rate
4366 //
4367 case MGN_MCS0: rateIndex = 12; break;
4368 case MGN_MCS1: rateIndex = 13; break;
4369 case MGN_MCS2: rateIndex = 14; break;
4370 case MGN_MCS3: rateIndex = 15; break;
4371 case MGN_MCS4: rateIndex = 16; break;
4372 case MGN_MCS5: rateIndex = 17; break;
4373 case MGN_MCS6: rateIndex = 18; break;
4374 case MGN_MCS7: rateIndex = 19; break;
4375 case MGN_MCS8: rateIndex = 20; break;
4376 case MGN_MCS9: rateIndex = 21; break;
4377 case MGN_MCS10: rateIndex = 22; break;
4378 case MGN_MCS11: rateIndex = 23; break;
4379 case MGN_MCS12: rateIndex = 24; break;
4380 case MGN_MCS13: rateIndex = 25; break;
4381 case MGN_MCS14: rateIndex = 26; break;
4382 case MGN_MCS15: rateIndex = 27; break;
4383 default: rateIndex = 28; break;
4384 }
4385 priv->stats.received_rate_histogram[0][rateIndex]++; //total
4386 priv->stats.received_rate_histogram[rcvType][rateIndex]++;
4387 }
4388
4389 static void rtl8192_rx(struct r8192_priv *priv)
4390 {
4391 struct ieee80211_hdr_1addr *ieee80211_hdr = NULL;
4392 bool unicast_packet = false;
4393 struct ieee80211_rx_stats stats = {
4394 .signal = 0,
4395 .noise = -98,
4396 .rate = 0,
4397 .freq = IEEE80211_24GHZ_BAND,
4398 };
4399 unsigned int count = priv->rxringcount;
4400 prx_fwinfo_819x_pci pDrvInfo = NULL;
4401 struct sk_buff *new_skb;
4402
4403 while (count--) {
4404 rx_desc_819x_pci *pdesc = &priv->rx_ring[priv->rx_idx];//rx descriptor
4405 struct sk_buff *skb = priv->rx_buf[priv->rx_idx];//rx pkt
4406
4407 if (pdesc->OWN)
4408 /* wait data to be filled by hardware */
4409 return;
4410
4411 stats.bICV = pdesc->ICV;
4412 stats.bCRC = pdesc->CRC32;
4413 stats.bHwError = pdesc->CRC32 | pdesc->ICV;
4414
4415 stats.Length = pdesc->Length;
4416 if(stats.Length < 24)
4417 stats.bHwError |= 1;
4418
4419 if(stats.bHwError) {
4420 stats.bShift = false;
4421 goto done;
4422 }
4423 pDrvInfo = NULL;
4424 new_skb = dev_alloc_skb(priv->rxbuffersize);
4425
4426 if (unlikely(!new_skb))
4427 goto done;
4428
4429 stats.RxDrvInfoSize = pdesc->RxDrvInfoSize;
4430 stats.RxBufShift = ((pdesc->Shift)&0x03);
4431 stats.Decrypted = !pdesc->SWDec;
4432
4433 pci_dma_sync_single_for_cpu(priv->pdev,
4434 *((dma_addr_t *)skb->cb),
4435 priv->rxbuffersize,
4436 PCI_DMA_FROMDEVICE);
4437 skb_put(skb, pdesc->Length);
4438 pDrvInfo = (rx_fwinfo_819x_pci *)(skb->data + stats.RxBufShift);
4439 skb_reserve(skb, stats.RxDrvInfoSize + stats.RxBufShift);
4440
4441 stats.rate = HwRateToMRate90((bool)pDrvInfo->RxHT, (u8)pDrvInfo->RxRate);
4442 stats.bShortPreamble = pDrvInfo->SPLCP;
4443
4444 /* it is debug only. It should be disabled in released driver.
4445 * 2007.1.11 by Emily
4446 * */
4447 UpdateReceivedRateHistogramStatistics8190(priv, &stats);
4448
4449 stats.bIsAMPDU = (pDrvInfo->PartAggr==1);
4450 stats.bFirstMPDU = (pDrvInfo->PartAggr==1) && (pDrvInfo->FirstAGGR==1);
4451
4452 stats.TimeStampLow = pDrvInfo->TSFL;
4453 stats.TimeStampHigh = read_nic_dword(priv, TSFR+4);
4454
4455 UpdateRxPktTimeStamp8190(priv, &stats);
4456
4457 //
4458 // Get Total offset of MPDU Frame Body
4459 //
4460 if((stats.RxBufShift + stats.RxDrvInfoSize) > 0)
4461 stats.bShift = 1;
4462
4463 /* ???? */
4464 TranslateRxSignalStuff819xpci(priv, skb, &stats, pdesc, pDrvInfo);
4465
4466 /* Rx A-MPDU */
4467 if(pDrvInfo->FirstAGGR==1 || pDrvInfo->PartAggr == 1)
4468 RT_TRACE(COMP_RXDESC, "pDrvInfo->FirstAGGR = %d, pDrvInfo->PartAggr = %d\n",
4469 pDrvInfo->FirstAGGR, pDrvInfo->PartAggr);
4470 skb_trim(skb, skb->len - 4/*sCrcLng*/);
4471 /* rx packets statistics */
4472 ieee80211_hdr = (struct ieee80211_hdr_1addr *)skb->data;
4473 unicast_packet = false;
4474
4475 if(is_broadcast_ether_addr(ieee80211_hdr->addr1)) {
4476 //TODO
4477 }else if(is_multicast_ether_addr(ieee80211_hdr->addr1)){
4478 //TODO
4479 }else {
4480 /* unicast packet */
4481 unicast_packet = true;
4482 }
4483
4484 if(!ieee80211_rtl_rx(priv->ieee80211, skb, &stats)){
4485 dev_kfree_skb_any(skb);
4486 } else {
4487 priv->stats.rxok++;
4488 if(unicast_packet) {
4489 priv->stats.rxbytesunicast += skb->len;
4490 }
4491 }
4492
4493 pci_unmap_single(priv->pdev, *((dma_addr_t *) skb->cb),
4494 priv->rxbuffersize, PCI_DMA_FROMDEVICE);
4495
4496 skb = new_skb;
4497 priv->rx_buf[priv->rx_idx] = skb;
4498 *((dma_addr_t *) skb->cb) = pci_map_single(priv->pdev, skb_tail_pointer(skb), priv->rxbuffersize, PCI_DMA_FROMDEVICE);
4499
4500 done:
4501 pdesc->BufferAddress = cpu_to_le32(*((dma_addr_t *)skb->cb));
4502 pdesc->OWN = 1;
4503 pdesc->Length = priv->rxbuffersize;
4504 if (priv->rx_idx == priv->rxringcount-1)
4505 pdesc->EOR = 1;
4506 priv->rx_idx = (priv->rx_idx + 1) % priv->rxringcount;
4507 }
4508
4509 }
4510
4511 static void rtl8192_irq_rx_tasklet(unsigned long arg)
4512 {
4513 struct r8192_priv *priv = (struct r8192_priv*) arg;
4514 rtl8192_rx(priv);
4515 /* unmask RDU */
4516 write_nic_dword(priv, INTA_MASK, read_nic_dword(priv, INTA_MASK) | IMR_RDU);
4517 }
4518
4519 static const struct net_device_ops rtl8192_netdev_ops = {
4520 .ndo_open = rtl8192_open,
4521 .ndo_stop = rtl8192_close,
4522 .ndo_tx_timeout = tx_timeout,
4523 .ndo_do_ioctl = rtl8192_ioctl,
4524 .ndo_set_multicast_list = r8192_set_multicast,
4525 .ndo_set_mac_address = r8192_set_mac_adr,
4526 .ndo_start_xmit = ieee80211_rtl_xmit,
4527 };
4528
4529 static int __devinit rtl8192_pci_probe(struct pci_dev *pdev,
4530 const struct pci_device_id *id)
4531 {
4532 struct net_device *dev = NULL;
4533 struct r8192_priv *priv= NULL;
4534 u8 unit = 0;
4535 int ret = -ENODEV;
4536 unsigned long pmem_start, pmem_len, pmem_flags;
4537
4538 RT_TRACE(COMP_INIT,"Configuring chip resources\n");
4539
4540 if( pci_enable_device (pdev) ){
4541 RT_TRACE(COMP_ERR,"Failed to enable PCI device");
4542 return -EIO;
4543 }
4544
4545 pci_set_master(pdev);
4546 //pci_set_wmi(pdev);
4547 pci_set_dma_mask(pdev, 0xffffff00ULL);
4548 pci_set_consistent_dma_mask(pdev,0xffffff00ULL);
4549 dev = alloc_ieee80211(sizeof(struct r8192_priv));
4550 if (!dev) {
4551 ret = -ENOMEM;
4552 goto fail_free;
4553 }
4554
4555 pci_set_drvdata(pdev, dev);
4556 SET_NETDEV_DEV(dev, &pdev->dev);
4557 priv = ieee80211_priv(dev);
4558 priv->ieee80211 = netdev_priv(dev);
4559 priv->pdev=pdev;
4560 if((pdev->subsystem_vendor == PCI_VENDOR_ID_DLINK)&&(pdev->subsystem_device == 0x3304)){
4561 priv->ieee80211->bSupportRemoteWakeUp = 1;
4562 } else
4563 {
4564 priv->ieee80211->bSupportRemoteWakeUp = 0;
4565 }
4566
4567 pmem_start = pci_resource_start(pdev, 1);
4568 pmem_len = pci_resource_len(pdev, 1);
4569 pmem_flags = pci_resource_flags (pdev, 1);
4570
4571 if (!(pmem_flags & IORESOURCE_MEM)) {
4572 RT_TRACE(COMP_ERR, "region #1 not a MMIO resource, aborting\n");
4573 goto fail;
4574 }
4575
4576 //DMESG("Memory mapped space @ 0x%08lx ", pmem_start);
4577 if( ! request_mem_region(pmem_start, pmem_len, RTL819xE_MODULE_NAME)) {
4578 RT_TRACE(COMP_ERR,"request_mem_region failed!\n");
4579 goto fail;
4580 }
4581
4582 priv->mem_start = ioremap_nocache(pmem_start, pmem_len);
4583 if (!priv->mem_start) {
4584 RT_TRACE(COMP_ERR,"ioremap failed!\n");
4585 goto fail1;
4586 }
4587
4588 dev->mem_start = (unsigned long) priv->mem_start;
4589 dev->mem_end = (unsigned long) (priv->mem_start +
4590 pci_resource_len(pdev, 0));
4591
4592 /* We disable the RETRY_TIMEOUT register (0x41) to keep
4593 * PCI Tx retries from interfering with C3 CPU state */
4594 pci_write_config_byte(pdev, 0x41, 0x00);
4595
4596
4597 pci_read_config_byte(pdev, 0x05, &unit);
4598 pci_write_config_byte(pdev, 0x05, unit & (~0x04));
4599
4600 dev->irq = pdev->irq;
4601 priv->irq = 0;
4602
4603 dev->netdev_ops = &rtl8192_netdev_ops;
4604
4605 dev->wireless_handlers = &r8192_wx_handlers_def;
4606 dev->type=ARPHRD_ETHER;
4607
4608 dev->watchdog_timeo = HZ*3;
4609
4610 if (dev_alloc_name(dev, ifname) < 0){
4611 RT_TRACE(COMP_INIT, "Oops: devname already taken! Trying wlan%%d...\n");
4612 strcpy(ifname, "wlan%d");
4613 dev_alloc_name(dev, ifname);
4614 }
4615
4616 RT_TRACE(COMP_INIT, "Driver probe completed1\n");
4617 if (rtl8192_init(priv)!=0) {
4618 RT_TRACE(COMP_ERR, "Initialization failed\n");
4619 goto fail;
4620 }
4621
4622 register_netdev(dev);
4623 RT_TRACE(COMP_INIT, "dev name=======> %s\n",dev->name);
4624 rtl8192_proc_init_one(priv);
4625
4626
4627 RT_TRACE(COMP_INIT, "Driver probe completed\n");
4628 return 0;
4629
4630 fail1:
4631
4632 if (priv->mem_start) {
4633 iounmap(priv->mem_start);
4634 release_mem_region( pci_resource_start(pdev, 1),
4635 pci_resource_len(pdev, 1) );
4636 }
4637
4638 fail:
4639 if(dev){
4640
4641 if (priv->irq) {
4642 free_irq(priv->irq, priv);
4643 priv->irq = 0;
4644 }
4645 free_ieee80211(dev);
4646 }
4647
4648 fail_free:
4649 pci_disable_device(pdev);
4650
4651 DMESG("wlan driver load failed\n");
4652 pci_set_drvdata(pdev, NULL);
4653 return ret;
4654
4655 }
4656
4657 /* detach all the work and timer structure declared or inititialized
4658 * in r8192_init function.
4659 * */
4660 static void rtl8192_cancel_deferred_work(struct r8192_priv* priv)
4661 {
4662 /* call cancel_work_sync instead of cancel_delayed_work if and only if Linux_version_code
4663 * is or is newer than 2.6.20 and work structure is defined to be struct work_struct.
4664 * Otherwise call cancel_delayed_work is enough.
4665 * FIXME (2.6.20 should 2.6.22, work_struct should not cancel)
4666 * */
4667 cancel_delayed_work(&priv->watch_dog_wq);
4668 cancel_delayed_work(&priv->update_beacon_wq);
4669 cancel_delayed_work(&priv->ieee80211->hw_wakeup_wq);
4670 cancel_delayed_work(&priv->gpio_change_rf_wq);
4671 cancel_work_sync(&priv->reset_wq);
4672 cancel_work_sync(&priv->qos_activate);
4673 }
4674
4675
4676 static void __devexit rtl8192_pci_disconnect(struct pci_dev *pdev)
4677 {
4678 struct net_device *dev = pci_get_drvdata(pdev);
4679 struct r8192_priv *priv ;
4680 u32 i;
4681
4682 if (dev) {
4683
4684 unregister_netdev(dev);
4685
4686 priv = ieee80211_priv(dev);
4687
4688 rtl8192_proc_remove_one(priv);
4689
4690 rtl8192_down(dev);
4691 if (priv->pFirmware)
4692 {
4693 vfree(priv->pFirmware);
4694 priv->pFirmware = NULL;
4695 }
4696 destroy_workqueue(priv->priv_wq);
4697
4698 /* free tx/rx rings */
4699 rtl8192_free_rx_ring(priv);
4700 for (i = 0; i < MAX_TX_QUEUE_COUNT; i++)
4701 rtl8192_free_tx_ring(priv, i);
4702
4703 if (priv->irq) {
4704 printk("Freeing irq %d\n", priv->irq);
4705 free_irq(priv->irq, priv);
4706 priv->irq = 0;
4707 }
4708
4709 if (priv->mem_start) {
4710 iounmap(priv->mem_start);
4711 release_mem_region( pci_resource_start(pdev, 1),
4712 pci_resource_len(pdev, 1) );
4713 }
4714
4715 free_ieee80211(dev);
4716 }
4717
4718 pci_disable_device(pdev);
4719 RT_TRACE(COMP_DOWN, "wlan driver removed\n");
4720 }
4721
4722 extern int ieee80211_rtl_init(void);
4723 extern void ieee80211_rtl_exit(void);
4724
4725 static int __init rtl8192_pci_module_init(void)
4726 {
4727 int retval;
4728
4729 retval = ieee80211_rtl_init();
4730 if (retval)
4731 return retval;
4732
4733 printk(KERN_INFO "\nLinux kernel driver for RTL8192 based WLAN cards\n");
4734 printk(KERN_INFO "Copyright (c) 2007-2008, Realsil Wlan\n");
4735 RT_TRACE(COMP_INIT, "Initializing module\n");
4736 rtl8192_proc_module_init();
4737 if(0!=pci_register_driver(&rtl8192_pci_driver))
4738 {
4739 DMESG("No device found");
4740 /*pci_unregister_driver (&rtl8192_pci_driver);*/
4741 return -ENODEV;
4742 }
4743 return 0;
4744 }
4745
4746
4747 static void __exit rtl8192_pci_module_exit(void)
4748 {
4749 pci_unregister_driver(&rtl8192_pci_driver);
4750
4751 RT_TRACE(COMP_DOWN, "Exiting\n");
4752 rtl8192_proc_module_remove();
4753 ieee80211_rtl_exit();
4754 }
4755
4756 static irqreturn_t rtl8192_interrupt(int irq, void *param)
4757 {
4758 struct r8192_priv *priv = param;
4759 struct net_device *dev = priv->ieee80211->dev;
4760 unsigned long flags;
4761 u32 inta;
4762 irqreturn_t ret = IRQ_HANDLED;
4763
4764 spin_lock_irqsave(&priv->irq_th_lock, flags);
4765
4766 /* ISR: 4bytes */
4767
4768 inta = read_nic_dword(priv, ISR); /* & priv->IntrMask; */
4769 write_nic_dword(priv, ISR, inta); /* reset int situation */
4770
4771 if (!inta) {
4772 /*
4773 * most probably we can safely return IRQ_NONE,
4774 * but for now is better to avoid problems
4775 */
4776 goto out_unlock;
4777 }
4778
4779 if (inta == 0xffff) {
4780 /* HW disappared */
4781 goto out_unlock;
4782 }
4783
4784 if (!netif_running(dev))
4785 goto out_unlock;
4786
4787 if (inta & IMR_TBDOK) {
4788 RT_TRACE(COMP_INTR, "beacon ok interrupt!\n");
4789 rtl8192_tx_isr(priv, BEACON_QUEUE);
4790 priv->stats.txbeaconokint++;
4791 }
4792
4793 if (inta & IMR_TBDER) {
4794 RT_TRACE(COMP_INTR, "beacon ok interrupt!\n");
4795 rtl8192_tx_isr(priv, BEACON_QUEUE);
4796 priv->stats.txbeaconerr++;
4797 }
4798
4799 if (inta & IMR_MGNTDOK ) {
4800 RT_TRACE(COMP_INTR, "Manage ok interrupt!\n");
4801 priv->stats.txmanageokint++;
4802 rtl8192_tx_isr(priv, MGNT_QUEUE);
4803 }
4804
4805 if (inta & IMR_COMDOK)
4806 {
4807 priv->stats.txcmdpktokint++;
4808 rtl8192_tx_isr(priv, TXCMD_QUEUE);
4809 }
4810
4811 if (inta & IMR_ROK) {
4812 priv->stats.rxint++;
4813 tasklet_schedule(&priv->irq_rx_tasklet);
4814 }
4815
4816 if (inta & IMR_BcnInt) {
4817 RT_TRACE(COMP_INTR, "prepare beacon for interrupt!\n");
4818 tasklet_schedule(&priv->irq_prepare_beacon_tasklet);
4819 }
4820
4821 if (inta & IMR_RDU) {
4822 RT_TRACE(COMP_INTR, "rx descriptor unavailable!\n");
4823 priv->stats.rxrdu++;
4824 /* reset int situation */
4825 write_nic_dword(priv, INTA_MASK, read_nic_dword(priv, INTA_MASK) & ~IMR_RDU);
4826 tasklet_schedule(&priv->irq_rx_tasklet);
4827 }
4828
4829 if (inta & IMR_RXFOVW) {
4830 RT_TRACE(COMP_INTR, "rx overflow !\n");
4831 priv->stats.rxoverflow++;
4832 tasklet_schedule(&priv->irq_rx_tasklet);
4833 }
4834
4835 if (inta & IMR_TXFOVW)
4836 priv->stats.txoverflow++;
4837
4838 if (inta & IMR_BKDOK) {
4839 RT_TRACE(COMP_INTR, "BK Tx OK interrupt!\n");
4840 priv->stats.txbkokint++;
4841 priv->ieee80211->LinkDetectInfo.NumTxOkInPeriod++;
4842 rtl8192_tx_isr(priv, BK_QUEUE);
4843 }
4844
4845 if (inta & IMR_BEDOK) {
4846 RT_TRACE(COMP_INTR, "BE TX OK interrupt!\n");
4847 priv->stats.txbeokint++;
4848 priv->ieee80211->LinkDetectInfo.NumTxOkInPeriod++;
4849 rtl8192_tx_isr(priv, BE_QUEUE);
4850 }
4851
4852 if (inta & IMR_VIDOK) {
4853 RT_TRACE(COMP_INTR, "VI TX OK interrupt!\n");
4854 priv->stats.txviokint++;
4855 priv->ieee80211->LinkDetectInfo.NumTxOkInPeriod++;
4856 rtl8192_tx_isr(priv, VI_QUEUE);
4857 }
4858
4859 if (inta & IMR_VODOK) {
4860 priv->stats.txvookint++;
4861 priv->ieee80211->LinkDetectInfo.NumTxOkInPeriod++;
4862 rtl8192_tx_isr(priv, VO_QUEUE);
4863 }
4864
4865 out_unlock:
4866 spin_unlock_irqrestore(&priv->irq_th_lock, flags);
4867
4868 return ret;
4869 }
4870
4871 void EnableHWSecurityConfig8192(struct r8192_priv *priv)
4872 {
4873 u8 SECR_value = 0x0;
4874 struct ieee80211_device* ieee = priv->ieee80211;
4875
4876 SECR_value = SCR_TxEncEnable | SCR_RxDecEnable;
4877
4878 if (((KEY_TYPE_WEP40 == ieee->pairwise_key_type) || (KEY_TYPE_WEP104 == ieee->pairwise_key_type)) && (priv->ieee80211->auth_mode != 2))
4879 {
4880 SECR_value |= SCR_RxUseDK;
4881 SECR_value |= SCR_TxUseDK;
4882 }
4883 else if ((ieee->iw_mode == IW_MODE_ADHOC) && (ieee->pairwise_key_type & (KEY_TYPE_CCMP | KEY_TYPE_TKIP)))
4884 {
4885 SECR_value |= SCR_RxUseDK;
4886 SECR_value |= SCR_TxUseDK;
4887 }
4888
4889 //add HWSec active enable here.
4890 //default using hwsec. when peer AP is in N mode only and pairwise_key_type is none_aes(which HT_IOT_ACT_PURE_N_MODE indicates it), use software security. when peer AP is in b,g,n mode mixed and pairwise_key_type is none_aes, use g mode hw security. WB on 2008.7.4
4891 ieee->hwsec_active = 1;
4892
4893 if ((ieee->pHTInfo->IOTAction&HT_IOT_ACT_PURE_N_MODE) || !hwwep)//!ieee->hwsec_support) //add hwsec_support flag to totol control hw_sec on/off
4894 {
4895 ieee->hwsec_active = 0;
4896 SECR_value &= ~SCR_RxDecEnable;
4897 }
4898
4899 RT_TRACE(COMP_SEC,"%s:, hwsec:%d, pairwise_key:%d, SECR_value:%x\n", __FUNCTION__,
4900 ieee->hwsec_active, ieee->pairwise_key_type, SECR_value);
4901 {
4902 write_nic_byte(priv, SECR, SECR_value);//SECR_value | SCR_UseDK );
4903 }
4904
4905 }
4906 #define TOTAL_CAM_ENTRY 32
4907 //#define CAM_CONTENT_COUNT 8
4908 void setKey(struct r8192_priv *priv, u8 EntryNo, u8 KeyIndex, u16 KeyType,
4909 const u8 *MacAddr, u8 DefaultKey, u32 *KeyContent)
4910 {
4911 u32 TargetCommand = 0;
4912 u32 TargetContent = 0;
4913 u16 usConfig = 0;
4914 u8 i;
4915 #ifdef ENABLE_IPS
4916 RT_RF_POWER_STATE rtState;
4917
4918 rtState = priv->eRFPowerState;
4919 if (priv->PowerSaveControl.bInactivePs){
4920 if(rtState == eRfOff){
4921 if(priv->RfOffReason > RF_CHANGE_BY_IPS)
4922 {
4923 RT_TRACE(COMP_ERR, "%s(): RF is OFF.\n",__FUNCTION__);
4924 //up(&priv->wx_sem);
4925 return ;
4926 }
4927 else{
4928 down(&priv->ieee80211->ips_sem);
4929 IPSLeave(priv);
4930 up(&priv->ieee80211->ips_sem);
4931 }
4932 }
4933 }
4934 priv->ieee80211->is_set_key = true;
4935 #endif
4936 if (EntryNo >= TOTAL_CAM_ENTRY)
4937 RT_TRACE(COMP_ERR, "cam entry exceeds in setKey()\n");
4938
4939 RT_TRACE(COMP_SEC, "====>to setKey(), priv:%p, EntryNo:%d, KeyIndex:%d, KeyType:%d, MacAddr%pM\n", priv, EntryNo, KeyIndex, KeyType, MacAddr);
4940
4941 if (DefaultKey)
4942 usConfig |= BIT15 | (KeyType<<2);
4943 else
4944 usConfig |= BIT15 | (KeyType<<2) | KeyIndex;
4945 // usConfig |= BIT15 | (KeyType<<2) | (DefaultKey<<5) | KeyIndex;
4946
4947
4948 for(i=0 ; i<CAM_CONTENT_COUNT; i++){
4949 TargetCommand = i+CAM_CONTENT_COUNT*EntryNo;
4950 TargetCommand |= BIT31|BIT16;
4951
4952 if(i==0){//MAC|Config
4953 TargetContent = (u32)(*(MacAddr+0)) << 16|
4954 (u32)(*(MacAddr+1)) << 24|
4955 (u32)usConfig;
4956
4957 write_nic_dword(priv, WCAMI, TargetContent);
4958 write_nic_dword(priv, RWCAM, TargetCommand);
4959 }
4960 else if(i==1){//MAC
4961 TargetContent = (u32)(*(MacAddr+2)) |
4962 (u32)(*(MacAddr+3)) << 8|
4963 (u32)(*(MacAddr+4)) << 16|
4964 (u32)(*(MacAddr+5)) << 24;
4965 write_nic_dword(priv, WCAMI, TargetContent);
4966 write_nic_dword(priv, RWCAM, TargetCommand);
4967 }
4968 else { //Key Material
4969 if(KeyContent != NULL)
4970 {
4971 write_nic_dword(priv, WCAMI, (u32)(*(KeyContent+i-2)) );
4972 write_nic_dword(priv, RWCAM, TargetCommand);
4973 }
4974 }
4975 }
4976 RT_TRACE(COMP_SEC,"=========>after set key, usconfig:%x\n", usConfig);
4977 }
4978
4979 bool NicIFEnableNIC(struct r8192_priv *priv)
4980 {
4981 RT_STATUS init_status = RT_STATUS_SUCCESS;
4982 PRT_POWER_SAVE_CONTROL pPSC = &priv->PowerSaveControl;
4983
4984 //YJ,add,091109
4985 if (priv->up == 0){
4986 RT_TRACE(COMP_ERR, "ERR!!! %s(): Driver is already down!\n",__FUNCTION__);
4987 priv->bdisable_nic = false; //YJ,add,091111
4988 return false;
4989 }
4990 // <1> Reset memory: descriptor, buffer,..
4991 //NicIFResetMemory(Adapter);
4992
4993 // <2> Enable Adapter
4994 //priv->bfirst_init = true;
4995 init_status = rtl8192_adapter_start(priv);
4996 if (init_status != RT_STATUS_SUCCESS) {
4997 RT_TRACE(COMP_ERR,"ERR!!! %s(): initialization is failed!\n",__FUNCTION__);
4998 priv->bdisable_nic = false; //YJ,add,091111
4999 return -1;
5000 }
5001 RT_CLEAR_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
5002 //priv->bfirst_init = false;
5003
5004 // <3> Enable Interrupt
5005 rtl8192_irq_enable(priv);
5006 priv->bdisable_nic = false;
5007
5008 return (init_status == RT_STATUS_SUCCESS);
5009 }
5010
5011 bool NicIFDisableNIC(struct r8192_priv *priv)
5012 {
5013 bool status = true;
5014 u8 tmp_state = 0;
5015 // <1> Disable Interrupt
5016
5017 priv->bdisable_nic = true; //YJ,move,091109
5018 tmp_state = priv->ieee80211->state;
5019
5020 ieee80211_softmac_stop_protocol(priv->ieee80211, false);
5021
5022 priv->ieee80211->state = tmp_state;
5023 rtl8192_cancel_deferred_work(priv);
5024 rtl8192_irq_disable(priv);
5025 // <2> Stop all timer
5026
5027 // <3> Disable Adapter
5028 rtl8192_halt_adapter(priv, false);
5029 // priv->bdisable_nic = true;
5030
5031 return status;
5032 }
5033
5034 module_init(rtl8192_pci_module_init);
5035 module_exit(rtl8192_pci_module_exit);
This page took 0.141316 seconds and 6 git commands to generate.