staging: delete non-required instances of include <linux/init.h>
[deliverable/linux.git] / drivers / staging / rtl8712 / rtl871x_security.c
1 /******************************************************************************
2 * rtl871x_security.c
3 *
4 * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
5 * Linux device driver for RTL8192SU
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
19 *
20 * Modifications for inclusion into the Linux staging tree are
21 * Copyright(c) 2010 Larry Finger. All rights reserved.
22 *
23 * Contact information:
24 * WLAN FAE <wlanfae@realtek.com>
25 * Larry Finger <Larry.Finger@lwfinger.net>
26 *
27 ******************************************************************************/
28
29 #define _RTL871X_SECURITY_C_
30
31 #include <linux/compiler.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/slab.h>
35 #include <linux/module.h>
36 #include <linux/kref.h>
37 #include <linux/netdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/circ_buf.h>
40 #include <linux/uaccess.h>
41 #include <asm/byteorder.h>
42 #include <linux/atomic.h>
43 #include <linux/semaphore.h>
44
45 #include "osdep_service.h"
46 #include "drv_types.h"
47 #include "wifi.h"
48 #include "osdep_intf.h"
49
50 /* =====WEP related===== */
51
52 #define CRC32_POLY 0x04c11db7
53
54 struct arc4context {
55 u32 x;
56 u32 y;
57 u8 state[256];
58 };
59
60 static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
61 {
62 u32 t, u;
63 u32 keyindex;
64 u32 stateindex;
65 u8 *state;
66 u32 counter;
67
68 state = parc4ctx->state;
69 parc4ctx->x = 0;
70 parc4ctx->y = 0;
71 for (counter = 0; counter < 256; counter++)
72 state[counter] = (u8)counter;
73 keyindex = 0;
74 stateindex = 0;
75 for (counter = 0; counter < 256; counter++) {
76 t = state[counter];
77 stateindex = (stateindex + key[keyindex] + t) & 0xff;
78 u = state[stateindex];
79 state[stateindex] = (u8)t;
80 state[counter] = (u8)u;
81 if (++keyindex >= key_len)
82 keyindex = 0;
83 }
84 }
85
86 static u32 arcfour_byte(struct arc4context *parc4ctx)
87 {
88 u32 x;
89 u32 y;
90 u32 sx, sy;
91 u8 *state;
92
93 state = parc4ctx->state;
94 x = (parc4ctx->x + 1) & 0xff;
95 sx = state[x];
96 y = (sx + parc4ctx->y) & 0xff;
97 sy = state[y];
98 parc4ctx->x = x;
99 parc4ctx->y = y;
100 state[y] = (u8)sx;
101 state[x] = (u8)sy;
102 return state[(sx + sy) & 0xff];
103 }
104
105 static void arcfour_encrypt(struct arc4context *parc4ctx,
106 u8 *dest, u8 *src, u32 len)
107 {
108 u32 i;
109
110 for (i = 0; i < len; i++)
111 dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
112 }
113
114 static sint bcrc32initialized;
115 static u32 crc32_table[256];
116
117 static u8 crc32_reverseBit(u8 data)
118 {
119 return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3)
120 & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) |
121 ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) &
122 0x01);
123 }
124
125 static void crc32_init(void)
126 {
127 if (bcrc32initialized == 1)
128 return;
129 else {
130 sint i, j;
131 u32 c;
132 u8 *p = (u8 *)&c, *p1;
133 u8 k;
134
135 c = 0x12340000;
136 for (i = 0; i < 256; ++i) {
137 k = crc32_reverseBit((u8)i);
138 for (c = ((u32)k) << 24, j = 8; j > 0; --j)
139 c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY :
140 (c << 1);
141 p1 = (u8 *)&crc32_table[i];
142 p1[0] = crc32_reverseBit(p[3]);
143 p1[1] = crc32_reverseBit(p[2]);
144 p1[2] = crc32_reverseBit(p[1]);
145 p1[3] = crc32_reverseBit(p[0]);
146 }
147 bcrc32initialized = 1;
148 }
149 }
150
151 static u32 getcrc32(u8 *buf, u32 len)
152 {
153 u8 *p;
154 u32 crc;
155
156 if (bcrc32initialized == 0)
157 crc32_init();
158 crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
159 for (p = buf; len > 0; ++p, --len)
160 crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
161 return ~crc; /* transmit complement, per CRC-32 spec */
162 }
163
164 /*
165 Need to consider the fragment situation
166 */
167 void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe)
168 { /* exclude ICV */
169 unsigned char crc[4];
170 struct arc4context mycontext;
171 u32 curfragnum, length, keylength;
172 u8 *pframe, *payload, *iv; /*,*wepkey*/
173 u8 wepkey[16];
174 struct pkt_attrib *pattrib = &((struct xmit_frame *)
175 pxmitframe)->attrib;
176 struct security_priv *psecuritypriv = &padapter->securitypriv;
177 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
178
179 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
180 return;
181 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
182 /*start to encrypt each fragment*/
183 if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
184 keylength = psecuritypriv->DefKeylen[psecuritypriv->
185 PrivacyKeyIndex];
186 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
187 curfragnum++) {
188 iv = pframe+pattrib->hdrlen;
189 memcpy(&wepkey[0], iv, 3);
190 memcpy(&wepkey[3], &psecuritypriv->DefKey[
191 psecuritypriv->PrivacyKeyIndex].skey[0],
192 keylength);
193 payload = pframe+pattrib->iv_len+pattrib->hdrlen;
194 if ((curfragnum + 1) == pattrib->nr_frags) {
195 length = pattrib->last_txcmdsz-pattrib->
196 hdrlen-pattrib->iv_len -
197 pattrib->icv_len;
198 *((u32 *)crc) = cpu_to_le32(getcrc32(
199 payload, length));
200 arcfour_init(&mycontext, wepkey, 3 + keylength);
201 arcfour_encrypt(&mycontext, payload, payload,
202 length);
203 arcfour_encrypt(&mycontext, payload + length,
204 crc, 4);
205 } else {
206 length = pxmitpriv->frag_len-pattrib->hdrlen -
207 pattrib->iv_len-pattrib->icv_len;
208 *((u32 *)crc) = cpu_to_le32(getcrc32(
209 payload, length));
210 arcfour_init(&mycontext, wepkey, 3 + keylength);
211 arcfour_encrypt(&mycontext, payload, payload,
212 length);
213 arcfour_encrypt(&mycontext, payload+length,
214 crc, 4);
215 pframe += pxmitpriv->frag_len;
216 pframe = (u8 *)RND4((addr_t)(pframe));
217 }
218 }
219 }
220 }
221
222 void r8712_wep_decrypt(struct _adapter *padapter, u8 *precvframe)
223 {
224 /* exclude ICV */
225 u8 crc[4];
226 struct arc4context mycontext;
227 u32 length, keylength;
228 u8 *pframe, *payload, *iv, wepkey[16];
229 u8 keyindex;
230 struct rx_pkt_attrib *prxattrib = &(((union recv_frame *)
231 precvframe)->u.hdr.attrib);
232 struct security_priv *psecuritypriv = &padapter->securitypriv;
233
234 pframe = (unsigned char *)((union recv_frame *)precvframe)->
235 u.hdr.rx_data;
236 /* start to decrypt recvframe */
237 if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt ==
238 _WEP104_)) {
239 iv = pframe + prxattrib->hdrlen;
240 keyindex = (iv[3] & 0x3);
241 keylength = psecuritypriv->DefKeylen[keyindex];
242 memcpy(&wepkey[0], iv, 3);
243 memcpy(&wepkey[3], &psecuritypriv->DefKey[
244 psecuritypriv->PrivacyKeyIndex].skey[0],
245 keylength);
246 length = ((union recv_frame *)precvframe)->
247 u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
248 payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;
249 /* decrypt payload include icv */
250 arcfour_init(&mycontext, wepkey, 3 + keylength);
251 arcfour_encrypt(&mycontext, payload, payload, length);
252 /* calculate icv and compare the icv */
253 *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4));
254 }
255 return;
256 }
257
258 /* 3 =====TKIP related===== */
259
260 static u32 secmicgetuint32(u8 *p)
261 /* Convert from Byte[] to Us4Byte32 in a portable way */
262 {
263 s32 i;
264 u32 res = 0;
265
266 for (i = 0; i < 4; i++)
267 res |= ((u32)(*p++)) << (8 * i);
268 return res;
269 }
270
271 static void secmicputuint32(u8 *p, u32 val)
272 /* Convert from Us4Byte32 to Byte[] in a portable way */
273 {
274 long i;
275 for (i = 0; i < 4; i++) {
276 *p++ = (u8) (val & 0xff);
277 val >>= 8;
278 }
279 }
280
281 static void secmicclear(struct mic_data *pmicdata)
282 {
283 /* Reset the state to the empty message. */
284 pmicdata->L = pmicdata->K0;
285 pmicdata->R = pmicdata->K1;
286 pmicdata->nBytesInM = 0;
287 pmicdata->M = 0;
288 }
289
290 void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key)
291 {
292 /* Set the key */
293 pmicdata->K0 = secmicgetuint32(key);
294 pmicdata->K1 = secmicgetuint32(key + 4);
295 /* and reset the message */
296 secmicclear(pmicdata);
297 }
298
299 static void secmicappendbyte(struct mic_data *pmicdata, u8 b)
300 {
301 /* Append the byte to our word-sized buffer */
302 pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM);
303 pmicdata->nBytesInM++;
304 /* Process the word if it is full. */
305 if (pmicdata->nBytesInM >= 4) {
306 pmicdata->L ^= pmicdata->M;
307 pmicdata->R ^= ROL32(pmicdata->L, 17);
308 pmicdata->L += pmicdata->R;
309 pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) |
310 ((pmicdata->L & 0x00ff00ff) << 8);
311 pmicdata->L += pmicdata->R;
312 pmicdata->R ^= ROL32(pmicdata->L, 3);
313 pmicdata->L += pmicdata->R;
314 pmicdata->R ^= ROR32(pmicdata->L, 2);
315 pmicdata->L += pmicdata->R;
316 /* Clear the buffer */
317 pmicdata->M = 0;
318 pmicdata->nBytesInM = 0;
319 }
320 }
321
322 void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
323 {
324 /* This is simple */
325 while (nbytes > 0) {
326 secmicappendbyte(pmicdata, *src++);
327 nbytes--;
328 }
329 }
330
331 void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst)
332 {
333 /* Append the minimum padding */
334 secmicappendbyte(pmicdata, 0x5a);
335 secmicappendbyte(pmicdata, 0);
336 secmicappendbyte(pmicdata, 0);
337 secmicappendbyte(pmicdata, 0);
338 secmicappendbyte(pmicdata, 0);
339 /* and then zeroes until the length is a multiple of 4 */
340 while (pmicdata->nBytesInM != 0)
341 secmicappendbyte(pmicdata, 0);
342 /* The appendByte function has already computed the result. */
343 secmicputuint32(dst, pmicdata->L);
344 secmicputuint32(dst + 4, pmicdata->R);
345 /* Reset to the empty message. */
346 secmicclear(pmicdata);
347 }
348
349 void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code,
350 u8 pri)
351 {
352
353 struct mic_data micdata;
354 u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
355
356 r8712_secmicsetkey(&micdata, key);
357 priority[0] = pri;
358 /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
359 if (header[1] & 1) { /* ToDS==1 */
360 r8712_secmicappend(&micdata, &header[16], 6); /* DA */
361 if (header[1] & 2) /* From Ds==1 */
362 r8712_secmicappend(&micdata, &header[24], 6);
363 else
364 r8712_secmicappend(&micdata, &header[10], 6);
365 } else { /* ToDS==0 */
366 r8712_secmicappend(&micdata, &header[4], 6); /* DA */
367 if (header[1] & 2) /* From Ds==1 */
368 r8712_secmicappend(&micdata, &header[16], 6);
369 else
370 r8712_secmicappend(&micdata, &header[10], 6);
371 }
372 r8712_secmicappend(&micdata, &priority[0], 4);
373 r8712_secmicappend(&micdata, data, data_len);
374 r8712_secgetmic(&micdata, mic_code);
375 }
376
377 /* macros for extraction/creation of unsigned char/unsigned short values */
378 #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
379 #define Lo8(v16) ((u8)((v16) & 0x00FF))
380 #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF))
381 #define Lo16(v32) ((u16)((v32) & 0xFFFF))
382 #define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF))
383 #define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
384
385 /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */
386 #define TK16(N) Mk16(tk[2 * (N) + 1], tk[2 * (N)])
387
388 /* S-box lookup: 16 bits --> 16 bits */
389 #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
390
391 /* fixed algorithm "parameters" */
392 #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */
393 #define TA_SIZE 6 /* 48-bit transmitter address */
394 #define TK_SIZE 16 /* 128-bit temporal key */
395 #define P1K_SIZE 10 /* 80-bit Phase1 key */
396 #define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */
397
398
399 /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
400 static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */
401 {
402 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
403 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
404 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
405 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
406 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
407 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
408 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
409 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
410 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
411 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
412 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
413 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
414 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
415 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
416 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
417 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
418 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
419 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
420 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
421 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
422 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
423 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
424 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
425 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
426 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
427 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
428 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
429 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
430 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
431 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
432 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
433 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
434 },
435 { /* second half is unsigned char-reversed version of first! */
436 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
437 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
438 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
439 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
440 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
441 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
442 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
443 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
444 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
445 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
446 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
447 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
448 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
449 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
450 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
451 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
452 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
453 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
454 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
455 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
456 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
457 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
458 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
459 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
460 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
461 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
462 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
463 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
464 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
465 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
466 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
467 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
468 }
469 };
470
471 /*
472 **********************************************************************
473 * Routine: Phase 1 -- generate P1K, given TA, TK, IV32
474 *
475 * Inputs:
476 * tk[] = temporal key [128 bits]
477 * ta[] = transmitter's MAC address [ 48 bits]
478 * iv32 = upper 32 bits of IV [ 32 bits]
479 * Output:
480 * p1k[] = Phase 1 key [ 80 bits]
481 *
482 * Note:
483 * This function only needs to be called every 2**16 packets,
484 * although in theory it could be called every packet.
485 *
486 **********************************************************************
487 */
488 static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
489 {
490 sint i;
491
492 /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */
493 p1k[0] = Lo16(iv32);
494 p1k[1] = Hi16(iv32);
495 p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
496 p1k[3] = Mk16(ta[3], ta[2]);
497 p1k[4] = Mk16(ta[5], ta[4]);
498 /* Now compute an unbalanced Feistel cipher with 80-bit block */
499 /* size on the 80-bit block P1K[], using the 128-bit key TK[] */
500 for (i = 0; i < PHASE1_LOOP_CNT; i++) { /* Each add is mod 2**16 */
501 p1k[0] += _S_(p1k[4] ^ TK16((i&1) + 0));
502 p1k[1] += _S_(p1k[0] ^ TK16((i&1) + 2));
503 p1k[2] += _S_(p1k[1] ^ TK16((i&1) + 4));
504 p1k[3] += _S_(p1k[2] ^ TK16((i&1) + 6));
505 p1k[4] += _S_(p1k[3] ^ TK16((i&1) + 0));
506 p1k[4] += (unsigned short)i; /* avoid "slide attacks" */
507 }
508 }
509
510 /*
511 **********************************************************************
512 * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
513 *
514 * Inputs:
515 * tk[] = Temporal key [128 bits]
516 * p1k[] = Phase 1 output key [ 80 bits]
517 * iv16 = low 16 bits of IV counter [ 16 bits]
518 * Output:
519 * rc4key[] = the key used to encrypt the packet [128 bits]
520 *
521 * Note:
522 * The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
523 * across all packets using the same key TK value. Then, for a
524 * given value of TK[], this TKIP48 construction guarantees that
525 * the final RC4KEY value is unique across all packets.
526 *
527 * Suggested implementation optimization: if PPK[] is "overlaid"
528 * appropriately on RC4KEY[], there is no need for the final
529 * for loop below that copies the PPK[] result into RC4KEY[].
530 *
531 **********************************************************************
532 */
533 static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
534 {
535 sint i;
536 u16 PPK[6]; /* temporary key for mixing */
537
538 /* Note: all adds in the PPK[] equations below are mod 2**16 */
539 for (i = 0; i < 5; i++)
540 PPK[i] = p1k[i]; /* first, copy P1K to PPK */
541 PPK[5] = p1k[4] + iv16; /* next, add in IV16 */
542 /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
543 PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */
544 PPK[1] += _S_(PPK[0] ^ TK16(1));
545 PPK[2] += _S_(PPK[1] ^ TK16(2));
546 PPK[3] += _S_(PPK[2] ^ TK16(3));
547 PPK[4] += _S_(PPK[3] ^ TK16(4));
548 PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */
549 /* Final sweep: bijective, "linear". Rotates kill LSB correlations */
550 PPK[0] += RotR1(PPK[5] ^ TK16(6));
551 PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */
552 PPK[2] += RotR1(PPK[1]);
553 PPK[3] += RotR1(PPK[2]);
554 PPK[4] += RotR1(PPK[3]);
555 PPK[5] += RotR1(PPK[4]);
556 /* Note: At this point, for a given key TK[0..15], the 96-bit output */
557 /* value PPK[0..5] is guaranteed to be unique, as a function */
558 /* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */
559 /* is now a keyed permutation of {TA,IV32,IV16}. */
560 /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */
561 rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */
562 rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */
563 rc4key[2] = Lo8(iv16);
564 rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
565 /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
566 for (i = 0; i < 6; i++) {
567 rc4key[4 + 2 * i] = Lo8(PPK[i]);
568 rc4key[5 + 2 * i] = Hi8(PPK[i]);
569 }
570 }
571
572 /*The hlen isn't include the IV*/
573 u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe)
574 { /* exclude ICV */
575 u16 pnl;
576 u32 pnh;
577 u8 rc4key[16];
578 u8 ttkey[16];
579 u8 crc[4];
580 struct arc4context mycontext;
581 u32 curfragnum, length, prwskeylen;
582
583 u8 *pframe, *payload, *iv, *prwskey;
584 union pn48 txpn;
585 struct sta_info *stainfo;
586 struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
587 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
588 u32 res = _SUCCESS;
589
590 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
591 return _FAIL;
592
593 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
594 /* 4 start to encrypt each fragment */
595 if (pattrib->encrypt == _TKIP_) {
596 if (pattrib->psta)
597 stainfo = pattrib->psta;
598 else
599 stainfo = r8712_get_stainfo(&padapter->stapriv,
600 &pattrib->ra[0]);
601 if (stainfo != NULL) {
602 prwskey = &stainfo->x_UncstKey.skey[0];
603 prwskeylen = 16;
604 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
605 curfragnum++) {
606 iv = pframe + pattrib->hdrlen;
607 payload = pframe+pattrib->iv_len +
608 pattrib->hdrlen;
609 GET_TKIP_PN(iv, txpn);
610 pnl = (u16)(txpn.val);
611 pnh = (u32)(txpn.val >> 16);
612 phase1((u16 *)&ttkey[0], prwskey, &pattrib->
613 ta[0], pnh);
614 phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0],
615 pnl);
616 if ((curfragnum + 1) == pattrib->nr_frags) {
617 /* 4 the last fragment */
618 length = pattrib->last_txcmdsz -
619 pattrib->hdrlen-pattrib->iv_len -
620 pattrib->icv_len;
621 *((u32 *)crc) = cpu_to_le32(
622 getcrc32(payload, length));
623 arcfour_init(&mycontext, rc4key, 16);
624 arcfour_encrypt(&mycontext, payload,
625 payload, length);
626 arcfour_encrypt(&mycontext, payload +
627 length, crc, 4);
628 } else {
629 length = pxmitpriv->frag_len-pattrib->
630 hdrlen-pattrib->
631 iv_len-pattrib->icv_len;
632 *((u32 *)crc) = cpu_to_le32(getcrc32(
633 payload, length));
634 arcfour_init(&mycontext, rc4key, 16);
635 arcfour_encrypt(&mycontext, payload,
636 payload, length);
637 arcfour_encrypt(&mycontext,
638 payload+length, crc, 4);
639 pframe += pxmitpriv->frag_len;
640 pframe = (u8 *)RND4((addr_t)(pframe));
641 }
642 }
643 } else
644 res = _FAIL;
645 }
646 return res;
647 }
648
649 /* The hlen doesn't include the IV */
650 u32 r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe)
651 { /* exclude ICV */
652 u16 pnl;
653 u32 pnh;
654 u8 rc4key[16];
655 u8 ttkey[16];
656 u8 crc[4];
657 struct arc4context mycontext;
658 u32 length, prwskeylen;
659 u8 *pframe, *payload, *iv, *prwskey, idx = 0;
660 union pn48 txpn;
661 struct sta_info *stainfo;
662 struct rx_pkt_attrib *prxattrib = &((union recv_frame *)
663 precvframe)->u.hdr.attrib;
664 struct security_priv *psecuritypriv = &padapter->securitypriv;
665
666 pframe = (unsigned char *)((union recv_frame *)
667 precvframe)->u.hdr.rx_data;
668 /* 4 start to decrypt recvframe */
669 if (prxattrib->encrypt == _TKIP_) {
670 stainfo = r8712_get_stainfo(&padapter->stapriv,
671 &prxattrib->ta[0]);
672 if (stainfo != NULL) {
673 iv = pframe+prxattrib->hdrlen;
674 payload = pframe+prxattrib->iv_len + prxattrib->hdrlen;
675 length = ((union recv_frame *)precvframe)->
676 u.hdr.len - prxattrib->hdrlen -
677 prxattrib->iv_len;
678 if (IS_MCAST(prxattrib->ra)) {
679 idx = iv[3];
680 prwskey = &psecuritypriv->XGrpKey[
681 ((idx >> 6) & 0x3) - 1].skey[0];
682 if (psecuritypriv->binstallGrpkey == false)
683 return _FAIL;
684 } else
685 prwskey = &stainfo->x_UncstKey.skey[0];
686 prwskeylen = 16;
687 GET_TKIP_PN(iv, txpn);
688 pnl = (u16)(txpn.val);
689 pnh = (u32)(txpn.val >> 16);
690 phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0],
691 pnh);
692 phase2(&rc4key[0], prwskey, (unsigned short *)
693 &ttkey[0], pnl);
694 /* 4 decrypt payload include icv */
695 arcfour_init(&mycontext, rc4key, 16);
696 arcfour_encrypt(&mycontext, payload, payload, length);
697 *((u32 *)crc) = cpu_to_le32(getcrc32(payload,
698 length - 4));
699 if (crc[3] != payload[length - 1] ||
700 crc[2] != payload[length - 2] ||
701 crc[1] != payload[length - 3] ||
702 crc[0] != payload[length - 4])
703 return _FAIL;
704 } else
705 return _FAIL;
706 }
707 return _SUCCESS;
708 }
709
710 /* 3 =====AES related===== */
711
712 #define MAX_MSG_SIZE 2048
713 /*****************************/
714 /******** SBOX Table *********/
715 /*****************************/
716
717 static const u8 sbox_table[256] = {
718 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
719 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
720 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
721 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
722 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
723 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
724 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
725 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
726 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
727 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
728 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
729 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
730 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
731 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
732 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
733 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
734 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
735 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
736 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
737 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
738 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
739 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
740 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
741 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
742 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
743 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
744 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
745 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
746 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
747 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
748 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
749 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
750 };
751
752 /****************************************/
753 /* aes128k128d() */
754 /* Performs a 128 bit AES encrypt with */
755 /* 128 bit data. */
756 /****************************************/
757 static void xor_128(u8 *a, u8 *b, u8 *out)
758 {
759 sint i;
760
761 for (i = 0; i < 16; i++)
762 out[i] = a[i] ^ b[i];
763 }
764
765 static void xor_32(u8 *a, u8 *b, u8 *out)
766 {
767 sint i;
768 for (i = 0; i < 4; i++)
769 out[i] = a[i] ^ b[i];
770 }
771
772 static u8 sbox(u8 a)
773 {
774 return sbox_table[(sint)a];
775 }
776
777 static void next_key(u8 *key, sint round)
778 {
779 u8 rcon;
780 u8 sbox_key[4];
781 u8 rcon_table[12] = {
782 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
783 0x1b, 0x36, 0x36, 0x36
784 };
785
786 sbox_key[0] = sbox(key[13]);
787 sbox_key[1] = sbox(key[14]);
788 sbox_key[2] = sbox(key[15]);
789 sbox_key[3] = sbox(key[12]);
790 rcon = rcon_table[round];
791 xor_32(&key[0], sbox_key, &key[0]);
792 key[0] = key[0] ^ rcon;
793 xor_32(&key[4], &key[0], &key[4]);
794 xor_32(&key[8], &key[4], &key[8]);
795 xor_32(&key[12], &key[8], &key[12]);
796 }
797
798 static void byte_sub(u8 *in, u8 *out)
799 {
800 sint i;
801 for (i = 0; i < 16; i++)
802 out[i] = sbox(in[i]);
803 }
804
805 static void shift_row(u8 *in, u8 *out)
806 {
807 out[0] = in[0];
808 out[1] = in[5];
809 out[2] = in[10];
810 out[3] = in[15];
811 out[4] = in[4];
812 out[5] = in[9];
813 out[6] = in[14];
814 out[7] = in[3];
815 out[8] = in[8];
816 out[9] = in[13];
817 out[10] = in[2];
818 out[11] = in[7];
819 out[12] = in[12];
820 out[13] = in[1];
821 out[14] = in[6];
822 out[15] = in[11];
823 }
824
825 static void mix_column(u8 *in, u8 *out)
826 {
827 sint i;
828 u8 add1b[4];
829 u8 add1bf7[4];
830 u8 rotl[4];
831 u8 swap_halfs[4];
832 u8 andf7[4];
833 u8 rotr[4];
834 u8 temp[4];
835 u8 tempb[4];
836
837 for (i = 0; i < 4; i++) {
838 if ((in[i] & 0x80) == 0x80)
839 add1b[i] = 0x1b;
840 else
841 add1b[i] = 0x00;
842 }
843 swap_halfs[0] = in[2]; /* Swap halves */
844 swap_halfs[1] = in[3];
845 swap_halfs[2] = in[0];
846 swap_halfs[3] = in[1];
847 rotl[0] = in[3]; /* Rotate left 8 bits */
848 rotl[1] = in[0];
849 rotl[2] = in[1];
850 rotl[3] = in[2];
851 andf7[0] = in[0] & 0x7f;
852 andf7[1] = in[1] & 0x7f;
853 andf7[2] = in[2] & 0x7f;
854 andf7[3] = in[3] & 0x7f;
855 for (i = 3; i > 0; i--) { /* logical shift left 1 bit */
856 andf7[i] = andf7[i] << 1;
857 if ((andf7[i-1] & 0x80) == 0x80)
858 andf7[i] = (andf7[i] | 0x01);
859 }
860 andf7[0] = andf7[0] << 1;
861 andf7[0] = andf7[0] & 0xfe;
862 xor_32(add1b, andf7, add1bf7);
863 xor_32(in, add1bf7, rotr);
864 temp[0] = rotr[0]; /* Rotate right 8 bits */
865 rotr[0] = rotr[1];
866 rotr[1] = rotr[2];
867 rotr[2] = rotr[3];
868 rotr[3] = temp[0];
869 xor_32(add1bf7, rotr, temp);
870 xor_32(swap_halfs, rotl, tempb);
871 xor_32(temp, tempb, out);
872 }
873
874 static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
875 {
876 sint round;
877 sint i;
878 u8 intermediatea[16];
879 u8 intermediateb[16];
880 u8 round_key[16];
881
882 for (i = 0; i < 16; i++)
883 round_key[i] = key[i];
884 for (round = 0; round < 11; round++) {
885 if (round == 0) {
886 xor_128(round_key, data, ciphertext);
887 next_key(round_key, round);
888 } else if (round == 10) {
889 byte_sub(ciphertext, intermediatea);
890 shift_row(intermediatea, intermediateb);
891 xor_128(intermediateb, round_key, ciphertext);
892 } else { /* 1 - 9 */
893 byte_sub(ciphertext, intermediatea);
894 shift_row(intermediatea, intermediateb);
895 mix_column(&intermediateb[0], &intermediatea[0]);
896 mix_column(&intermediateb[4], &intermediatea[4]);
897 mix_column(&intermediateb[8], &intermediatea[8]);
898 mix_column(&intermediateb[12], &intermediatea[12]);
899 xor_128(intermediatea, round_key, ciphertext);
900 next_key(round_key, round);
901 }
902 }
903 }
904
905 /************************************************/
906 /* construct_mic_iv() */
907 /* Builds the MIC IV from header fields and PN */
908 /************************************************/
909 static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists,
910 u8 *mpdu, uint payload_length, u8 *pn_vector)
911 {
912 sint i;
913
914 mic_iv[0] = 0x59;
915 if (qc_exists && a4_exists)
916 mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */
917 if (qc_exists && !a4_exists)
918 mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */
919 if (!qc_exists)
920 mic_iv[1] = 0x00;
921 for (i = 2; i < 8; i++)
922 mic_iv[i] = mpdu[i + 8];
923 for (i = 8; i < 14; i++)
924 mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
925 mic_iv[14] = (unsigned char) (payload_length / 256);
926 mic_iv[15] = (unsigned char) (payload_length % 256);
927 }
928
929 /************************************************/
930 /* construct_mic_header1() */
931 /* Builds the first MIC header block from */
932 /* header fields. */
933 /************************************************/
934 static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu)
935 {
936 mic_header1[0] = (u8)((header_length - 2) / 256);
937 mic_header1[1] = (u8)((header_length - 2) % 256);
938 mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */
939 /* Mute retry, more data and pwr mgt bits */
940 mic_header1[3] = mpdu[1] & 0xc7;
941 mic_header1[4] = mpdu[4]; /* A1 */
942 mic_header1[5] = mpdu[5];
943 mic_header1[6] = mpdu[6];
944 mic_header1[7] = mpdu[7];
945 mic_header1[8] = mpdu[8];
946 mic_header1[9] = mpdu[9];
947 mic_header1[10] = mpdu[10]; /* A2 */
948 mic_header1[11] = mpdu[11];
949 mic_header1[12] = mpdu[12];
950 mic_header1[13] = mpdu[13];
951 mic_header1[14] = mpdu[14];
952 mic_header1[15] = mpdu[15];
953 }
954
955 /************************************************/
956 /* construct_mic_header2() */
957 /* Builds the last MIC header block from */
958 /* header fields. */
959 /************************************************/
960 static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists,
961 sint qc_exists)
962 {
963 sint i;
964
965 for (i = 0; i < 16; i++)
966 mic_header2[i] = 0x00;
967 mic_header2[0] = mpdu[16]; /* A3 */
968 mic_header2[1] = mpdu[17];
969 mic_header2[2] = mpdu[18];
970 mic_header2[3] = mpdu[19];
971 mic_header2[4] = mpdu[20];
972 mic_header2[5] = mpdu[21];
973 mic_header2[6] = 0x00;
974 mic_header2[7] = 0x00; /* mpdu[23]; */
975 if (!qc_exists && a4_exists)
976 for (i = 0; i < 6; i++)
977 mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
978 if (qc_exists && !a4_exists) {
979 mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
980 mic_header2[9] = mpdu[25] & 0x00;
981 }
982 if (qc_exists && a4_exists) {
983 for (i = 0; i < 6; i++)
984 mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
985 mic_header2[14] = mpdu[30] & 0x0f;
986 mic_header2[15] = mpdu[31] & 0x00;
987 }
988 }
989
990 /************************************************/
991 /* construct_mic_header2() */
992 /* Builds the last MIC header block from */
993 /* header fields. */
994 /************************************************/
995 static void construct_ctr_preload(u8 *ctr_preload, sint a4_exists, sint qc_exists,
996 u8 *mpdu, u8 *pn_vector, sint c)
997 {
998 sint i;
999
1000 for (i = 0; i < 16; i++)
1001 ctr_preload[i] = 0x00;
1002 i = 0;
1003 ctr_preload[0] = 0x01; /* flag */
1004 if (qc_exists && a4_exists)
1005 ctr_preload[1] = mpdu[30] & 0x0f;
1006 if (qc_exists && !a4_exists)
1007 ctr_preload[1] = mpdu[24] & 0x0f;
1008 for (i = 2; i < 8; i++)
1009 ctr_preload[i] = mpdu[i + 8];
1010 for (i = 8; i < 14; i++)
1011 ctr_preload[i] = pn_vector[13 - i];
1012 ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */
1013 ctr_preload[15] = (unsigned char) (c % 256);
1014 }
1015
1016 /************************************/
1017 /* bitwise_xor() */
1018 /* A 128 bit, bitwise exclusive or */
1019 /************************************/
1020 static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
1021 {
1022 sint i;
1023
1024 for (i = 0; i < 16; i++)
1025 out[i] = ina[i] ^ inb[i];
1026 }
1027
1028 static sint aes_cipher(u8 *key, uint hdrlen,
1029 u8 *pframe, uint plen)
1030 {
1031 uint qc_exists, a4_exists, i, j, payload_remainder;
1032 uint num_blocks, payload_index;
1033
1034 u8 pn_vector[6];
1035 u8 mic_iv[16];
1036 u8 mic_header1[16];
1037 u8 mic_header2[16];
1038 u8 ctr_preload[16];
1039
1040 /* Intermediate Buffers */
1041 u8 chain_buffer[16];
1042 u8 aes_out[16];
1043 u8 padded_buffer[16];
1044 u8 mic[8];
1045 uint frtype = GetFrameType(pframe);
1046 uint frsubtype = GetFrameSubType(pframe);
1047
1048 frsubtype = frsubtype >> 4;
1049 memset((void *)mic_iv, 0, 16);
1050 memset((void *)mic_header1, 0, 16);
1051 memset((void *)mic_header2, 0, 16);
1052 memset((void *)ctr_preload, 0, 16);
1053 memset((void *)chain_buffer, 0, 16);
1054 memset((void *)aes_out, 0, 16);
1055 memset((void *)padded_buffer, 0, 16);
1056
1057 if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
1058 a4_exists = 0;
1059 else
1060 a4_exists = 1;
1061
1062 if ((frtype == WIFI_DATA_CFACK) ||
1063 (frtype == WIFI_DATA_CFPOLL) ||
1064 (frtype == WIFI_DATA_CFACKPOLL)) {
1065 qc_exists = 1;
1066 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1067 hdrlen += 2;
1068 } else if ((frsubtype == 0x08) ||
1069 (frsubtype == 0x09) ||
1070 (frsubtype == 0x0a) ||
1071 (frsubtype == 0x0b)) {
1072 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1073 hdrlen += 2;
1074 qc_exists = 1;
1075 } else
1076 qc_exists = 0;
1077 pn_vector[0] = pframe[hdrlen];
1078 pn_vector[1] = pframe[hdrlen+1];
1079 pn_vector[2] = pframe[hdrlen+4];
1080 pn_vector[3] = pframe[hdrlen+5];
1081 pn_vector[4] = pframe[hdrlen+6];
1082 pn_vector[5] = pframe[hdrlen+7];
1083 construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector);
1084 construct_mic_header1(mic_header1, hdrlen, pframe);
1085 construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists);
1086 payload_remainder = plen % 16;
1087 num_blocks = plen / 16;
1088 /* Find start of payload */
1089 payload_index = (hdrlen + 8);
1090 /* Calculate MIC */
1091 aes128k128d(key, mic_iv, aes_out);
1092 bitwise_xor(aes_out, mic_header1, chain_buffer);
1093 aes128k128d(key, chain_buffer, aes_out);
1094 bitwise_xor(aes_out, mic_header2, chain_buffer);
1095 aes128k128d(key, chain_buffer, aes_out);
1096 for (i = 0; i < num_blocks; i++) {
1097 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1098 payload_index += 16;
1099 aes128k128d(key, chain_buffer, aes_out);
1100 }
1101 /* Add on the final payload block if it needs padding */
1102 if (payload_remainder > 0) {
1103 for (j = 0; j < 16; j++)
1104 padded_buffer[j] = 0x00;
1105 for (j = 0; j < payload_remainder; j++)
1106 padded_buffer[j] = pframe[payload_index++];
1107 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1108 aes128k128d(key, chain_buffer, aes_out);
1109 }
1110 for (j = 0; j < 8; j++)
1111 mic[j] = aes_out[j];
1112 /* Insert MIC into payload */
1113 for (j = 0; j < 8; j++)
1114 pframe[payload_index+j] = mic[j];
1115 payload_index = hdrlen + 8;
1116 for (i = 0; i < num_blocks; i++) {
1117 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1118 pframe, pn_vector, i + 1);
1119 aes128k128d(key, ctr_preload, aes_out);
1120 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1121 for (j = 0; j < 16; j++)
1122 pframe[payload_index++] = chain_buffer[j];
1123 }
1124 if (payload_remainder > 0) { /* If short final block, then pad it,*/
1125 /* encrypt and copy unpadded part back */
1126 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1127 pframe, pn_vector, num_blocks+1);
1128 for (j = 0; j < 16; j++)
1129 padded_buffer[j] = 0x00;
1130 for (j = 0; j < payload_remainder; j++)
1131 padded_buffer[j] = pframe[payload_index+j];
1132 aes128k128d(key, ctr_preload, aes_out);
1133 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1134 for (j = 0; j < payload_remainder; j++)
1135 pframe[payload_index++] = chain_buffer[j];
1136 }
1137 /* Encrypt the MIC */
1138 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1139 pframe, pn_vector, 0);
1140 for (j = 0; j < 16; j++)
1141 padded_buffer[j] = 0x00;
1142 for (j = 0; j < 8; j++)
1143 padded_buffer[j] = pframe[j+hdrlen+8+plen];
1144 aes128k128d(key, ctr_preload, aes_out);
1145 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1146 for (j = 0; j < 8; j++)
1147 pframe[payload_index++] = chain_buffer[j];
1148 return _SUCCESS;
1149 }
1150
1151 u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe)
1152 { /* exclude ICV */
1153 /* Intermediate Buffers */
1154 sint curfragnum, length;
1155 u32 prwskeylen;
1156 u8 *pframe, *prwskey;
1157 struct sta_info *stainfo;
1158 struct pkt_attrib *pattrib = &((struct xmit_frame *)
1159 pxmitframe)->attrib;
1160 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
1161 u32 res = _SUCCESS;
1162
1163 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
1164 return _FAIL;
1165 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
1166 /* 4 start to encrypt each fragment */
1167 if ((pattrib->encrypt == _AES_)) {
1168 if (pattrib->psta)
1169 stainfo = pattrib->psta;
1170 else
1171 stainfo = r8712_get_stainfo(&padapter->stapriv,
1172 &pattrib->ra[0]);
1173 if (stainfo != NULL) {
1174 prwskey = &stainfo->x_UncstKey.skey[0];
1175 prwskeylen = 16;
1176 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
1177 curfragnum++) {
1178 if ((curfragnum + 1) == pattrib->nr_frags) {\
1179 length = pattrib->last_txcmdsz -
1180 pattrib->hdrlen -
1181 pattrib->iv_len -
1182 pattrib->icv_len;
1183 aes_cipher(prwskey, pattrib->
1184 hdrlen, pframe, length);
1185 } else {
1186 length = pxmitpriv->frag_len -
1187 pattrib->hdrlen -
1188 pattrib->iv_len -
1189 pattrib->icv_len;
1190 aes_cipher(prwskey, pattrib->
1191 hdrlen, pframe, length);
1192 pframe += pxmitpriv->frag_len;
1193 pframe = (u8 *)RND4((addr_t)(pframe));
1194 }
1195 }
1196 } else
1197 res = _FAIL;
1198 }
1199 return res;
1200 }
1201
1202 static sint aes_decipher(u8 *key, uint hdrlen,
1203 u8 *pframe, uint plen)
1204 {
1205 static u8 message[MAX_MSG_SIZE];
1206 uint qc_exists, a4_exists, i, j, payload_remainder;
1207 uint num_blocks, payload_index;
1208 u8 pn_vector[6];
1209 u8 mic_iv[16];
1210 u8 mic_header1[16];
1211 u8 mic_header2[16];
1212 u8 ctr_preload[16];
1213 /* Intermediate Buffers */
1214 u8 chain_buffer[16];
1215 u8 aes_out[16];
1216 u8 padded_buffer[16];
1217 u8 mic[8];
1218 uint frtype = GetFrameType(pframe);
1219 uint frsubtype = GetFrameSubType(pframe);
1220
1221 frsubtype = frsubtype >> 4;
1222 memset((void *)mic_iv, 0, 16);
1223 memset((void *)mic_header1, 0, 16);
1224 memset((void *)mic_header2, 0, 16);
1225 memset((void *)ctr_preload, 0, 16);
1226 memset((void *)chain_buffer, 0, 16);
1227 memset((void *)aes_out, 0, 16);
1228 memset((void *)padded_buffer, 0, 16);
1229 /* start to decrypt the payload */
1230 /*(plen including llc, payload and mic) */
1231 num_blocks = (plen - 8) / 16;
1232 payload_remainder = (plen-8) % 16;
1233 pn_vector[0] = pframe[hdrlen];
1234 pn_vector[1] = pframe[hdrlen+1];
1235 pn_vector[2] = pframe[hdrlen+4];
1236 pn_vector[3] = pframe[hdrlen+5];
1237 pn_vector[4] = pframe[hdrlen+6];
1238 pn_vector[5] = pframe[hdrlen+7];
1239 if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
1240 a4_exists = 0;
1241 else
1242 a4_exists = 1;
1243 if ((frtype == WIFI_DATA_CFACK) ||
1244 (frtype == WIFI_DATA_CFPOLL) ||
1245 (frtype == WIFI_DATA_CFACKPOLL)) {
1246 qc_exists = 1;
1247 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1248 hdrlen += 2;
1249 } else if ((frsubtype == 0x08) ||
1250 (frsubtype == 0x09) ||
1251 (frsubtype == 0x0a) ||
1252 (frsubtype == 0x0b)) {
1253 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1254 hdrlen += 2;
1255 qc_exists = 1;
1256 } else
1257 qc_exists = 0;
1258 /* now, decrypt pframe with hdrlen offset and plen long */
1259 payload_index = hdrlen + 8; /* 8 is for extiv */
1260 for (i = 0; i < num_blocks; i++) {
1261 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1262 pframe, pn_vector, i + 1);
1263 aes128k128d(key, ctr_preload, aes_out);
1264 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1265 for (j = 0; j < 16; j++)
1266 pframe[payload_index++] = chain_buffer[j];
1267 }
1268 if (payload_remainder > 0) { /* If short final block, pad it,*/
1269 /* encrypt it and copy the unpadded part back */
1270 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1271 pframe, pn_vector, num_blocks+1);
1272 for (j = 0; j < 16; j++)
1273 padded_buffer[j] = 0x00;
1274 for (j = 0; j < payload_remainder; j++)
1275 padded_buffer[j] = pframe[payload_index + j];
1276 aes128k128d(key, ctr_preload, aes_out);
1277 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1278 for (j = 0; j < payload_remainder; j++)
1279 pframe[payload_index++] = chain_buffer[j];
1280 }
1281 /* start to calculate the mic */
1282 memcpy((void *)message, pframe, (hdrlen + plen + 8));
1283 pn_vector[0] = pframe[hdrlen];
1284 pn_vector[1] = pframe[hdrlen+1];
1285 pn_vector[2] = pframe[hdrlen+4];
1286 pn_vector[3] = pframe[hdrlen+5];
1287 pn_vector[4] = pframe[hdrlen+6];
1288 pn_vector[5] = pframe[hdrlen+7];
1289 construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen-8,
1290 pn_vector);
1291 construct_mic_header1(mic_header1, hdrlen, message);
1292 construct_mic_header2(mic_header2, message, a4_exists, qc_exists);
1293 payload_remainder = (plen - 8) % 16;
1294 num_blocks = (plen - 8) / 16;
1295 /* Find start of payload */
1296 payload_index = (hdrlen + 8);
1297 /* Calculate MIC */
1298 aes128k128d(key, mic_iv, aes_out);
1299 bitwise_xor(aes_out, mic_header1, chain_buffer);
1300 aes128k128d(key, chain_buffer, aes_out);
1301 bitwise_xor(aes_out, mic_header2, chain_buffer);
1302 aes128k128d(key, chain_buffer, aes_out);
1303 for (i = 0; i < num_blocks; i++) {
1304 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1305 payload_index += 16;
1306 aes128k128d(key, chain_buffer, aes_out);
1307 }
1308 /* Add on the final payload block if it needs padding */
1309 if (payload_remainder > 0) {
1310 for (j = 0; j < 16; j++)
1311 padded_buffer[j] = 0x00;
1312 for (j = 0; j < payload_remainder; j++)
1313 padded_buffer[j] = message[payload_index++];
1314 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1315 aes128k128d(key, chain_buffer, aes_out);
1316 }
1317 for (j = 0; j < 8; j++)
1318 mic[j] = aes_out[j];
1319 /* Insert MIC into payload */
1320 for (j = 0; j < 8; j++)
1321 message[payload_index+j] = mic[j];
1322 payload_index = hdrlen + 8;
1323 for (i = 0; i < num_blocks; i++) {
1324 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1325 message, pn_vector, i + 1);
1326 aes128k128d(key, ctr_preload, aes_out);
1327 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1328 for (j = 0; j < 16; j++)
1329 message[payload_index++] = chain_buffer[j];
1330 }
1331 if (payload_remainder > 0) { /* If short final block, pad it,*/
1332 /* encrypt and copy unpadded part back */
1333 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1334 message, pn_vector, num_blocks+1);
1335 for (j = 0; j < 16; j++)
1336 padded_buffer[j] = 0x00;
1337 for (j = 0; j < payload_remainder; j++)
1338 padded_buffer[j] = message[payload_index + j];
1339 aes128k128d(key, ctr_preload, aes_out);
1340 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1341 for (j = 0; j < payload_remainder; j++)
1342 message[payload_index++] = chain_buffer[j];
1343 }
1344 /* Encrypt the MIC */
1345 construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message,
1346 pn_vector, 0);
1347 for (j = 0; j < 16; j++)
1348 padded_buffer[j] = 0x00;
1349 for (j = 0; j < 8; j++)
1350 padded_buffer[j] = message[j + hdrlen + plen];
1351 aes128k128d(key, ctr_preload, aes_out);
1352 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1353 for (j = 0; j < 8; j++)
1354 message[payload_index++] = chain_buffer[j];
1355 /* compare the mic */
1356 return _SUCCESS;
1357 }
1358
1359 u32 r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe)
1360 { /* exclude ICV */
1361 /* Intermediate Buffers */
1362 sint length;
1363 u32 prwskeylen;
1364 u8 *pframe, *prwskey, *iv, idx;
1365 struct sta_info *stainfo;
1366 struct rx_pkt_attrib *prxattrib = &((union recv_frame *)
1367 precvframe)->u.hdr.attrib;
1368 struct security_priv *psecuritypriv = &padapter->securitypriv;
1369
1370 pframe = (unsigned char *)((union recv_frame *)precvframe)->
1371 u.hdr.rx_data;
1372 /* 4 start to encrypt each fragment */
1373 if ((prxattrib->encrypt == _AES_)) {
1374 stainfo = r8712_get_stainfo(&padapter->stapriv,
1375 &prxattrib->ta[0]);
1376 if (stainfo != NULL) {
1377 if (IS_MCAST(prxattrib->ra)) {
1378 iv = pframe+prxattrib->hdrlen;
1379 idx = iv[3];
1380 prwskey = &psecuritypriv->XGrpKey[
1381 ((idx >> 6) & 0x3) - 1].skey[0];
1382 if (psecuritypriv->binstallGrpkey == false)
1383 return _FAIL;
1384
1385 } else
1386 prwskey = &stainfo->x_UncstKey.skey[0];
1387 prwskeylen = 16;
1388 length = ((union recv_frame *)precvframe)->
1389 u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
1390 aes_decipher(prwskey, prxattrib->hdrlen, pframe,
1391 length);
1392 } else
1393 return _FAIL;
1394 }
1395 return _SUCCESS;
1396 }
1397
1398 void r8712_use_tkipkey_handler(void *FunctionContext)
1399 {
1400 struct _adapter *padapter = (struct _adapter *)FunctionContext;
1401
1402 padapter->securitypriv.busetkipkey = true;
1403 }
This page took 0.09988 seconds and 5 git commands to generate.